CYCLIC MONADS AND THEIR APPLICATION

S. S. Kutateladze UDC 517.11:517.43

In Boolean-valued analysis, a new class of topological spaces has been identified, with
the properties of cyclicity or mixing. These objects are descents: mappings from various
topological spaces into Boolean-valued models of set theories (see the works of G. Takeuti,
£. I. Gordon, A. G. Kusraev, V. A. Lyubetskii, M. Osawa, and others). In the field of non~
standard analysis, A. Robinson developed monadology — a convenient method for studying filters,
uniformities, topologies and so on [1, 2]. The aim of this article is to apply this theory
to the study of certain cyclic topologies used in this analysis. Below we give criteria for
procompact spaces and the contiguous formations associated with them. We give some applica-
tions to o-convergence in Kantorovich space. In this article we shall use a little-known and
heterogeneous technique. Therefore, for convenience we shall accompany certain propositions
by additional explanations. This, together with restrictions on the space available, have
prevented the author from including a more complete bibliographical and historical background.

0. Preliminary Remarks

0.1. When considering D. Scott and R. Solovel's Boolean-valued models of set theories,
we shall use in future the terminology of {3, 4], with no special mention. An explicit pre-
sentation of the foundations of Boolean-valued analysis, and suggestions for further reading,
can be found in [5-8].

We emphasize that below we shall consider a fixed, complete, Boolean algebra B, and the
separable Boolean-valued universe V{B) associated with it. We denote the estimate for the
truth of the formula ¢ in the Zermelo—Frankel theory by the symbol [¢]. For economy of space,
we shall call strongly cyclic sets (and the hulls corresponding to them), cyclic.

0.2. The use of the technique of nonstandard mathematical analysis, developed by A.
Robinson, means the '"neoclassical' arrangement, going back to E. Nelson {9]. In other words,
sets (in the Zermelo—Frankel theory) are identified with elements of the universe of internal
sets, situated in a suitable world of external sets, satisfying the Zermelo axioms. Standard
sets form an external class in the universe of internal sets. The Robinson standardization,
i.e., the #*—transform, and the corresponding world of "classical" sets are not used. Without
special mention, the ordinary proposition for "a standard entourage" will often act, meaning
that parameters in the formal notation of the text, which are not specially mentioned, are
assumed to be standard sets. As usual, for a standard filter & we denotée by the symbol w(F)
the monad & , i.e., the external intersection of the standard elements of #. An explicit
presentation of the foundations of nonstandard analysis, and bibliographical lists can be
obtained from [10, 11].

In future we shall need the concept of the cyclic ’ull mix(A) of an external set A. In
the definition of mix(A) we assume that the fixed Boolean algebra B is standard, and the set
A is composed of elements of v(B). Thus we say that the element x in v(B) 1lies in the cyclic
hull mix(A) of the external subset A of the universe V(B), if for some interior family (ds)ie=
of elements of A, and some interior partition of unity (@:)sez in the algebra B, the point x
is an intermixing of (bg)iez with probabilities (b)iesz, i.e., bz=Db for E€E , or equivalently,

z = Dses braz.

0.3. The terminology we use below from topology and the theory of ordered vector space
is consistent with that used in [12, 13].

1. Cyclic and Extensional Filters

1.0. In this section we give some information which is necessary and helpful (and largely
obvious), about ascents and descents of filters.
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of v(B),

Then %’4

element G=¥% for which GG, NG,

1.1,

For nonempty elements (4:):cz in the universe v and a partition of unity (b:)ies s
we have

(30 -

Proof. Write A:= %ozbeds. Clearly, for each t=E we have [e=4]>[a= 4]\ [4=A:]=
[A= A;]=b if only a=AY. In view of the transfer principle in V(B)

( , we have [a=A4.]=[("a,
= A)a=ua:]. Thus, bearing in mind the maximum principle we have (Ta;=44) [asdl=[a=a]>0..
Hence a= ez betz.

