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In Boolean-valued analysis, a new class of topological spaces has been identified, with 
the properties of cyclicity or mixing. These objects are descents: mappings from various 
topological spaces into Boolean-valued models of set theories (see the works of G. Takeuti, 
E. I. Gordon, A. G. Kusraev, V. A. Lyubetskii, M. Osawa, and others). In the field of non- 
standard analysis, A. Robinson developed monadology -- a convenient method for studying filters, 
uniformities, topologies and so on [I, 2]. The aim of this article is to apply this theory 
to the study of certain cyclic topologies used in this analysis. Below we give crite~fa~ for 
procompact spaces and the contiguous formations associated with them. We give some applica- 
tions to o-convergence in Kantorovich space. In this article we shall use a little-known and 
heterogeneous technique. Therefore, for convenience we shall accompany certain propositlons 
by additional explanations. This, together with restrictions on the space available, have 
prevented the author from including a more complete bibliographical and historical background. 

O. Preliminary Remarks 

0.1. When considering D. Scott and R. Solovei's Boolean-valued models of set theories, 
we shall use in future the terminology of [3, 4], with no special mention. An explicit pre- 
sentation of the foundations of Boolean-valued analysis, and suggestions for further reading, 
can be found in [5-8]. 

We emphasize that below we shall consider a fixed, complete, Boolean algebra B, and the 
separable Boolean-valued universe V (B) associated with it. We denote the estimate for the 
truth of the formula ~ in the Zermelo--Frankel theory by the symbol [~]. For economy of space, 
we shall call strongly cyclic sets (and the hulls corresponding to them), cyclic. 

0.2. The use of the technique of nonstandard mathematical analysis, developed by A. 
Robinson, means the "neoclassical" arrangement, going back to E. Nelson [9]. In other words, 
sets (in the Zermelo--Frankel theory) are identified with elements of the universe of internal 
sets, situated in a suitable world of external sets, satisfying the Zermelo axioms. Standard 
sets form an external class in the universe of internal sets. The Robinson standardization, 
i.e., the *-transform, and the corresponding world of "classical" sets are not used. Without 
special mention, the ordinary proposition for "a standard entourage" will often act, meaning 
that parameters in the formal notation of the text, which are not specially mentioned, are 
assumed to be standard sets. As usual, for a standard filter ~ we denote by the symbol ~(~) 
the monad ~-, i.e., the external intersection of the standard elements of ~-. An explicit 
presentation of the foundations of nonstandard analysis, and bibliographical lists can be 
obtained from [10, 11]. 

In future we shall need the concept of the cyclic hull mix(A) of an external set A. In 
the definition of mix(A) we assume that the fixed Boolean algebra B is standard, and the set 
A is composed of elements of V(B). Thus we say that the element x in V (B) lies in the cyclic 
hull mix(A) of the external subset A of the universe V (B), if for some interior family(a~)~E~ 
of elements of A, and some interior partition of unity (a~)~ in the algebra B, the point x 
is an intermixing of(b~)~ with probabilities (b~)~, i.e., b~z=b~a~ for ~ , or equivalently, 

x = ~ b ~ a ~ .  

0.3. The terminology we use below from topology and the theory of ordered vector space 
is consistent with that used in [12, 13]. 

I. Cyclic and Extensional Filters 

1.0. In this section we give some information which is necessary and helpful (and largely 
obvious), about ascents and descents of filters. 

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 27, No. I, pp. i00- 
ii0, January-February, 1986. Original article submitted January 23, 1985. 

80 i0037-4466/86/2701-0080512.50 �9 1986 Plenum Publishing Corporation 



we have 
For nonempty elements (A~)t~ in the universe V (B) and a partition of unity (b~)~ , 

Proof. Write A:=~t~b~A~. Clearly, for each ~ we have [a~A~]m[a~A]/~[A=Ad= 
[A= A~]~b~ if only a~A$. In view of the transfer principle in V(B), we have [a~A~]----[(~a~ 
~-A~)a=a~]. Thus, bearing in mind the maximum principle we have (Na~=~A~$) [a~A~]----[a=a~]~b~. 
Hence a ---- ~m b$a$. 

