SOME METHODS OF DEFINING CLARKE'S CONEt
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It is convenient to study Clarke's tangents by means of infinitesimals. It turns out
that the most important properties of such tangents are preserved under a restriction of the
set of infinitesimal numbers in question {[1}. In this paper we establish that in a finite-
dimensional space Clarke's cone admits convenient definitions by means of an arbitrary se-
quence of scalars that converges to zero.

1. Working in the standard environment, we consider 2 set F in a finite-dimensional
space X, a point x' of F, and a norm || in X. For an infinitesimal strictly positive number
o we put

Cl(F, z'):=*h'eX: (Vzmz', xeF)(8h=h') z+tahsF}

Here, as usual, the symbol = denotes infinite closeness in X, and * is the symbol of stan-
dardization.

Now if A is an (external) set of infinitesimals, we define the set C1p(F, x') by the
relation

Cla (F, z7):=* 0| Cla(F, ).
acA

In particular, if A is the monad of the filter F:=*4 < X: 4 5 A}, then

CL(F,z)=10n U 0 {F;x+s.Bx),

e>p >0 xEF
AEF |, x—x'<d
Agea,u>e

where By :={l-ly <1} is the unit ball in X.

In the case when ¥ is the filter of a neighborhood of the origin on the semiaxis R*,
we omit the symbol A and talk about the usual Clarke cone (the set F at the point x').

Z. TFor a closed not necessarily convex cone F we have

Cl.(F, 0)=C1(F, 0).
< First of all we observe that the following relation is satisfied:
Cl.(F, )+ F<F.
In fact, for jeF we put z:=af. C‘learly, x % 0 andzefF. Thus,v by definition, for some
h infinitely close to h' we have z+aheF on condition that 4« Cl(F, 0). Since a{f +h)eF

and F is a cone, we conclude that f+heF. Hence heF—f and therefore h' lies in the
microclosure of F — £f. Since F is closed and standard, we see that f+heF.

We now take b’ Cl (F, 0), and suppose that z€F and x # 0. TFor any infinitesimal B > O
we have
o+ Bk =B(a/p+ 1) B(F + Clo(F, 0))< BF < F

by what we have already proved. In other words, o’ CI{F, 0). Since CI{F, 0)=Clo(F, (), from
obvious circumstances we conclude that the sets in question are equal. >

- 3. In the condition of Proposition 2 Cla(F, 0) is the maximal convex cone H such that
H+FcF (cf. [12]). We note that in the proof of Proposition 2 we did not use the fact that
X is finite-dimensional. In a finite-dimensional space a much stronger assertion holds.

4. THEORFM. Let A be an (exterior) set of strictly positive infinitesimals containing
an (interior) sequence that converges to zero. Then

+Dedicated to Sergei L'vovich Sobolev.
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CLA(F, z')=CL(F, z').

< By Leibniz' principle we can work in the standard environment. Since the inclusion
Cla(F, z')= CI(F, 2") is obvious, we take a standard point h' from Clp(F, x') and establish that
h' lies in the Clarke cone C1(F, x'). By a theorem of Cornet [3, 4] we have

Cl(F, ') = Lix,x K (F, 2),
x&F

where Li symbolizes the lower Kuratowski limit, and K(F, x') is the contingency of the set
F at the point x', that is,

K(F,z)= N cl(o U Fg”').

£2>0 <b<e
Since

Lizow K (F, 2) = *{b': (Vz~ ', = F)(3h ~ ') he K(F, 1)},
x=F
we verify that when z=~ 2" and z=F we have heK(F, z) for some element h infinitely close
to h'.

If (a,) is a sequence of elements of A that converges to zero, then by hypothesis we
have

(VneN)(@hy) T+ cbns F \ o=l

For any standard € > 0 we have Ik, —h'll<e, Therefore, since X is finite-dimensional, we can
try to find sequences (an) and (h ) such that

G >0,k >k, lh—WI<e 2+ ah,=F (neN).

Using the principle of idealization in the strong form, we conclude that there are se-
quences (&,) and (hn) that simultaneocusly serve all standard positive numbers e. Clearly,
the corresponding limiting vector h is infinitely close to h' and at the same time k& K(F, z)
by the definition of contingency. >

5. For the set A in the theorem we can take the monad of any filter converging to
zero, for example, the filter of the tails of a fixed standard sequence (o) formed from
strictly positive numbers and tending to zero. We give characterizations of Clarke's cone
related to this case and additional to those given in [4]. For the formulation let us agree
to denote by dp(x) the distance from a point x of X to the set F.

