INFINITESIMAL TANGENT CONES

S. S. Rutateladze UbC 513.88

In recent years, an intensive search is carried out im the subdifferential calculus for
convenient methods of local one-sided approximation of arbitrary functions and sets. The
definition of the subdifferential of a Lipschitz function, given by Clarke [1], serves as
the principal starting point. The tangent comes and the subdifferemtials corresponding to
them, constructed at present, are often defined by hardly visible cumbersome formulas [2-8].
We know that there exists an effective technique, the nonstandard amalysis [9-11], for the
displacement of formulas — "decrease of quantifiers.”

The aim of the present article is to use this technique for the determination of compact
criteria of different types of tangents. It turns out that under the assumption of standard-
ness of the parameters of the considered objects, the Bouligand, the Hadamard, and the Clarke
cones are defined by an explicit "infinitesimal constructionm — a direct appeal to infinitely
close points and directions. In this connection, in this article we indicate an enumeration
of all possible tangents, defined by infinitesimal prefixes. Im addition, we have been able
to discover the cones, omitted earlier, including those of the Clarke type.

0. Preliminary Information

0.1. 1In the sequel we will work in a suitable nonstandard model of analysis with a suf-
ficiently strong degree of saturation. For definiteness, we cam assume that everything hap-
pens within the framework of Hrbacek's outer set theory [11] with the strong idealization
axiom. The few deviations from this convention will be explicitly mentioned.

0.2. Let us agree in the sequel to assume the parameters of formal expressions in the
following test to be standard objects,

Thus, let X be a real vector space, F be a subset of it, and x' and h' be points of X.
In correspondence with the stipulation made by us (in working with the nonstandard set theory),
these objects are standard sets. We select two filters im X: #, and A, formed from certain
supersets of zero. Further, let p(v) and pu(t) be the monads of the indicated fllters, i.e.,
intersections of their standard elements [12]. We write z=.,r in place of z—z’=pu(s). The
expression A= .k’ is understood analogously. Finally, we denote the infinitesimality of a
number of o in R by the symbol a=0. It is convenient to set p{R,):={a=R:a>0, a~0}. It
is assumed below that the filter #°; generates the vector topology 6:z=X—>z+.#, in X.

0.3. A topology T in a vector space X (over the field R) is said to be almost vector
if, in the first place, the multiplication by each scalar from R is continuous and, secondly,
addltlon is continuous with respect to the totality of variables. In this case, the pair
(X, 1) (as well as X itself) is called an almost topological vector space.

0.4. Let X be a standard vector space and A’ be the standard filter of supersets of
zero. Then there exists a standard almost vector topology T om X such that A, =1(0) if and
only if the monad u(t) of the filter A°. is an outer vector space over the outer field of
standard scalars.

0.5. For a formula ¢ of the Zermelo-Fraenkel set theory, we set

Voag:=(Va=0) ¢g:=Va (a>0Aa=8) g

The quantities 'z, Tk, and F'a are defined in the natural dual manner, i.e., we assume that

Tzg:=(dz= ) g:=9z (zeF Az=2") Ag;
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Tho:i=(Th~ k) @:=1h (k=X A= I) Ag;
T @:= (Lo ~0) ¢:=9a (>0 Aa=0) Ag.

Finally, we agree to write

vtz :=Vz (£ — standard ) ~ @3
Astgg =z (2 —standard) A @

1. Bouligand and the Hadamard Comnes

1.1. The Bouligand come Bo(F, x') is defined by the relation

Bo(F, 2"):= i el U F~x’
Uef (x') x=F(U &
s <o <a’

a’

where, as usual, A (z') :=2"+ A, . The elements of the Bouligand cone are called external
(or, less, precisely, outer) tangents to the set F at the point x'.