Suppose that it is now known that b~a=b~a~ for some a~A~$ and all ~E. Then, bearing 
in mind that [A ----- At] >~ b~ (~EE) by definition of intermixing, we deduce that[a~A]>~[a=a~]A 
[a~A~]A[A~----A]~b~ f o r  ~ . ~ . ,  i . e . ,  [a~A]>~V~=.b~----I and aEA,h > 

] , 2 .  For  the  c y c l i c  s e t s  A~, where A t ~ ( V  r f o r  ~ ,  we have 

~E I ~ 

Proof. Bearing in mind that A~$=A~ for ~ E E by the condition, on the basis of ~.] 
we deduce that 

Hence, recalling that for a nonempty set h inside V (B) we have A = A++, we conclude 

].3. Let (b~)~ be some partition of unity and let the families of elements (X~)~.-, 
(Y~)~. be such that [X~Y~]----I (~.=). Then 

Proof. Write X:=~_~=_zb~X ~ and Y:  =~zb~Y~.  Clearly,,[ycx]>~[X=XJ /~ [X~Y]>~ 
[X=X~]/%[X~=Y~]A [Y=Y~]>~b~ A i A b~.=b~ for all ~ E .  > 

].4. Let X be a nonempty element of v(B)~ Then 

where, as usual, ~(A) is the set of finite subsets of A and 5~(X~)H:----{Y~:y~t~(X$)}~" 

Proof. The inclusion ~n(X#)~tc~n~(X) inside V (B) is obvious (an ascent of a finite 
set is finite). It remains to carry out the following derivation: 

1.5. Let 9 
of v(B). Set 

[,~fin (X) ~ ~fin (X $ )r  = [(Vn ~ N A) (V]: n -+  X) ] (n) ~ ~ m  (X v I )tr] = 

~ [ / (  n h J ~ t i n ( X  r A n._A [.f ~ (nA)~,~tin(X r  
n~N f: X $ 

= A A [/(n) I ~ e ~ . ( X  4 ) * ; ] = ~ . >  
n ~ N  ] : n ~ X 4  

be a b a s i s  of  the  f i l t e r  in  the  s e t  X, where X~(V(m)  ", i . e . ,  X i s  a s u b s e t  

9 '  :=  { F ~ ( X t ) ,  : (aV E ~ )  [ F = V I ] =  {}; 
9 "  {G,+ : G ~ 9 } .  

Then 9'# and 9"t are bases of the same filter 91 in X+ inside V (B). 

Proof. We verify that 9' is a basis of a filter in X+ inside V (B). We have 

F 1 , F 2 ~ t  

If F~, F~Eg', then there exist G~ GzE9 such that [Fi~G,t]----i and [Fz~G2~]---~. 
element G~9 for which G~GinG2. Then we have (G~flG2)#~9' and 

Take an 
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Moreover clearly 9 " f  is a basis of a filter in X+ inside V (B) By construction, ' , �9 9 ~ 9 . 

Moreover, 9'~$m9"#$ and thus [9"#mg"t]=i. Therefore, afortiori [9"tmg"#]=l, where as 

usual ~ is the set of supersets of elements of ~. In addition, 

FI~ ~'  

since for Gi~9 such that [Fi=G~t]=l, we have G~t~9't. Thus [9"~--t'c9-w~]=i by the transfer 
principle in V (B). 

1.6. The filter 91 inside V (B) constructed in 1.5 is called an asoent of 9. 

1.7. Let 9 be a basis of a filter in X+ for nonempty X in V (B), Moreover, let mix (9) 
be the set of intermixings of nonempty families of elements of 9. Then if 9 consists of 
cyclic sets, then mix(if) is a basis of a filter in X+ and mix(9)mg. Moreover, we have the 
equation 91 =mix(~) t. 

Proof. Let U, V~mix(9). This means that we have sets E and H, partitions of unity 
(b~)~, (cn)n~ and families (U~)~, (Vn)n~ of elements of 9 , for which b~U=b~U~ (~E) and 
c~V=cnV~ ( q ~ H ) .  L e t  Wa,~)cU~V~ be some e l e m e n t  in  t he  b a s i s  9. Se t  d(~.~:=b~m e~. 
Clearly,(d(~.~))(~,n)~x~ i s  a p a r t i t i o n  of  u n i t y .  C o n s i d e r  W:=Zm~)~.x~d(~.n)W(~,n) , i . e . ,  t he  
s e t  o f  c o r r e s p o n d i n g  i n t e r m i x i n g s  of  e l e m e n t s  W(~,n). Clearly,.da.n)U=btcnU=c~b~U~da, n)W(~,n ) 
and a n a l o g o u s l y  d(~,n~V~d(~.niW(~,n). By the  same t o k e n ,  W ~  Ufl V and W ~ m i x ( $ ) .  

