EPIDERIVATIVES DEFINED BY A SET OF INFINITESIMALS*

S. S. Kutateladze UDC 513.88

In [1] we have outlined a method for the application of nonstandard methods of analysis
for the study of various types of tangents, used in the theory of extremal problems. We
know that the corresponding approximating cones for epigraphs are, in their own turn, the
epigraphs of certain mappings. These mappings are called epiderivatives. With them, side by
side with the classical differentials, are associated the contingent derivative, the Dubin-
skii~Milyutin derivative, the Clarke and the Rockafellar derivatives, and also their modifi-
cations. The aim of the present article is to perfect the existing methods for the con-
struction of epiderivatives and for obtaining the rule for the estimation of the derivative
of a sum (cf. [2, 3]). In addition, we isolate the spectrum of the new analogs of the ap-
proximating mappings with regard for the attraction of a basically new possibility — an arbi-
trary choice of the defining family of infinitesimal numbers.

1°. In the sequel, we will use without specifically mentioning the neoclassical instal-
lation of the nonstandard analysis, in which the hypothesis of standardness of the entourage
is, ‘as a rule, not specifically mentioned. By the same token it is understood that the free
variables in the formal expression in the following text in the framework of some theory of
inner and outer sets denote standard objects.

2°. Let us consider a real vector space X, equipped with linear topology ¢ and the al-
most vector topology t. Further, let F be a set in X and x' be a point of F. According to
the stipulation of 1°, these objects are assumed to be standard sets.

We fix a certain infinitesimal — a real number a, such that o > 0 and o = 0. Let us set
Ha,(F, 2'):=*{h'eX: (Va~ 2, x=F)(Vh = h')z+ah<F};
In,(F, z"):=*{h'eX: (Bh = b)) (Vz= ', z=F)z+ah<sF};
Cl(F, z'):=*h'eX: (Va~ 2, = F)(3h =~ h')z + ah < F},

where, as usual, * is the symbol of standardization of an outer set.

Let us now consider a nonempty, in general, outer set A of infinitesimals and set

Hay (F, z'):=* | Hay(F, z');
: A A
Ing (F, 2'):=* N Ing(F, 2');
CaEA
Cly (F,z'y:=* | Clo(F, ).
a=A )
We adopt an analogous policy of notation also for other introduced types of approxima-

tions. As an example, it is worth emphasizing that, by virtue of definitions, for a standard
h' from X

B € Ina(F, 2')~(Vas A) (Fh = k') (Vza~ ', z€ F)z+ah=F.

It is useful to note that in the case where A is the monad of the corresponding standard
filter Fa, where F,:=*(AcR:A>A}, we have, e.g., for Cl5(F, x')

= n oy 0 (L),
Ve use 2y,

Here 4. is the neighborhood filter of the origin in the topology t and o{(x') is the neigh-
borhood filter of the point x' in the topology o. If A is not the monad, then the concrete
representations of the approximations, in which we are interested, Hap(F, x'), CI1,(F, x'),
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etc. in the general case are connected with the model of analysis in which the investigation
is actually carried out. It should be especially mentioned that the ultrafilter Qz(a)n=8r{a}
has monad, not reducing to the initial infinitesimal @; i.e., the investigated set with in-
dex o is, in general, wider than the analogous set with index u(%/{a)), where, as usual, p(¥)
is the monad of the filter &.

3°, We need certain facts about the introduced approximations (cf. [1]). We formulate
them under the assumption of continuity of the mapping (x, 8, h) = x + Bh at the origin,
which in the standard entourage appears as p(o)+ u(R,)u(r)= p(o), where u(R,) is the monad
composed of positive infinitesimal numbers.

(1) The sets Hap(F, x'), Ina(F, x'), and Cip(F, x') are semigroups, and

Ha(F, «')= Hau(F, 2')< Ins(F, 2'y= CLo(F, 2')= K (F, z'),
CI(F, z')< CLy(F, z')

1

where Ha(F, z') := Hayg ) (F, ') is the Hadamard cone, ClI(F, z'): = Clymy) (F, 2’} is the Clarke cone,

and K(F, 2'):=*r' € X: (Ah = 2 (das u(R,) )z’ +ah € F} is the contingency of the set F at the
point x'.