Suppose that it is now known that ba=bw; for some g:=A:} and all E=E. Then, bearing
in mind that [A=A4;]>b: (¢=B) by definition of intermixing, we deduce that [a=Al=[a=a]A
[e:= AgIN [A:=A]= b, for E€E, i.e., [a€4]>Viceb:=1 and a4l >

1.2,

="

For the cyclic sets Ag, where 4:=P(V®) for teg we have

A A = AYY
g»gabg s (§§Eb> "5}[

Proof. Bearing in mind that 4:fV=4; for E=E by the condition, on the basis of 1.1
we deduce that

{/ bede T)& = 2 bede f) = 3 bids.
el =g teR
Hence, recalling that for a nonempty set A inside V<B) we have A = AV+, we conclude

2 bed: 4 =(Z beds ’:‘) h=(2 bgAs) to>
EEE . \E=E ==
1.3. Let (bg)gez

_ be some partition of unity and let the families of elements (Xi)ies,
(Y¢)i=:: be such that [X;2Y;J=41 (¢=E). Then

[gzw ngngE_ ngg] = 1.
Write X:= ez beXy and Y : = Yeezbele. Clearly (Y= X]2[X=X] A [X;>TY]=>
[X=X]A[X oYV IA[Y=Y]=0 AL A by=b for all g=E D
1.4. Let X be a nonempty element of v(B)

Proof.

Then
['@fm(X)#?fln (XHt]=1, .

where, as usual, Pun(4) is the set of finite subsets of A and Pun (XYM = (Y1 Y = Py, (X4) 11
Proof.

The inclusion Pun(X¥)" =Pux{X) inside v(B) g obvious (an ascent of a finite
set is finite). It remains to carry out the following derivation:

[Zon (X) © P (X )= [(Va= NA ) (Vi X) f(n) & Prn (X §)11] =
= né\N U:rf“éx}:l [/ (M & Prn (X 1)11] =»né\N f'-"—>3/2\l [f 1 (nM)e P (X §)M]=

né\Nf;n_{,\Xl [f(n) t &P (X i)”] =1.pD>

1.5. Let @ be a basis of the filter in the set X, where XeP(V®Y, i.e., X is a subset
Set
G ={FePXt)l: (6% [F>Gl]=1};
7 :={Gt:G=9)}.

and %”% are bases of the same filter ©! in X+ inside V(B).
Proof,

We verify that %’ is a basis of a filter in X+ inside v(B).
WF,F,ed t)@aFfe

We have
COFCFR ORI~ A (@Fe$ 4)FcFcr,
Fy,Fo=g’
If Fy, F,&&', then there exist G, G,=% such that [Fi=Gtl=1 and [F,>G,t]=1. Take an
Then we have (G:NG)1e % and '
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IFENE>(G NG =[F 2 G AlF, 2 Gi]=1.
Moreover, clearly %“t is a basis of a filter in X+ inside V(B). By construction, %' =>%7,
Moreover, 14 >%”4! and thus [$4>%"t]=1. Therefore, a fortiori [§ 12%71]=1, where as
usual & is the set of supersets of elements of % In addition,
(VE & § @RS DR = A i@k s 8 1) P2 Fl =1,

since for ;€9 _such that [Fi>Gt]=1, we have G1=%’t, Thus [?fcﬁ]=i by the transfer
principle in V B),

1.6. The filter @' inside V(B) constructed in 1.5 is called an ascent of %.

1.7. Let & be a basis of a filter in X+ for nonempty X in v(B), Moreover, let mix (&)
be the set of intermixings of nonempty families of elements of &, Then if % consists of

cyclic sets, then mix (%) is a basis of a filter in X¥ and mix(9)>%. Moreover, we have the
equation %'=mix(9)".

Proof. Let U, Vemix(9). This means that we have sets B and H, partitions of unity
(br)ies, {Co)nen and families (Us)ees, (Va)een of elements of & , for which b U=0blU: (E=E) and
eV=cVn (neH). Let Wenm<UsNVy be some element in the basis %, Set dyg o :=Db: A Cn
Clearly, (dx w) ¢ me=xa is a partition of unity. Consider W :=2Xgs nezxude, owWew » L.e., the
set of corresponding intermixings of elements W, n. Clearly,-d; U =Dbwc] =c,b:U: 2 di wWean
and analogously dg oV =>de wWen By the same token, WeUNV and Wemix(9).

Since ¥ consists of cyclic sets, then bearing in mind 1.2 and 1.3, it is clear that
mix (%)’ =mix(%"), which completes the proof.

