- 6. I. M. Kaplinskaya, "Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevsky space," Mat. Zametki, 15, No. 1, 159-164 (1974).
- E. M. Andreev, "Convex polyhedra in Lobachevsky space," Math. Sb., <u>81</u>, 445-478 (1970).
 E. M. Andreev, "Finite convex polyhedra in Lobachevsky space," Math. Sb., <u>83</u>, No. 2, 256-260 (1970).
- 9. H. S. M. Coxeter, Introduction to Geometry, Wiley (1969).
- 10. H. Zieschang, E. Vogt, and H.-D. Coldewey, Surfaces and Planar Discontinuous Groups, Lecture Notes in Mathematics, Vol. 835, Springer-Verlag, Berlin-Heidelberg-New York (1980).

MONADS OF PRO-ULTRAFILTERS AND EXTENSIONAL FILTERS

S. S. Kutateladze

UDC 517.11

In [1] we proposed an approach to the application of monadology, a branch of nonstandard analysis, to the study of cyclic filters, which arise in the context of Boolean-valued models. In this paper we characterize the monads of pro-ultrafilters and extensional filters and discuss some relevant properties of these objects. To save space, we shall use the notation and conventions described in detail in [1] without further explanation. We emphasize only that henceforth B will denote a fixed complete Boolean algebra and $V^{(B)}$ the corresponding separable Boolean-valued universe. The truth value of a formula φ of Zermelo-Fraenkel set theory will be denoted by $[\varphi]$. When monadology is used, the neoclassical formulation is assumed. We shall generally adopt the hypothesis that the entourage is standard, without further mention.

1. Let X be a cyclic set (= descent of some B-set). As usual, the symbol μ_d will denote the operation producing the (discrete) monadic hull. In other words, $\mu_d(\emptyset) := \emptyset$, and if U is a nonempty set in X then $\mu_d(U)$ is the monad of the standardization of the external filter of supersets of U, i.e.,

$$x \in \mu_d(U) \nleftrightarrow ((\mathbb{V}^{\mathrm{st}} V \subset X) \ U \subset V \to x \in U).$$

By analogy, we define the cyclic monadic hull μ_c as follows:

$$x \in \mu_{c}(U) \quad \leftrightarrow (\mathbb{V}^{\mathrm{st}}V) \ (V = V \ \ \land \ V \subset X \land U \subset V \rightarrow x \in V).$$

Thus, if U is not empty, the cyclic monadic hull $\mu_{c}(U)$ is the monad of the cyclic closure of the standardization of the filter of supersets of U.

2. The cyclic monadic hull of a set is the cyclic closure of its monadic hull:

$$\mu_{c}(U) = \min\left(\mu_{d}(U)\right)$$

for every U.

 \triangleleft Let $U \neq \emptyset$ and let V be a standard set such that $V \supset \min(\mu_d(U))$. By Theorem 2.3 of [1], there exists W in the filter $(U_1 \subset X; U_1 \supset U)$ such that $V \supset W \downarrow \downarrow$ and so $V \supset \mu_c(U)$. Thus $\mu_c(U) \subset U$ $\min(\mu_d(U))$, since the set on the right is a monad. Conversely, if $V \supset \mu_c(U)$ and V is standard, then V contains the cyclic closure of a superset of U and thus $V \supset U$. Hence $\dot{V} \supset \mu((*{W: W \supset U}))$ U}) \uparrow and it remains to appeal again to Theorem 2.3 of [1]. \triangleright

3. Cyclic filters in X that are maximal with respect to inclusion will be called proultrafilters in X. An essential point in X is defined to be an element of the monad of a standard pro-ultrafilter. The external set of all essential points of X will be denoted by ^eX. It is useful to emphasize that the pro-ultrafilters in X are precisely the descents of the ultrafilters in the ascent X⁺ of X.

4. Nonstandard Pro-Ultrafilter Criterion. A filter is a pro-ultrafilter if and only if, first, its monad is cyclic, and, second, it is easily captured by a standard cyclic set.

