
INFINITESIMAL TANGENT CONES 

S. S. Kutateladze UDC 513.88 

In recent years, an intensive search is carried out in the subdifferential calculus for 
convenient methods of local one-sided approximation of arbitrary functions and sets. The 
definition of the subdifferential of a Lipschitz function, given by Clarke [I], serves as 
the principal starting point. The tangent comes and the subdifferentials corresponding to 
them, constructed at present, are often defined by hardly visible cumbersome formulas [2-8]. 
We know that there exists an effective technique, the nonstandard analysis [9-11], for the 
displacement of formulas -- "decrease of quantifiers." 

The aim of the present article is to use this technique for the determination of compact 
criteria of different types of tangents. It turns out that under the assumption of standard- 
ness of the parameters of the considered objects, the Bouligand, the Hadamard, and the Clarke 
cones are defined by an explicit "infinitesimal construction -- a direct appeal to infinitely 
close points and directions, in this connection, in this article we indicate an enumeration 
of all possible tangents, defined by infinitesimal prefixes. In addition, we have been able 
to discover the cones, omitted earlier, including those of the Clarke type. 

0. Preliminary Information 

0.1. In the sequel we will work in a suitable nonstandard model of analysis with a suf- 
ficiently strong degree of saturation. For definiteness, we can assume that everything hap- 
pens within the framework of Hrbacek's outer set theory [||] with the strong idealization 
axiom. The few deviations from this convention will be explicitly mentioned. 

0.2. Let us agree in the sequel to assume the parameters of formal expressions in the 
following test to be standard objects. 

Thus, let X be a real vector space, F be a subset of it, and x' and h' be points of X. 
In correspondence with the stipulation made by us (in working with the nonstandard set theory), 
these objects are standard sets. We select two filters in X: J~e and ~, formed from certain 
supersets of zero. Further, let p(o) and p(T) be the monad~ of the indicated filters, i.e., 
intersections of their standard elements [12]. We write x~x" in place of x--x'E~(o). The 
expression h~,h" is understood analogously. Finally, we denote the infinitezimality of a 
number of = in R by the symbol ~ ~ 0. It is convenient to set ~(]{+):={a~R:a~0, =~0}. It 
is assumed below that the filter J~, generates the vector topology ~:xEX-~x+J~a in X. 

0.3. A topology T in a vector space X (over the field R) is said to be almost vector 
if, in the first place, the multiplication by each scalar from K is continuous and, secondly, 
addition is continuous with respect to the totality of variables. In this case, the pair 
(X, r) (as well as X itself) is called an almost topological vector space. 

0.4. Let X be a standard vector space and J~ be the standard filter of supersets of 
zero. Then there exists a standard almost vector topology ~ on X such that ~=~(0) if and 
only if the monad M(T) of the filter J~ is an outer vector space over the outer field of 
standard scalars. 

0 . 5 .  For a formula ~ of the Zermelo--Fraenkel set theory, we set 

VxqD : =  (Vx ~ ~x') q~ :=Vx (x ~ f  A x-~ ~ ' )  --,- ~ ;  

v ' h  r : =  ( v h  ~ ~h') qo : =  v h  ( h ~ X A  h~,,h') --,-qJ; 
V'aq~:= ( v a ~ O )  q~:=va (~>0A~O)~. 

The quantities N'x, Nh, and ~= are defined in the natural dual ~-ner, i.e., we assume that 

~'xq):= (uxzox ' )  q):=~x ( x ~ F A  x ~ ' )  A~;  
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~ ' h ( p : =  (~h,~ ,h') ~ : = ~ [ h  ( h ~ X  A h z  ~h') A~P; 

.~'cr162 :=  ( ~ = z O )  q~:= :~= ( ~ , > 0  A u t O )  Aq~. 

Finally, we agree to write 

V~tXCp :=  VX (X - -  standard ) -+ q); 

~Stxq) := ~[X (X - -  standard!) A q). 

1. Bouligand and the Hadamard Cones 

1 .1 .  The Bouligand cone Bo(F, x') is defined by the relation 

Bo(f,x'):= N cl~ U F-~, ,  
U~W~(~') x~-FNU 

where, as usual, Wo(x') :=x'+W~. The elements of the Bouligand cone are called external 
(or, less, precisely, outer) tangents to the set F at the point x'. 

1.2. The Bouligand cone is the standardization of the q.~.~ -cone, i.e., for each stan- 
dard element h' 

h ' ~ B o ( F ,  x') +~ .~'x~'~'h x +  ~h ~ F. 