1.2. The Bouligand cone is the standardization of the HHH® -~cone, i.e., for each stan-—
dard element h'

k' eBo(F, z') < Tz8aqd'h z+ahsF.
The following equivalences follow from the definition of the Bouligand cone:
B eBo(F, 2}« (VU F(z')) (Vo' eR) (VV e XN,) (Ez=F N T)
(I0<a<a’)(@Fheh'+V) ztohasF «—
« VUV'VVAzdadh (z=FNU ARER +V ANo<a<a Aztahel).
By virtue of the transfer primciple, we deduce that
k' e Bo(F, 2') ~ Vet[Tvstg Vet VEsS g TSty
'E‘.“h(xEFﬂU/\hEh’-}-VA0<‘m<a'Az+ahEF).

Now, using the idealization principle (in the weak form), we get

K =Bo(F, ') > TxTad VUV VYV (z = F 1
NUARe+VAI<a<a AztaheF)->(Jz= .z
(Fa=~0)(Th =~ k') z+aheF > T rdqThz+absF.
Let, in its turn, the standard element h' occur in the standardizatiom of the H3d -

cone. Since the standard elements of a standard filter contain elements of the monad of this
filter, we get

(VU e H,(z")) (V'e’ =R) (V' V & F)
(FzeFnl)(@0<a<a’)(dhsh'+V)ztahsF.
By virtue of the transfer principle, we conclude that h’eBo(F, z'). >
1.3. The above-proved statement can be rewritten in the form
Bo(F, z')=*{h': Azd a¥ hz+ ah & F},

where # is the symbol of standardization. In this connection, we use the transparent nota-
tion

add(F, z') :=Bo(F, z').
In the sequel, we will use similar kind of notation without specific mention.

1.4. The Hadamard or the hypertangent cone Ha(F, x') is defined by the relation

Ha (F,z'):i= |J inte (1 ~=2.
UEJP (%) x&FNU o
a,“ s<w<al

The elements of the Hadamard cone are called internal tangents.
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1.5. The Hadamard cone is the standardization of the VVV-cone,
Ha(F, ')=VVV(F, z').
In other words, for standard h', F, and x'
k' eHa(F, a’) < (" + n(o))NF+ p(R,) (A" +pu(v))=F,
where u(Ry) is the outer set of positive infinitesimal numbers.
This statement is obtained by duality arguments from 1.2 if (which is, of course,

correct) we forget about the existence of F in #'z. p

2. Clarke Cone

2.1. The Clark cone is defined by the relation

F o

Cl(F,z'):= 0 " ~
veX VEX s Sl

a’

‘”-}-V).

2.2. The following statements are equivalent for standard F, x', and h' (under the con-
ditions of weak idealization):

(1) K =CUF, z);

(2) There exist infinitesimal UsW(z'), VeH:., and o' > 0 such that
' F—z .
e ( ~ +V),

o< Lo’
x=FNU

(3) (AUeN(z))da (VzeF N 1), (VO<a<a') (dh = .h') 2+ ahsF,
Using obvious abbreviations, we can write
h'=Cl(F, 2"y« VVAUSa (VzeFNU)(VO<a<a')(Aheh'+V), z+ahsF.
Using the transfer principle and weak idealization, we successively have
n eCl(F, z')—~ vetVastyasta' (V= FNU)
(Vo<oa<a)(Fheh'+VyztaheF > (VHV, .., V.)EUL @ BV (VE:=1, ..., n) V.2V
ANVzeFNU)(VOi<asoa)(dheh' +V)ztaohel —
= AU AVYYV V' 2 VA (Ve FOU)
(VO<a<a)(dheh +V)ztaheF.

Hence it follows without doubt that (2), and, all the more, (3), holds for certain Ve,
Vaep(t) and UeH(z'), Ucu{o)+z' , and infinitesimal a.