1.8. For the filter & in X inside V(B), set FV:={F\ FeF{}. We call the filter F*
in X+ the descent of F. A basis of the filter ¥ in X+ is called extensional, if @t =9.
A basis of the filter g inX ¥ iscalled cy@z’l:@, if ? has a basis of Cyclic sets. (WQ note
that in [14], extensional filters were called cyclic).

1.9. The filter & is extensional if and only if & is cyclic and F =mix(F).
Proof. This follows from 1.2, 1.3, and 1.7.
1.10. For extensional filters ¥ and ¥ in X¥, we have &F 2% — [F'1 2% =1.

Proof. If F 5% then F' 2% and moreover [F'1DF|=1. Hence FUDFY, i.e., FiogGH,
It remains to -refer to 1.8.

1.11. The maximal elements in the set of extensional filters are called proultrafilters.
1.12. Maximal elements in the set of cyclic filters are proultrafilters.

Proof. If & is a proultrafilter and & is a cyclic filter majorizing it, then ¥ c=F <
mix(¥) . Hence #=&. Conversely, let & be a maximal cyclic filter. Then & =mix($£} and
thus & is a proultrafilter.

1.13. The proultrafilters in X¥ are precisely the descents of ultrafilters in X.
Proof. This is a direct corollary of 1.8.
1.14. We have the following statements:
(1) if f:X = Y inside v(B) ang [ is a filter in X] = 1, then
HFY =1 (F");
(2) for an extensional mapping f£:X+ ~ Y¢ and a filter & in X4, we have
HF) =1FN);
(3) the image of an extensional filter under an extensional mapping is extensional;
(4) the image of proultrafilter under an extensional mapping is a proultrafilter.
Proof. (1) Using the definition and property of the descent fV of the mapping £, we have

G=f(F) — (AU HF)V) GO Ul — (AF = FL G2 f(F)}
— (BF e F V)G fl(FY) « (AF =« F4) G fi (F)~ G = fl (FY).
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{2) Using the properties of the ascent f+, we have the estimates

[t (FN]=l@Uert (F)eoU]=[(aFeF )eoit (B =
=,V 1621t (F )=V [620F) 1] =

= V [GoUI=@Us{(F) 1)6¢>U]=[(TU=f#))6oU]=[6=j(F)]

velgy
(3) Applying (2) and (1) successively, we have
HIV = AT = T =HF).
This equation ensures the required statement.

(4) If §:X\-Y} 1is an extensional mapping and ¥ is a proultrafilter, they ' is an
ultrafilter in X inside v(BJ. Therefore, fI(F?') is an ultrafilter in Y inside v(B), By the
same token, fH{F'N)' is a proultrafilter. It remains to note that fAH{F W =HFMH=HF) in
view of (3).

2. Cyclic Monads, Essential and Proideal Points

2.0. In this section we give a test for a filter to be cyclic, and we imtroduce some
concepts connected with this which will be useful in future.

2.1. The monad R(F) of the filter &F 1is called cyclie, if it coincides with its cyclic
hull mix {(u(F)).

2.2. Nonstandard Criterion for a Filter to Be Cyclic. A standard filter is eyclic if
and only if its monad is cyclic.

Proof. Let & be a standard filter. Suppose that it is cyclic. Take an internal set B
and an internal partition of unity (b:)ie= and a family of points {(#:);e= of the monad W{F).
By the condition, & has a basis & of cyclic sets, and therefore p{F)}=0{G:6 =°%}, where
as usual °% is the set of standard elements of %. If x is the intermixing (z;)ies With prob-
abilities (bt)tez, then x lies in each standard G in 9 (since m:=6G for EeH). Moreover,
p(F )= mix (u(F)) 2 w(F). h

If it is known already that the monad W(F) is a cyclic external set, then taking an
infinitely small element FE&F [i.e., such that Feu(F} ], we see that Fo:=mix(Fyomix X
(W(F) )< u(F). Thus the internal set Fo is infinitely small and lies in . Thus (V/Ff=F) x
(AF, & F) (Fo=mix(F) ANF>F). By the Leibnitz rule, we deduce that & has a cyclic basis.