(2) If A is an inner set or a monad, then Hap(F¥F, x') is t-open.

(3) C1p(F, %x') is a 1-closed set, and K(F, x') = CIp{(F, x') for convex F, provided ¢ = 1.
(4) If 0 = 1, then

Cla(F, z')y=Cla(cl F, z').
(5) The Rockafellar formula
Ha,(F, z’)+ Clu(F, z’)< Hau(F, z°)

holds.
(6) If x' is a t-boundary point of F, then for F':= (X\F)u{z’}
Haa(F, z')=—Has(F’, z°).

(7) Let T be a vector topology and tA=A for a certain standard : [0, 1. Then CIA(F, x')
is a convex cone.

(8) Let A= A for each standard t<J0, 1]. Then the sets CIA(F, x'), Ina(F, x'), and
Hap(F, x') are convex cones.

The set A is said to be representative if Hap(F, x') and CI)(F, x') are (convex) cones.
Propositions (7) and (8) give examples of representative A.

4°. Let f:X—R be a function that acts into the extended number line. For an in-
finitesimal o, a point x' in dom(f), and a vector h'eX we set

{(Haw) (') (') = inf ¢ = R: (W, t)= Haa (epi(f), (2", F(z'))};
f(Ing) (') (B"):=inf {t = R: (B, t)= Ina{epi(f), (2, f(z'))}; -
f(CL) () (B'):=inf {t e R: (%', t)= Cla (epi(f), (z/, f(z'})}.
The derivatives f(Hap), f(Inp), and £(Clp) are introduced in the natural manner. Let us ob-

serve that the derivative-f(CU:zzf(CL4R+» is called the Rockafellar derivative and is denocted
by the symbol f£*. 1In this connection, we write

@) i=1Cl) @), f\(@):=7(Cly) ().

If t is the discrete topology, then Hap(F, x') = Inp(F, x') = C14(F, x'). Here the Rocka-
fellar derivative is called the Clarke derivative and we use the following notation:

Jol@Vi=1o(x), fal@):=1h@).
For A=p(R,). the index A is omitted.

In the consideration of epiderivatives we suppose that the space X XR is equipped with
the usual products of topologies o X Tr and 7 X Tr, where 1y is the standard topology of R.
It is sometimes convenient to equip X X R with the pair of the topologies 6 X1, and v X tgr,
where T, is the trivial topology in R. While using these topologies, we speak about the
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Clarke and the Rockafellar derivatives along the effective domain dom (f) and add the index
: £9, £4 .
d to the symbols: fd, fA,d’ etc
5°. The following statements are valid:
@) )K= (Vomer, tr (@), t21(2))
(h =:h")° ((f (2 + ah) — B) /@) <,
f; @) ()<t — (Vemet', tx f(z), t Zf(2)) (VA=) (f(z+ ab) — b)) < 5

foa (@) (W) <t — (Verox', 2 dom (f)) (Bh k') °((f (2 + ah) — D) < V5

fa,d (@) (R) <t > (Vzrxer', z& dom (f)) (VR xH)° ((f (x + ah)—1t)jo)<t’-

d To prove the above statements, it is necessary to observe only that the following
relations are valid for numbersi s=R:
(T mt) ' 255 <%t (Ve >0) s<°+e;

(V' =t) t' Zs°s<% (t==~R).

Indeed, in the first equivalence the right implication is obvious and the reverse implica-
tion is ensured by the fact that s<<°% +s— ° for °s<°t. The second equivalence in the upper
row has been noted in [1].

