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The present article is related with the highly peculiar geometry of convex sets in 
a space of operators. As a rule, the cones of positive operators are devoid of extremal 
rays (and, therefore, of caps), and, in general, the subdifferentials are not compact in 
any locally convex topology, but, at the same time, are regenerated by eigensubsets of their 
Choquet boundaries [1-3]. The nature of the noted effects, restricting the possibility 
of direct application of the standard methods of the convexity theory, is revealed in 
Boolean-valued analysis. It turns out that the existing obstacles are apparent in well- 
known sense: They can be overcome by a suitable choice of the Boolean-valued model, in 
which we should carry out the investigation. Detailing of this position for problems of 
study of the inner structure of subdifferentials - of the strictly operator-convex point- 
wise o-closed and weakly order-bounded sets - has been carried out in [4] (see also [5]). 
The aim of the present article is to weaken the condition for boundedness in the spirit of 
the cap theory [6, 7]. The speciality of the approach, to be developed, consists in the 
introduction of operator caps, which are not so in the classical sense in nontrivial situa- 
tions (although coincide with them in the scalar case). We give criteria for subdifferen- 
tials to be caps and faces of operator sets. In this connection, a significant effect is 
exposed. Faces (and extreme points), formed by subdifferentials, are "extensional," but 
the caps are not so. More precisely, not the ordinary caps, but the operator caps, i.e., 
the subdifferentials that represent descents - representations of scalar caps in a suitable 
model of set theory, are suited for the study of operator sets. 

i. Well-Capped Sets 

i.i. Let X be a real vector space, Y be an extended K-space, and U be an operator-con- 
vex pointwise o-closed set in the space~(X, Y) of linear operators from X into Y~ (See 
[8] for the terminology.) 

1.2. A subset C of U is called an operator cap of U or, more descriptively, a descended 
c_~ of U, if C is a subdifferential, i.e., a weakly order-bounded pointwise o-closed opera- 
tor-convex set, and, moreover, for arbitrary x, y ~ U and multipliers ~, ~ ~ [0, iy] in the 
space Y such that ~ + ~ = iy and ax + BY ~C there exists an element b of the basis B: = 
B(Y) of the space Y, for which bx ~ bC and b'y ~ b'C (here, as usual, b~: = iy -- b is the 
complementary projection of b). 

1.3. For a set W~c~(X, Y) we set W~:={At:A~W}~, where, as always, ~ is the 
symbol of lift in a separable Boolean-valued universe V(L), constructed over B [5]. Th-----us 
in particular, At is a mapping of the standard name X A of the space X into the lift Y+ of 
the considered space Y, which we, according to the Gordon theorem, canonically identify 
with the descent of the element ~ in V(B), representing the field of real numbers. Let 
us observe that Y~ = ~ and 45 = Y. 

1.4. P__roposition. A subdifferential C is an operator cap of the set U if and only 
if C+ is a cap of the set U+ in v(B). 

Using the rule for the realization of descents and lifts, we carry out the following 
truth estimates: 

[c+ is a cap of u~] = [(w>~o)(v~o)(w~u~)(~y~u ~) 

' a ~ o , ~ o  x , y ~ U  , 
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If C is a descended cap, then for multipliers ~, ~ ~ [0, Iy] such that ~ + ~ = iy and points 

x, y ~ U such that ~x + Sy ~ C there exists a projection b ~ B, for which x ~bC and y ~ b'C. 

In other words, x = bx' and y = b'y' for suitable x' and y' in C. It is clear that 

Ix ~ ~c § ~ Ix + ~(bC) § A [(bC)~ =C~] = [bC§ = C~] ~ b; 

[y + ~C +] ~ [y + ~-(b'C) +] A [(b'C) + = C +] = [b'C + = C +] > b' 

Therefore, by virtue of the above estimate, [C + is a cap of U +] = Iy. 

If, in its turn, it is known that C + is a cap of U + in V(B), then for necessary choice 

of the parameters ~, ~, x, and y, on the basis of the above computations, we have [z~C!] V ~ 

IF~ ~C~]=~. Therefore, [~C ~] ~ b and [~C ~] > b' for suitable b E B. Hence, by virtue 

of the maximum principle, we deduce the existence of x' and y' in C++ such that [x~ = x'] ~ b 

and [y+ = y'] >_ b' , i.e., bx+ = bx' and b'y+ = b'y' . The last equations precisely mean that 

x ~ bC and y ~ b'c. > 

1.5. A set is said to be well-capped if it can be expressed as a union of its descended 
caps. The set {x + ~(y - x): ~ ~ Y+} in the space~(X, Y) is called the operator ray from 

x to y (or a Y-ray). 