2.3. THEQREM. For a standard filter & in Xv, set

FH =T FeF}.
Then mix(u(F))=p(FM) and FH is the greatest cyclic filter which is cruder than .

Proof. Clearly, FN<=F and thus by 2.2 p{FH)Du(F) and p(FH)>mix(s{F)). Now let
zeu{F ). By the definition of a monad and the properties of intermixing, we have

(V'F = F) (T (be)rea) (B (22)1ex) (VESE)mr = F A bz =beze.
Clearly, by the same token we have

(Vst fin‘g"D - g-') (E{ (bg)geé} ([’I (-’ﬂg)gea)‘ (VFE Eg’a)-.
(VEEB) (i F A bz = biz).

Applying the principle of idealization in its strong form, we have
(8 (B)zez) (2 (22)1e2) (V'F = F) (VE=E) (23 S F A byz, = bez).

The latter means that there exist elements (Zi)tez in the monad p(F 7§, such that z= Yegbers,
ice., zemix(u{F)).  Finally, we obtain the equation p(FH)=mix(u(F)).

Now let ¥ be a cyclic filter, where % <& . Moreover, mix(p(%))=p{F)omiz{p(F))=
p(FH). Thus &= FH.

2.4, Let x be an internal point in Xy. We define a standard filter (x} in X4 by the
relation
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(z) =#HUcX}:ze U},
where * is the symbol of standardization. Thus (x) consists precisely of those standard sub-
sets of X+ which contain x. The element x is called an essential point of X+ {written x e
e(X)], if (x)t¥ is a proultrafilter in X+.

2.5, Each point x in a monad of a standard proultrafilter & 1is essential. Moreover,
we have the equations

F=x)V=@)N=Ul:zeU A UcX!}.

Proof. Since (see [2]) the monad p{#F), by the condition, affects the monad of the ultra-
filter (x), then (z)>%. Therefore (2)N>FH =% On the basis of 1.12, we deduce that
F =(x)tt. 1In view of 1.5, we have the equation (z)M*t=(z)t, Thus by 1.13 x is an essential
point. Finally, (z)V=FN =g =(z)}{.

2.6. The image of an essential point under an extensional mapping is an essential point
in the image. '

Proof. Let x be an essential point of X¢ and let f:X¢ > Y+ be an extensional mapping.
There exists a proultrafilter & such that z€p(¥). Clearly, f(z)sf/(W(F))=w(f(F)). In fact,
bearing in mind strong idealization

yep(f(F)) > (V' FeF)ysf(F) <
o (Ve ing, < ) (2) (VF < F)a = F Ay =f(z) <
— (Az)(V'FeF)zsF Ny={(z) - (Fz=p(F))y =f(z) ~
—yeiwF)).
It remains to refer to 1.14.

2.7. Let E be some standard set and let X be a standard element of V(B>‘ Consider the

() (8)

product XN inside v'P , where E is the standard name of E in V If x is an essential

point of XEA {» then for any standard e=E , the point x+ (e) is essential in X¥.

Proof. As z=XEM|, then[z:EN~X]=1, i.e., z}:E~X} and for any e<E we have
[zgd(e)=z(eN)]=1, by definition of the descent x¢.

Consider the mapping taking the element xEXEA\_L into the point w(eA) in X¢ for a fixed

standard e€E. Clerly, for a, xzerEA 4 we have

ey =zl =[(Ve @ EN oy (@) =2, ()] = A\ [ () =z (M <[ () = 2 (M),

e=E

i.e., the standard mapping introduced above is extensional. On the basis of 2.8, we conclude

that z(e’) is an essential point in X¥. It remains to recall that zl({e)=z(e")by definition
of descent.

2.8. Let & be a cyclic filter in X4 and let ‘u{F) :=p(F)Ne(X) be the set of essential
points of its monad. Then
WF)= p(FM).

Proof. Let z&°u(F). Thus x lies in the monad of some proultrafilter &. Henceu(F)N
w(F)#=0 and therefore §>F. Bearing in mind 1.10, HoFH and zew(@)cu(FM). 1f it is
now known that x €°u(F 1)), then there exists an ultrafilter § in X inside v(B) such that
z ep(9) and ¥oF*! Since F=FHcFHcH in view of 1.7, then w(F)>p(I%). Hence x
s u(F).

