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SUBDIFFERENTIALS IN BOOLEAN-VALUED MODELS OF SET THEORY 

A. G. Kusraev and S. So Kutateladze UDC 517o11+517o43 

One of the perpetual and key questions of the theory of extremal problems is the fol- 
lowing: "How do the optimal values and solutions behave under a change of variables?" Some 
possible answers to this question have been gathered in the subdifferential calculus of non- 
smooth operators. Convex operators and, especially, the "scalar" convex operators, i.e., 
convex functions, have been studied in greatest detail. The case of convex functions occupies 
a perfectly exclusive position in connection with the availability of effective geometrical 
interpretations of local approximations of these functions at interior points of their ef- 
fective domains. The following are the main connections here: 

(I) The subdifferential is a weakly compact convex set. 

(2) The elements of the smallest subdifferential, containing a weakly (order) bounded 
set ~, are obtained by successive applications of the operations of taking the 
convex hull of ~ and of passage to the closure. 

(3) The extreme points of the smallest subdifferential, generated by a set ~, belong 
to the weak closure of the initial set •. 

The determination of the operator versions of the above statements is a well-known prob- 
lem of local convex analysis [I-3]. There exist a series of particular solutions for special 
classes of spaces and operators that appeal either to compactness of subdifferential in a 
suitable operator topology or to a specific geometrical interpretation of separability in 
concrete function spaces. At the same time, there was no satisfactory general answer, namely, 
in connectionwith the fact that for arbitrary spaces and operators, on one hand there is (as a 
rule!) no compactness in operator topologies and, on the other hand, the "scalar" inter- 
pretations of the separability theorems do not furnish adequate characterizations of subdif- 
ferentials. 

The aim of the present article is to give a solution of the indicated problem. In par- 
ticular, in the sequel we give an explicit representation of the elements of a subdifferential 
and its extreme points of special kind by "the dispersion integrals" of the o-extreme points. 
The method of investigation is the theory of the Boolean-valued models of set theory [4-12], 
the main connection of which with the K-spaces has been discovered in [13, 14]. A rough plan 
uses the indicated theory in the following manner. At first, we should choose a Boolean 
algebra and a model corresponding to it, in which the considered (= "outer") operator is rep- 
resented by a scalar convex function in the model (= turns into an "inner" convex function). 
After this, interpreting the inner geometrical meaning of the subdifferential of the function 
in the outer terminology, we should obtain the desired answer. A directed realization of this 
plan is possibli, but is connected with certain technical difficulties (as the notion of an 
o-extreme point is "badly" interpreted). In this connection, we undertake a round-about 
maneuver -- the indicated plan is used only for the analysis of the canonical sub!inear opera- 
tor, namely, the operator of taking the supremum. The general case is deduced with regard 
for the peculiarities of the structure of its subdifferential as well as the fact that each 
sublinear operator differs from the canonical one by a linear change of variable. 
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The proof of the main results uses the deducibility of the Krein--Mil'man and the Mil'man 
theorems in ZFC (= the Zermelo--Fraenkel set theory with the axiom of choice), and is non- 

standard in this sense. It is emphasized that a large part of the facts, given in the sequel, 

is justified by usual means. The same is true for all that is treated below, if it does not 
ask for (as this is expected) other large requirements. It can be qualitatively said that it 
is shown in this article how the central notions of the subdifferential calculus for opera- 
tors arise under outer deciphering of the corresponding scalar predessors in a suitable model 
of set theory. 

The present article is oriented, first of all, towards specialists in the domain of con- 
vex analysis. In this connection, the treatment of the auxiliary logical means is little 
more detailed than the exposition of necessary facts from the subdifferential calculus. Here 
let us observe that the results of the present article were announced in [15] and were re- 
ported in a seminar of S. L. Sobolev. We express sincere gratitude to the participants of 
this seminar for valuable discussions. 

]. AUXILIARY INFORMATION ABOUT SUBDIFFERENTIALS 

1.0. Here we have collected necessary facts from local convex analysis. See [I-3] for 
precision and details. 

1.1. Let X be a real vector space, Y be a K-space, P:X + Y be a sublinear operator, and 
~iX, Y) be the space of the linear operators that act from X into Y. The subdifferential 
a(P)'of the operator P is defined by the relation 

8(P) :=  {A ~ .~(X, Y): (Vx ~ X) Ax ~ Px}. 

