
where i I and i 2 are embedding operators. Then 

M m-+ A m - +  Mm,. 

This means that j**(A$~)~M~,. This proves the theorem. 

Remark. It is necessary to emphasize that the spaces, used in the arguments, must be 
considered as the spaces isometric to the conjugate ones or as their images in the second 
adjoint space under the canonical mapping. 

The function $=(t)= II• ~ is called the fundamental function of the sgace E. We know 
that the fundamental function of an arbitrary symmetric space is increasing and is concave, 
to within two, on [0, I]. Conversely, with respect to an arbitrary increasing concave func- 
tion ~ we can construct a symmetric space E such that ~E=~ [2]. 

THEOREM 3. Let ~(t) be an increasing concave function on [0, i]. Then there exists a 
reflexive symmetric space with the fundamental function 9, if and only if 

I i m  ~ (t) = 0,: ( 2 )  
�9 ~ 0  

t 
l i m  = O. t~o ~ (3) 

Sufficiency. It follows from Theorem 2 that the embedding A~M~, is weakly compact. 
Then it follows from [I, p. 32] that (A~,Mm,)<q (0 < @ < 1 and 0 < q < ~) is a reflexive sym- 
metric space with the same fundamental function. 

Necessity. If (2) is not fulfilled, then E = L~. If (3) is not fulfilled, then E = L I, 
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TOPOLOGICAL CONCEPTS SIMILAR TO CONTINUITY* 

S. S. Kutateladze UDC 517.43 

In connection with the development of some areas of applied analysis, and first of all 
subdifferential calculus, in recent years considerable interest developed in a whole spectrum 
of topological concepts similar to continuity. Dolecki [i] gave a survey of approaches to 
the construction and study of the tangents on the basis of constructions of the type of upper 
and lower limits of sequences of sets. In [2] Penot introduced the concepts of a compact 
filter and compact net and demonstrated the possibility of using them in applications to suf- 
ficient conditions for optimality, to problems on perturbations of programs, etc. The goal of 
the present paper is to show the effectiveness of the methods of nonstandard analysis in these 
problems. In the paper we establish a general fact which unifies the languages of the means 
needed for investigating properties related to continuity. On the basis of this we derive 
new tests for compactness of filters, subcontinuity, limits of correspondences, and also give 
simple nonstandard proofs and generalizations of some assertions from [3, 4] connected with 
them. 

*Dedicated to the fond memory of Leonid Vital'evich Kantorovich. 
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I. Monads and Nets 

1.0. In this section the auxiliary information needed concerning the use of nonstandard 
tools in the theory of filters is collected. Cf. [5, 6] with respect to details of monado- 
logy. The approach to subnets used is recounted in [7]. 

I.i. Let Sr be a filter on the set X. Under the usual hypothesis of "standardness of 
entourage" - under the assumption of standardness all parameters not explicitly described 
(in the present case ~r and X) - a monad ~(~-) is defined by the relation ~(~'):= N~ ", where 
o~- is the standard kernel of ~r i.e., the outer set of standard elements of ~-. If ~ is a 
basis for the filter ~-, then we consider that F(~):= ~($r). It is useful to note that a monad 
is an inner set if and only if it is standard (and hence the original filter is composed of 
all supersets of its monad). 

1.2. Let F c X x y be a correspondence from X to Y and the filter ~r hit domF, i.e., 
(Vf~r)fNdomF~ ~ or, what is the same, ~($r) N domF ~. We consider the image F(~r) of the 
filter ~r defined by the relation 

Y ( Y ' ) : = { G c Y :  ( a F ~ Y - ) G = F ( F ) } .  

The monad o f  t h e  image i s  t h e  image o f  t h e  monad, i . e . ,  

~ ( r ( ~ ) ) =  r ( ~ ( ~ ) )  

(we use  t h e  s t r o n g  form o f  t h e  p r i n c i p l e  o f  i d e a l i z a t i o n  h e r e ) .  