2.9. Let A be a subset of the descent X we are considering. The set (X\41){ 1is called
the procomplement or the cyclic complement of A and is denoted by A®. The point z=X} is
called proideal, if x lies in the procomplement of each finite standard subset of X+. We
denote the set of all proideal points of X+ by p(X).

2.10. If the set X+ has no proideal points, then X is a finite set inside V(B) .

Proof. By the idealization principle, there exists a finite standard set Y im X+ such
that T¢ = @¢. Thus [X\VY1=24]=14, i.e., X = ¥+.

2.11. 1If X is an infinite set inside V(B), then the proideal points of X¥ form a cyclic
monad. The ascent of the cyclic filter with monad p(X) is the filter of the complements of
the finite subsets of X inside ViB),
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Proof. The procomplements of the finite subsets of X¢ form a basis of a filter. In
fact, since (YUZ)N oYt UZH, then (YUZM > TYHUZt and [X\N(YUZ)t=X\(YIUZ1)]=1. Thus
(YUZ) < (X\YHIN(X\ZH)y =TY°NZ°. Hence, on the basis of 2.2 p(X) is a cyclic monad. Denote
by »% the filter with the monad p(X), i.e., the filter of procomplements of the finite sets
of X¥. Moreover, let «F (X) be the filter of the complements of the finite sets in X inside
v(B) (a cofinite filter in X). Bearing in mind 1.4, we have

WeadF (X)] =[HZes Pun(X)Y D X\Z] =
= V [¥YoX\44tl= V [yrof4]= Vv (vyozZt1=[ve,F'l

ASPy (X)) ASPy (B z€pF
Thus «¥ (X)=3F".

3. Transforms of Precompact and Compact Spaces

3.0. 1In this section, we apply cyclic monads to obtain the necessary descriptions of
descents — transformations of topological spaces into Boolean-valued models of set theories.
The idea of the following results is closely connected with the classical works of Robinson
[1] and Luxemburg [2]. Below, for simplicity we shall always consider an internal (in the
sense of V'B)) nonempty uniform space (X, %). The ordinary assumption of "standard entourage"
also acts in this section, i.e., in particular when we are using nonstandard methods, B, X,

24 and so on will be assumed to be standard sets. Since this is understcod, we shall write
x ~ vy instead of (z, y)= p(U").

3.1. The uniform space (X}, %) is called precompact, if (X, @) is compact inside v(B),
An analogous meaning is attached to the term "procomplete boundedness,” and so on. We shall
sometimes use the terminology "cyclic compactness.”

3.2. Nonstandard Criteria for Precompactness. For a standard space X, the following
statements are equivalent:

(1) X+ 1s a procompact space;
(2) each essential point of X{ is nearly-standard;
(3) each essential point of X+ is mnearly-standard.

Proof. (1) + (2). Let x be an essential point of X¢. Then x lies in the monad of the
proultrafilter (x)*™¥. Thus inside V{B) it is true that there exists an element y = X such
that (%)% converges to y. In view of the maximum principle and Leibnitz' rule (in the in-
ternal world), we may conclude that there exists a standard element Yy =X} such that {z)V>
U (y). Hence it follows that pw((z)M)=2*(y) , and thus x = y. In other words, x is nearly
standard point.

(2) + (3) is obvious.

{(3) -+ (1). We need to verify that an ultrafilter in X inside v(B) nas a point of tan-
gency. Without loss of generality, we may assume that & is not a principal ultrafilter.
Therefore & is finer than the filter of complements of finite sets inside V{B), Referring
to 2.6, we see that W(FYHY<p(X). If z=u(F*'), then on the basis of 2.8 F =(z)! , and more-
over x is an essential point. By the condition, such a point is nearly standard, i.e., there
exists standard y=XV, such that ' (y) Np(F¥)* 2. By the same token, y is a tangency point
of & inside V(B), ‘

3.3. From Theorem 3.2, it is easy to see the difference between a Boolean-valued cri-
terion for procompactness, and the usual one: "a compact space is a space with nearly standard
points." The existence of a colossal number of procompact and noncompact spaces ensures a
variety of examples of nonstandard and nonideal points. We also note here that the simul-~
taneous application of 3.2 and 2.7 enables us to give a nonstandard proof for the natural
analog of Tikhonov's theorem for a product of procompact spaces — "the descent of Tikhonov's
theorem into V(B)

3.4. Nonstandard Criterion for Proprecompactness. A standard space is the descent of a
totally bounded uniform space, if and only if each essential point of it is pre-nearly stan-
dard.