1.2. Let B:=~(Y) be the base of the K-space Y, i.e., the complete Boolean algebra 
of the projections onto the components of Y, or, what is the same thing, the algebra of the 
idempotent elements in ~f(Y):=~(Y. Y), that are majorized by the identity mapping I: = Iy. 
We take a partition of unity in B, i.e., a family (b~)~ of projections for which ~Ab~=0 
for ~ ~ q and sup~b~=1. If a family (A~)~ of elements in ~f(X, Y) and an operator A from 

~f(X, Y) are such that Ax=~mbsA~x for x~X, then A is called the intermixing of (A~)~ 

with probabilities ( b ~ ) ~  . The subdifferentials are strongly cyclic sets, i.e., they with- 
stand the formation of all possible intermixings of families of their elements. This fact is 
expressed in words as follows: "A subdifferential coincides with its strongly cyclic hull." 
Hence it is obvious that each subdifferential is a strictly operator-convex set (= coincides 
with its strictly operator-convex hull), i.e., withstands the formation of the combinations 

~Ea~A~, where A~ 8(P) and e~f(Y) are such that 0 ~ ~ ~ I and ~r = I .  In par- 

ticular, a subdifferential is an operator-convex set, i.e., if A, B~O(P) and a, }~P(Y), 
a, ~0, and a + B = I, then ~A + }BE#(P). Besides this, a subdifferential is closed with 
respect to pointwise r-convergence. Let us recall that a net (Ar in 2ga(X, Y) is said 
to be pointwise r-convergent (o-convergent) to A~5s Y), if for each x~X the net (Atx)r 
converges with regulator (o-converges) to Ax in Y. It is clear that r-convergence implies o- 
convergence. 

1.3. For a sublinear operator P, the symbol Ch(P) denotes the set of tke extreme points 
of ~(P).  The set Ch(P) is strongly cyclic and ~(P) is regenerated from Ch(P), i.e., it is 
the smallest subdifferentiaI containing Ch(P). The last fact can be written in the form 
(P) = cop(Ch(P)). The symbol cop (5g) denotes the operation of passing to the supporting hull 
of ag, i.e., to the smallest (with respect to inclusion) subdifferential containing ag. 

1.4. Let T~a (y, Z), where Z is another K-space, and let A ~0(P) , where P:X § Y. The 
operator A is said to be a ~-extreme operator if TA ~Ch(TP) . The set of all the o-extreme 
points of P, i.e., the set of the points that are T-extreme points for each o-continuous oper- 
ator T, is denoted by ~0(P) - The equality 0(P)=cop(~0(P)) holds. At the same time, ~0(P) 
is not necessarily even a cyclic set, i.e., may not withstand intermixing of finite families 
of its elements. 

1.5. Let 5g be a nonempty set and [~(gg, Y) be the space constituted from order-bounded 
Y-valued functions on ~. This space is equipped with the natural structure of a K-space (and 
even of a module over the ring of orthomorphisms of Y). The symbol s~ denotes the canonical 
sublinear operator 

~ (/): = ~up ! (~)  ( / ~  z~ (~r Y)) .  
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If ~ r  Y ) ,  
~~  YN) is defined. The set ~ is said to be weakly order-bounded if 
Y). Let us observe that the following equality holds for such an &r : 

then we set <~r By the same token, an operator <dg> 
<~r acts in l=(~, 

~op (~) = 0 (~u) o <~>; 

0 (~) = {~ ~ ~+ (t~ (~, Y), y): ~o A~ = ~1. 

Here A~r is the diagonal embedding: Asig::(g)a-sr for g~Y; it transforms Y into a set 
of constants in the space l=(&r Y). 

It is important that each sublinear operator P differs from the canonical operator by 
only a linear change of variable. More precisely, 

P = eo(~) o <O (P)>; O (P) = a (e~(m) o <~o(P)> 

(= the Krein-Mil'man theorem for operators). 

1.6. The lattice homomorphisms that preserve constants [i.e., lie in 0 (e~) ] are the 

extreme points of O(e~) �9 Moreover, an operator S~O(e~) is T-extreme if and only if 

TISyl =,rxlfl (]~z~(at, Y)).  

<~ I n d e e d ,  t h e  f o l l o w i n g  e q u a t i o n  s e r v e s  as a c r i t e r i o n  f o r  T - e x t r e m a l i t y  o f  S ( s ee  

Tg+ = inf T ((szr - -  Su) V (esr (u - ]) - S (u - / )  + g)) 

], g ~ I ~ ( 5 r  Y). Tn o t h e r  words ,  T - e x t r e m a l i t y  i s  e q u i v a l e n t  to  t he  f o l l o w i n g  for arbitrary 
equations: 

0 = inf T ((eat (u + / )  - -  S (u -i- ])) V ( ~ t  (u - -  f) - -  S (u  - - / ) ) )  = 
u 

---- inf T ( e #  ( (u + ] --  A~tSu --  A # S / )  V (u - / - A # S u  ~- Asr ) -- inf T ( e #  (u --  AzgSu)+ l / - -  AatS] 1). 
u 

By v i r t u e  o f  t he  t h e o r e m  on v e c t o r  min imax,  we can w r i t e  

(S is a T-extreme operator) +-~ (VR ~ 0 (Teat)) 0 ~ inf H (u - -  A~tSu @ 1[ --  A~tS / 1) = 

= R I1 - -  A~tS] [ + inf ( R u  - -  RAsr ) = R I f - -  ANS[I + inf (Bu --  TSu) 

(n  -- TS ~ R I / - -  A~S/I  = 0 ) ~  r S  I / - -  A~S/I  = O. 