To verify the validity of the arrow towards right in the lower equivalence, we observe
that s does not belong to the monad u(t) of the number t. Therefore, the whole monad of s
lies to the left of the monad of t, i.e., u(s) < p(t). Consequently, °s < °t. Finally, to
establish the remaining implication, we observe that s < t for °s = —» since t=~R. But if
°s<=°R, then u(°s) < °t. Therefore, t'>s for t' = t. >

6°. If f is a lower semicontinuous function, then

L) W) KE o (Varat', (@)~ () @had'y (LEEB=10) o

e /
@) 0 <t o (Vamar', £ (@) = £ @) (Vh ool (LEE =L)<

< We need verify only the implication to the right. Since such verifications are iden-
tical, we realize the first of them. On the basis of the lower semicontinuity of f we deduce
that 2’ = 2 - °f(z)= f(z’) . Therefore, %t =°f(2)=f(z"}="°t for x, t such that t = f(x') and t =
f(x). 1In other words, °f(x) = £(x') and f(x) = f(x'). Choosing a suitable h with the help
of the conditions, we see that
e (f(x + ah)—t))<°(a”(f(z + ah)— f(z))) </,

which ensures the desired result. b

7°. The following equations are valid for each continuous function f:

Hha@) =1h@) faaE@)=7@)

4 It is sufficient to observe that the continuity of f at a standard point implies that
(z = &', z&dom(f))~ f(z)= f(z"). B

8°. THEOREM. Let A be a monad. Then the following representations are valid:

(1) If f is a lower semicontinuous function, then

@) w) = liﬂsup inf f_(_“;"ﬂ;)_“‘f_(.ﬂ

ey h-h!
aeg-A
fj\ (.Z’) (h/) = lim sup flz+ ah') —— f(z)
x-»_,ac' @ ?
aeg'A

where x + ¢x' means that x » ;x' and f(x) » f(x') and limsup inf is the Rockafellar limit.

(2) The following equations are valid for an arbitrary function f:

. . - ah)y —
fz\,d (xl) (hl) — h?ii}lp hl_?:, _'f_(a.:_.l__%)—-—-f(i)

acF A

.

?
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o4

fa.a(@) (&) = lim sup Ll k) —7(2)
:X:—)jx’ .
ac¥ )
< To prove the theorem it is sufficient to use the criterion for the Rockafellar limit,

found in [1]:

lim supg infg f (7, ¥) := sup inf supinf f(z, ¥) <! — (Vz e p(F)) By = u(9)) °f(z, y)<t.
c=% reF x€F ye6
A reference to pp. 6° and 7° completes the proof. P>

9°. THECOREM. Let A be a representative set of infinitesimals. The following state-
ments are valid:

(1) If f is a mapping that is directionally Lipschitzian at a point x', i.e., is such
that Ha(epi(f), («/, /(') # &, then

@) =1 (=)
if, furthermore, f is continuous at x', then
@) =ha@)=11a@) =11 )

(2) If f is an arbitrary mapping and the Hadamard cone of the effective set of f at the
point x' is nonempty, i.e., Ha(dom(f), z')¥ &, then

fha @) =faa (@)
< The proof of both the desired statements is carried out according to the same pattern,

connected with the application of the propositions from 3°. We analyze in detail the case
where f is directionally Lipschitzian.

Let us set ¢ :=epi(f), and a’:= (2/, f(z)). By virtue of the conditions, Cli(s¢, ¢’} and
Has(s#, a’) are convex conves. In addition, Ha,(&#, a’)> Ha(%, a’) and, therefore, intyy.gHa, (£,
a')< & . On the basis of the Rockafellar formula, we deduce that

* cluxrg Hay (£, 0) =Cl, (£, a').
Hence the desired statement follows. D
10°. THEOREM. Let f,, f.:X—R be arbitrary functions and z’ € dom(f,)i dom({j:). Then
(f+ ha @) < (Wha (@) + (5.6 ().
If, moreover, f, and f, are continuous .at the point x', then
(h + b @) << (D) () + () (2)-
< Let the standard element h' be chosen in the following manner:
I & dom ((f2)3.a) N dom ((2)}.a)-
If there is no such h', then the desired estimates are obvious.
We take\t’}(fl)f‘,d (') (') and 8 > (f,)4,4(z’)(#'). Then, on the basis of 5°, for each z = .,
zedom (f,)N dom(f.) , and an arbitrary a € A there exists an h such that 2 =.s" and, morecver,
8 :="((fi{z + ah)— fi(z)a)< ¥;
8. :="((f(z+ah)— fi(z))/a)<s".

Hence we deduce that §,+9,<t'+s’, which ensures the validity of the statement (1). If f,
and f, are continuous at x', then we should use p. 7°. D>
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