 \triangleleft Let \mathscr{F} be a filter. We have to prove that the following proposition is valid: $(\mathcal{F} \text{ is a pro-ultrafilter}) \leftrightarrow \mu(\mathcal{F}) = \min(\mu(\mathcal{F})) \land (\nabla^{\text{st}} V) (V = V \Downarrow \rightarrow \mu(\mathcal{F}) \subset V \lor \mu(\mathcal{F}) \subset V'.$

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 30, No. 1, pp. 129-133, January-February, 1989. Original article submitted April 12, 1988.

If V is standard, then either $\mu(\mathscr{F}) \cap V = \varnothing$, or $\mu(\mathscr{F}) \cap V \neq \varnothing$. In the first case $V' := X \setminus V \in \mathscr{F}$. In the second, we have a filter \mathscr{G} with monad $\mu(\mathscr{F}) \cap V$. Clearly, if \mathscr{F} is a pro-ultrafilter and V a cyclic set, then $\mathscr{G} = \mathscr{F}$ (by the criterion for cyclic filters contained in Theorem 2.2 of [1]). Thus $V \in \mathscr{F}$, proving the implication \rightarrow .

We now prove the implication \leftarrow . Let \mathscr{G} be a cyclic filter finer than \mathscr{F} . Clearly, $G \in \mathscr{G} \to G' \notin \mathscr{F}$ [otherwise $G' \supset \mu(\mathscr{F}) \supset \mu(\mathscr{G})$]. Thus $G \in \mathscr{F}$. Consequently, $\mathscr{G} = \mathscr{F}$. \triangleright

5. Standard Pro-Ultrafilter Criteria. Let \mathcal{F} be a cyclic filter in X. Then the following statements are equivalent:

- (1) \mathcal{F} is a pro-ultrafilter;
- (2) for any finite set \mathscr{E} of subsets of X, either $(\cup \mathscr{E})' \in \mathscr{F}$ or $E \uparrow \downarrow \in \mathscr{F}$ for some $E \in \mathscr{E}$;
- (3) for every finite sequence of cyclic sets, \mathcal{F} contains either one of them or the complement of each of them;
- (4) if U is an arbitrary set, then either $U \cap \mathcal{F}$, or $U' \in \mathcal{F}$;
- (5) for every cyclic V, either $V \in \mathcal{F}$ or $V' \in \mathcal{F}$.

The implications $(2) \rightarrow (3) \rightarrow (4) \rightarrow (5)$ are evident. The fact that (5) implies (1) follows from Sec. 4 and the transfer principle. \triangleright

<u>6. COROLLARY.</u> Let \mathcal{F} be a filter in X. The filter $\mathcal{F}^{\uparrow\downarrow}$ is a pro-ultrafilter if and only if, for every subset U of X, either $U^{\uparrow\downarrow} \in \mathcal{F}$ or there exists F in \mathcal{F} such that $F^{\uparrow\downarrow} \subset U'$.

<u>7. COROLLARY.</u> Let \mathscr{F} be a filter in X. Then \mathscr{F} is a pro-ultrafilter if and only if $\mathscr{F} = (\mathscr{F})^{+}$, where \mathscr{F} is the grill of \mathscr{F} , defined by

$$U \in \widehat{\mathscr{F}} \leftrightarrow (\nabla F \in \mathscr{F}) \ U \cap F \neq \varnothing.$$

 \triangleleft Suppose it is known that \mathscr{F} is a pro-ultrafilter. Clearly, $\mathscr{F} \subseteq \widehat{\mathscr{F}}$ and so $\mathscr{F} = \mathscr{F} \uparrow \downarrow \subseteq (\widehat{\mathscr{F}}) \uparrow \downarrow$. If $V \in (\mathscr{F}) \uparrow \downarrow$, there exists U in \mathscr{F} , such that $V \supset U \uparrow \downarrow$. Then $U \uparrow \downarrow$ is surely an element of \mathscr{F} , by (4). Thus also $V \in \mathscr{F}$.