S ince  9 c o n s i s t s  of  c y c l i c  s e t s ,  t h e n  b e a r i n g  in  mind 1.2 and 1 .3 ,  i t  i s  c l e a r  t h a t  
m i : x ( 9 ) ' =  m i x ( g l ) ,  which  c o m p l e t e s  t h e  p r o o f .  

1.8. For the filter ~- in X inside V (B) set ~Z-~:={F~:F~-~}. We call the filter s 
in X+ the desoent of ~-. A basis of the filter 9 in X+ is called extensional, if ~I*=9--. 
A basis of the filter 9 inX+ is called oyolio, if ~- has a basis of cyclic sets. (We note 
that in []4], extensional filters were called cyclic). 

1.9. The filter 9~ is extensional if and only if ~" is cyclic and ~g-=mix(~-). 

Proof. This follows from 1.2, 1.3, and 1.7. 

1.10. For extensional filters ~- and 9 in X+, we have ~< mg~-+[~ ~-Im91 ]=i. 

Proof. If ~'~9, then ~-'~9' and moreover [~-I~9f]=i. Hence ~-f~gf~, i.e., 5z-~9~ 
It remains to refer to 1.8. 

1 . 1 t .  The maximal elements in the set of extensional filters are called proultrafilters. 

1.12. Maximal elements in the set of cyclic filters are proultrafilters. 

Proof. If d is a proultrafilter and ~ is a cyclic filter majorizing it, then ~r 
mix(~'). Hence ~r Conversely, let ~r be a maximal cyclic filter. Then ~r162 and 
thus mr is a proultrafilter. 

1.13. The proultrafilters in X+ are precisely the descents of ultrafilters in X. 

Proof. This is a direct corollary of 1.8. 

1.14. We have the following statements: 

(I) if f:X § Y inside V (B) and [~- is a filter in X] = I, then 

i(~-)~ = f ~  (~) ;  
(2) for an extensional mapping f:X+ § Y+ and a filter ~ in X+, we have 

!(~) t = ft (~-I) ; 

(3) the image of an extensional filter under an extensional mapping is extensional; 

(4) the image of proultrafilter under an extensional mapping is a proultrafilter. 

Proof. (1) Using the definition and property of the descent f+ of the mapping f, we have 

+-, ( a F  ~ ..,at'l) G = fl~ (F*)  ~ ( : IF  ~ ,.~'-*) a = / l  (F),+-,- a ~ I I  (,-q~). 
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(2) Using the properties of the ascent f+, we have the estimates 

[o~ t (x~ ) ]=[ (  ~ / ~ ( ~ ) ) o = u ]  [(a ~ x  ) a = t t ( O ~ =  
= V [ c ~ / } ( e } ) ] =  V [ c ~ I ( F ) # I =  

(3) Applying (2) and (I) successively, we have 

f (~-)~ = /~  ( ~ ) ~  = ]~ ~ (~-~) = ! ( ~ ) .  

T h i s  e q u a t i o n  e n s u r e s  t h e  r e q u i r e d  s t a t e m e n t .  

(4) I f  ] : X ~ - ~  Y} i s  an e x t e n s i o n a l  mapp ing  and ~" i s  a p r o u l t r a f i i t e r ,  t h e n  ~ '{ i s  an 
ultrafilter in X inside V (B). Therefore, ]}(~-~) is an ultrafilter in Y inside V (B). By the 
same token, /t($r~) } is a proultrafilter. It remains to note that I}(~F-~)'~=I(~}=~/(~)in 
view of (3). 

2. Cyclic Monads, Essential and Proideal Points 

2.0. In this section we give a test for a filter to be cyclic~ and we introduce some 
concepts connected with this which will be useful in future. 