It remains to observe that 

0 = rs[ f-A~s/l>~ r(s(!/l- A~ I s fl)) = rsl/l- r I s/l >~0-~ 

- ~ S l / I  = T I S / I - ~ r S l / - - A ~ S / I  = TIS/--SAS/I = 0 .  Zx 

1.7. The following equality holds for the canonical operator e~ : 

~o ( e ~ )  = Ci~ (e j ) .  

In addition, 

for each sublinear operator P (= the Milfman theorem for operators). 

Let us observe here that the 5-functions 8A:f-~/(A) for ] ~ l=(sr Y) and A ~r lie 
clearly in Ch(e#). The intermixings of the family (eA)A~# are called pure states on ~r 

It is obvious that the pure states are the o-extreme points of the canonical operator. 

2. AUXILIARY INFORMATION ABOUT BOOLEAN-VALUED MODELS 

2.0. Here we have gathered necessary facts about the structure of the Boolean-valued 
models and the laws of working with them. See [4, 5, 10-12] for details. 

[6]): 
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2.1. Let B be a complete Boolean algebra. For each ordinal a we set 

V~): = {x: ( ~  ~) x: dom(x)-+B A dora (x) ~ V~)}. 

A f t e r  t h i s  r e c u r s i v e  d e f i n i t i o n ,  we i n t r o d u c e  t h e  B o o l e a n - v a l u e d  u n i v e r s e  V (B) o r ,  a s  
i t  i s  a l s o  c a l l e d ,  t h e  c l a s s  o f  B - s e t s  by  t h e  r e l a t i o n  

V('):= U V~ ), 
a ~ O n  

where On is the class of all ordinals. 

2.2. Let ~ be an arbitrary formula of the theory ZFC. Interpreting the connectors and 
the quantifiers in the Boolean algebra B in the natural manner, we introduce the valuation [~] 
of the formula ~ , considering the character of its construction from the atomic formulas 
x~y and x = y and defining the valuations of the latter formulas for x, y~V (B) by the re- 
cursion scheme: 

[x~v]:= V y(z) A[z=x]; 
z ~  dora  (y) 

Ix=v] :=  A x(z)=~[z~v]A A v(z)=~[z~x]. 
z ~  d o m  (x) z ~  dora  (y) 

2.3. The universe V(B) with the indicated law of valuation of formulas is a model of 
set theory in the sense that [f(p]=l or, as it is said, ~ is true inside V(B) for each 
theorem q0 of the theory ZFC. The last fact is called the transfer principle. 

Let us observe here the following general convention. If x is an element of v(B) and 
(p(~) is a formula of ZFC, then the phrase "x satisfies (P inside v(B) '' or, in short, "q~(x) 
inside v(B)" means that [~(x)]=1. 

2.4. For each element x~V (B> and arbitrary b~B we define a function 

bx : z -+ bx(z)  (z ~ dora (x)). 

(This expression means that b~ : = r for b~B.) 

The following statements are valid for B-valued sets x and y and each element b~B : 

Ix ~ by] = b[x ~ g]; 

[bx = by] = b ~ [x = g]; 

[ x = b x ] = [ b ' x = ~ ] = b '  ~ [ x =  ~] .  

(Here b' is the complement of b.) 

2.5. There exists a natural equivalence relation in the class v(B): x~y:=[x=y]= I. 
Selecting one representation (of smallest rank) in each equivalence class (this is the so- 
called Frege--Russel--Scott device), we arrive at the separable universe ~(B), in which 

x = y + + [ x  = y] = 1 .  

It is easily seen that the valuations of the formulas do not change under passage to equiv- 
alent elements. In this connection we will effect the identification V(B) : = V~B) in the 
sequel without mention. We emphasize that the element bx is correctly defined in v(B) for 
x ~ V  (B) and b ~ B ,  since [ x i = x ~ ] = l - + [ b x ~ = b x 2 ] = b = ~ [ x ~ = x ~ . ] = t  by virtue of 2.4. In this 
connection, we often use the expression 0 = ~, keeping in mind, in particular, that 0r = ~ = 
0x for x ~V (B>. 

2.6. The following intermixing principle is valid in v(B). 

Let (bt)t~z be a partition of unity in B. For each family ( x t ) t ~  of elements of the 
universe v(B) there exists a unique intermixing (x~)~_ with probabilities (b~)~_, i.e., an 

element x of the separable universe (denoted by ~.~-~,b~x~, such that 

[x=x~] l>b~ .  ( ~ E ) .  

In addition, 

x = ~.~ b~x~ +-~ ( V ~ = , )  b~x = b~x~. 
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In particular, bx is the intermixing of x and 0 with probabilities b and b ~, respectively. 