Suppose now that $\mathscr{F} = (\widetilde{\mathscr{F}})^{+}_{+}$. Since by definition every element of the set on the right of this equality is a superset of a cyclic set, \mathscr{F} is a cyclic filter. Let U be an arbitrary cyclic set. If $U \cap F = \varnothing$ for some $F \in \mathscr{F}$, then $U' \in \mathscr{F}$. But if $U \cap F \neq \varnothing$ for every $F \in \mathscr{F}$, then U is an element of $(\widetilde{\mathscr{F}})^{+}_{+}$ and therefore $U \in \mathscr{F}$. It now follows from (5) that \mathscr{F} is a proultrafilter. \succ

8. The family $(\mathcal{F})^{\ddagger}$, figuring in Sec. 7 is called the <u>cyclic grill</u> of \mathcal{F} of (rarely) a <u>pro-grill</u>. The meaning of this concept and its mode of application are clarified in connection with the technique of descents and ascents. Recall that if \mathcal{E} is a family of nonempty subsets of X[↑] then the descent \mathcal{E}^{\dagger} is defined by

$$U \in \mathscr{E}^{\downarrow} \leftrightarrow U \subset X \land (\exists E \in \mathscr{E} \downarrow) \ U \supset E \downarrow.$$

9. If \mathscr{F} is a filter and $\overset{\circ}{\mathscr{F}}$ its grill, then within V(B)

$$(\mathcal{F})^{\dagger} = (\mathcal{F}^{\dagger})^{\dagger}$$

 \lhd To prove this, it suffices to observe that by the rules for evaluation of true values in V(B) ,

 $\left[\mathcal{U} \uparrow \in \ddot{\mathcal{F}} \right] = \bigwedge_{F \in \mathcal{F}^{\downarrow}} \left[A \uparrow \cap F \uparrow \neq \varnothing \right],$

where A is a subset of X. \triangleright

10. An extensional filter is a pro-ultrafilter if and only if its cyclic grill is a filter.

 \triangleleft Clearly, a filter \mathscr{F} is a pro-ultrafilter if and only if \mathscr{F} coincides with its grill within V^(B). But this happens if and only if the grill of \mathscr{F} is a filter within V^(B). It remains to appeal to Sec. 9.

<u>11. Essentiality Criterion.</u> A point is essential if and only if it can be separated by a standard cyclic set from any standard set not containing it.

Written symbolically, our assertion is

 $x \in {}^{e}X \iff (\nabla U = U \Downarrow) \quad x \notin U \rightarrow (\exists V = V \Downarrow) \quad x \in V \land U \cap V = \emptyset.$

Suppose first that x is an essential point and let U be a cyclic set such that $x \notin U$. By Sec. 3, the complement U' is an element of the filter $(x)\uparrow\downarrow$ generated by the cyclic supersets of x [because $(x)\uparrow\downarrow$ is a pro-ultrafilter by assumption]. Thus, for some V we have $x \in V$ and $V\uparrow\downarrow \cap U \neq \emptyset$.

If the separability condition is fulfilled, then the cyclic filter $(x)^{\downarrow\downarrow}$ satisfies the conditions of the pro-ultrafilter criterion of Sec. 4. In fact, let $U = U^{\downarrow\downarrow}$ be an arbitrary cyclic set. We must show that either U or U' occurs in $(x)^{\downarrow\downarrow}$. If $x \in U$, then by definition $U \in (x)^{\uparrow\downarrow}$. But if $x \in U'$, then by assumption there exists some $V \in (x)^{\uparrow\downarrow}$ such that $V \cap U = \emptyset$, i.e., $V \subset U'$ and $U' \in (x)^{\uparrow\downarrow}$.

<u>12.</u> COROLLARY. If the monad of an ultrafilter \mathscr{F} contains an essential point, then $\mu(\mathscr{F}) \subset {}^{e_{X}}$ and, in addition, $\mathscr{F} \downarrow \downarrow$ is a pro-ultrafilter.