2o I. The monad ~(~-) of the filter Sr is called cyclio, if it coincides with its cyclic 
hull mix (~(~-)). 

2.2. Nonstandard Criterion for a Filter to Be Cyclic. A standard filter is cyclic if 
and only if its monad is cyclic. 

Proof. Let ~ be a standard filter~ Suppose that it is cyclic, Take an internal set ~. 
and an internal partition of unity (b~)~ and a family of points (x~)~z of the monad ~.(~). 
By the condition, ~c has a basis $ of cyclic sets, and therefore ~{~')----fl{G:G~=$}, where 
as usual ~ is the set of standard elements of ~. If x is the intermixing (x~)~a with prob- 

b ~ abilities ( ~j~_~, then x lies in each standard G in $ (since x~G for ~). Moreover, 
~(~)~mi~(~(~))= ~(~). 

If it is known already that the monad ~(s is a cyclic external set, then taking an 
infinitely small element F~s [i.e., such that f~(~ r) ], we see that fo:=mix(f}cm~x x 
(~(~-))~(~). Thus the internal set F0 is infinitely small and lies in ~-. Thus (u • 
(af0~$c)(f0=mix(fo) AF=f0). By the Leibnitz rule, we deduce that ~ has a cyclic basis. 

2.3. THEOREM. For a standard filter Sr in X+, set 

Then mix(~($c))----~($r}}) ' and /Wt$ is the greatest cyclic filter which is cruder than ~ig-. 

Proof. Clearly, Srt$~a- and thus by 2.2 ~(~z-{$)=D(~-)' and D{~z'}$)~m~x(D{s Now let 
x~(~-#4"). By the definition of a monad and the properties of intermixing, we have 

(w~f  ~ ~7) (a (b~)~_~) (a ( ~ ) ~ )  (v~ ~ ~ ) ~  ~- f A ~ = b ~ .  

C l e a r l y ,  by t h e  same t o k e n  we have  

�9 :(v~ ~ E) (x~ ~ F A b~x~ = b~x). 

Applying the principle of idealization in its strong form, we have 

(a (b~)~)  (a (xO~==) (vo'~ ~ ~ )  (v~ ~ ~) (x~ ~ A b,..~ = ~ ) .  

The latter means that there exist elements (x~)~ in the monad ~(~r~, such that x= ~b~x~, 
i.e., x~mix(D(~a-)). Finally, we obtain the equation ~(~r{$)----mix(D(~)). 

Now let ~ be a cyclic filter, where ~c~r. Moreover, mix(~{~))=~t($)~mix(~{~-))= 
p.(,.~r'#4). Thus ~ ~ ~ " ~ .  

2.4. Let x be an internal point in X+. We define a standard filter (x) in X+ by the 
relation 
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(x) : =  *{U ~ X4 : x ~  U}, 
where * is the symbol of standardization. Thus (x) consists precisely of those standard sub- 
sets of X+ which contain x. The element x is called an essential point of X+ [written x 
e(X)], if (x)t+ is a proultrafilter in X+. 

2.5. Each point x in a monad of a standard proultrafilter ~z- is essential. Moreover, 
we have the equations 

3 -  = (x) t~ - -  (x) tr  = * { U t ~  : x ~  U A U~X~}. 

P r o o f .  S i n c e  ( s e e  [2 ] )  t he  monad 9 ( ~ ' ) ,  by t h e  c o n d i t i o n ,  a f f e c t s  t he  monad of  t he  u l t r a -  
filter (x), then (x)~ z'. Therefore (x)~'t$~z'. On the basis of 1.12, we deduce that 
~------(x) t$. In view of 1.5, we have the equation (x)tSt-~(X) ~. Thus by 1.13 x is an essential 
point. Finally, (x) t~.~,.,a-t~-.~,~t"_.~(x)~J~. 

2.6. The image of an essential point under an extensional mapping is an essential point 
in the image. 

Proof. Let x be an essential point of X+ and let f:X+ + Y+ be an extensional mapping. 
There exists a proultrafilter ~- such that x~(~'). Clearly, ](x)~/(~(~-))=~(/(~-)). In fact, 
bearing in mind strong idealization 

Y ~ ~ ( i (~ - ) )  ~ ( v~ ~ ' ) Y  ~ i(F)  

(v . ~ ,~ -0  ~ ~-) (ax)  ( v F  ~ ~ '0)x ~ F A y = i(x)  ~+ 

It remains to refer to 1.14. 