The following equivalences follow from the definition of the Bouligand cone: 

h '  ~ Bo(F, x ' ) ~  ( V U ~ W , ( x ' ) ) ( V a "  ~ R ) ( v V ~ W ~ ) ( , ~ x ~ F f i  U) 

( . ~ O < ~ < ~ ' ) ( a h ~ h ' +  V) x + a h ~ F  ++ 

VUVa'VY~x.~a~h ( x ~ F f i U  A h ~ h ' +  V A O < a ~ " A x + a h ~ F ) "  

By virtue of the transfer principle, we deduce that 

h '  ~ Bo(F, x') ~ w W v ~ ' v " t V ~ ' t x ~ t ~  

~ , t h ( x ~ F F t U A h E h ' W  V AO<cz~cz"  A x d " a h ~ F ) ' .  

Now, using the idealization principle (in the weak form), we get 

h '  ~ Bo( f ,  x ' ) - ~  ~ x ~ h V ~ t U W ' ~ ' W * Y  (x ~ F A 

( ~  ~ 0) (~h ~ ,h') x +  ah ~ F-+ ~'x~'a~'h x + ah E F. 

L e t ,  in  i t s  t u r n ,  t h e  s t a n d a r d  e l e m e n t  h '  o c c u r  in  t h e  s t a n d a r d i z a t i o n  o f  t h e  . q ~ -  
cone .  S i n c e  t h e  s t a n d a r d  e l e m e n t s  os a s t a n d a r d  f i l t e r  c o n t a i n  e l e m e n t s  of  t he  monad of  t h i s  
filter, we get 

(w'U ~ Wo(Z') ) (w'W ~ R) (v.tv ~ W0 

( ~ x ~ F N  U) ( ~ 0 < ~ < ~ ' )  ( ~ h ~ h ' +  V) x + ~ h ~  F. 

By v i r t u e  of  t h e  t r a n s f e r  p r i n c i p l e ,  we c o n c l u d e  t h a t  h ' ~ B o ( F ,  x ' ) .  

1 . 3 .  The a b o v e - p r o v e d  s t a t e m e n t  can  be  r e w r i t t e n  in  t h e  fo rm 

Bo(F, x ' )  = *{h' : .~ 'x~'~'h x +  ah ~ F}, 

where  * i s  t h e  symbol  o f  s t a n d a r d i z a t i o n .  I n  t h i s  c o n n e c t i o n ,  we u s e  the  t r a n s p a r e n t  n o t a -  
t i o n  

~ ( f ,  x ' )  :=  Bo(F, x ' ) .  

In the sequel, we will use similar kind of notation without specific mention. 

1.4. The Hadamard or the hypertangent cone Ha(F, x') is defined by the relation 

F--x 
Ha ( f ,  x ' )  : =  U int~ N 

The elements of the Hadamard cone are called i n t e r n a l  t angen t s .  
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~.5. The Hadamard cone is the standardization of the u165 

H a ( f ,  x ' ) = v v v ( F ,  x ' ) .  

I n  o t h e r  w o r d s ,  f o r  s t a n d a r d  h ' ,  F,  and x '  

h' ~ Ha (F, x') ++ (x' '+ F (o)) N F + ~ (R+) (h' + ~ (~)) c F, 

where  ~(R+) i s  t h e  o u t e r  s e t  o f  p o s i t i v e  i n f i n i t e s i m a l  n u m b e r s .  

T h i s  s t a t e m e n t  i s  o b t a i n e d  by d u a l i t y  a r g u m e n t s  f rom 1.2 i f  (which  i s ,  
c o r r e c t )  we f o r g e t  a b o u t  t h e  e x i s t e n c e  of  F in  ~'x. > 

of course, 

2. Clarke Cone 

2.1. The C l a r k  cone is defined by the relation 

C1 ( f ,  x') : =  
v~.~ U~_A ~ ~ qg 

2.2. The following statements are equivalent for standard F, x', and h' 
ditions of weak idealization): 

(~) h ' ~ C I ( F ,  x ' ) ;  

(2) There exist infinitesimal 

(under the con- 

U~./}~ V~R~ , and ~' > 0 such that 

O<Cr 
x~Fn v 

(3) (~ U ~ . ( x ' )  ) ~ a ' ( v x ~ F  n U), (vO < ~ ~ a') (~h ~ ~ h ' ) x +  ~h~F. 