If, in its turn, (3) is fulfiiled, then by virtue of the definition of the relation =,
we have

V'VEUEe (Ve FNU) (VO<a<a')(dhsh' +V)as+aheF.
Therefore, by the transfer principle, p'=Cl(F, 2'). >

2.3. The Clarke cone (under -the conditions of strong idealization) is the standardiza-
tion of the VVE -cone:

ClL(F, z')=VVU(F, z').
In other words,

WelCl(F, 2y« VavaTlhaet+aheF.
<4 At first, let p'eCl{F, z') . We take arbitrary 2Z=,2" and a>0, a~ (. TFor each stan-

dard neighborhood V (an element of the filter J° ), by virtue of the transfer principle

there exists an element h such that heh'+V and 2+aheF. Using strong idealization, we
have

VEVAR(he ' +V Axz+aheV) -ArvV heh'+V Azt+oheF~Thzt+ohsF,
i.e., W =vvia(F,z). \ :
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Now, let R €YVVHE(F, z'). We take an arbitrary standard neighborhood V in the filter /-
and fix an infinitesimal neighborhood U of x' and an infinitesimal positive number o'. Then,
by the condition, for a certain k=.h" we have

(V.teFﬂl7)(\’O<oc<oc') ztaheF.

In other words,

—

vitVayae (vzeFAU) (V0<a<a') (Ihe R+V)yztahsF.
By virtue of the transfer primciple, B'CI(F, ). P>

2.4. We give an example of application of the nonstandard criterion, found by us, of
elements of the Clarke cone for the deduction of its main (and well-known) property. A more
general statement will be established below. ‘

2.5. The Clarke cone of am arbitrary set in a topological vector space is convex and
closed.

< By virtue of the tramsfer principle, it is sufficient to consider the case in which
the parameters — the space, the topology, the set, etc. — are standard. Thus, let k,cl Ci(F,
x'). We take a standard meighborhood V in A%, and let the standard elements V,, V,=.4. be
such that V,+V,=V. Then there exists a standard element k' =CI(F, z') such that B —h =V,
Moreover, for arbitrary z=.z’ and >0, qa~( , we have h=h'+V, and z+akhe F for a
certain h. It is clear that heh’+ V,ch,+V, +V.ch,+ V. Hence % =CI(F, 2).

To prove the convexity of the Clarke cone, it is sufficient to observe that p(t) +
u (Ry)p(r)c p(r) by virtue of the continuity of the mapping (#, a, k) >2z+ah D

2.6. Let 9 be a vector topology and 6 > 1. Then

vvid(cly F, z')= VVE(F, z7).
If, in addition, 6 Z o, then
Vv (cle F, 2)=VVI(F, z').

4 Let W'=vvi(cleF, 2} be a standard element of the given cone. We take elements
z=F and o > 0 such that z=,z" and aw=~0. It is clear that z<cleF . Therefore, z+ahs
cle ¥ for a certain h=.k". We take an infinitesimal neighborhood W in u(6). The neighbor-
hood oW is also an element of 8{(0) and, therefore, z” —(z+ak)saW for a certain z" =F .
Let us set h” :=(z" —z)/a- It is clear that z+ah” =F and, moreover, ah” Sah+aW . Hence
B eh+Weh +u(t)+FWeh +p()+p@)ch +p(t)+p(t)=h’ +p(t), i.e., B” =h" . Thus, h' e
VVE(F, z').

Now, let 6 > ¢ and A"€VVI(F, ') . We take an infinitesimal positive a and some element
z=cly F such that z= 2'. We select " €F such that z—z”" =W , where Wopn(8) is an
infinitesimal symmetric neighborhood of zero in 6. Since 8 > o, it follows that p(8) < (o),
i.e., z—z" €p(0)=pn(c) . In other words, =,z ~,zr” . By definition (the element h', as usual,
is assumed to be standard!) x™ +ah=F for a certain A=.k’. Let us set A" :=(z” —z)/a+h.
It is clear that, in additiom,

L e h+Weh+p@ch +u®)+u(t) b +p(r)+p(r) = +p(),
i.e., B” =.h'. Moreover,
zHah” =z+(z" —z)tah=z" tahsF<cl F.