6. THEOREM. For a sequence (o,) of strictly positive numbers that converges to zero,
the following assertions are equivalent:

(1) B =Ci(F, ');

d My—d

() limsup £ETED 70 @ o
x->x! n

n—>oo

(3) limsup limsupe, ' (dr(z + azh’) — dr (2)) <O
xX—x! N>

(4) lim lim sup oy, 'dp (2 + k) = 0;
Fer 7

(5) ligl sup liminf oy (dr (2 + auh’) — dp (2)) <O
d Ry
(6) lim lim inf 2C %)

x->x/ mn-oco n
xeF

=0.

< First of all we observe that when a > 0 we have the equivalence
*a~idp(z+ah’)=0<~ (Fh=h') x+aheF,
where °t is, as usual, the standard part of the number t.
In fact, to establish the implication to the left we put y:=z+ah'. Then
de(zt+ ab’)/a<lz+ abh’ — yl/o < Ik — R’

To verify the opposite implication, invoking the principle of idealization in the strong
form, we obtain successively

810



°a“dy(z+ah')=0+(V5°e>O) de(z tah’)/a<e— (ve>0)(AyeF) lztak’ —yl/a<e
~(AyeF) (V'e>0) b —(y —z)/al <e-~(TyeF) Ih' —(y — z)/al ~ 0.
Putting h:=(y — z)/a., we see that h * h' and z+ak=F.
We now turn to the proof of the required equivalences.

Since the implications (3) » (4) - (6) and (3) »> (5) + (6) are obvious, we merely estab-
lish that (1) » (2) > (3) and (6) > (1).

(1) » (2). Working in the standard environment, we take x # x' and N = 4w, We choose
2" eF so thatlz—2"|<dp(z) +a%. Since

de(z+ anh’)— de (2" + axh’)< Iz — 2”1l
we derive the following estimates:
(de(z + axh’) — de(2) ) /oy <(de(2” + axh’ )+ lz — 2”1 — de(x) ) /oy < de(z” + axh’)/ax + .

Since R =Cl(F, z’) , taking account of the choice of x" and N, for some h * h' we have
z” tayheF. So, on the basis of what we have already proved, °dr(z” + axh’)/ax=0. Hence

(Vz == 2') (VN = + ) oy’ (dr (z + axh’) — dp (2)) <0.
As we know, this is a nonstandard criterion for the truth of (2).

(2) » (3). It is sufficient to observe that for j: UXV >R and the filters & in U
and ¢ in V we have

lim Sup - limsupg fla, <t - (Vze p(F)) lim Sup flz, y) <t
— (Ve n(#F) (V' >0) inf supf(z, )<t + e «— (Vze p () (Ve >0) (HGE?)sugf(x, N<t+e
Geg ysG =
— (Vzep@)ce ?)(V“e>0)suapf(:c, P<t+e«(Vzep@F@) U= 3)(V“S>0)§ng<x, y<t+e
. ye =

— (Vze p(F))(I6e9) (Vy=G) °f(z, y)<t.

Here, as usual, p(¥) is the monad of the filter &, that is, the exterior of standard elements
of #.

(6) > (1). First of all, in the notation of the previous fragment of the proof, we
have

limsup . lim inf , f(z, y) i< (Vz e p (F)) sup inf f(z, y) < ¢
i g Ge g y=6
- (Voe REN(VHe>0) (Ve @) inff(z, ) <t+e — (Vzep(@)(Vee 9)(Vie>0) inij(x, H<t+e
' yEG =

— (Vo= u(&)) (VG =) (Ve > 0) (y = G) flz, y)<i+e - (Vee (&) (VG=F) (Ay=G) Iz, y)<t
Invoking the conditions from the criterion we have established, we deduce that
(Vz=z', 2= F) (Vo) (N = n) ‘ay'de (z + ayh’) = 0.

In other words, for some hy such that hy = h' we have z+ ayhy €F. On the basis of the pre-
vious arguments, as in the proof of Theorem 4, we can deduce that h' lies in the lower Kura-

towski limit of the contingencies of the set F at points close to x', that is, in the Clarke
cone CI(F, x'). >
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