2.7. Let E be some standard set and let X be a standard element of V (B), Consider the 

product X EA inside V (B), where E A is the standard name of E in V (B). If x is an essential 

point ofX ~h $, then for any standard eEE, the point x+ (e) is essential in X+. 

Proof... As x~xEA$ , then[x:Eh-+X]=i, i.e., x$:E-+X$ and for any e~E we have 
[x$(e)----x(eh)]----l, by definition of the descent x+. 

Consider the mapping taking the element x~xEA ~ into the point x(e A) in X+ for a fixed 

standard eEE. Clerly, for x~, x2~X EA $ we have 

[xl-'---x2]----[(V'e~F~A)xl(e)=x2(e)] = A [xl(eA)----x~(eh)]<[xl(eA)----x~(eA)] , 
e .~ E 

i.e., the standard mapping introduced above is extensional. On the basis of 2.8, we conclude 

that x(e h) is an essential point in X+. It remains to recall that x4(e)=x(e A) by definition 
of descent. 

2.8. Let ~" be a cyclic filter in X+ and let ~(~'):=&(~)fie(X) be the set of essential 
points of its monad. Then 

" ~ ( ~ )  = "~ ( ~ ) .  

Proof. Let x ~ p . ( ~ )  ". Thus x lies in the monad of some proultrafilter ~. Hence~(~)~ 
~(~-)v~ and therefore fC~$z- Bearing in mind 1.10, ~-~* and x~(~)~(~-~) �9 If it is 
now known that x ~t(~-t#), then there exists an ultrafilter ~ in X inside V (B) such that 
x ~t(~ ~) and ~-t. Since ~=~-~$c-~-t~ ~ in view of 1.7, then ~(~-)~t(~ ~) Hence x 

.~(~). 

2.9. Let A be a subset of the descent X+ we are considering. The set (X\At)$ is called 
the prooorqglement or the cyclic cor~ement of A and is denoted by A c. The point x~X$ is 
called proideal, if x lies in the procomplement of each finite standard subset of X+. We 
denote the set of all proideal points of X+ by p(X). 

2.~0. If the set X+ has no proideal points, then X is a finite set inside V (B). 

Proof. By the idealization principle, there exists a finite standard set Y in X+ such 
that T c = r  Thus [X\Y~ " ~ ] ' - - ~ ,  i.e., X = Y+. 

2.11. If X is an infinite set inside V (B), then the proideal points of X+ form a cyclic 
monad. The ascent of the cyclic filter with monad p(X) is the filter of the complements of 
the finite subsets of X inside V (B). 
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Proof. The proeomp!ements of the finite subsets of X+ form a basis of a filter. In 
fact, since(YUZ)t~=Yt{UZt$, then(YUZ)~YtUZt and[X\(YUZ)~cX\(Y~UZ~)]=i. Thus 
(YUZ) r =Yr Hence, on the basis of 2.2 p(X) is a cyclic monad. Denote 
by ~ the filter with the monad p(X), i.e., the filter of proeomplements of the finite sets 
of X+. Moreover, let ~$r(X) be the filter of the complements of the finite sets in X inside 
V (B) (a cofinite filter in X). Bearing in mind 1.4, we have 

= V 
A ~ f i n ( X  $ ) 

Thus of~ k~" (X) ---- ~-r  

[ y  ~ ~r- (X)]  = [(3Z ~ ~ (X)) Y ~ X \ Z ]  = 

[YmX\A #1= V [ Y~A~ t] = V [Y~z t] =[r~p~-t]. 
A--~fin(X ~ ) Z~p..~" 

3. Transforms of Precompact and Compact Spaces 

3.0. In this section, we apply cyclic monads to obtain the necessary descriptions of 
descents -- transformations of topological spaces into Boolean-valued models of set theories. 
The idea of the following results is closely connected with the classical works of Robinson 
[I] and Luxemburg [2]. Below, for simplicity we shall always consider an internal (in the 
sense of V (B)) nonempty uniform space (X, ~ l). The ordinary assumption of "standard entourage" 
also acts in this section, i.e., in particular when we are using nonstandard methods, B, X, 
~ and so on will be assumed to be standard sets. Since this is understood, we shall write 
x ~ y instead of (x, y)~(~). 