Using  o b v i o u s  a b b r e v i a t i o n s ,  we can  w r i t e  

h ' ~ C I ( F ,  x ' )  ~-+ V V ~ U ~ a ' ( V x ~ F N U ) ( V O < o ~ o ~ ' ) ( ~ h ~ h ' + V ) ,  x + o ~ h ~ F .  

Using the transfer principle and weak idealization, we successively have 

h '  ~ Cl (F, x ' )  -~ w W u ' t U a ~ "  (Vx ~ F n u) 
(vO < ~ ~ co') (:~h ~ h '  + V) x + ~h ~ F -,-,- (w~IV~ . . . .  , V,3) ~ t U a ~ ' ~ v ( v k  :=  1, . . . ,  n) V~ = V 

A ( V x ~ F N U ) ( v O < a ~ < a ' ) ( ~ h ~ h ' + V )  x + a h ~ F - ~  

~va~'avv~'v" v ' =  V A ( v x ~ F ~  U) 
(VO < a ~< a ' )  ( a h ~ h ' +  V) x . + u h ~ F .  

Hence it follows without doubt that (2), and, all the more, (3), holds for certain V~J~, 
Vc~(~) and U~JI~ Uct~(o)§ , and infinitesimal a. 

If, in its turn, (3) is fulfilled, then by virtue of the definition of the relation ~ 
we have 

V~tV~UTfa" (Vx ~ F N U) (V0 < a-<. a ' )  (~h ~- h" § V) x § cth E F. 

T h e r e f o r e ,  by t h e  t r a n s f e r  p r i n c i p l e ,  h ' ~ C I ( F ,  x ' ) .  > 

2 . 3 .  The C l a r k e  cone  ( u n d e r  t h e  c o n d i t i o n s  o f  s t r o n g  i d e a l i z a t i o n )  i s  t h e  s t a n d a r d i z a -  
t i o n  o f  t h e  VV~ - c o n e :  

CI(F, x ' ) =  vv '~  (F, x ' ) .  
In  o t h e r  w o r d s ,  

h ' ~ C l ( F ,  x')  ~,- V 'xVa~th  x + ah ~ F. 

At f i r s t ,  l e t  h ' ~ C I ( F ,  x ' )  . We t a k e  a r b i t r a r y  x'~, ,x" and a > 0 ,  a ~ 0 .  For  e a c h  s c a n -  
d a r d  n e i g h b o r h o o d  V (an  e l e m e n t  o f  t h e  f i l t e r  JF ) ,  by v i r t u e  o f  t h e  t r a n s f e r  p r i n c i p l e  
t h e r e  e x i s t s  an e l e m e n t  h such  t h a t  h ~ h ' §  and x §  Using  s t r o n g  i d e a l i z a t i o n ,  we 
have 

v s t V ~ h ( h ~ h '  § V A x §  -+~hVStV h~ .h ' ,+  V A x + a h E F  ~ ~ h  x + a h ~ F ,  
i . e . ,  h' :~ vVSI(F, x ' ) .  
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Now, let h'~ VVN(F, x'). We take an arbitrary standard neighborhood V in the filter ~ 

and fix an infinitesimal neighborhood U of x' and an infinitesimal positive number ~'. Then, 

by the condition, for a certain h~,h" we have 

( V x ~ F ~ U ) ( V O < ~ ' )  x .+~h~F.  

In other words, 

v~VaUaa'(vx ~ F  fi U) ( v o  < ~ ~ ~') (ah ~ h'  .+ V) x + ~h ~ Y. 

By virtue of the transfer principle, h'~Cl(F, x'). > 

2.4. We give an exnmple of application of the nonstandard criterion, found by us, of 
elements of the Clarke cone for the deduction of its main (and well-known) property A more 

general statement will be established below. 

2.5. The Clarke cone of an arbitrary set in a topological vector space is convex and 

closed. 

By virtue of the transfer principle, it is sufficient to consider the case in which 
the parameters -- the space, the topology, the set, etc. -- are standard. Thus, let h0~cl~Cl(F~ 
x'). We take a standard neighborhood V in ~o, and let the standard elements V,, V~W, be 
such that V~+V2~V.  Then there exists a standard element h ' ~ C I ( F ,  x ' )  such that h'--ho~V~. 
Moreover, for arbitrary x~,x" and ~>0. ~0 , we have h~h'+V~ and x+~h~ F for a 
certain h. It is clear that h~h'+V~ho+V~ +V~=ho+V. Hence ho~Cl([', x'). 