It is useful to emphasize that the use of the term "intermixing" in different situations 
(cf. 1.2) not only does not lead to unpleasant conflicts (as would appear at a first glance), 
but, indeed, as becomes obvious from the sequel, is justified (since we are concerned with 
unique, to within inessential stipulations, objects). Similar situation is not unique - the 
remark made by us, e.g., can be applied to the term "cyclic," etc. 

2.7. The following maximum principle is valid in V (B) . 

For each formula ~ of the theory ZFC there exists a B-valued set x such that 

[ ~ x ~ ( x ) ]  = [~(x) ] .  

2.8. For each element x of t h e  Von Neumann u n i v e r s e  V defined by the recursion scheme 

V ~ : =  {x: ( u ~ )  x ~ @(V~)}; 

V: = U V~, 
~ O n  

i.e., for each set x, we set 

~ A : :  ~ ;  dom(xA)::{gA:y~X}, im(xA): :{ |} .  

(it is more precise to speak about the selected representative of the equivalence class of 
xA in v(B)). The element x A of V(B) is called the standard name of x. By the same token, 
a canonical embedding of V into V(B) arises. In this connection, the following equality is 
fulfilled for x, xl,...,x~.~V and y~V~B) : 

[ y ~ x A ] =  V [ y = z A ] ;  
z ~  

. . . . .  . . . .  , = 

for each bounded formula ,~ of the theory ZFC. (A formula is said to be bounded if connected 
variables occur in it under the signs of bounded quantifiers, i.e., quantifiers extended to 
some sets.) 

3. ELEMENTARY LOWERINGS AND LIFTINGS 

3.0. Here we gether the basic facts about the representation of elementary objects 
in Boolean-valued models (see [10-12]). 

3.1. Let ~ be a formula of ZFC and fix a set y of elements of the Boolean-valued uni- 
verse. Further, let A~ :=A~c.~:={x:~(x, y)} be the class of the sets that can be defined by 
means of y. The lowering A~$ of the class A~ is defined by the relation 

A j :  = {t: t ~ v(B) A [~ (t, y)] = t}. 

If t~A~ , then t is said to satisfy ~(', y) inside V (B). 

The lowering of each class is strongly cyclic, i.e., withstands all possible intermixings 
of its elements. In this connection, two nonempty classes inside v(B) coincide if and only if 
they have the same elements inside v(B). 

3.2.  For each element x of V(B) , its lowering x+ is given by the rule 

x~: = {t: t ~ V(B) A It ~ x] = i } ,  

i.e., x$ =A~fl. The class x+ is a set. In addition~, x$ c scyc(dom (x)), where scyc is the 
symbol for passage to the strongly cyclic hull. It is useful to emphasize that the following 
relation holds for each nonempty (inside v(B)) set x: 

( a s  ~ z ~ ) [ ( ~ z  ~ x )~ (z ) ]  = [~(z ) ] .  

3.3. Let F be a correspondence from X into Y inside V (B) . Then there exists a unique 
correspondence F+ from X+ into Y+ such that 

F~(A 4) =F(A) 4 

for each (nonempty) subset A of X inside V(B). 
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It is easily seen that F+ is defined by the rule 

<x, y> ~F?~-+[<x, y> ~F] = ~. 

3.4. Let x ~ ( V ( ~ ) ) ,  i.e., x is a set formed from B-valued sets. Let us set ~:= 
and 

dora (x~):=x, im (x~):={i} 

for x~. The element x+ (of the separable universe v(B), i.e., the selected representative 
of the corresponding class) is called the lifting of x. 

It is clear that xi+ = scyc(x) and x++ = x for each nonempty (inside V (B)) set x. Let 
us observe here that if x~V and x is its standard domain, i.e., 

= { ~ : ~ V A z ~ } ,  
t h e n  x'l = xA. 

3.5. Let X, Y ~ ( V  (~)) and Y be a correspondence from X into Y. 
unique correspondence Ftfrom X+ into Y+ inside V (B) such that 

Then there exists a 

ft(A~) ='F(A)t 

for each subset A of X if and only if F is extensional. The latter property means that 

y ~ F ( x O ~ [ x ~ = x  21<~ V [Y~=Y~]. 
Y2~F(x2) 

It is easily seen that Ft is the lifting of the set 

dom (f#):= {<x, y>B: <X, y> ~F}, 

where <x, y>B is the unique element of V(B) that corresponds by the maximum principle to the 
formula 

It is clear that this can be easily shown by direct construction of this element, 

We give here a criterion for intermixing of functions inside v(B), which will be needed 
in the sequel. 

Let ~ be a set and (/~)~ be a family of elements of V (B) that are functions from a 
nonempty set X into Y inside V (B) and suppose that (b~)~E~ is a partition of unity. Then the 

intermixing /: = ~=.b~h is a function from X into Y inside V (B) such that 

[(Vx ~ X) / (x) = ~ b~/~ (x)] = I. 