1 .3 .  Le t  E be a d i r e c t i o n ,  i . e . ,  a nonempty  d i r e c t e d  s e t .  A c c o r d i n g  t o  t h e  p r i n c i p l e  
o f  i d e a l i z a t i o n  t h e r e  a r e  in  E i n n e r  e l e m e n t s  which  m a j o r i z e  ~ They a r e  c a l l e d  r emote  o r  
i n f i n i t e l y  l a r g e  in  2. We c o n s i d e r  a s t a n d a r d  b a s i s  f o r  t h e  f i l t e r  o f  t a i l s  ~ : = { o ( ~ ) :  ~ E } ,  
where ~ i s  t h e  o r d e r  in  E. I t  i s  c l e a r  t h a t  t h e  monad o f  t h e  f i l t e r  o f  t a i l s  i s  composed o f  
r emote  e l e m e n t s  o f  t h e  d i r e c t i o n  c o n s i d e r e d .  We use  t h e  n o t a t i o n  ~ E : = ~ ( ~ )  and ~ ~ + ~ ~ E .  

1 .4 .  Le t  ~, H be two d i r e c t i o n s  and ~ : = ~ ( : ) :  H - ~  be a map. The f o l l o w i n g  a s s e r t i o n s  
a r e  e q u i v a l e n t :  

(1)  i(=n) c ~E; 

(2) ( v ~ ) ( ~ H ) ( V ~ ' ~ )  ~ ( ~ ' ) ~ .  

In fact, (I) means that the filter of tails E is coarser than the image of the filter 
of tails of H, i.e., that in each tail of the direction E there lies the image of some tail 
of H. The last assertion is the content of (2). > 

1.5. If the equivalent conditions 1.4(I) and 1.4(2) hold, one says that H is a subdirec- 
tion of E [with respect to $(')]. 

1.6. Let X be some set and x:=x(): E~X be some net of elements of X [we also write 
(x~)~ or simply (x~)]. In addition, let (y~),~ be another net of elements of X. One says 
that (yq) is a Moore subnet of (xg), if H is a subdirection of E with respect to a ~('), such 
that~y~=x~<,) for allN~H, i.e., y = xo$. We stress that by virtue of 1.2 one has y(~H)cx(~E). 

1.7. The last property of Moore subnets cited is taken in [7] as the basis of a freer 
definition of subnet, which immediately attracts attention to direct connection with fil- 
ters, namely: the net(g~)~ of elements of X is called a subnet (or a subnet in the extended 
sense of the word) of the net (x~)~ of elements of X, if 

(v~ ~ E) (~q ~ H) (V~' ~ ~) ( ~ '  ~ ~) x ( ~ ' ) =  g (q ' ) ,  

i . e . ,  when each  t a i l  o f  t h e  n e t  x c o n t a i n s  some t a i l  o f  y .  I n  t h e  l a n g u a g e  o f  monads i t  i s  
c l e a r  t h a t  g(~H) ~x(~  or  in  i n t u i t i v e  n o t a t i o n  

(v~ % + ~ )  (a~ ~ +~ )  y, = x~. 

Here ,  a iming  a t  p i c t u r e s q u e n e s s  one o f t e n  w r i t e s :  ( x , ) , ~  i s  a s u b n e t  o f  t h e  n e t ( x ~ ) ~  (which  
can l e a d  t o  m i s u n d e r s t a n d i n g s ) .  I t  i s  u s e f u l  t o  s t r e s s  t h a t  in  g e n e r a l  s u b n e t s  a r e  n o t  n e c e s -  
s a r i l y  Moore s u b n e t s .  We a l s o  n o t e  t h a t  two n e t s  in  one s e t  a r e  c a l l e d  e q u i v a l e n t ,  i f  each  o f  
them i s  a s u b n e t  o f  t h e  o t h e r ,  i . e . ,  i f  t h e i r  monads c o i n c i d e  [ 7 ] .  