To prove the convexity of the Clarke cone, it is sufficient to observe that ~(~) + 
(R+)Ix(~)~ ~(x) by virtue of the continuity of the mapping (X, a, ~)-~x+~h. > 

2.6. Let 0 be a vector topology and 0 ~ ~. Then 

vV~(c loF ,  x ' ) ~  v v a  (F, x ' ) .  
I f ,  in  a d d i t i o n ,  0 1> o,  t h e n  

VVa (el0 F, x ' )  = v V a  (F, x ' ) .  

L e t  h ' E V V a ( e l o F ,  x ' )  b e  a s t a n d a r d  e l e m e n t  of  t he  g i v e n  cone .  We t a k e  e l e m e n t s  
x ~ F  and a > 0 such  t h a t  x~ . , x "  and a ~ 0 .  I t  i s  c l e a r  t h a t  x ~ e l o F .  T h e r e f o r e ,  x + ( z h ~  
elsF f o r  a c e r t a i n  h = ~ k ' .  We t a k e  an i n f i n i t e s i m a l  n e i g h b o r h o o d  W in  p ( 0 ) .  The n e i g h b o r -  
hood ~W is also an element of 0(0) and, therefore, x"-(x+ah)~aW for a certain x" ~F . 
Let us set h" := (x" -- x)/~ - It is clear that xq-cth " EF and, moreover, =h'~cchq-=W �9 Hence 
h, ,~h+W~h'+B( .r )+W=h'-b l~( .~)+lx{O)~h '+v~( '~)+p, ( 'O~h ' -b~(~c) ,  i . e . ,  h"  ~1~" . Thus ,  h '  
vv~ (F, x'). 

Now, let e i> ~ and h'~u x'). We take an infinitesimal positive a and some element 
x~cl0F such that x~z ~. We select x"~F such that x--x~'~W, where W~{0) is an 
infinitesimal symmetric neighborhood of zero in 0. Since 0 I> o, it follows that ~{0)~(o), 
i.e., x--x '~ ~(0)~(~) . In other words, x~x'~z " . By definition (the element h', as usual, 
is assumed to be standard!) x" q-~/z~F for a certain h~,h ~. Let us set h":=(x"--x)/o~+h. 
It is clear that, in addition, 

h" ~ h + , W ~  h + ~(0) ~ h '  + ~ (0) + ~ (~) ~ h '  + ~ (~ )+  ~ (~) = h '  + ~ ( 0 ,  

i. e., h "  ~ h' . Moreover, 

x +  ~ h "  = x  + ( x "  - x ) +  ~ h  = x "  + r ~ F ~ cl~ F. 

Finally, h'~VV~(clef, x'). ~> 

3. Cones of Infinitesimal Type 

3. I. The above nonstandard criteria of the Bouligand, the Hadamard, and the Clarke 
cones show that these cones are taken from a list of eight possible cones with infinitesimal 
prefix Q'xQ'=Q'h (here Q is either V or ~). It is clear that for complete description of 
all these cones it is sufficient to give the characterizations of the u and the 

V~V -cone. 

3.2. The following representation is valid: 

n u ,  n (v+  u 
~'  U~.,~ (~(x) x ~ P ~ U  \ o<(~<~ ~ 
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<~ To prove this statement, we should, at first, understand that the desired equation 
is the abbreviated expression for the following statement: For standard h', F, and x' 

V'x~'~z~t'h x + ~zh ~ F 
(vV ~ W~) v~z" (~U ~ Wo(x') ) (vx ~ F n U} 
( ~ t O < a ~ a ' ) ( ~ h ~ h ' + V )  x + a h ~ F .  

Therefore, for h'~VCl~t(F,  x') and standard V~Jt~ and a > 0 we can take an internal 
subset of the monad ~(J~o(x~)) as the desired neighborhood U. In its turn, successive appli- 
cation of the transfer principle and the strong idealization principle gives 

vs tvvs t a  ' (Vx ~, ,~x') (~0 < ~z ~ a') (~th ~ h" + V) x + ~zh~ f  

(Vx ~ ,,x') ( v  ~t {V.  ~t �9 - > -  . . . .  v,,))(v . . . .  

~th~cc(Vk : =  t . . . . .  n) 0 < a ~ < ~ z s  Ah ~ h '  + V~ A x +  a h ~  F 

-+ (Vx ~ ~x') ~hE[o~VS~Vh ~ h' + V/~  VSt~z'0 <~z<~a" A x + ah ~ F 

--+V'xSt'h (EIa ~ O) x + ah ~ F-+ h' ~ * {h ~ : V'x~t 'aWh x + a . h ~  F} -+h '  ~ V~t[~ (F, x'). 