1.6. Theorem. The following statements are valid: 

(I) Each well-capped set is the pointwise o-closure of the strictly operator-convex 

hull of the set of its extreme points and the extremal operator rays. 

(2) The set U is well-capped if and only if the cone H U, formed by the pointwise o-limits 

of the extensional nets of elements of the set {(~T, ~)~(X, Y) • Y: ~ > O, T ~ U}, is 

well-capped. 

(i) Let U be the set under consideration. By virtue of the assumptions made by us, 

U + is a convex subset of the space~(X, Y)+ and coincides, as is easily seen, with the space 
X A# of the linear forms over X A in v(B). In addition, U + is closed in the multinorm 
{T ~ ITxl: x ~X A} in v(B). Using the well-known criteria for subdifferentials [4, 5] and 

Proposition 1.4, we see that U + is well-capped in v(B). Therefore, by the appropriate 
Choquet theorem [6], U + is the convex closure of the set of its extreme points and extremal 

rays. Using descents, we arrive at the desired statement. 

(2) It is clear that the lift {(~T, ~): ~ > O, T ~ U} + is the conical hull of U +.• 1 A 
in v(B). Hence it is obvious that the set H U, in which we are interested, is such that H~ 

is the Hormander transform of the set U + in v(B). Uing Proposition 1.4 and a well-known 

scalar result of [7], we arrive at the desired conclusion. > 

2. Criteria for Caps 

2.1. In connection with Theorem 1.6, it is sufficient to formulate the explicit 

criteria for caps for the more convenient case of cones of positive operators. 

2.2. Preposition. A closed set C is a cap of the cone of positive elements in a 

topological ordered vector space if and only if for all c I ~ 0 and c 2 ~ 0 such that c I + 

c 2 ~ C there exist ~l ~ 0 and ~2 ~ 0 such that ~i + ~2 = i, c I ~ ~iC, c 2 ~ ~2C. 

§ At first, let it be known that C is a cap, c = c~ + c 2, ci ~ O, c 2 ~ O, and c ~ C. 
Let us suppose that Ic I ~ C and Ic 2 ~ C for any I > i. Then by the definition of a cap, 
t: = I-I(Ici) + ( 1 - l-1)I/(l - i)c2 ~ C. At the same time, t = c, which contradicts our 

supposition. Thus, there exists a i > 1 such that one of the elements ic I and Ic 2 belongs 

to C. For definiteness, we assume that it is ic~. Let us set 10 := sup{A > O: Ic I ~ C}. 
Then I0 > i and Ic I ~ C for any I > I0. Since l-i(Icl) + (i - l-1)I/(l - l)c 2 ~ C, it fol- 
lows that I/(I - l)c~C provided I > 10. Since C is closed, we conclude that I0/(I 0 - 

l)c 2 ~ C. Hence c 2 ~ (I0 - i)/I0 C and c I ~ 1/10C. 

§ Now let ~icl + ~2c2 ~ C and none of c I and c 2 belong to C for ~i > O, ~2 > O, ~i + 
a 2 = 1 and c I, c 2 ~ O. If the stated condition is fulfilled, then ~icI = y1dl and ~2c2 = 

Y2d2 for certain ~ I ~ O, 72 ~ O, 71 + 72 = 1 and d I, d 2 ~ C. Since c I = 71/~idi and c2 = 
~=/~=d2, it follows that ~i/~ > 1 and 72/~ > i. At the same time, the inequality 
~/~ > 1 ensures that ~= = 1 - 7~ < 1 - ~ = ~=. We have arrived at a contradiction, i.e., 

at least one of the points cl and c= belongs to C. Finally, we conclude that C is a cap. > 
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2.3. Proposition. Let p be a monotone positive sublinear functional on an ordered 
vector space (X, X+). The subdifferential 3p is a cap of the cone X~ of positive forms on 
X if and only if each of the following statements is valid: 

(I) inf {p(z): z > x~, z ~ x~} = p(x~) V p(x~) for arbitrary x~, x 2 ~ X. 