3.1. The uniform space (X{, ~;) is called preco~act, if (X, ~f~) is compact inside V (B). 
An analogous meaning is attached to the term '~roco~lete boundedness," and so on. We shall 
sometimes use the terminology "cyclic compactness." 

3.2. Nonstandard Criteria for Precompactness. For a standard space X, the following 
statements are equivalent: 

(I) X+ is a procompact space; 

(2) each essential point of X+ is nearly-standard; 

(3) each essential point of X+ is nearly-standard. 

Proof. (I) § (2). Let x be an essential point of X+. Then x lies in the monad of the 
proultrafilter (x) ++. Thus inside V (B) it is true that there exists an element y ~ X such 
that (x) t converges to y. In view of the maximum principle and Leibnitz' rule (in the in- 
ternal world), we may conclude that there exists a standard element y~X$ such that (x) t~ 
37~(y). Hence it follows that ~((x)t~)~qL~(~) , and thus x ~ y. In other words, x is nearly 
standard point. 

(2) § (3) is obvious. 

(3) § (I). We need to verify that an ultrafilter in X inside V (B) has a point of tan- 
gency. Without loss of generality, we may assume that ~- is not a principal ultrafilter. 
Therefore ~- is finer than the filter of complements of finite sets inside V (B). Referring 
to 2.6, we see that ~(~-~)~p(X). If x~(~), then on the basis of 2.8 ~-=(x) ~ , and more- 
over x is an essential point. By the condition, such a point is nearly standard, i.e., there 
exists standard y~X$, such that ~ ~(.~)~ ~. By the same token, y is a tangencv point 
of $~- inside V(B) . 

3.3. From Theorem 3.2, it is easy to see the difference between a Boolean-valued cri- 
terion for procompactness, and the usual one: "a compact space is a space with nearly standard 
points," The existence of a colossal number of procompact and noncompact spaces ensures a 
variety of examples of nonstandard and nonideal points. We also note here that the simul- 
taneous application of 3.2 and 2.7 enables us to give a nonstandard proof for the natural 
analog of Tikhonov's theorem for a product of procompact spaces -- "the descent of Tikhonov's 
theorem into v(B). '' 

3.4. Nonstandard Criterion for Proprecompactness. A standard space is the descent of a 
totally bounded uniform space, if and only if each essential point of it is pre-nearly stan- 
dard. 

Proof. + Let x be an essential point of X+. Then (x)+ is an ultrafilter inside V (B), 
and thus (x) + is a Cauchy filter in X, in view of the total boundedness of X in V (B). The 
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descent of a Cauchy filter is a Cauchy filter in a descent. Thus x is an element of the 
monad of a Cauchy filter, i.e., x is a pre-nearly standard. 

§ Take an ultrafilter ~- in X inside v(B). We need to show that ~- is a Cauchy filter 
in V (B) . Take a point x in the monad of the descent ~'r Then x is essential, and therefore 
pre-neariy standard. Thus the microhalo of x, i.e., the set ~(x), is a monad of a Cauchy 
filter. By the same token, ~-~ is a Cauchy filter. 

4. Ordered Convergence 

4.0. In this section, we apply cyclic monads to the description of o-convergence in a 
K-space Y. To save space, we shall only consider filters containing ordered intervals (or, 
equivalently, filters with bounded monads). In addition, in accordance with our stated aims 
we shall assume that the K-space Y is extended. On the basis of Gordon's theorem [15], the 
space Y can be canonically realized as the descent ~$ of the element ~, which is the field 
of real numbers R in the Boolean-valued universe v(B), constructed over the ~ss B of the 
space Y. We shall use the symbol E to denote the ordered f ~  of ~n~ in Y, i.e., E:={~ 
Y+:[e=~=O}. The notation x ~ y expresses the ~nf~n~ c ~ n ~  of the elements x and 
y ~ Y, generated by the descent of the ordinary topology of ~ in v(B), i.e., x~y ~-+(V~e 
E)Ix--y]<~. Here, and in future, we shall assume that ~ < b for ~, b ~ Y if [~ < b] = ~, 
i.e., a>b++a--b~ . Thus we have a deviation from the conventions of the theory of ordered 
vector spaces. Clearly, this is because of the need to observe the principles of introducing 
notation for descents and ascents. 