Finally, A’ eVVE(cle F, ). >

3. Cones of Infinitesimal Type

3.1. The above nonstamdard criteria of the Bouligand, the Hadamard, and the Clarke
cones show that these cones are taken from a list of eight possible cones with infinitesimal
prefix QzQaQh (here Q is either V or #). It is clear that for complete description of
all these cones it is sufficient to give the characterizations of the VH®d —cone and the
VAV -comne.

3.2, The following representation is valid:

vaa@)= 0y o0 (V4 y T2E).
Vg_/f’t eAq(x)x_FﬂU
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< To prove this statement, we should, at first, understamd that the desired equation
is the abbreviated expression for the following statement: For standard h', F, and x'

Vzd'gdh a+oheF «
(Ve )Voa' (AU & (2"} (Ve FAU)
(I0<a<a'y(Gheh'+V) ztakeF.

Therefore, for p'eVAI(F, z’) and standard V. and ¢ > 0 we can take an internal
subset of the monad u(A.(z’)) as the desired neighborhood U. 1Im its turn, successive appli-
cation of the transfer principle and the strong idealization primciple gives

VIV (Ve o2) (0 < a<L ) (Hh =k’ + V) z+ aheF
(Ve m o) (VL ., V) (Ve .. anl)
Thda(Vi:=1, .., n0<a<<a, Ahsh' + Vy Az +ahesF
- (Vzre o2’ ) ATV Vh e b’ + V A Ve 0<e<a’ Az+ah=F

> Vzhh(lax~0) z4+ahesFsp e* b :Vedad'h z+ahesFl>h e VIT(F, ).

By the same token, the proof is complete. D

3.3. The following estimates are valid:

| AU = Ko () (AV & F) @a: FOT >0, 1] \
Aim g (@) = 0)(Vae FNU) (Vhek' +7) z+a@)h
eFf->he ViV, )> Vo' (U e K D)
@AV & £ (Ha: FN T~ 0, &) (VzeFND)
(Vheh' +V) z+alnheF.

< Let us consider standard sets F, x', and h' and assume that the premise of the state-
ment 1s fulfilled. Using the transfer principle and considerimg the criterion of continuity
of a standard function, we deduce that z+a(z)hsF for z=~.2" and h=~.h" , i.e., h' belongs
to the standardization of the outer set {":VzHaVh z-+ahe=F}. Thus, the first implication
is proved.

To prove the second implication, we take a standard number o' and select infinitesimal
neighborhoods U in x' + p(¢) and V in u(t). By the conditiom, {Vz=FNU)(da<s(0, o)) (Vh=h'+
Vy z-+aheF. In the "interior world" (in the universe of interior sets) we can apply the
axiom of choice and try to find the function o:FNU—(0, @] with the desired property. It
remains to refer to the transfer principle. b

3.4. Besides the above~indicated eight infinitesimal comes of classical type, there
are nine more pairs of cones that contain the Hadamard cone and are contained in the Bouligand
cone. It is clear that these cones are generated by changing the order of the guantifiers.
Five new pairs are constructed in composite manner by the type of the VAV -cone. The re-
maining pairs are generated by permutations and dualizations of the Clarke cone and the vEI -
cone. For example, in the natural notation, we have

VaVhiz(F, )= 0 Uity N U 2=
. UE_/}”o_(xl) o’ o<o<a’ s=fND %
TrdVa(F,z)=U 0 o U 0 =%

@' U (')  *€FNU o<a<a’ ot
AhVaVa(F, o) = U e o I==
Ue ey o<’ W
E=3 70114

m’
The last come is the Clarke cone and is convex in the case where u{c)+u(R.)pn(t)=p{o).