By the same token, the proof is complete. > 

3.3. The following estimates are valid: 

(~U ~ ~ (x')) (~V ~ 2&) (~= : FN U-~ {0, I] A 

A ]imw(~(~')cz (x') = O ) ( V x ~  F [I U) ( V h ~  h" + Y )  z--b ~ ( x ) h  

~ F--->-h' ~ V ~ t V  (F, x ')-+ V~z" (IgU ~ . ~ a ( x ' ) )  

(~V~WO(~:FNU~(O, a'l) ( v z ~ v f l ~  
( V h ~ h '  + V) x + o : ( x ) h ~ F ,  

Let us consider standard sets F, x', and h' and assume that the premise of the state- 
ment is fulfilled. Using the transfer principle and considering the criterion of continuity 
of a standard function, we deduce that x+~(x)h~F for x~x g and h~h' , i.e., h' belongs 
to the standardization of the outer set {h':V'xN'=V'h x+ah~F}. Thus, the first implication 
is proved. 

To prove the second implication, we take a standard number a w and select infinitesimal 
neighborhoods U in x' + p(o) and V in ~(T). By the condition, (u ~'])(Vh~h'+ 
V) x~-=h~F. In the "interior world" (in the universe of interior sets) we can apply the 
axiom of choice and try to find the function ~:FN U-+(0, ='] with the desired property. It 
remains to refer to the transfer principle. > 

3~4. Besides the above-indicated eight infinitesimal cones of classical type, there 
are nine more pairs of cones that contain the Hadamard cone and are contained in the Bouligand 
cone. It is clear that these cones are generated by changing the order of the quantifiers. 
Five new pairs are constructed in composite manner by the type of the VNV -cone. The re- 
maining pairs are generated by permutations and dualizations of the Clarke cone and the u - 
cone. For example, in the natural notation, we have 

V ~ V h ~ x  (F, x ~) = N U int~ N U F------ix ; 
U ~ j ~  a(x, ) a" o < ~  p ===_.F~U 

~ h ~ x V ~  (F, x') = U N cl~ U fl P--____!; 

~ h V x V ~  (F, x') = U ~ N 
U~J~(x') o < ~  �9 

The last cone is the Clarke cone and is convex in the case where ~{a)+~(R+)~(T)=~(o). 

4. Generalized Clarke Cone 

4.1. From the qualitative point of view, the approximating infinitesimal cones are the 
results of the examination of a set under a microscope. Thus, it is not completely natural 
to speak about the exact occurrence of an element in a set. In this connection, we fix one 
more (standard) filter ~e and the corresponding outer relation ~,. 
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4.2. Let us consider a set F and a point x'. Let us set 

W ~ O  o~' O<t~<:o~' 

The set CI~(F, x ') is called the generalized Clarke cone. It is clear that this cone is wider 
than the Clarke cone and coincide with it if J~e is the filter of all supersets of zero. It 
is useful to emphasize that if the filter J~e is not sufficiently fine, i.e., contains Mahlo 
sets, then the cone CI~(F,x ') is too wide-coincides with the whole space. 

4.3. For standard F and x', the set CI=(F, x') is the standardization of the VV~ - 
cone, i.e., a standard element h' occurs in CI=(F, x ~) if and only if 

V x V ' t z : l ' h ( ~ x  " ~ f )  x" ,~ sx + (zh. 

<~ The proof of this statement is analogous to that given in 2.3. > 

4.4. In the sequel, we will assume that the mapping (x, t, y, z) § x + ty + z, acting 
from the space X x R x X x X with the topology ~ x ~R x ~ x 0 into the space X with the 
topology ~, is continuous, i.e., ~(o)~-IX(R+)IX(~)~-IX(0)~IX(o) under the assumption of stan- 
dardness of parameters. 

4.5. The generalized Clarke cone is T-closed and convex. 

<~ The proof of this statement is analogous to that of 2.5. > 

4.6. The Rockafellar formula 

vvva(f, x')+CI~(F, x')~ vvv~(F, x') 

is valid, where the convex cone VVV~(F, x') is defined by the relation 

V V V ~ t ( F , x ' ) : =  f] U int~ f] F ~ - W - - x  
W~.,~ 0 U~W~(x' ) x~FNU o:, ' 

i.e., represents the standardization 

v v v ~  (F, x') = *{h" : V'xV~zV'h(7~x" ~ F) x,+ (zh ~o x"}  

( f o r  s t a n d a r d  p a r a m e t e r s ) .  