<~ For  x~X$ we s e t  g(x):=~.$e~br I t  i s  c l e a r  t h a t  g(x)~Y,~ and ,  m o r e o v e r ,  

[g(x)=/r162 f o r  a l l  ~ E .  Le t  us e s t a b l i s h  t h a t  t he  mapping g:X+ § Y+ i s  e x t e n s i o n a l ,  
c o n s i d e r i n g  t h a t  f~+ i s  e x t e n s i o n a l .  I n d e e d ,  f o r  x~, x2~X$ we have  

[Xl = X2] = ( V b~) ~ [x 1 = x2] = V (b~ ~ [x 1 = z2] ) <  

~< V [h (x0 = g(x,)] A [x, = x~] A [h (x~) = g (x~)] ~< 

V [/~ (X]) = g (Xl) ] A [f~ (Xl) = f~ (X2)] A [f~ (X2) = g(x2)] ~ V [g (Xi) = g (X2)] = [g (Xl)=g(x2)]" 

Thus, the lifting g+ of the mapping g exists. Let us establish that g+ = f. To this end, 
let us observe that by virtue of the transfer principle we have 

[ g ~ - - / ~ l = [ ( V x ~ X )  g[ (x) = h (x)] = A [g~(x)=]C~(x)]= A [ g ( x ) = / ~ ( x ) ] ~ b ~  
x~X$ x~X$ 

for ~ . .  It remains to refer to the uniqueness of the intermixing. > 

3.6. Let x be a set and f:x § where Y~V (~) . Since Y = Y+t, we can consider f to 
be a mapping of x into dom (Y). It is clear that f is extensional and, therefore, it makes 
sense to speak about the element f+ of V(B). Let us observe that []~: xA-+y]=l, by virtue 
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of what we have remarked earlier, and, in addition, for each g~ V (m such that [g:xA-+Yl = I, 
there exists a unique mapping f:x § Y+ such that g = f+. Of course, the lowering g+ of the 
mapping g (transferred from x to x) is such a mapping. 

4. LOWERINGS AND LIFTINGS CONNECTED WITH THE SUBDIFFERENTIAL OF THE CANONICAL OPERATOR 

4.0. In this section we give necessary facts about the transfer of the notions con- 
nected with the representation of the canonical operator in a suitable Boolean-valued model. 

4.1. By virtue of the maximum principle, there exists an object ~ in V(B) such that 

[ ~ - i s  ~ e  K - s p a c e o f r e a l n u m b e r s [ ]  = | .  

Here it is implied that ~ is the supporting set of the space of real numbers inside 
v(B). Let us observe here that R A (= the standard name of the field R of real nm~ers)~ 
being an Archimedeally ordered field inside v(B), is a dense subfield of ~ inside V (B) (up 
to isomorphism). 

Let us realize a lowering of structures from ~ into 45 by the following general rules 
(cf. 3.3): 

x + y = z  ~,- [ x + y = z ]  = i ;  
x g  = z ~ [xg  = z] = 1; 

x ~ g - ~ - - ~  [ x ~ y ] = i ;  

= = y ]  = 1 (x ,  y ,  a R ) .  

.Gordon Theorem [13]. The set ~$ with the lowered structures is an extended K-space 
with the base ~(~$Y, isomorphic to B. Such an isomorphism is realized by identifying B with 
the lowering of the field (0 A, iAl, i.e., by the mapping L:B~(~$) defined by the rule 

[t(b)=i ̂ ]=b; [t(b)----O ̂]=b' (O;l~R), 
In addition, for all x, y ~ , ~  

[ t (b )x  = d b ) g ]  = b =~ [x = g];  

b d b ) x  = bx, b ' d b ) x  = 0 .  

In particular, the following equivalences are valid: 

t ( b )x  = t (b )g  +-,- [x = g] >~ b; 

t ( b ) x  >~ t (b )g  +-~ [x ~> 9] >~ b. 

4.2. Let 5~ be a nonempty set. By virtue of the maximum principle, there exists an 
object /~(~r 5~) such that 

[/=(~r o~) is the K-space of the bounded functions with domain ~A and the range in 

~] =I. 

Let us consider the lowering 

= = t ) .  

Let us realize the lowering of the algebraic operations and the order relation from loo(d~ A, ~) 
into /~(5g A, ~)$. It is obvious that, by the same token, I~(~r ~)$ turns into a K-space 
and, all the more, into an (extended) module over ~$ (see [8, 9]). 

The mapping "lifting, " associating with a bounded ~ -valued function on ~ its lifting 
(a bounded ~-valued function on ~A inside v(B)), realizes an algebraic and order isomor- 
phism of l~(~, ~) and l~ (~A ~)~. 

This statement is almost obvious if we glance at the canvas of construction. For 
completeness, we explain certain steps. 