1 . 8 .  I f  $r  i s  a f i l t e r  on X and (x~) i s  a n e t  o f  e l e m e n t s  o f  X, t h e n  one s a y s  t h a t  t h e  
n e t  c o n s i d e r e d  i s  s u b o r d i n a t e  t o  $r  unde r  t h e  c o n d i t i o n  t h a t  ~ ~ x ~  ~($r).  I n  o t h e r  
words ,  t h e  n e t  (x~)  i s  s u b o r d i n a t e  t o  S r  i f  t h e  f i l t e r  o f  i t s  t a i l s  i s  f i n e r  t h a n  ~ .  Here  
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one takes the liberty of writing x ~ $ ~ ,  having in mind the analogy with the topological nota- 
tions for convergence. We also note here that if 5r is an ultrafilter, F coincides with the 
filter of tails of any net (x$) subordinate to it. In particular, such a net (x$) is itself 
an ultrafilter [7]. 

1.9. THEORN~. Let ~ =~(x, y, z) be a formula of Zermelo-Frankel theory, containing no 
free parameters other than x, y, and z, while z is a standard set. In addition let ~- be a 
filter on X, and ~ be a filter on Y. The following assertions are equivalent: 

(i)  ( v ~ ) ( a ~ - ) ( V x ~ F ) ( ~ )  ~ (x ,  y, z); 

( 2 ) ( v x ~ ( Y - ) ) ( a y ~ ( ~ ) )  ~(x ,y ,z) ;  

(3) for any net (x~)~ of elements of X, subordinate to 9r one can find a net(gn)n~ of 
elements of Y, subordinate to ~, and a strict subnet(x~(n~)n~ of the net(x~)~ such that for 
all N ~ H one will have ~(x~(~r, Yn, z), i.e., symbolically, 

( V x ~ ) ( ~ )  ~(x~(~, ~, z); 
(4 )  f o r  any  n e t  ( x ~ ) ~  o f  e l e m e n t s  o f  X, s u b o r d i n a t e  t o  ~ one can  f i n d  a n e t  ( Y n ) ~  o f  

e l e m e n t s  o f  Y, s u b o r d i n a t e  t o  i~, and a s u b n e t  (xn)n~a" o f  t h e  n e t  (x~)t~ such  t h a t  f o r  a l l N ~ H  , 
one w i l l  h a v e  ~(x,, Yn, z), i . e . ,  s y m b o l i c a l l y ,  

( V x ~ ) ( ~ y ~ )  ~(x~, y~, z); 

(5) for any ultranet ( x ~ ) ~  of elements of X, subordinate to ~, one can find an ultranet 
(Yn)n~m subordinate to ~, and an ultranet (xn)n~, equivalent to (x~)~, such that ~(x~, yn, z) for 
all N ~ Ho 

< (i) § (2). Let x~ ~(~r). By the transfer principle, for each standard G there is a 
standard F such that (Vx~F)(~y~G)~(x, y, z) ~. Hence, for z~(9 c) one will have(VG~~ 
G) ~'(x, y, z). Drawing on the idealization principle, we deduce that(~y)(VG~~ y~G~ ~(x, 
y, z). Thus,y ~g(ff) and~(x, y,z). 

(2) § (3). Let (x~)~ be a standard net in X, subordinate to 5~. For each standard G 
from $ and ~ we set 

~(~,~) := {~' >~ ~: (v~" >/~') ( ~  ~ ~) ~ (~.~ y, z)}. 

On t h e  b a s i s  o f  1.1 and 1 .2  we s e e  t h a t  ~V~cA(~,__~). C o n s i d e r i n g  t h a t  A(G,~ ) i s  an i n n e r  s e t ,  
by C a u c h y ' s  p r i n c i p l e  we c o n c l u d e  t h a t  ~  Thus ,  on t h e  d i r e c t i o n  H : = $ X E  ( w i t h  t h e  
n a t u r a l  o r d e r i n g )  t h e r e  a r e  g i v e n  s t a n d a r d  maps ~: H - ~  and y:  H + Y such  t h a t  ~(~)~A(~.~) 
and Yn~G f o r  G ~  and ~ S ,  f o r  wh ich  ~ = (G, $ ) .  I t  i s  c l e a r  t h a t  ~ ( N ) ~ + ~ a n d y ~ ( ~ )  
for q z +~. 