<~ Only the verification of the Rockafellar formula is nontrivial. In this connection, 
by virtue of the transfer principle, we can restrict ourselves to the case of standard para- 

meters. 

Thus, let k' occur in VVV~(f, x') and h'~VV~(F, x'), where k' and h' are standard 

elements. Then 

(x' ,+ IX (s ) )  fl F + ,  ~x (R+) (k' + Ix (x))  ~ F + IX (0) ; 
(Vx ~ x ' )  (vo :~  O) (ah  ~ h ' )  ( ax"  ~ f )  x+czh ,-~ox". 

Hence, for ~ > 0 and ~0 we deduce that 

z ' +  o~(h" + k" + IX(~)) = x ' +  W~+ ~(k' +(h '  - h )+  Ix (-c)) ~ 

~ z "  + Ix(o) + ~(k' + ~ (~ )+  t~('O)~x" +~z(k'+ Ix(~))+ ~(0): 

for a certain x" ~F. Besides this, 

x" ~x'+(zh.+ix(O)~x'+ah'+~zix('O+~('O = x ' +  ~(o)+(z,ix(~)+ rt(O)~ x ' +  IX((O. 

Final ly, 

x ' +  a ( h ' +  k ' +  ~ ( ~ ) ) ~  (x'.+ ~(o))fl  F+o~(k + Ix(x)+ t~(0)) ~ F +  IX(O).+ IX(O) ~ F +  IX(O), 

which was d e s i r e d  to  be p roved .  > 

5. Directional Epiderivat ives 

5.1. Let R be the standard extended number line. For a finite number t~R:={teR: 
(~'tn~N) It[ <n}, we denote, as usual, the standard part of t by st(t). Thus, (Vs, t ~R) 
t~s++st(t)=st(s). Let us also set 

Ix(-~) : = { s E N :  s~<~R}; 
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~ ( §  : = . { s e R :  s > = R }  

which are monads of infinities and suppose that 

t~(-~)-- st(O=-=; 
t ~  ~ ( + ~ )  ~ s t ( t ) =  + ~ .  

5.2. For a standard t from R and an arbitrary s from 

s t ( s ) ~  t ++ ( v ' %  > O) s < t + s .  

§ If s < t + a, then st(s) ~ st(t + g) = st(t) + st(a) = t + e. Therefore,((Ve>0) 

st(s) ~ t + e)  ~ st(s) ~ t. 

§ Let st(s) = t. Since s~(s), we have s < t + r for each standard e > 0. But if 
st(s) < t, then the monad of the point st(s) lies on the left of t. Hence s is on the left 

of t and, therefore, a fortriori, s < t + a. > 

5.3. Let f:X § R be a standard function defined on a standard X and ~" be a standard 

filter in X. For each standard t~ 

sup inf / (V) ~< t ~ ([~v ~ ,t (.g-)) st  (/(v)) ~< t; 

inf sup f (V) ~< t - ~  (Vv ~ ~t (:7")) st (1 (v)) ~< t. 
v~St- 

< At first, let us verify the first equivalence. Applying successively the transfer 

principle and the idealization principle, we deduce that 

sup inf ] (V) <~ t -+ (VV ~ J-) inf / (V) ~ t -+ 

- - + ( V V ~ g ' ) ( V e > O )  i n f / ( V ) < t  + e ~ V e V V ( ~ I v ~ V )  f ( v ) < t + e  

--+-vstevstv~[v u6~_ V A/(v)~t + e--~[~v~ZStgVstv v ~  V /~ [ ( v ) ~  t + e - +  

--+ (~v ~ ~t (Y')) (VSte > O) / (v) < t + e -+ (2iv ~ ,tt ($-)) st  (l (v)) <~ t 

(here we have considered 5.2). Let us now observe that v~(~-)cV for each standard element 

V of the filter ~'. Therefore, inf f(V) ~ t [since inf f(V) ~ f(v) < t + e~for each e > 0]. 
Hence, by virtue of the transfer principle, inf f(V) < t for each interior V from 5 r, which 

was desired. 