Proof. ~ Let x be an essential point of X¥. Then (x)? is an ultrafilter ingide V(B),
and thus (x)* is a Cauchy filter in X, in view of the total boundedness of X in V(BJ). The
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descent of a Cauchy filter is a Cauchy filter in a descent., Thus x 1s an element of the
monad of a Cauchy filter, i.e., X is a pre-nearly standard.

< Take an ultrafilter & in X inside v We need to show that & is a Cauchy filter
in v(B), Take a point x in the monad of the descent #'. Then x is essential, and therefore
pre-nearly standard. Thus the microhalo of x, i.e., the set %*(z), is a monad of a Cauchy
filter. By the same token, &' is a Cauchy filter.

4. Ordered Convergence

4.0. .In this section, we apply cyclic monads to the description of o-convergence in a
K-space Y. To save space, we shall only consider filters containing ordered intervals (or,
equivalently, filters with bounded monads). In addition, in accordance with our stated aims
we shall assume that the K-space Y is extended. On the basis of Gordon's theorem [15], the
space Y can be canonically realized as the descent &t of the element %, which is the field
of real numbers R in the Boolean—valued universe V(B), constructed over the basis B of the
space Y. We shall use the symbol E to denote the ordered filter of unity in Y, i.e., E:={ece
Y,:[e=0]=0}). The notation x ~ vy expresses the infinite closeness of the elements x and
y & Y, generated by the descent of the ordinary topology of # in V(B), ie., zmy — (Vg
EVlz—yl <e. Here, and in future, we shall assume that ¢ < b for ¢, be Y if [a < b] = 1,
i.e.,a>b<>a—b=E . Thus we have a deviation from the conventions of the theory of ordered
vector spaces. Clearly, this is because of the need to observe the principles of introducing
notation for descents and ascents.

4.1. Let =Y be the nearly standard part of Y, i.e., the microhalo of the external set
of standard elements of Y. For y=~Y , we denote by the symbol °y [or st(y)] the standard
part of y, i.e., the natural standard element which is infinitely close to y.

4.2. We have the following propositions:
(1) for z, y&~Y and a<=~R , we have
(zty)="z+"°y; *(zVy)="zV°y;
(ax)="c’z; z<y "z <"y,
(2) for z€’Y and y=~Y, we have
p<z > (Ve >0y <zte > (Ve>0)y<z-+te;
(3) an essential point of Y has a standard part if and only if it lies in some standard
interval.

Proof. (1) Operations in Y are descents of operations in %, where they are obviously
continuous.

(2) In view of the above, we have
Y<z—>(V%e>0)ly—"yl<eAy<z—>(Ve>0y<z+e—
>(V'e>0)y<zt+e—>(Vie>0)y<’(z+e)> (Ve >0)°y <zte—"y<z
(3) If y is nearly standard, then in view of (2) it is obvious that y&[y—1A g4 1]

Conversely, if the essential point y lies in the standard interval [a, b], then in view of
the procompactness of [a, b]l, y is nearly standard by 3.2.

4,3, For each filter ¥ we have the relations

inf supF = inf supF = inf supF = inf supF;
Feg regti Feg ! Feg1l
sup infF =" sup infF = sup infF = sup infF.
Feg Fegl Feg! Feg
Proof. The required equations are obvious. In fact (see [16, 17]) we have
inf supF =inf{supF:FeF'| =inf{supF { :Fe F} 4,
regt
since we have the following relations for estimates of truth:

[zelswpF:FPe Y| =[(FFc F")z=supF]= V [z=supF }]=
. ' reg

=[@ys{swF } :FeF}trz=yl=z={supF } :F=F} {].
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It remains to recall that supF=supFt=supFH,. and apply 2.3.