(3) § (4). 

(4) + (1). 

Obvious. 

If (I) does not hold, then by hypothesis 

( ~ G ~ ) ( v ~ Y - ) ( ~ z ~ F ) ( v u ~ )  7q~(x~ y, z). 

For F~$r we take x~F so that~(x, y, z) for all y~ G. We note that the net (x~)F_:~ of ele- 

ments of X obtained, just like the set G, can be considered standard on the basis of the 
transfer principle. There is no doubt that x~$9 r and hence, by virtue of (3) one can find 
a direction H and a subnet (x~)~ of the net (ZF)F~ such that for some net (Yn)~ one will 

have ~(xn, yn, z) for eachN~H. By the definition of 1.7, xq for each infinitely large ~ coin- 
cides with x F for some remote F, i.e., xn~(~). By hypothesis, Fn~g($) and all the more 
y~G. It turns out here that ~(x~, y~, z) and n~(xn, yn, z), which is impossible. The contra- 
diction found indicates that the assumption made was false. Thus, (i) holds [provided (4) 
holds ]. 

(i) +-~ (5). To prove the equivalence required it suffices to note that it becomes obvious if 
9c and ff are ultrafilters (cf. 1.8). It remains to recall that each monad is a union of 
monads of ultrafilters. > 

i.i0. In applications it happens to be convenient to consider the concrete version of 
1.9 corresponding to cases in which one of the filters is discrete. Thus, using the natural 
notation, we deduce that 

( V x ~ ( ~ ) )  ~(x,y)~(Vx~)(ax,,+5") ~(~,,:y). 

115 



2. Limits of Correspondences 

2.0. In this section we collect auxiliary, generally familiar information about limits 
of families of sets used in what follows. Cf. [i, 8] with respect to the history of the 
question. 

2.1. Let F c X • Y be an inner correspondence from the standard set X to the standard 
set Y. Let us assume that in X there is singled out a filter 
set (el. [9]) 

VV ( F ) : =  *{g': (Vx ~ I*(~')1~ domF) (Vg ~ g') '  

a v  (P ) :=  *{y': (az  ~ ~(5 z') n dom I') (Vy ~ y ' )  

va  ( r ) : =  *{g': (Vx ~ I,(~ r') n dora F) (ag ~ y ' )  

aa ( r ) :=  ,{y': (az ~ ~ ( ~ ) N  d0m F) (ag ~ g') 

~,: and in Y a topology x. 

(x, ~) ~ r}; 
(x, ~) ~ r}; 
(x, ~)~ r}; 
(x, y )~rL  

We 

where, as usual, * is the symbol of standardization, and the notation y ~ y' means that y 
~(~(y')). The set QIQ2(F) is called the QiQ2-1imit of F (here Q is one of the quantifiers v 
or a ) .  

2 .2 .  In  t o p o l o g y  one u s u a l l y  r e s t r i c t s  o n e s e l f  to  t h e  c a s e  when F i s  a s t a n d a r d  c o r r e -  
spondence  defined on some element of the filter ~' .  Here one studies the aa-limit and Ya- 
limit. The first is called the upper limit~ and the second the lower limit of F along ~-. 

If one considers the net (~)~Es in the domain of definition of F, then keeping in mind 
the filter of tails of a net, one sets 

L i ~ r  :=  lira inf(~=_ r (x~) :=  v a  (F) ; 

L s ~ F  :=  lira supt~P (x~):== a a (P). 

In such c a s e s  one most  o f t e n  speaks  of  Kura towsky  l i m i t s .  