13. Extensional Filter Criterion. A filter is extensional if and only if its monad is the cyclic monadic hull of the set of its essential points.

Symbolically written, our assertion is

 $(\mathcal{F} \text{ is extensional }) \leftrightarrow \mu(\mathcal{F}) = \min(\mu_d(^{\circ}\mu(\mathcal{F}))).$

The condition that \mathscr{F} be extensional may be written $[\mathscr{F}^{:}]$ is a filter in $X^{\uparrow}] = 1$. Using the transfer principle of Boolean-valued analysis, we see that for some set \mathfrak{A} of pro-ultra-filters in X

$$\left[F \in \mathcal{F}^{\dagger}\right] = \bigwedge_{\mathcal{A} = \mathfrak{A}} \left[F \in \mathcal{A}^{\dagger}\right].$$

Hence it follows that for a cyclic set F in X

$$F \in \mathcal{F}^{\frac{1}{2}} \leftrightarrow F \in \bigcap_{\mathscr{A} \in \mathfrak{A}} \mathscr{A}^{\frac{1}{2}}.$$

Hence, for a standard cyclic F,

$$F \supset \mu\left(\mathscr{F}^{\ddagger}\right) \leftrightarrow F \supset \mu_d\left(\bigcup_{\mathscr{M} \in {}^{\mathfrak{g}}} \mu\left(\mathscr{A}^{\ddagger}\right)\right),$$

where ${}^\circ \! \mathfrak{A}$ is the standard kernel of \mathfrak{A} , i.e., the external set of standard elements of \mathfrak{A} . By Sec. 2, this can be rewritten as

$$\mu(\mathscr{F}^{\uparrow}) = \min\left(\mu\left(\bigcup_{\mathscr{A}\in {}^{\mathfrak{N}}}\mu(\mathscr{A}^{\downarrow})\right)\right).$$

It remains to observe that by Proposition 2.5 of [1] monads of pro-ultrafilters consist only of essential points and the set \mathfrak{A} is the collection of pro-ultrafilters majorizing \mathcal{F} . \triangleright

14. COROLLARY. A standard set is cyclic if and only if it is the cyclic monadic hull of its essential points.

15. Let \mathscr{F} be a filter in X and b an element of the Boolean algebra B. Let $b\mathscr{F}$ be the image of \mathscr{F} under multiplication by b. Then

$$b(b\mathcal{F})^{\dagger} = b\mathcal{F}^{\dagger}$$
.

 \triangleleft Indeed, we have the estimate

$$\left[(b\mathcal{F})^{\uparrow} = \mathcal{F}^{\uparrow} \right] \geqslant \bigwedge_{F \in \mathcal{F}} \left[(bF)^{\uparrow} \in \mathcal{F}^{\uparrow} \right] \geqslant \bigwedge_{F \in \mathcal{F}} \left[(bF)^{\uparrow} = F^{\uparrow} \right] \geqslant \bigwedge_{F \in \mathcal{F}} \bigwedge_{x \in X} \left[bx \in F^{\uparrow} \right] \geqslant \bigwedge_{F \in \mathcal{F}} \bigwedge_{x \in X} \left[bx = x \right] \geqslant b.$$

This implies our assertion. >

16. Let \mathcal{F} . \mathcal{G} be filters within V(B) and $b \in B$. Then

$$b\mathcal{F} = b\mathcal{F} \leftrightarrow b\mathcal{F}' = b\mathcal{F}'.$$

 $< \text{ If } [\mathscr{F} \subset \mathscr{G}] \ge b, \text{ then by the maximum principle, for every } F \in \mathscr{F}^+ \text{ there exists } G \in \mathscr{G}^+ \text{ such that }$

$$[F \uparrow \supset G \uparrow] = [\mathcal{F} \supseteq \mathcal{G}] \ge b$$

In other words, $bF^+ \supset bG^+$, and so if F and G are cyclic then $bF \supset bG$. Thus $b\mathcal{F}^+ \subset b\mathcal{G}^+$.

