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In [I] we have outlined a method for the application of nonstandard methods of analysis 
for the study of various types of tangents, used in the theory of extremal problems. We 
know that the corresponding approximating cones for epigraphs are, in their own turn, the 
epigraphs of certain mappings. These mappings are called epiderivatives. With them, side by 
side with the classical differentials, are associated the contingent derivative, the Dubin- 
skii-Milyutin derivative, the Clarke and the Rockafellar derivatives, and also their modifi- 
cations. The aim of the present article is to perfect the existing methods for the con- 
struction of epiderivatives and for obtaining the rule for the estimation of the derivative 
of a sum (cf. [2, 3]). In addition, we isolate the spectrum of the new analogs of the ap- 
proximating mappings with regard for the attraction of a basically new possibility - an arbi- 
trary choice of the defining family of infinitesimal numbers. 

i ~ In the sequel, we will use without specifically mentioning the neoclassical instal- 
lation of the nonstandard analysis, in which the hypothesis of standardness of the entourage 
is, as a rule, not specifically mentioned. By the same token it is understood that the free 
variables in the formal expression in the following text in the framework of some theory of 
inner and outer sets denotestandard objects. 

2 ~ . Let us consider a real vector space X, equipped with linear topology o and the al- 
most vector topology ~. Further, let F be a set in X and x' be a point of F. According to 
the stipulation of i ~ these objects are assumed to be standard sets. 

We fix a certain infinitesimal - a real number ~, such that ~ > 0 and a = 0. Let us set 

Ha~(F,x ' ) :=*{h '~X:  (Vx~.ox', x ~ F ) ( v h z ~ h ' ) x + a h ~ F } ; .  

In~(F, x ' ) : = * { h ' ~ X :  (~h  ~ ~h') (Vx ~ ,x ' ,  x E F ) x  + r ~ F}; 
Cl~ (F, x') :=*{h'~ X: (Vx ~ ~x', x ~ F) (:~h ~ , h ' ) x  + ah  ~ F}, 

where, as usual, * is the symbol of standardization of an outer set. 

Let us now consider a nonempty, in general, outer set A of infinitesimals and set 

H a A ( f , x ' ) : = *  N Ha~(f ,x ' ) ;  
~ A  

InA (F, x') :=* O Ina (F, x'); 
~ A  

C1A (F, x') :=* N Cl~ (F, x'). 

We adopt  an analogous  p o l i c y  of  n o t a t i o n  a l s o  fo r  o t h e r  i n t r o d u c e d  types  of  approxima- 
t i o n s .  As an example, it is worth emphasizing that, by virtue of definitions, for a standard 
h' from X 

h' ~ In~(F, x') ~ (Va ~ A) (~h ~ ~h') (Vx ~ ~ ' ,  x ~ F ) x  + ~h ~ F. 

It is useful to note that in the case where A is the monad of the corresponding standard 
filter ~r^, where~-A:=*{AcR:A~A}, we have, e.g., for CIA(F, x') 

C1A(F,x ' )= n U n (~--~-5-}-V). " 
V ~  U~o(~ ) x~FNU 

A ~  A ~ A , a ~ 0  

Here X~ is  t h e  ne ighborhood f i l t e r  of  t he  o r i g i n  in the  topo logy  �9 and ~ ( x ' )  i s  t he  ne igh -  
borhood f i l t e r  of  t he  p o i n t  x'  in t he  topo logy  o. I f  A i s  no t  t he  monad, then  the  c o n c r e t e  
representations of the approximations, in which we are interested, Hah(F, x'), CIA(F , x'), 
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etc. in the general case are connected with the model of analysis in which the investigation 
is actually carried out. It should be especially mentioned that the ultrafilter q/(a):=~r{=} 
has monad, not reducing to the initial infinitesimal a; i.e., the investigated set with in- 
dex a is, in general, wider than the analogous set with index ~(q~(~)), where, as usual, ~(3~) 
is the monad of the filter $ r. 

3 ~ . We need certain facts about the introduced approximations (cf. [i]). We formulate 
them under the assumption of continuity of the mapping (x, 8, h) + x + ~h at the origin, 
which in the standard entourage appears as ~(o)+ ~(R+)~(~)c ~(~), where ~(R+) is the monad 
composed of positive infinitesimal numbers. 