(2) The conical segment {p < i} is filtered with respect to growth. 

e>0 

At first, let it be known that 8p is a cap in X~. From the general rules of the 
subdifferential calculus, we deduce that 

It remains to take Proposition 2.2 into account and deduce the implications (I) + (2) 
and (i) + (3). 

Now, to complete the proof it is sufficient to verify the implications (2) + (i) and 
(3 )  ~ ( I ) .  

Thus ,  l e t  t := p ( x l )  V p ( x 2 )  u n d e r  t h e  c o n d i t i o n s  ( 2 ) ~  Then ( t  + g ) - ~ x l  ~ {p < 1} and 
( t  + s ) - l x 2  ~ {p <1} f o r  e a c h  s > 0.  By t h e  c o n d i t i o n s ,  z ~ ( t  + E ) - l X l ,  Z ~ ( t  + S ) - l X  2 
and p ( z )  < 1 f o r  a c e r t a i n  z ~ X .  L e t  us  s e t  z 0 := ( t  + s ) z .  I t  i s  o b v i o u s  t h a t  p ( z 0 )  = 
( t  + ~ ) p ( z )  < t + g.  Hence we d e d u c e  t h a t  

Since r is arbitrary, we conclude that (I) follows from (2)~ The remaining implica- 
tion (3) § (i) is verified in the same simple manner. > 

2.4. Corollary. The following statements are equivalent: 

(i) p is the upper envelope of support functions of caps; 

(2) p is the upper envelope of discrete functionals; 

(3) p is the Minkowski functional of an approximately filtered conical segment, i.eo, 
of an intersection of the filtered (with respect to growth) sets. 

(i) + (2) is ensured by the fact that the extreme points of a cap of the cone of 
the positive forms are discrete functionals. 

(2) ~ (3), if p(x) = sup{p~(x): ~ ~ E} for x ~ X, where p~(x) = T~(x)+ and T~ is 
a suitable discrete functional for each ~. It is clear that p is the Minkowski functional 
of the intersection S:-- ~ {pr and, therefore, S is approximately directed by virtue 

of Proposition 2.3. 

(3) ~ (i) follows from the general properties of the Minkowski functional and 2.3~ > 

2.5. Now let X be an ordered vector space and~+(X, Y) be the cone of the positive 
linear operators that act from X into Y. 

2.6. Theorem. The following statements are equivalent for each increasing positive 
sub!inear operator P: X § Y: 

(i) The subdifferential 8P is a descended cap of the cone~+(X, Y). 

(2) For all x~, x 2 ~ X 

inf{Pz: z ~ x,, z ~ x~} = Px~ ~ P x ~ .  

(3 )  I f  A~, A 2 ~ - ~ + ( X ,  Y) a r e  such  t h a t  A~ + A~ ~ 8P, t h e n  t h e r e  e x i s t  m u l t i p l i e r s  
~x ,  ~2 ~ [0 ,  1 y ] ,  f o r  wh ich  ~ + a 2 = 1y and ,  m o r e o v e r ,  A~ ~ ~ S P  and A 2 ~ a~SP.  

(4 )  F o r  a r b i t r a r y  x~,  x 2 ~ X such  t h a t  Pxz 5 1y and Px :  5 1y and a r b i t r a r y  r > 0 t h e r e  
exist a partition of unity (b$)~ ~ E and a family (z~)~ ~ E of elements of X that satisfy 
the relations 

z ~ x ~ ,  z ~ x ~ ,  b ~ P z r  ( ~ E ) ~  
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(5) The lift 8P r is a cap of the cone of the positive forms on the standard name X A of 
the space X in the Boolean-valued universe V(B), constructed over the basis B of the con- 
sidered K-space Y. 

(6) The set {P + < I} is filtered with respect to growth in V(B). 

By virtue of 1.6, we have (i) ~-+ (5) since 8Pr = 8P r in v(B). The equivalences 
(i) +-+ (2) +-+ (6) are ensured by 2.3 and the transfer principle of the Boolean-valued analy- 
sis and the equivalence (i) ~-+ (4) is ensured by Proposition 2.3 since 

[SP+ is a cap] = 

= [ (w~,  ~ ~ x ~) ( w  > o) (az ~ x ~) ~ > . 1  A ~ > *~ A ~ t ~ -<< t ~ + ~ 1 =  

~l,X2~ 

It remains to use the estimation rule and the Gordon theorem [5]. Finally, the equivalence 
(2) +-+ (3) is ensured, e.g., by the rules of subdifferentiation. > 

2.6. Corollar Z. The extreme points of an operator cap of the cone of positive operators 
are discrete operators. 

2.7. Corollar X. An increasing positive sublinear operator P is the pointwise supremum 
of a set of discrete operators if and only if the lift Pr is the Minkowski functional of 
an approximately filtered conical segment in a Boolean-valued universe. 