4.~. Let =Y be the ~e~y s~n~ p~ of Y, i.e., the microhalo of the external set 
of standard elements of Y. For y~=Y , we denote by the symbol Oy [or st(y)] the s~n~ 
~ of y, i.e., the natural standard element which is infinitely close to y. 

4.2. We have the following propositions: 

(]) for x, y~=Y and =~R , we have 

~ (~ .+  y) = ~ + ~ o (x v y) = ~ V ~ 

~ (ocx) = ~176 x ~< y -+ ~ ~ ~ 

(2) for z~~ and y~=Y, we have 

~ ~< z ++ (v~ts > O)y < z . +  s +-+ ( v ~  > O)y ~< z + ~; 

(3) an essential point of Y has a standard part if and only if it lies in some standard 
interval. 

Proof. (|) Operations in Y are descents of operations in ~, where they are obviously 
continuous. 

(2) In view of the above, we have 

~ ~< z -~ ( w ' s  > 0) l y - ~  < s A ~ ~< z -~ (w~6 > 0) y < z + ~ -~  

-~ ( w ' s  > 0 ) g  ~< z +  S -~ ( v " s  > 0) ~ ~< ~ (z + ~) -~ (v~ ' s  > 0) Oy :~< z + 8 -~ Oy ~< z. 

(3) I f  y i s  n e a r l y  s t a n d a r d ,  t h e n  in  v i e w  o f  (2) i t  i s  o b v i o u s  t h a t  g ~ [ ~  ~ 
C o n v e r s e l y ,  i f  t h e  e s s e n t i a l  p o i n t  y l i e s  i n  t he  s t a n d a r d  i n t e r v a l  [ a ,  b ] ,  t h e n  in  v i ew  of  
t h e  p r o e o m p a e t n e s s  o f  [ a ,  b ] ,  y i s  n e a r l y  s t a n d a r d  by  3 . 2 .  

4.3. For each filter ~ we have the relations 

inf s u p F =  inf s u p F =  inf s u p F =  inf supF;  

sup i n f F  ' s u p  i n f F =  sup i n f F =  s u p ~ i n f F .  

P r o o f .  The r e q u i r e d  e q u a t i o n s  a r e  o b v i o u s .  In  f a c t  ( s e e  [ ] 6 ,  ] 7 ] )  we have  

in[ s u p F  = inf IsupF : F  ~ ~ t l  = inf {supF ~ : F ~ ~-} ~ , 

s i n c e  we have  t h e  f o l l o w i n g  r e l a t i o n s  f o r  e s t i m a t e s  of  t r u t h -  

-[z~ [snpF:F~ ~-t}] = [(2F~ ~-~)z =supF] = V [z = supF ~ ] = 
F~" 
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It remains to recall that s u p F = s u p F } = s u p F } $ , ,  and apply 2 . 3 .  

4.4. THEOREM. For a standard filter ~ in Y and standard z ~ Y, we have the following 
propositions : 

(1) inf s u p F ~ z  ~ (Vy~"  p ( ~ 7 " ~ ) ) ~  +-~ ( V y ~ e ~ ( ~ r ~ ) ) ~  

(2) sup i n f F ~ z  ~-~ (Vy~ '~ (~ -~ , ) )~  ( V y E * ~ ( $ r ~ , ) ) ~  
F ~ f  

(3) inf sup F >1 z -*-,. (~ty ~"  ~ (~" ~ ))~ y ~ z -,.+ ( ~ y ~ e ~  (3r ~$ ))~ y ~ z; 

(4) sup i n f F ~ z  ++ ( X y ~ ' v ~ ( 3 r ~ [ ) ) ~  ~ - ~ ( ~ t y E ~ . ( f  ~ ) ) ~  

(5) x ~  *+ (vv  E ~ , ( x ~ , ) ) v  ~ ~ ~ ( ( v v ~  ~ ( x ~ ) ) v  z ~ .  

Here "~(~-~):--__~($r~)~y, and as usual, ~(~-~) is the set of essential points of the monad 
~(~f4), i.e., ~(~f~)= ~(~'f4)n ~(~). 