(i) The sets HaA(F, x')~ InA(F~ x')~ and CIA(F, x') are_semigroups, and 

Ha( f ,  x ' ) c  HaA(F, x ' ) c  In~(f,  x ' ) c  C1A(F, x')cK(F, x'), 
CI(F, x ' ) ~  CL(F, x ' ) ,  

where  Ha (F, x') : =  Ha~{n§ (F, x') i s  t h e  Hadamard cone ,  C1 (F, x') : = Gig(n+) (F, x') i s  t h e  C l a r k e  cone ,  

andK(F ,  x'):----*{h'~X: (~th~.~h' ) (~z~(R+))x '+ah~F} i s  t h e  c o n t i n g e n c y  o f  t h e  s e t  F a t  t h e  

point x' 

(2) If A is an inner set or a monad, then HaA(F~ x') is ~-open. 

(3) ~ x') is a ~-closed set, and K(F~ x') = CIA(F~ x') for convex F,_z_provided a = ~. 

(4) If o = ~ then 

Ch(F, x') = CL(clF ,  x ' ) .  

(5) The Rockafellar formula 

holds. 

(6) If x ~ 

HaA(F, x ' ) +  ClA(F, x ' ) c  Ha~(F, x ')  

is a t-boundary point of F~ then for F':=(X\F~U{z'} 

HaA(F, x ' ) = ' H a A ( F ' ,  x ') .  

(7) Let T be a vector topology and tAcA for a certain standard t~[O, I]. Then CIh(Y x'_) 
is a convex cone. 

(8) Let tArA for each standard t~[0, I]. Then the sets CIA(F_, x'), InA(F~ and 
HaA(F , x') are convex cones. 

The set A is said to be representative if HaA(F , x') and CIA(F, x') are (convex) cones. 
Propositions (7) and (8) give examples of representative A. 

4 ~ . Let ]:X-+ R be a function that acts into the extended number line. For an in- 
finitesimal a, a point x' in dom(f), and a vector h'~X we set 

](Ha=) (x') ( h ' ) : =  in] {t ~ R: (h', t ) ~  Ha~(epi(/),  (x', ] (x ' ) )} ;  
](In~) (x') ( h ' ) : =  in] {t ~ R: (h', t ) ~  In~ (epi (]), (x'; ](x') ) }; 
](CI~) (x') ( h ' ) : =  in] {t ~ R: (h', t ) ~  CI~ (epi(]), (x ~, ](x ' ))}.  

The derivatives f(HaA), f(InA), and f(CiA) are introduced in the natural manner. Let us ob- 
serve that the derivative/(Cl):--l(Clu(R+).) is called the Rockafellar derivative and is denoted 
by the symbol f+. In this connection, we write 

1~ (x') :---- / (C]a) (x'), 1~ (x') : =  / (Cl~) (x'). 

I f  x i s  t h e  d i s c r e t e  t o p o l o g y ,  t h e n  HaA(F, x ' )  = I n h ( F ,  x ' )  = C1A(F, x ' ) .  Here  t h e  Rocka-  
f e l l a r  d e r i v a t i v e  i s  c a l l e d  t h e  C l a r k e  d e r i v a t i v e  and we u se  t h e  f o l l o w i n g  n o t a t i o n :  

1~ (x'~ :=  t (x'), 1~ (x') :=  1~ (x'). 

For A - - ~ ( R + )  t h e  i ndex  h i s  o m i t t e d .  

In  t h e  c o n s i d e r a t i o n  o f  e p i d e r i v a t i v e s  we s u p p o s e  t h a t  t h e  s p a c e  X X R i s  e q u i p p e d  w i t h  
t h e  u s u a l  p r o d u c t s  o f  t o p o l o g i e s  o X  ~n and �9 X ~ e ,  where  ~R i s  t h e  s t a n d a r d  t o p o l o g y  o f  R. 
I t  i s  somet imes  c o n v e n i e n t  t o  e q u i p  X X R  w i t h  t h e  p a i r  o f  t h e  t o p o l o g i e s  o X ~0 and T X TR, 
where  t0 i s  t h e  t r i v i a l  t o p o l o g y  in  R .  While  u s i n g  t h e s e  t o p o l o g i e s ,  we speak  a b o u t  th___ee 
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Clarke and the Rockafellar derivatives along the effective domain dom (f) and add the index 
0 d to the symbols: fd' fA+,d ' etc. 