4. Generalized Clarke Cone

4.1. From the qualitative point of view, the approximating infinitesimal comes are the
results of the examination of a set under a microscope. Thus, it is not completely natural
to speak about the exact occurrence of an element in a set. 1Im this connection, we fix one
more {standard) filter A4, and the corresponding outer relatiom wm,.
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4.2. Let us consider a set F and a point x'. Let us set

CIF(F, z):= 0 U (E:EV_—_’:" + V).
VEN Uef () xsFNU, o
wer, o P

The set CI®(F, ') 1is called the generalized Clarke cone. It is clear that this cone is wider
than the Clarke cone and coincide with it if A% is the filter of all supersets of zero. It
is useful to emphasize that if the filter A°, is not sufficiently fine, i.e., contains Mahlo
sets, then the cone CI¥(F,z’) is too wide-coincides with the whole space.

4.3, For standard F and x', the set CI®(F, ') 1is the standardization of the Vvad -
cone, i.e., a standard element h' occurs in CI®(F, z') if and only if

VaVald h(dz"€F) 2" = oz + ah.
< The proof of this statement is analogous to that given in 2.3. P

4.4. In the sequel, we will assume that the mapping (x, t, y, z) » x + ty + z, acting
from the space X X R x X x X with the topology o X Tgp X T x 6 into the space X with the
topology ¢, is continuous, i.e., p(o)+pR)p(t)+p(8)=p(c) under the assumption of stan-—
dardness of parameters.

4.5. The generalized Clarke cone is 1~closed and convex.
< The proof of this statement is analogous to that of 2.5. P
4.6. The Rockafellar formula

VYVHA(F, z')+CI*(F, 2’y VYVH(F, z')

is valid, where the convex cone VVVE(F, z') 1is defined by the relation

VYVE(F, )= 0 U int, n IEW—e
Wen,Uef (=) *EFNU @
af o<o<a’

?

i.e., represents the standardization
VVVE(F, 2')=*h": VaVaVk(dz" &F) z+ah=,z"}
(for standard parameters).

< Only the verification of the Rockafellar formula is nontrivial. In this connection,
by virtue of the transfer principle, we can restrict ourselves to the case of standard para-
meters.

Thus, let k' occur in vVVE(F, z') and A'=VVEA(F, z'), where k' and h' are standard
elements. Then

(& + (o)) NP+ p(Ry) ( + (x)) = F +(0);
(Vemoa') (Vo= 0)(Ah =, k') (2" €F) z+ah=~,2".
Hence, for a > 0 and a=~0 we deduce that
z'+ah +E +p(r))=2"+ak+a(k’+(h' - h)+p(r))=
<z” 4+ p0)t o +p(r)+p(r))=a” +a(k +p(r))+ p(d)
for a certain z” =F . Besides this,
z" ez +ab+tp@)cz +ob’ Fap(t)t+p(t) ez’ +po)tan(v) +p(®)= 2"+ p(o).
Finally, }
2 Fah +E Fut))c(@+p(0)NFra(k+pu(t)+p(0))= F+u(@)+p0)= F-+p(o),

which was desired to be proved. P

5. Directional Epiderivatives

5.1. Let R be the standard extended number line. For a finite number i(=~R:={teR:
(a*n=N) |t <n}, we denote, as usual, the standard part of t by st(t). Thus, (Vs, ¢ €~R)
t=s < st(ty=st(s). Let us also set

p(—o0) :={s=R: s<=~R};
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p(+e) :={s=R: s=>~R}
which are monads of infinities and suppose that
1 p(—) < st(1) = —;
te p(+oo) +> st(t)=+oo,
5.2. TFor a standard t from R and an arbitrary s from R
st(s)<t (Ve >0) s<t-+te.

< <« If s <t + g, then st(s) < st(t + g) = st(t) + st(e) = t + . Therefore, ((Ve>0)
st(s) € t + g) > st(s) € t.