3. Criteria for Faces 

3.1. We pass to the characteristics of the subdifferentials that are faces. In this 
section, X and Y may be assumed to be modules over a single lattice-ordered ring A with 
identity [3, 9]. The sublinear operator P is assumed to be A+-homogeneous. We begin with 
the analysis of a generalized notion of cap. To this end, we assume X to be an ordered 
module and P to be an increasing positive operator. Further, let Z be also an ordered A- 
module that admits convex analysis and T be a positive module homomorphism from Y into Z. 

3.2. The following statements are equivalent: 

(I) For all x12__x2 ~ X 

inf{TPz: z > x z, Z ~ x2} = T(Pxl V Px2). 

(2) For aribtrary AI,~+(X, Z) such that A~ + A 2 ~ 8(TP)~ there exist homomorph- 

isms Tkand T a in~+(Y~ Z) such that 

T~+T~=T, A~O(T~P),  A ~ O ( ~ P ) .  

Let 

Q~ (x. ,z~):= in[ {TPz: z ~  ~, x~}; Q2 (x~, x2):= T (Px~ V Px2). 

I t  i s  c l e a r  t h a t  Q~ and Q2 are  s u b l i n e a r  o p e r a t o r s  and Q~ ~ Q2. Thus, the  e q u a l i t y  in (1) ,  
in which we are interested, can be rewritten as the inclusion 8Q I c ~Q2- It remains to ob- 
serve that for the homomorphism (AI, A2):(xl, x2) + AlXl + A2x2, where A i~+(X, Z) for 
i := i, 2, 

(A.A~)~Q,+-+A,>O, A~>0,, A~+A2~O(TP); 

A,~O(T~P), A2~O(TaP). 

Indeed,  the  l a s t  equ iva l ences  a re  v e r i f i e d  by d i r e c t  computat ion [8].  > 

3 .3 .  The ope ra to r  P (and i t s  s u b d i f f e r e n t i a l  8P), s a t i s f y i n g  the  e q u i v a l e n t  c o n d i t i o n s ,  
fo rmula ted  in 3 .2 ,  i s  c a l l e d  a T-cap of  the  semimodule~V+(X, Y). 

3.4. The following statements are valid: 

(i) Each T-cap is an S-cap for S ~ [0~ T]. 

(2) Let P be a T-cap and TA ~ Ch(TP) for A ~ 8P (i.e.~ A is a T-extreme point of 8P). 

Then [0~ TA] = [0~ T]A~ 
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(i) For the sake of symmetry, let us set T' "= S and T" := T - S'. We have 

0 ~ isff {T/Pz: z ~ 2"~, x~} .... T ~ (Px,  V k'x~) + i~[ {T" Pz: z.>~ x~, x~} -- , 

- T "  (Px~ V Px~) • in[ { (T '  + T"  )Pz: z ~ x~, x,} - T (Pxi \!  Px2) = O. 

(2) Let 0 < S <_ TA. On the basis of 3.2, there exist T i > 0 and T 2 _> 0 such that 
T I + T 2 = T, S ~ 8(TIP), and TA - S ~ 8(T2P). Thus, 2TA = (S + T2A) + ((TA - S) + T~A)~ 
i.e., T3A = S and S ~ [0, T]A, since S + T2A ~ 8(TP) and (TA - S) + TIA ~ 3(TP). 

3.5. Theorem. The following statements are equivalent: 

(I) The subdifferential 8(TQ) is a face of the subdifferential 8(TP). 

(2) For arbitrary homomorphisms TI, T2~(X , Y) and A!~ A2~(X, Z) such that 

O, O, T ~ + I ' ~ = T ;  

At~O~T~P)~  A ~ O ( T ~ P ) ,  A , + A 2 ~ O ( T Q ) ,  

the relations A l ~ ~(TiQ) and h 2 ~ 8(T2Q) are valid. 

(3) The operator (x, y) § y + Q(-x), acting from the module X • Y with the semimodule 
epiP := {(x, y) ~ X • Y: y _> Px} into the module Y, is a T-cap. 