Thus, let ]~l~(dg,~$). Then, as remarked in 3.6, [/~:~A-+~]=I. In addition~ [f(A) = 

/~(AA)]----| for A~sg . It is clear from the definition of order in ~$ that /I'(~r A) is 

bounded inside V(B) and, therefore, /~/~(~r ~)$ . We are interested in the operator 
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Up : 1-+ If from l=(~t, 45) into 

[g(~A)]] _--i. It is clear that 
about Up 

The 

sidered, 

hand, as 

l ~ ( ~  A, 4 ) $ .  Le t  g ~ l ~ ( ~ t ,  4)$.  Then [g: ~ A - ~ A  ( N t ~ 4 ) t ~  

g = U p ( g ~ ) ,  i . e . ,  Up is  an ep imorphism.  The o t h e r  a s s e r t i o n s  
are verified in equally simple manner. > 

meaning of the above statement, in particular, is that l~(~ A, 4)$ can be con- 

on one hand, as yet another realization of the space l=(~t, 45) and, on the other 

d o m ( / ~ ( ~  ~, ~2)). 

4.3. Let us consider an object I~(5r A, ~)# in V(B) such that 

[/~(~A ~)n is the adjoint space of I=(~A, ~) ] = I. 

The lowering l~(~ A, ~)~$ is provided by the lowered structures. In particular, it is clear 

that l~(~ A, ~)v$ is an ~-module. 

Let ~ /~(3r A, ~)#$ , i.e., 

[~t, is an 4homomorphi~m of loo (5r A, 4 )  into 4 ]  ---- I. 

Further, let ~: I~(~ ~, 4)$-+45 be the lowering of ~. For ]~I|162 44) , let us set 

r~,(I) : =  r~4(/f). 

The mapping "lowering" ~ + ~+ realizes an isomorphism of the ~$ -modules of /~(~A, 4)*$ 
and the space of 9~.-homomorphisms Hom~ (l~ (5r 

<~ The only statement that is not completely obvious is that each ~ -module homomor- 
phism T :/=(~r ~$) -~ 4~ (and, indeed, each ~$+ -homogeneous mapping) represents the lower- 
ing of a suitable mapping inside v(B). For the verification of this statement, we set 

t(]) :=T(14) (1~l~(,.~r , 4 )4) .  

It should be verified that t is an extensional mapping since it is clear that t is an 4# - 
homomorphism of l=(~ A, ~)$ into ~$~ 

We carry out the proof of the extensionality of t (without appealing to its additivity). 
First of all, for an element b~B and the element t(b) of v(B), representing the intermix- 
ing of I A and 0 A with probabilities b and b', respectively (see 4.1), we have t(b)~$. 
In addition, for the functions f and g from ~A into 4 inside v(B), we successively deduce 
that 

[[= g ] ~ b + - ~ [ ( V A ~ . . r C A ) f ( A ) = g ( A ) ] ~  b+-* A [ ] ( A A ) = g ( A A ) ] > / b + - ~  A [ /$(A)=g$(A)]~b+-~ 
A ~  A ~  

+-~ (VA ~ ~r t (b)/$ (A) = t (b) g$ (A) +-~ t (b)[$ = t (b) g~. 

Hence,  w i t h  r e g a r d  f o r  t he  p o s i t i v e  homogene i ty  of  T, f o r  ], g ~ l ~ ( ~ r  ^, 4 ) $  we ge t  

[] = g] >1 b ~-~ t(b)]~ = t(b)g4 -+ T(t(b)]r = T(db)g~) -+ t(b)T(]~) = t(b)T(g~) ~ [7(I4) = T(g$)] i> b 

by virtue of the Gordon theorem. > 

Let us denote the inverse mapping of the lowering ~ § P+ as t § t+, where t~Hom~(l~(3r 
45), 45). Therefore, in detailed expression, 

t~( l ) :=t ( l~)  ( 1 ~ l ~ ( ~ A ,  4)~). 

4.4. Let e~A be the canonical operator on ~r inside v(B), i.e., the object of V (B) 
such that 

[ , #A :  z= (#  A, A <', ( I )=  ,up = 1. 

An obvious computation shows that 

[e~A (It) = e~ (I)] = I 

for each element f~I~(5r 44). 
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Let O(~s~A) be the subdifferential of the functional Ss~A inside V (B) and Ch(sa~A) 

be the set of the extreme points of 0 (8~tA) inside V (B). Then for each t~ Hom,~ (l~ (~, ~), 

~) and each ~ l ~ ( 3 ~  A,~)~$ 

In 

the extreme points of the subdifferential of 
that lie in this subdifferential (see 1.6). 

P~ 

Using successively what we have established earlier, we deduce that 

t '  ~ 0  (~tA)$ - -  [ t+ ~ 0  (eatA) ] = 1  ~ [(V[ ~ g. (5r A, Y~))t' ( [ ) ~  ~atA (/)] = i  +-~ 

s~<~(~ A, ~),1, s~'~(~ A,,~)~ 

A I t (I1,) ~< ~ a  (l,b] = i +-,- A [t (g) ~< ~ (~)1 = l +->. 