+ Let st(s) = t. Since s=pu(s), we have s < t + ¢ for each standard ¢ > 0. But if
st{s) < t, then the monad of the pecint st(s) lies on the left of t. Hence s is on the left
of t and, therefore, a fortriori, s < t + e. b

5.3. Let f:X » R be a standard function defined on a standard X and & be a standard
filter in X. For each standard iR

ng; inffM) <t (v (&) st(f{v)

<
<t

<
Vi§; sup f (V) <t (Vv = u (F)) st(f(v)

< At first, let us verify the first equivalence. Applying successively the transfer
principle and the idealization principle, we deduce that

sup inf f(MN<Lt->(VVa=F) nffV<Lt—
v=g

> (VWedF)(Ve>0) inffV)<t+e~VeVV(Hve?) fo)<t+e—
> VRV vV AFR)<t+e>ToVieVW vV Af)<t+e—>
> (@ven(@)(Ve>0) fO)<t+e—>E@veu(F) st(f@) <t
(here we have considered 5.2). Let us now observe that ven(¥ )=V for each standard element
V of the filter & . Therefore, inf £(V) < t [since inf £(V) € £(v) < t + e for each ¢ > 0].

Hence, by virtue of the transfer principle, inf £(V) < t for each interior V from & , which
was desired.

By virtue of what we have already proved and since —f and t are standard, we deduce that

inf supf(V) =t < — inf supf (V)< — £ <>
veg veg
@‘s;g_ inf(—HMN<~teo(l@ve pn(F) st(—fON< —t(Tve @) st(fv)=t.

Thus, we get

Vien;_ sup F (V) <t <> ] (Vig; sapf (V) = t)++ THHEveEp(F) stf @) =0 (Vven(d) stf@)<t.

Finally, on the basis of what we have proved, we conclude that

pt ST (NSt as (Vo> 0) inl sup (V) <t + n (Ve > 0) (Vo = (F) st 0) <t + 8

(Vo (@) (V¥ >0) st(f)<t+ e (Vvep(@) st(f@)<Lt,
since the number st(f(v)) is standard. >

5.4. Let X and Y be standard sets, f:X x Y >~ R be a standard function, and % and ¥
be standard filters in X and Y, respectively. Then for each standard real number t

Vs;g_ Ul:é sup 1)iél‘{f(u, V<t (Vuep(9) l@vap(F))st(fu, v) <L

< Let us set Fy(u):=inf{f(y, v):veV}. Let us observe that Fy is a standard functionm,
provided V is a standard set. Applying the transfer principle, Propositien 5.3, and (strong)
idealization, we successively deduce that
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sup inf sup inf f(u, v) <t (VW = F) inf sup Fy (u) <&
Vg UcGucUs=V U=sg uslU

(V¥ = F) inf supFy (U) <t — (VW e F)(Vusu(9) stFy )<t~
Ueg
> (Vuep(@)(VsV = F) (Vste > 0) inf f(u, v) < t+e—>
o=V

~»Vusp@)(Vie>0)(VVeF)(vael) fu, )<<t +er
>(Vuep(@)) (ve pn(F)) (V'e>0) f(u, v)<ite—
~(Vuep(¥)) (Fve p(F)) st(f(z, v))< L

From the last relation, for am imterior element Uc=u(¥%) of the filter % and a standard
element V of the filter % we deduce

sup inf f(u, v) <{¢~ inf sup inf 7 (u, v) <<t

v =V U= @ uesUr»sV
— (VstV = &) inf sup inf f(u, )<Lt >~ (VWeF) inf sup inf fu, v) <2
U@ vl 0=V Us@ uslU vV

by virtue of the transfer primciple. P

5.5. The above criteria enable us to give nonstandard criteria of directiomal deriva-
tives and epiderivatives corresponding to infinitesimal tangent cones. Let us dwell, for
illustration, on the Rockafellar epiderivative for a continuous function [4, 7].

5.6. Let f:X > R be a standard function that is continuous at a standard point x' of
its effective domain domf. Then the following statements are equivalent for each standard
number t' and direction h':

(1) (', t'y=Cl(epif, (z’, f(z')));
(2) £M(x")h' € t', where £(x') is the Rockafellar derivative.