(4) For all x l, x 2 ~ X 

!nf ~" ((p(x~ - z) + Qz - QxA V (l~ (x~ - ~) + Qz - Qx.~)) = O. 
z ~ X  

4.(I) ~ (2). Let the homomorphisms TI, T2, A I and A 2 be selected according to the 
conditions (2). Let us consider an element S of the subdifferential SQ. The following re- 
lations are obviously valid: 

A,  + T-,,S ~ c)(TP),  Ao: + T~S ~ O(TP); 

(A,  + T~S)+ (A~-4- T,S)=  (A, + i ~ , ) +  T S ~  2oQ. 

Therefore, on the basis of (I), the homomorphism h i + T2S belongs to 8(TQ), i.e., A1x + 
T2Sx < TQx for all x ~ X. Hence 

A ~ x +  T:,Qx stq~{A~x + T.,Sx: S~-OQ} ~ TQx 

for each x ~ X. Consequently, A l ~ 3(TxQ). It is analogously established that A~ ~ 3(T2Q) 
(since A 2 + T2S -~ 8(TQ) for each S ~ 8Q). 

(2) -+ (3). Let us set ~(x, y) := y + Q(-x) and take the homomorphisms ~l, d2 ~+(X • 
Y, Z) such that's +~2 ~ 8(T:~). We set TiY :=~i(0, y) for i := i, 2 and y ~ Y. It is 
clear that T~ _> 0 and Tz _> 0, since 0 • Y+ ~ epiP. Moreover, (T~ + T=)y =~i(0, y) + 
.~r Y) 5 T(y + Q(0)) = Ty for all y ~ Y. Therefore, TI + T2 = To It remains to verify 
that.~a ~ 8(T~) and ~2 ~ 8(T2~)" Let us set Aix := ~i(-x, 0) for x ~ X. Then we get 

�9 _~(x ,  P x ) -  T~Px+._~(x ,  0 ) =  T~Px =- 3r O)= TjZ~: - - .A ,v  >10~ 

T h e r e f o r e ,  A i ~ 3 ( T I P )  f o r  i := 1, 2. M o r e o v e r ,  (A1 + A2)x = ( ' . ~  + ~ 2 ) ( 0 ,  - x )  < TS~(-x, O) = 
TQx. By virtue of (2), we conclude that A i ~ ~(TiQ). Thus, 

dC,(x, y)  = Td] - A~x <~ T~y + T ~ Q ( - x )  ~ ~l ~ ( x ,  y) 

for all (x, y)~ X x y. By the same token, .~ is a T-cap. 

(3) + (4). Considering the definition of a T-cap, for arbitrary xl, x 2 ~- X and yl, 
Y2 ~ Y we get 

T ((Y~ + Q (- -  xa)) V (Y~ + Q ( -  x..))) = 

= inf  {T (V + q ( - -  x)): v - -  w ~> P (x - zO,  y - -  y~ ~ P (x - -  x2)}. 
X,y 

Hence, since T is positive, we get 

((Y~ + Qx~)V (~= + Qx2)) = 

= in[ r((yx + P(Z + x~) -4- Q(--  z))V (Y2 + P(z + x~) + Q(-= z))) - -  
z ~ X  

= inr r ((v~ + P ( ~  - z) + Qz) V ( ~  + P (~, - z) + Qz)). 
z ~:'X 

S e t t i n g  yx := Qx 2 and Y2 := Q x I ,  we a r r i v e  a t  ( 4 ) .  
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(4) + (I). Let A i and A 2 be elements of 8(TP) such that A I + A 2 ~ 28(TQ). For xi, 
x z ~ X and arbitrary z ~ X we have 

A~x, +A~x2 = A, (x~ - z ) +  _d ~ ( x . . -  z ) +  (A ~ + .4~)z ~ 

<~ TP(x~ -. z)+ TP(x~ -- z)+ TQz~- TQx~ + TQz - TQx2 + TQx~ + TQx~. 