5 ~ The following statements are valid: 

f (x') (h') ~< t' ~ ( vz  ~ox ' ,  t ~ l (~'), t / >  / (x)) 
(~h ~ , h ' )  ~ ((1 (x + ah) - -  t)/a) <~ t'; 

/~ (x') (h') < t '  ~ (Yz ~ o x ' ,  t ~ 1 (x'), t ~> / (x)) (Vk ~ , h ' )  ~ ((l (x + ah) - -  t)/a) < t'; 

t t ]a.d (x ) (h ) <~ t' ~-~ (Vx ~ax ' ,  x ~ dom (1)) (~th ~ h ' )  ~ (x -5 ah) - -  t)/a) <~ t'; 

/~.d (x') (h') < t' ~-~ (Vx ~ox ' ,  x ~  dom (l)) (Vh ~ , h ' )  ~ ( ( / ( x  -5 a h ) - - t ) / a ) < t ' :  

To p r o v e  t h e  above  s t a t e m e n t s ,  i t  i s  n e c e s s a r y  t o  o b s e r v e  o n l y  t h a t  t h e  f o l l o w i n g  
r e l a t i o n s  a r e  v a l i d  f o r  numbers  t, s E R :  

(S t '  ~ t) t" >i s~--~~ <. ~ (vste > 0) s ~< ~ e, 

( v t '  = t) t '  ~ s ~ ~  < ~  (t ~ ~R).  

Indeed, in the first equivalence the right implication is obvious and the reverse implica- 
tion is ensured by the fact that s<~ +s~--~ for ~176 The second equivalence in the upper 
row has been noted in [i]. 

To verify the validity of the arrow towards right in the lower equivalence, we observe 
that s does not belong to the monad p(t) of the number t. Therefore, the whole monad of s 
lies to the left of the monad of t, i.e., p(s) < U(t). Consequently, ~ < ~ Finally, to 
establish the remaining implication, we observe that s < t for =s = -~ since t ~ ~R. But if 
~176 then p(~ < ~ Therefore, t' ~ s for t' = t. 

6 ~ . If f is a lower semicontinuous function~ then 

! 

(z + 
% 

(x') (h') ~< t' ~-~ (Vx ~ x ' ,  / (x) ~ I (x')) (3h ~ h ' )  ~ ( I -  l(z)} ~< t ' ;  
j 

(x') (h') < t '  ~-~ (Vx ~ x ' ,  / (x) ~ f (x')) (Vh ~ , h ' )  ~ ( / ( x  + ah)~ -- ](z))  < t ' .  

We need  v e r i f y  o n l y  t h e  i m p l i c a t i o n  t o  t h e  r i g h t .  S i n c e  such  v e r i f i c a t i o n s  a r e  i d e n -  
t i c a l ,  we r e a l i z e  t h e  f i r s t  o f  them.  On t h e  b a s i s  o f  t h e  lower  s e m i c o n t i n u i t y  o f  f we deduce  
t h a t x ' ~ x - ~ ~  �9 T h e r e f o r e ,  ~ 1 7 6 1 7 6  f o r  x ,  t s u ch  t h a t  t = f ( x ' )  and t 
f ( x ) .  In  o t h e r  words ,  ~  = f ( x ' )  and f ( x )  = f ( x ' ) .  Choos ing  a s u i t a b l e  h w i t h  t h e  h e l p  
o f  t h e  c o n d i t i o n s ,  we s e e  t h a t  

~176 l(x)))<-<t', 
which  e n s u r e s  t h e  d e s i r e d  r e s u l t .  > 

7 ~ The following equations are valid for each continuous function f: 

I~,~ (~') = I~  (~'), I:,,~ (~') = I~. (z'). 
It is sufficient to observe that the continuity of f at a standard point implies that 

(z ~ ~ ' ,  x ~  d o m ( l ) ) ~  l (x)~ l(x'). > 
8 ~ THEOREM. L e t  h be a monad. Then t h e  f o l l o w i n g  r e p r e s e n t a t i o n s  a r e  v a l i d :  

(1 )  I f  f i s  a l ower  s e m i c o n t i n u o u s  f u n c t i o n ,  t h e n  

] i  (x') (h') = lira sup inf f (z + ah) -- I (x) 
x-a jx" h - , h '  ~ 

t t ~ "  A 

1~ (x') (h') = lira sup ! (z + ah') -- l (z) 

where  x + f x '  means t h a t  x ~ ox '  and f ( x )  + f ( x ' )  and l i m s u p  i n f  i s  t h e  R o c k a f e l l a r  l i m i t .  