By virtue of what we have already proved and since --f and t are standard, we deduce that 

inf sup / (V) ~> t +,- - -  inf sup / (V) ~< - -  t ++ . . . . . . .  

sup inf ( - - / )  (V) < - -  t . ~  (~u ~_ ~t (~z')) st  ( - -  / (v)) ~-~ - -  t ~ (~v ~ ~ (~'))  st  (/(v)) ~> t. 
v~5 z- 

Thus, we get 

inf sup [ (V) < t ~ -  ---] ( iuf sup f (V) ~> t)++ --q ((~v ~ / x  (:~r-)) s t  (l (v)) /> t) .,-,- (Vv ~ ,u (Y')) st  (jr (v)) < t .  
V~Sr kv=-PT- 

Finally, on the basis of what we have proved, we conclude that 

inf sup / (V) <~ t ++ (Ve > O) inf sup / (V) < t + e ~,. (vs te  :>  O) (Vv ~ Ix (if ')) st  (1 (v)) < t + s ++ 

(vv ~ ~ (~')) (v~'~ > o) st (1 (v)) < t + ~ -~+ (vv ~ ~ (~-)) st (/(v)) < t, 

since the number st(f(v)) is standard. > 

5.4. Let X and Y be standard sets, f:X • Y + R be a standard function, and B~ and 
be standard filters in X and Y, respectively. Then for each standard real number t 

sup inf sup inf / (u, v) ~ t~-~(Vu ~ ~t (~))  (~tv ~ ~ (,~-)) st  ( / (u,  v)) ~ t. 
v~Sr u.~ ~ u~u v~v 

<~ Let us set Fv(u):=inf{/(u, u):v~V}. Let us observe that F v is a standard function, 
provided V is a standard set. Applying the transfer principle, Proposition 5.3, and (strong) 
idealization, we successively deduce that 
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sup ha~ sup inf / (u, v) < t ~-~ (VV ~ ~-) inf sup Fv  (u) < t ~-~ 
V~_.,~c" ~ ~.=--U ~_~W U ~  u~U 

( V s t V ~  il~ s u p F  F ( U ) ~ t  +-~ ( V s t V ~ t ' ) ( V u ~  p(~))  s t (Fv  ( t t ) ) ~ t  <-+ 

+-~ ( Y u ~ ( ~ ) )  (VstV ~ ~ )  (Vs t e~  0) inf f(u,  v ) <  t + e - +  
v - V  

- ~ ( v u ~ ( ~ ) ) ( . ~ ( ~ - ) ) ( w ' ~  >o) l(u, v)<t+~-~ 
~ ( v ~ ( , ~ ) )  ( ~ v ~ ( ~ ) )  st(/(~, v))<~t. 

From the last relation, for an interior element U~-~(~) of the filter ~- and a standard 
element V of the filter ~ we deduce 

sap inf ] (u, v) ~ t -+ inf sup inf f (u, v) ~ t 
u=~U ~ V  U=_ ~ u ~ U  v ~ V  

_+ (VstV ~ ~r) in[ sup inf ] (u, v) ~.~ t -+ (VV ~ ~-) inf sup inf / (u~ v) ~ t 
U ~  u~U v -g  U~qj u~U v.~V 

by v i r t u e  o f  t he  t r a n s f e r  p r i n c i p l e .  

5 . 5 .  The above  c r i t e r i a  e n a b l e  us  to  g i v e  n o n s t a n d a r d  c r i t e r i a  o f  d i r e c t i o n a l  d e r i v a -  
t i v e s  and e p i d e r i v a t i v e s  c o r r e s p o n d i n g  to  i n f i n i t e s i m a l  t a n g e n t  c o n e s .  L e t  u s  d w e l l ,  f o r  
i l l u s t r a t i o n ,  on t h e  R o c k a f e l l a r  e p i d e r i v a t i v e  f o r  a c o n t i n u o u s  f u n c t i o n  [4 ,  7 ] .  

5 . 6 .  L e t  f : X  § R be  a s t a n d a r d  f u n c t i o n  t h a t  i s  c o n t i n u o u s  a t  a s t a n d a r d  p o i n t  x '  o f  
i t s  e f f e c t i v e  domain d o m f .  Then t h e  f o l l o w i n g  s t a t e m e n t s  a r e  e q u i v a l e n t  f o r  e a c h  s t a n d a r d  
number  t '  and d i r e c t i o n  h ' :  

(I) (h' ,  t ' ) ~ C l ( e p i ] ,  (x ' ,  ] ( z ' ) ) ) ;  

(2) f + ( x ' ) h '  ~< t ' ,  where  f §  i s  t h e  R o c k a f e l l a r  d e r i v a t i v e .  