T a k i n g  i n f i m u m  w i t h  r e s p e c t  t o  z ,  we d e d u c e  t h a t  

.4/ ' ,  + A2x 2 ~.~ inf (T (P (x~--z) + Qz-Qx~)-!- T (P (:q--z) + Qz -- Qz'~)) + TQx, + TQx 2 ~. 
z ~ X  

2 inf T ((P (x~ --  z) ~- Qz --  Qx~) V (P (x~ - z)+ Qz - QxJ) + TQx~ + TQx 2. 
z ~ X  

T a k i n g  ( 4 )  i n t o  a c c o u n t ,  we c o n c l u d e  t h a t  A 1 ~ 8(TQ) and  A 2 ~ 8 (TQ) .  > 

3.6. Remark. If Z is a K-space, then the equivalent statements of Theorem 5 are 
equivalent to the statement that the lift 8(TQ) + is a face of the lift 8(TP) + in the Boolean- 
valued universe constructed over the basis Z. 

3.7. Remark. The part (i) +-+ (4) of Theorem 3.5 is a generalization of the well-known 
Buck-Phelps-Jolley criterion for extreme points [i0]. As an application of it, we give a 
criterion for a face in the language of representing measures. 

3.8. Let .7~be a weakly order-bounded set in~?(X, Y) and Px := sup{Ax: Ae-,~}. Further, 
let Q: X + Y be a sublinear operator such that Q < P. As usual, let Z~(~, Y) denote the 
set of the bounded Y-valued functions on ,~, equipped with the natural structure of an 
ordered module. Let us consider the canonical sublinear operator 

~ :  I ~ ( ~ r  e . t / :  = sup/(, .cg) ( / : ~  l ~ ( . ~ , Y ) )  

and the mappings connected with it 

<~r -~c.Cf(X,l~(~:r <~>x: A -~  Ax ( A ~ 5 r  

h ~ :  Y -~ Y ~ ,  hdcy: A- , -  !1 (A ~ ~ ) .  

We know that the following representation is valid for each increasing sublinear opera- 

tor R: Y + Z: 

0 (m~4)  = {~) ~ ~_, (l~ ( J ,  Z), Z); I~A~ ~ OR}. 

Let us also observe that P = ~<~> by definition. 

3.9. Theorem. The set 8(TQ) is a face of 8(TP) is and only if for each ~f~?+(s 

Y), Z) such that ~A~r = T and ~<~)~8(TQ), 

( (Ag~(-  <J> ~) A ( A ~ , Q x ,  - <d> ~)) ~ 0 
for all xl, x 2 ~ X, or, equivalently, 

(<~> x-- A~Qx)+ = 0 

for each x ~-X. 

Using Theorem 3.5, we deduce the following criterion for a face: 

0 =inf T ((e~<d.> (x~ -- z) + Qz - Qx~) V (%r (x2 -.z) + Qz - Qxz))= 
z~X 

= m ~  ~ ((~0~ - <~> z + <~> ~ - 6~Q~ 0 V 
z:.--_ X 

V (~Q~- <~> ~ + <~> <~ - ~Qx~)) = i,~ ~ ((~Q~ - <a> ~)+ (<~> x~ -~,.Q~) V (<*> ~ - ~Qz~)). 
z~fX 

If ~ _> 0, ~Ai= T and ~<s~>~8(TQ) , then 

z~A'" 

.... ~ ((<~> ~ - ~9~0 V (<~> ~ - ~gx~)). 

By the same token, the necessity of the inequalities, to be proved, is established. To 
verify their sufficiency, we use the rules of change of variables in the Young transforma- 
tions [8]. By the theorem on vector minimax, there exists an operator ~ in 8(Tg~) such that 
the infimum z 0 (which is a positive element of Z), in which we are interested, can be ex- 

pressed in the form 
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z ~ X  \ ~ . - 

Hence the set g := {~&.~Qz-~ <d>z: z~X} is bounded below and, therefore, by virtue of the 
positive homogeneity of Q and <~> we have infU = 0. The last equation means that TQz - 
3<,~>z~0 for z ~ X, i.e., ~<~$>~0(TQ) �9 Therefore, by the condition, z 0 5 0, which ensures 
the equality zo = 0. 

The inequalities, being investigated, for x I := x and x 2 := 0 lead to the desired 
equation. In its turn, the last equation is equivalent to the implication 

for each x ~ X. It remains to observe that 

A + 

for a suitable choice of positive ~z and ~2 that constitute ~, i.e., $i + ~2 = ~- This ob- 
servation completes the proof. > 

3.9. In conclusion, we indicate that certain statements of this article were announced 
in [ii, 12]. Let us observe that the formulations of the statements 1.6(2), 2.7, and 3.9 
are given in [Ii] with errors. 
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