Suppose now that $b\mathcal{F}^* \subset b\mathcal{F}^*$. Then, successively applying Sec. 15, we obtain

$$b\mathcal{F}^{\cdot} \subset b\mathcal{F}^{\cdot} \to (b\mathcal{F}^{\cdot})^{+} \subset (b\mathcal{F}^{\cdot})^{+} \to b(b\mathcal{F}^{\cdot})^{+} \subset b(b\mathcal{F}^{\cdot})^{+} \to b(b\mathcal{F}^{\cdot}) \subset b(b\mathcal{F}^{\cdot}) \to b\mathcal{F} \subset b\mathcal{G}.$$

Finally, we conclude that $[\mathscr{F} \subset \mathscr{G}] \ge b \leftrightarrow b\mathscr{F} \subset b\mathscr{G}$. This gives the required equivalence.

<u>17. Nonstandard Criterion for Mixing of Filters.</u> Let $(\mathscr{F}_{\natural})_{\natural \in z}$ be a standard family of extensional filters and $(b_{\natural})_{\natural \in z}$ a standard partition of the identity. A filter \mathscr{F} is a mixture of $(\mathscr{F}_{\natural})_{\natural \in z}$ with probabilities $(b_{\natural})_{\natural \in z}$ if and only if

$$(\nabla^{*}\xi \in \Xi) \ b_{\xi}\mu(\mathcal{F}) = b_{\xi}\mu(\mathcal{F}_{\xi}).$$

 \triangleleft By the general definition, F is an element of a mixture $\sum_{i\in\mathbb{Z}}b_i\mathscr{F}_i$, if there exists a family $(F_i)_{i\in\mathbb{Z}}$ such that $F_i \in \mathscr{F}_i$ $(\xi \in \Xi)$ and at the same time $F \supset \sum_{i\in\mathbb{Z}}b_iF_i$. Applying rules 1.1 and 1.2 of [1] and using the extensionality of the filters in the family $(\mathscr{F}_i)_{i\in\mathbb{Z}}$, we conclude that, first, \mathscr{F} is also extensional, and, second, that the ascent \mathscr{F}^i is a mixture of $(\mathscr{F}^i_\xi)_{\xi\in\Xi}$ with the same probabilities. Using the separability of V(B) and Sec. 16, we successively obtain

$$\mathcal{F}^{\dagger} = \sum_{\xi \in \Xi} b_{\xi} \mathcal{F}_{\xi}^{\dagger} \quad \leftrightarrow \left(V^{\mathrm{st}} \xi \in \Xi \right) b_{\xi} \mathcal{F}^{\dagger} = b_{\xi} \mathcal{F}_{\xi}^{\dagger} \leftrightarrow \leftrightarrow \left(V^{\mathrm{st}} \xi \in \Xi \right) b_{\xi} \mathcal{F}^{\dagger \downarrow} = b_{\xi} \mathcal{F}_{\xi}^{\dagger \downarrow} \leftrightarrow \leftrightarrow \left(V^{\mathrm{st}} \xi \in \Xi \right) b_{\xi} \mathcal{F} = b_{\xi} \mathcal{F}_{\xi} \leftrightarrow \left(V^{\mathrm{st}} \xi \in \Xi \right) \mu \left(b_{\xi} \mathcal{F} \right) = \mu \left(b_{\xi} \mathcal{F}_{\xi} \right) \leftrightarrow \left(V^{\mathrm{st}} \xi \in \Xi \right) b_{\xi} \mu \left(\mathcal{F} \right) = b_{\xi} \mu \left(\mathcal{F}_{\xi} \right).$$

We have here used the fact that the monad of the image under a standard map is the image of that monad.

LITERATURE CITED

1. S. S. Kutateladze, "Cyclic monads and their applications," Sib. Mat. Zh., <u>27</u>, No. 1, 100-110 (1986).