~-~ (Vg ~ l .  ( a ,  ~$ ) )  [t (g) < est (g)] = ! - -  (Vg ~ lor (ar ~$) )  t (g) < ~ (g) ~-~ t ~ 0 (ez#). 

the proof of the second equivalence, we have found it convenient to use the fact that 
the canonical operator are lattice homomorphisms 
Hence we have 

The remaining 

+ - , .  It' o A ' ( l / t ) = I t '  ( / ) l l  = , -  

~* t ~ O ( 8 ~ )  A A [ t * ( [ f l ) = [ t t ( t ) [ ]  = 1 ~ "  

two equivalences areother expressions of what we have already established. > 

naT~e 
~),  ~ )  : 

5. The pure states on ~ are precisely the 6-functions at the points of the standard 
inside V (B). in other words, the following equivalence holds .for t ~Hom@~(l=(sg, 

is a pure state on 

t = [ ( ~ A ~ 3 C A )  t t = ~ x ]  = A [t'----~AA]. 

(t 

It is clear that 

As is obvious, the last equality holds if and only if there exist a partition of unity (b~)t~a 

A and a family (A~)t~ of points of ~r such that t § is an intermixing of ( .4~)$=m with prob- 
abilities (b~)t~. 

Further, using (3.6) and the Gordon theorem, we deduce that 

t ~ = [( = E b ~  A (D] = I +~ 

-~ ( V / ~  l~ (&r ~ ) )  t t (l~) = ~] belt (A~) -~ ( V / ~  l~ (ag, 9~$)) t ([) = E bil (A~) ~ 

- ~  ( V / ~  l~ (..~t, ~ ) )  ~V~ ~ E) b~t (f) = b J  {A~) +-.- ( V / ~  loo (.~r ~+))  (V~ ~ E) [t (b 0 t (]) = ~ (b~) eag (/)] ~ b~ -~-.- 
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The established equivalence makes the desired statement obvious. > 

5. STRUCTURE OF THE SUBDIFFERENTIAL OF THE CANONICAL OPERATOR 

5.0. In this section we describe the structure of the extreme points and elements of 
the subdifferential of the canonical operator. The method of obtaining the desired descrip- 
tions consists in the interpretation in the outer terminology of the Krein-Mil'man and the 
Mil'man theorems, formulated for functionals in necessary Boolean-valued model. 

5.1. Each extreme point of the subdifferential of the canonical operator is the point- 
wise r-limit of a net of pure states. 

< Let us consider an extreme point of the subdifferential of the canonical operator 
that acts from /~(~,Y0) into Y0 for a certain K-space Y0. By virtue of the Krein--Mil'man 
theorem for operators, we can assume that the considered extreme point is the restriction to 
l~(~, Y0) of an extreme point t of the subdifferential of the canonical operator e~ that 
acts from l~(~, Y) into Y, where Y is a maximal extension of Y0 [16]. Thus, to prove the 
desired statement in full measure, it is sufficient (and clearly necessary) to analyze only 
the case of the extended K-space Y. In addition, choosing a Boolean-valued universe V(B), 
where B:=~(Y) is the base of the considered spaceY (coinciding with the base of the ini- 
tial space Y0), we see that Y=~4 , where ~ is the object that plays the role of ~ in 
v ( B ) .  

First of all, let us observe that, as established in [8], if t ~(l~(~,~), ~) and 
t~O(e~), then t is automatically a module homomorphism, i.e., t~Hom~$(/~(~,~$),~$). Work- 

ing in V(B), now on the basis of 4.4 we see that t~Ch(g~A)$ . Further, on the basis of the 

classical Mil'man theorem, the ~-functions are complete in the weak topology in the set of 
extreme points of the subdifferential of the (scalar) canonical operator. ~y virtue of the 
transfer principle, we conclude that 

( w :  = ~ . . . . .  m) (UA ~ sC~) l t  ~ (hD - / ~  (A) I~< ~ = ~ 

f o r  a l l  ]~ . . . . .  / ~ l ~ ( ~ r  ~ )  and  n :  = 1, 2 , . . . .  U s i n g  4 . 5  a nd  s e t t i n g  ? : = ( { / ~  . . . .  , ~ } ,  n ) ,  we 
f i n d  a p u r e  s t a t e  t u  s u c h  t h a t  

I t~ (lk) - -  t (h )  l < ~ !  p (k: = 1 . . . . .  m). 
n 

Equipping the index set {y} with natural order and turning it by the same token into a di- 
rection, we see that the net, so obtained, of pure states (ty) r-converges to t. > 

5 . 2 .  Each element of the subdifferential of the canonical operator is the pointwise 
r-limit of a net of the elements of the strictly operator-convex hull of the set of 6-func- 
tions. 

Reasoning as in 5.1, we reduce the whole thing to the case of the canonical operator 
that acts in the lowering ~$. 