2 . 3 .  For a s t a n d a r d  c o r r e s p o n d e n c e  r one has  t h e  r e p r e s e n t a t i o n s  

a a  (r) = n u r (x); 
F ~  x ~ F  

v a ( r ) -  n d U r (x) ,  

where ~ i s  t h e  s o - c a l l e d  g r i l l  o f  ~-, i . e . ,  t h e  f a m i l y  composed of  a l l  s u b s e t s  of  X d e f i n i n g  
t h e  monad ~(~-). In  o t h e r  words ,  

9 r ' = * { F ' a X :  F'fl~(Sr)=/=~}={F>'<X: (vF~:~- )  FnF'#=~}. 

We note in this connection the relations 

a v ( r ) =  u int N r(x);  

V V ( F ) =  U i n t  N 1 ~(x). 

2.3. A description of limits in the language of nets follows instantly from the theorem 

of 1.9. 

2.4. The element y lies in the u of F if and only if for each net(x~)~=, of ele- 
ments of domF, subordinate to ~-, one can find a subnet (x~)~ of the net (x~)~and a net 
(Y~)~m converging to y, such that(x~, y~)~F for all~]~H. " 

2.5. The element y lies in the aa-limit of F if and only if there exist a net (x~)~E= 
of elements of domF, subordinate to ~-, and a net(y~)~_=, converging to y, for which (x~, y~)~F 

for any ~=. 

2.6. For any inner correspondence r one has 

VV ( r ) =  aV ( r ) =  v a  ( r ) ~  a a  ( r ) .  

Here aa(F), Ya(r) are closed and VV(F) and av(F), respectively, open sets. 

The inclusions sought are self-evident. Thus, using duality considerations we estab- 

lish to be definite that the va-limit is closed. 
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If V is a standard open neighborhood of the point y' from clVN(P), then there is a 
y~VN(F), for which y ~  For x~(~), we seek a y" such that y=~(z(y)) and (x, y')~F. 
is clear that y" ~V, because V is a neighborhood of y. Thus, 

( V x ~ ( Y ; ) ) ( v v ~ ~  ~ ~ v )  (x, y~)~r. 
Using the principle of idealization, we deduce that y ' ~  V~(F). > 

2.7. 
lent : 

(1) 

(2) 

(3) 

(4) 
<( 

(2) 
(x, y)~ r 
for some 

(3) 

(4) 

It 

Let X and Y be topological spaces, F c X • Y. The following assertions are equiva- 

F is an open correspondence (= preserves open sets); 

F is open at each point (x, y)~F; 

if y$ ~ y, then F-~(y)~liminf~Y-~(y~); 

if y$ § y, then F-~(y)climsup~P-~(y~). 

i) + (2). Obvious. 

(3). First of all we note that the condition of openness at the standard point 
means the following:(vy'~y)(Nx'~x) (x', y')~Y. Hence, for x~Y-*(y) and any ~ z +~ 
x' ~ x one has(x', y~)~Y, i.e., x~liminf~p-~(y~). 

§ (4). Obvious. 

§ (i). If F is not open, then there is an open U in X, for which Y\ F(U) is not 
closed. Thus, there exists a net (y~)c Y\P(U) such that y~ § y and y~ P(U). For any x~ U 
one can find (cf. 2.3) a net (x~)~s, converging to x and having the property that x~ F-~(y~). 
It is clear that for $ z +~ one will have x~ U. We have found a contradiction. > 

2.8. Let X and Y be topological spaces and F c X • Y. The following assertions are 
equivalent: 

(I) F is a closed set in X • Y; 

(2) if y~ § y, then Hmsup~E~Fv~(y~)~ r-5(y); 

(3) if yr § y, then liminf~,F-~(y~)~y-~(y). 

(i) § (2). If y$ § y and x lies in the corresponding upper limit, then one can find 
an index ~ ~ +~ and an element x' ~ x, for which(x', y~)~Y. Since y$ z y, we see that(x, y)~F 
(because in F there occurs an element which is infinitely close to this point). 

(2) § (3). Obvious. 

(3) § (i). If (x~,y~)~F andx~-+x, yt-+y, hen considering the theorem of 1.9 we will 
have x ~liminft~F-~(y~). Hence (x, y)~ F. 