(3) j )  st(t(x+ h)  -1(x) )<t'; 

(4) The following estimate is valid: 

sap inf sup inf f (x + ~h) -- f (x) ~ t ' .  

O<~CC ~ 

~By definition, the epigraph of the Rockafellar derivative f+(x') is the Clarke cone 
of the epigraph epif of the function f at the point (x', f(x')), which ensures that (I) ~-+ 
(2). Considering the construction of monads in a product, continuity of f at the point x', 
i.e., x~dom] Ax ~x ~-+](x}~J{x ~) , and the nonstandard criterion 2.3 of elements of the 
Clarke cone, and setting F : = domf, we deduce that 

(h', t') ~ C1 (epi f, (z ~, f (z'))) ~ V" xV" a~  " h (~t ~ t') (x  + ah, ] (x) + at)  ~ epi ] 

~-~ V ' x V ' c c ~ I ' h ( ~ t ~ . t ' )  t > ~ s : =  f(x  §  -+ V ' x V ' ~ t ' h ( ~ t  ~ t ' )  s t ( t ) ~ s t ( s )  
O~ 

- - + V ' x V ' = ~ t ' h  t ' > ~ s t ( s ) - +  V ' x V ' o ~ t ' h ( ~ t t  ~ t ' )  t ~ s .  

To p r o v e  t h e  l a s t  i m p l i c a t i o n ,  l e t  us  o b s e r v e  t h a t  i t  i s  o b v i o u s  f o r  s t ( s )  = --~. But  
if s is a finite number, then we set t : = t' + ]st(s) -- s]. It is clear that t'=t and 
t -- s ~> t' -- st(s) + s -- s >i O. Thus, by virtue of 5.4, 

r (x ' )h '<t ' -  V-xV =a.h . I  ) ~ t '  +-,- 

which completes the proof. > 

sup inf sup inf f (z + ~h) - -  I (x) ~-~ t ' ,  
V E J ~ . ~  U ~ J ~  o(XO x ~ U N d o m ]  h ~ h t  + V  

6r ~ 0~o~<o~ t 

I �9 

2. 
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SMOOTHNESS OF CONVEX SURFACES AND GENERALIZED SOLUTIONS OF MONGE--AMPERE 

EQUATION ON THE BASIS OF DIFFERENTIAL PROPERTIES OF QUASICONFO~MAL MAPS 

I. G. Nikolaev and S. Z. Shefel' UDC 514.772.24:517.957 

In this article we consider questions of the connection between the order of smoothness 
of a two-dimensional convex surface in three-dimensional Euclidean space E 3 and the order of 
smoothness of its intrinsic metric. 

For convex surfaces with cn-smooth metric (n ~ 2) and positive Gaussian curvature Pogore- 
lov [I, p. 118] proved that the surface itself belongs to the class C n-l,a for any 0 < ~ < ! 
(if the metric of the surface is analytic, then the surface is analytic). Sabitov [2] proved 
PogorelovVs theorem in H~Ider classes of smoothness of the metric; it can be stated in the 
following form (see also [3]): if the curvature of a convex surface in a C2-smooth metric is 
positive and belongs to the class C n-e,a (n k 2, 0 < a < I), then the surface itself is C n,a- 
smooth. Convex surfaces of bounded positive curvature were considered by the authors in [4]. 
In this article we assume that the curvature is positive and has an (n, a)-approximative dif- 
ferential at a fixed point (for the definition, see Sec. 1.1). 

We state the main results of the paper. 

THEOREM I. Let F:z = F(x, y), x 2 + y2 ~ r 2 be a convex surface whose upper and lower 
curvatures K~ y), Ko(x, y) ([4]) admit the estimate 0 < m < K0(x, y) ~ KS(x, y) ~ M, x 2 + 
y2 ~ r 2. If there is a polynomial Pn(x, y), n = 0, I, 2,..., of degree not greater than n 
such that for x 2 + y2 ~ r 2 

n + ~  

[K~ ~, o < a < t ,  

then there is a polynomial Qn+2(x, y) of degree no greater than n + 2 such that 

n+2+~ 

I F (x, y) - Qn+~ (x, y) l <~ e '  (x ~ + y~ ~ , 

w h e r e  t h e  c o n s t a n t  C '  d e p e n d s  on C, m, M, r ,  n ,  a ,  and  max [F(x~y)--F(OtO)l. 
x 2 + y ~ r  ~ 
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