4.4. THEQREM. For a standard filter & in Y and standard z € ¥, we have the following
propositions:
() inf sop F <o (VY h(F 4)7 y <z o> (Vy &t p (o 1 )y <z
@) supifF>ie (Ve p(F W) y2 (Ve @ 4 y>s
i

() inf sup F>2 o (@Y & (1)) y >z~ @y =0 (4 v >3
(@) sup inf F <z (Ay S (T 4y <z @y e (& )y <

(5) 3f°->z++(Vye”u(gfﬂ))yzZQ((Vyéu(g’“))y"“”z'

Here u(g';&) wp(@'ﬂ)ﬂ*’Y and as usual, ‘U(FH) is the set of essential points of the monad
p(FH),. i.e., u(@FH)= p,(STN)ﬂ (R).

Proof. It is sufficient to verify (1) and (3).

(1) Suppose that infreg sup F <z, and bearing in mind the inclusion *p{FH)c p(Ft),
consider y& u(FH). If we take an arbitrary vy ep(F), then for any standard bounded FEF
we have y'<supF. On the basis of 2.3, for y'=p(¥F1) we also have y'<supP. Thus for all
standard F in & we have °y<<supF. By Leibnitz' rule, this relation holds for any FeZ.
Thus °y < infpeg sup F < z.

Suppose that it is now known that for each yeep(#F1l) we have °y < z (the latter, of
course, is satisfied if (Vyeu(#M))°y<z). Consider an arbitrary standard proultrafilter,
containing &M, Choose some infinitely small element U of this proultrafilter % By the
condition, (VueU)’u<z since in view of 2.8 p(9) = u(FM")=n(FH). on the basis of 4. 3,
for each standard e€E we have (Vue U)u<z+e  In other words, (Ve =E) (SUE?) (VueU)
“u<z+e. Bearing in mind the standardness of z and the other parameters, using Leibnitz'
rule we obtain

(Ve EY(qU e $)supU<z + e> /\ (aU e g“‘)supu<z+s}_1_*

—[(Ve>0)(AU = §") sup U<z +e]=1-» [(Vs>0) inf supU<z+s}=i—>
, veg? ,

- inf supU<z =1 inf supU < z.
veg! Teg

Once again applying Leibnitz' rule, we see that for any proultrafilter %, containing
F', we have infyegsupU<{z. In the field of real numbers R, for the filter ¥ and the number
t, it is clear that

inf sup A<t (V% D &) (% is an ultrafilter — inf squgt}
Asyl \ ey .

(the simple nonstandard proof is easily obtained, for example from [18]}. Thus by the trans-
fer principle of Boolean analysis
[ inf supF ] A [ inf squ\<\z}=i.

reg! gogt Gegt
& is a pro~-ultrafilter

It remains to refer to 4.3.

(3) First, in the wider set u(# 1), let there exist an element y such that °y > z. For
any standard F &% we have y<F{l. Thus for e=°E we have y > z — ¢ and son-—-supFH>z-—e.
By Leibnitz' rule we see that (V'FeF) (Ve >0)supF =z i.e.,(VFeF)supF>z and infreg
supF 2 z.

In order to prove the relations which we have not yet verified, we first mote that in

view of the properties of the upper limit in R, the transfer principle of Boolean—valued anal-
ysis and Proposition 4.3, we have

{(3?) (% isanuttrafilerin #A G 2F') A inf sup G>z] —1,
=g

On the basis of the maximum principle, there exists a proultrafilter ¢ such that ¥>FH
and infgegy supGZ=22. Using the transfer principle and idealization, bearing in mind 4.3, we

87



then obtain successively

(V'GeG)supG=z «— (V'GeG)[sup Gt =z] =1
— (VG e@)[(Ve>0) (HgeGt)g>z—¢e]=1 —~(V'GeF) (Ve >0)(dgsGiV)g>z—8 <
> (VG eg) (V'e>0)(Ige Gtl)g>z—¢ — (V' i2g, c @) (V' "E, = E) (4g)
(VGeZ,) (VeeE,) (g2 Gt Ag>z—e) < (Ig) (VG F) (Ve >0) (g= G Ag>2—8)
—(Fg=p(FN) =z (Fg=n(d))’g=>z

It remains to refer to 2.8 and to note that u(?)ceu(gr“)=#p(3rf¢ycfu(97fg_

N

10.
11.

14.

15.

16.

17.

18.
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