Proof. It is sufficient to verify (I) and (3). 

(I) Suppose that inf~- sup /7 ~.~. z, and bearing in mind the inclusion *[t{~-~$)~'lt(,~- ~$ ) , 
consider y~'~(~-~$). If we take an arbitrary y'~($z-), then for any standard bounded F~ - 
we have y'<~supF. On the basis of 2.3, for y'~(~-#$) we also have V'~<.supF, Thus for all 
standard F in ~ we have ~ By Leibnitz' rule, this relation holds for any F~-. 
Thus og ~< inf~3 r sup F ~ z. 

Suppose that it is now known that for each y~g(~-#$) we have ~ ~< z (the latter, of 
course, is satisfied if (Vf/~'~(~-~$))~ Consider an arbitrary standard proultrafilter, 
containing ~'~*. Choose some infinitely small element U of this proultrafilter $. By the 
condition, (Vu~U)~ since in view of 2.8 ~(~} c*~(~-~')=~(~-~). On the basis of 4.3, 
for each standard ~E we have (Ve~U)u<z+a. In other words, (V*t~E){~U~$)(V~t~U) ' 
~<z+e . Bearing in mind the standardness of z and the other parameters, using Leibnitz' 
rule we obtain 

( w ~  E ) ( a u ~  ~)~upU~<z + ~-~ A [ ( a y e  ~ ' )~upV<~ + ~ ] = i - ~  
~ E  

L 
-~ [  inf s u p U ~ z ] - - l - ~  inf s u p U ~ z .  

Once again applying Leibnitz' rule, we see that for any proultrafilter ~, containing 
~-~, we have inf~ sup U~z. In the field of real numbers R, for the filter ~ and the number 
t, it is clear that 

inf sup A ~. t ++ (V~ ~ 5~g) (~. is an ultrafilter -+ inf s u p a <  t~ 
) 

( t he  s imple  n o n s t a n d a r d  p r o o f  i s  e a s i l y  Ob ta ined ,  f o r  example f rom [ 1 8 ] ) .  Thus by the  t r a n s -  
f e r  principle of Boolean analysis 

F ~ r  ~ LO~~ ' j 
is a pro-ultrafilter 

It remains to refer to 4.3. 

(3) First, in the wider set "~(3z-t$) , let there exist an element y such that ~ ~ z. For 
any standard F~- we have y~F~$. Thus for ~~ we have y > z- ~ and supF=supF~$>z--~. 
By Leibnitz' rule we see that (v~tf~ -)(vste>0)supf~>z, i.e., (VF~-)s~pF~>z and infF~ 
sup F >/ z. 

in order to prove the relations which we have not yet verified, we first note that in 
view of the properties of the upper limit in R, the transfer principle of Boolean-valued anal- 
ysis and Proposition 4.3, we have 

L J 
On the basis of the maximum principle, there exists a proultrafilter ~ such that ~r 
and inf~.~ supG~z. Using the transfer principle and idealization, bearing in mind 4~ we 
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then obtain successively 

(v~'G ~ ~) sup G 1> z +-,- ( v ~ G  ~ ,~)[sup Gf ~> z] = 1 

+-~ (V~tG ~ ) [ ( v e  > 0 )  ( : ~ g ~  G f ) g >  z -  e ] =  I ~ (vstG ~ qJ) (V~8 > 0 )  ( [ t g ~  G t ~ ) g >  z -  e +-~ 

( v ~ c  ~ ~ ) ( v ~ ' ~  > 0 ) ( a g  ~ ~ f ~ ) g  > z -  e ~ ( w  ~ " ~ o  = ~ )  ( v~' ~'~go ~ E ) ( ~ g )  

(VG ~ ~o) (v~ ~ Eo) (g ~ Gf~ A g > z - ~) ~-+ (~g)  (WiG ~ ~ )  (V"~ > 0) (g ~ Gf~ A g > z - ~) ~-+ 

I t  r e m a i n s  t o  r e f e r  t o  2 . 8  and  t o  n o t e  t h a t  ~ ,~ ( ,~ )=~ t (~ -~ )="~z (Y" f [ ) ,~ ' t x (~" f+  ). 
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