(2 )  The f o l l o w i n g  e q u a t i o n s  a r e  v a l i d  f o r  an a r b i t r a r y  f u n c t i o n  f :  

l~,,~ (x') (h') = lim sup inf l (z + ah.) -- ! (z) . 
x--,.xP h ~ h  t ~ 

a~ A 

630 



l~,d (x ' )  (h ' )  ---- l i ra  sup ] (z + =h') - -  f (z) 

To prove the theorem it is sufficient to use the criterion for the Rockafe!lar limit, 
found in [i]: 

J im s u p ~  inf~ ] (x, y) : = sup inf sup inf / (x, y) • t ~-~ (Vx ~ ~ ( ~ ' ) )  (~ y E ~ ($ ) )  of (x, y) ~ t. 
G ~  FE~" x(~F y~G 

A r e f e r e n c e  t o  pp .  6 ~ and 7 ~ c o m p l e t e s  t h e  p r o o f .  > 

9 ~ THEOREM. L e t  A be a r e p r e s e n t a t i v e  s e t  o f  i n f i n i t e s i m a l s .  The f o l l o w i n g  s t a t e -  
m e n t s  a r e  v a l i d :  

( 1 )  I f  f i s  a mapp ing  t h a t  i s  d i r e c t i o n a l l y  L i p s c h i t z i a n  a t  a p o i n t  x t ,  i . e . ,  i s  s u c h  
t h a t H a ( e p i ( / ) ,  (x', ] ( x ' ) ) )~  g, t h e n  

�9 o 

1~ (z') = /A  (x'); 
i f ,  f u r t h e r m o r e ,  f i s  c o n t i n u o u s  a t  x ' ,  t h e n  

1~ (=3 = ]~,,~ (=3 = l~.,~ (=3 = l.~ (=3.  
(2) If f is an arbitrary mapping and the Hadamard cone oi the effective set of f at the 

point x' is nonempty, i.e., Ha(d0m(]), x')~ ~, then 

I~,~ (x') = l:~,~ (x'). 
The proof of both the desired statements is carried out according to the same pattern, 

connected with the application of the propositions from 3 ~ We analyze in detail the case 
where f is directionally Lipschitzian. 

Let us set ~ := epi(]), and a' := (x', ](x')). By virtue of the conditions, CIA(.~, a'~ and 
Ha~(~r a') are convex conves. In addition, HaA(~, a')~ Ha(~, a') and, therefore, int~X~RHa A (~g, 

a')=~ ~ . On the basis of the Rockafellar formula, we deduce that 

C!~x~R HaA (~, a') =CIA (~r a'). 

Hence the desired statement follows. > 

i0 ~ THEOREM. Let 1,, ]2:X-*-R be arbitrary functions andx'~dom(/~)ndom(]~). Then 

( A  + I~)~,~ tx') ~< (l~)~,~ (z') + (I~):,,,~ (x,). 
If, moreover, fl and f= are continuous at the point x', then 

(1: + 1,)~ (x') < (A)~ (x') + (&)~ (x'). 

L e t  t h e  s t a n d a r d  e l e m e n t  h '  be  c h o s e n  in  t h e  f o l l o w i n g  manner :  

h, aom n 

If there is no such h', then the desired estimates are obvious. 

We t a k e  t' >~ (/1)~.d (X') (h') and s' >( /~)~.d (x') (h ' ) .  Then ,  on t h e  b a s i s  o f  5 ~ f o r  e a c h  x ~ ~.z', 
x ~ dom(l , )f l  d0m(/z) , and an a r b i t r a r y  a ~ A  t h e r e  e x i s t s  an h s u c h  t h a t  h ~ , h '  and ,  m o r e o v e r ,  

~, :=  ~ (l,(x + =h)-- /,(x) )/c~) < t ' ;  
~ := ~ I~ (x))fo:) < s'. 

Hence we deduce that 8,+~<t'+s', which ensures the validity of the statement (i). If fz 
and f2 are continuous at x', then we should use p. 7 ~ . > 

i| 
2. 

. 
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