Thus, let X be the strictly operator-convex hull of the set of 6-functions and t~O(e~). 

It is clear that X consists of the ~$-homomorphisms and that the element t is also an ~$ - 
homomorphism. By the same token, ~: ={st:s~X} is a strongly cyclic set of elements of 
v(B), where B:=~(~) , and, in addition, [a~+~]=| for ~, ~ $  provided [a,~>0AA 

~:~^] =|. Here we have used the fact that /=(~A ~)#$ is an ~$-module. Finally, 
using 4.4, we see that ~f is a convex subset of O(e~A ) inside V (B). Indeed, we have 

[(w, ~ ~ ~) (~ > 0 ̂ A ~ > 0A A ~ + ~ = I A) -~ (=*f + ~xf c ,f)] = 

Therefore, by virtue of the classical Krein--Mil'man theorem, ~f isdenseintheweaktopology 

 on- 
in 

verges with regulator to t (see 5. I). > 
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6. STRUCTURE OF THE SUBDIFFERENTIALS OF ARBITRARY OPERATORS 

6.0. In this section, we give the basic results about the structure of the subdilfer- 

entials of sublinear operators that act in a K-space. 

6.1.  Each extreme point of the subdifferential is the pointwise r-limit of a net of 
elements of the strongly cyclic hull of the set of o-extreme points. 

Let P:X § Y be the operator under consideration and T~Ch(P). By virtue of Io7~ we 
have T = to ~ <~0(P)> for a certain t ~ Ch I~0(p)) . Let (ty) be a net of pure states that pointwise r-con- 

verges to t (its existence is ensured by 5.1). It is clear that (t~o<~0(P)>) is the desired 

net. > 

6.2.  The extreme points of the smallest subdifferential that contains a given weakly 
order-bounded set ~ are the pointwise r-limits of suitable nets of intermixings of elements 
of ~. 

It is obvious that the set of the extreme points of cop(~) is contained in Ch(~)o 
<~>. St remains to refer to 5.2. > 

6.3.  A weakly order-bounded set is a subdifferential if and only if it is operator- 
convex and pointwise o-closed. 

It is clear that an operator-convex and pointwise o-closed weakly order-bounded set 
is trivially strictly operator-convex. Since r-convergence implies o-convergence, we de- 

duce from 5.2 that 

(the left-hand inclusion is valid without any stipulations). Thus, ~ is a subdifferential. 
The remaining unproved part of the statement is obvious. > 

6.4. A weakly order-bounded set is a subdifferential if and only if it is cyclic~ con- 
vex, and pointwise r-closed. 

< It is easily seen that cyclicity, in combination with convexity and r-closedness~ en- 
sures strict operator-convexity and pointwise o-closedness. A reference to 6.3 completes 
the proof. 
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CERTAIN PROBLEMS OF ANALYTIC CONTINUATION FROM INTERIOR SETS 

M. M. Lavrent'ev UDC 517.946 

The problems of analytic continuation of the regeneration of analytic functions from 
their values on certain sets are connected with numerous applications, in particular, with 
the problems of processing and interpretation of the readings of physical devices. 

In the present article we will consider problems of analytic continuation from interior 
sets, i.e., from sets contained in the interior of the domain of regularity of analytic func- 
tions. We restrict ourselves to the consideration of analytic functions of two real vari- 
ables in bounded domains. 

I. Let D be a bounded domain of the (x, y)-plane and f(x, y) be an analytic function 
in the domain* D. 

Let M be a subset of D. 

Definition I. The set M is called a uniqueness set for the domain D if each function 
f(x, y) that is analytic in D is uniquely determined by its values on M. 

The following definition is an equivalent definition of the uniqueness set. 

Definition I' The set M is called a uniqueness set for the domain D if for each ana- 
lytic function f(x, y) in D the equality 

/(x, y ) = O  V(x, y)~M 
implies that 

/(x, y ) = O  V(x, y ) ~ O .  

In t he  p r e s e n t  a r t i c l e ,  we w i l l  assume t h a t  t he  c o n s i d e r e d  s e t s  a re  c l o s e d .  

It is easily seen that the property of being a uniqueness set depends on the domain D. 
The set M may be a uniqueness set for the domain D and may not be a uniqueness set for a sub- 
domain Dl of D. 

Let D h be a rectangle: 

Dh={(x,  y ) : h < x < a ,  ly]<b,a>O, b>l},  

and M be a segment of  a curve  F: 

F = ( ( x , g ) :  y = s i n  z i--, x > O }  

or a set that has a limit point on the curve F: 

(x0, y0) ~ V 0 Oh. 

It is easy to show that in the case 

h<0 

the indicated set M is a uniqueness set, and in the case 

*A function f(x, y) is said to be analytic in a domain D if it can be continued as an ana- 
lytic function of two complex variables into a complex neighborhood of D. 

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 14, No. 5, pp. 123-128, Septem- 
ber-October, 1983. Original article submitted November 17, 1982. 
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