2.9. The propositions of 2.7 and 2.8 actually are due to Kuratowsky [6], cf. also the 
theorems of 1.2 and 6.2 in [3]. 

3. Compactness and Subcontinuity 

3.0. In this section we give standard and nonstandard tests for compactness and anal- 
ogous concepts for filters, treating in more detail classical facts of nonstandard general 
topology [5, 6]. Applications are given to the theory of subcontinuous correspondences de- 
veloped in [3, 4]. 

3.1. A filter $c (in a topological space X) is called ~ (of. [2]), if each filter 
finer than J- has a point of adherence in X. Correspondingly a net is called c ~  if 
each subnet of it has a convergent subnet. 

3.2. A standard filter ,~- in X is compact if and only if each point of its monad is 
nearly standard: ~(~-)cnst(X). 

§ Let x~(~). We consider the ultrafilter(x):=*{UcX:x~U} in the original space 
X. It is clear that (x)~- and hence there is a standard point x' such that x z x'. In 
other words, x is a nearly standard point. 

+ If $~B~-, then ~(~)c~(B~-). Let x~(~). Then x~nst(X)~ i.e., for some x'~X we 
will have x z x'. The latter means that x' is a point of adherence of ~. > 
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3.3. A filter ~- in X is compact if and only if for any open covering of the set X one 
can find a finite subcovering of some element of ~-. 

< + It is sufficient to work in a standard entourage. Thus, if ~- is compact, then 
~(~-)~ nst(X). Considering that nst(X) lies in the monad of any standard covering ~, we de- 
duce that(aFE~-)(VxEF)(aE~ ~ As the F sought one can take any infinitely small 
element of ~-. Applying the principles of idealization and transfer successively, we get 
what is required. 

§ Let ~ be an open covering of X and ~(~) be the union of the standard elements of ~, 
i.e., the monad of ~. By the transfer principle there are a standard F~- and a finite 
standard subset~0 of ~ such that U~0 ~ f ~  ~(~-). Hence, ~(~')c ~(~). It remains to recall 
that nst(X) is precisely the intersection Of the monads of the standard open coverings of 
X. 

3.4. The test formulated in 3.3 makes the search for an analog of the Hausdorff test 
for filters natural. In this connection we shall consider a uniform space (x,~). 

3.5. A filter ~- on X is called completely bounded~ if for each surrounding U ~  there 
is a finite U-net of some element F of the filter ~-. 

3.6. A filter ~- on X is called complete, if each Cauchy filter, finer than~', converges 
in X. 

3.7. A standard filter is complete if and only if each prestandard point of its monad 
is nearly standard. 

§ Let ~ be a complete filter and z~pst(X)N ~($~) be a prestandard point of the monad 
of ~. The prestandardness of x means that x lies in the monad of some Cauchy filter ~. Here 
B(~-)N~($)~. It is clear that the least upper bound of ~ and ~- is a Cauchy filter and 
hence there is a point x'~~ for which x'~i~(~)N~(~-). Hence x' ~ x andtx~nst(X). 

§ Let ~ and ~ be a Cauchy filter. If x~(~), thenxE~(~) ~nst(X). Hence~ has 
a point of adherence. 

3.8. A standard filter is completely bounded if and only if each point of its monad is 

prestandard. 

+ By the transfer principle, for each standard surrounding U from ~ there are a 
standard element F of the filter~- and a finite standard set E such that U(E) m F. Hence, 
~(~)~U(E). Thus for x~ ~(~) and any U~ ~ we will have z~ U(z') for a suitable standard 
x'. We set:~ :=*{U(z~)i U~, x~ U(x')}. It is clear that ~ is a base of a Cauchy filter 
and XE ~(~)by construction. Consequently, ~(~)~pst(X). 