3) Ve or') z=domf—->V-al -k st(W)Qt’;
(4) The following estimate is valid:

sup inf sup inf jiﬁi:ﬁﬂ;:iﬁg_sgtﬂ
Yeu Vel () xSdomiNU hsii+V o
-4 o< <o’

4By definition, the epigraph of the Rockafellar derivative f'(x') is the Clarke cone
of the epigraph epif of the fumection f at the point (x', £(x')), which ensures that (1) <>
(2). Considering the construction of monads in a product, continuity of f at the point x',

i.e., xedom]‘A:cz,,z"ff(z)z,_f(z') s, and the nonstandard criterion 2.3 of elements of the
Clarke cone, and setting F:= domf, we deduce that

(', t'y=Cliepif, &', f&@) < V2V ad -h (At = t') (x+ ok, [(2) + af) =epif
o VaValh@imt) i35 LETNZTE L yoyaBn@iat) stE)>sts)

>V-aV-aldlh t'>=st(s)>VzVad-h(li=t) =5

To prove the last implication, let us observe that it is obvious for st(s) = -«. But
if s is a finite number, then we set t:=t' + [st(s) — sl. It is clear that ¥ =¢ and
t—s2t'—st(s) + s —s 2 0. Thus, by virtue of 5.4,

@)V <t < VeaV ad- fetal) /@) \ 4o inf su inf jlta)—f@ _
ITEVh <t VoV ol h St( o )gt vseuﬁr Uel?rﬁ(x')xe%r?domfhehwv"“"—_&“'_'_<t s
[-%4 << Lot

which completes the proof. >
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1

SMOOTHNESS OF CONVEX SURFACES AND GENERALIZED SOLUTIONS OF MONGE—AMPERE
EQUATION ON THE BASIS OF DIFFERENTIAL PROPERTIES OF QUASTCONFORMAL MAPS

I. G. Nikolaev and S. Z. Shefel'’ UDC 514.772.24:517.957

In this article we consider questions of the connection between the order of smoothness
. . . . . . 3
of a two-dimensional convex surface in three-dimensional Euclidean space E° and the order of
smoothness of its intrinsic metric.

For convex surfaces with C"-smooth metric (n 2 2) and positive Gaussian curvature Pogore-
lov [1, p. 118] proved that the surface itself belongs to the class C%"5 % for any 0 < o < 1
(if the metric of the surface is analytic, then the surface is analytic). Sabitov [2] proved
Pogorelov's theorem in H8lder classes of smoothness of the metric; it can be stated in the
following form (see also [3]): Zf the curvature of a convex surface in a C?-smooth metric is
positive and belongs to the class C""%% (n > 2, 0 < a < 1), then the surface itself is Ch>0-
smooth. Convex surfaces of bounded positive curvature were considered by the authors in [4].
In this article we assume that the curvature is positive and has an (n, a)-approximative dif-
ferential at a fixed point (for the definition, see Sec. 1.1).

We state the main results of the paper.

THEOREM 1. Let F:z = F(x, y), x> + y> < r?2 be a convex surface whose upper and lower
curvatures K'(x, y), Ko(x, y) ([4]) admit the estimate 0 < m € Ko(x, y) < K%(x, y) <M, x% +
y2 < r?. If there is a polynomial Py(%, y), n =0, 1, 2,..., of degree not greater than n
such that for x? + y> < r?

o
Kol ) — Polz, )| <C@2+ 92
nix
IKO(x’!/)‘—Pn(x,y)IQC(x2+y2) 2 5 0<O£<i,
then there is a polynomial Qp+2{(x, y) of degree no greater than n + 2 such that

n+24-0
(@ y) = Oniz (2, YISC (B + 42 *

where the constant C' depends on C, m, M, r, n, a, and max {Fz, y) — F(0,0)!.
a2 pylert
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