+ Let us assume that the filter ~ - considered is such that F(~ ~-) ~pst(X), and neverthe- 
less ~ is not completely bounded. By the transfer principle there is a standard surround- 
ing U from:~ such that for any F~~ and any standard finite set E one can find an ~x~Y, 
which does not land in U(E). By the idealization principle there is an element x ~ ~(~-)such 
that~ U(y)for each standard y.~X. By hypothesis x E ~(~), where ~ is Cauchy filter. We 
take G~~ such that G • G c U. Then for any y~G one has x~(~)~U(y) contrary to the 

original assumption. 

3.9. Hausdorff Test for Filters. A filter is compact if and only if it is complete 

and completely bounded. 

> + It is sufficient to work in a standard entourage. If ~- is compact, then ~(~)~ 
nst (X) by 3.2. Considering that nst(X)~pst(X), we conclude: ~ is complete and completely 

bounded. 

If ~- is completely bounded, then by 3.8, ~(~r)~pst(X)o If ~ is complete, then 
pst(X) c nst(X). From this we deduce that~(~r)=~($C)Npst(X)cnst(X). It remains to refer 

to 3.2. > 

3.10. The tests found can be placed at the foundation of the study of different topo- 
logical concepts similar to continuity. We dwell here on one of them (cf. [2-4]). 

3.11. A correspondence F, acting from X to Y, is called subcontinuous at the point x of 
dom F, if the image of the filter of neighborhoods of the point x under F is compact in Y. 
A correspondence F, which is subcontinuous at each point of F is called subcontinuous. 
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3.12. A standard correspondence F from X to Y is subcontinuous if and only if F(nst(X)) 
c nst (Y). 

< The proof follows from 1.2 and 3.2, because nst(X) is the union of monads of points 
of the standard kernel ~ > 

3.13. A correspondence is subcontinuous if and only if it carries compact filters into 
compact ones. 

Since the filter of neighborhoods of a point is afortiori compact, the sufficiency 
of the condition cited is self-evident. Now let it be known in advance that the correspon- 
dence is subcontinuous. Without loss of generality one can work in a standard entourage. 
Drawing on 3.12 and 3.2, we see that in the present situation the image of a standard com- 
pact filter is compact. It remains to refer to the transfer principle. > 

3.14. In connection with the test of 3.13, subcontinuous correspondences are sometimes 
called compact (cf. [2]). 

3.15. A subcontinuous correspondence acting on a Hausdorff space preserves relative com- 
pactness. 

If U is a standard relatively compact set in X, then U c nst(X). Hence, F(U) c nst 
(Y). It is known [5] that in this case F(U) is relatively compct. > 

3.18. Let F be a closed subcontinuous correspondence. Then F is upper semicontinuous. 

By the transfer principle one can work in a standard entourage. Thus, let A be a 
standard closed set and x~cIF-i(A) ". One has x' ~ x, for which for some a'~A one will have 
(x', a')~ F. Once a'~iF(nst(X)) , one can find a standard a in the image, for which a ~ a' By 
the closedness of A we deduce that e~A. Since F is closed one has (x(a)~F. Thus~ x~F-i(A). 
> 

3.17. The proposition of 3.16 is actually established in [4] and generalizes an earlier 
assertion about functions in [3]. In conclusion, with the help of Theorem 1.9 we give a 
simple nonstandard proof of a small modification of the continuity test 5.1 of [3]. 

3.18. Let f: X + Y be a function, acting on a Hausdorff space. Then f is continuous if 
and only if for each point x from X there is an element y from Y such that the condition x$ § 
x implies the existence of a subnet(x~)~, for which f(xN) + y. 

In the verification only the sufficiency of the test formulated is needed~ We shall 
work in the standard entourage. By hypothesis we have 

(~x~-~ x) (~y~ ~ y) (x~, y~)~ f, 

On the basis of Theorem 1.9 the last assertion can be rewritten in the form 

(vx" ~ x) (~u" ~ y) (x/, F ) ~  /. 

In particular, for some y' ~ y one has y' = f(x). Since Y is Hausdorff, we conclude that 
y = f(x). Moreover, x' z x + f(x') z f(x), i.e., f is a continuous function. > 
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