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MONADS OF PRO-ULTRAFILTERS AND EXTENSIONAL FILTERS

S. S. Kutateladze UDC 517.11

In [1] we proposed an approach to the application of monadolegy, a branch of nonstandard
analysis, to the study of cyclic filters, which arise in the context of Boolean-valued models.
In this paper we characterize the monads of pro-ultrafilters and extensional filters and dis-
cuss some relevant properties of these objects. To save space, we shall use the notation
and conventions described in detail in [1] without further explanation, We emphasize only
that henceforth B will denote a fixed complete Boolean algebra and V B) the corresponding
separable Boolean-valued universe. The truth value of a formula ¢ of Zermelo—Fraenkel set
theory will be denoted by [¢] . When monadology is used, the neoclassical formulation is as-
sumed. We shall generally adopt the hypothesis that the entourage is standard, without fur-
ther mention.

1. Let X be a cyclic set (= descent of some B-set). As usual, the symbol ud will de-
note the operation producing the (discrete) monadic hull. In other words, (%) :=%, and
if U is a nonempty set in X then ud(U) is the monad of the standardization of the external
filter of supersets of U, i.e.,

g€ (V) ((V'VWeX) UcV>zel).
By analogy, we define the cyclic monadic hull u. as follows:
tepU) (VWY =VHAVeXAUcV>z=V)

Thus, if U is not empty, the cyclic monadic hull #e(U) is the monad of the cyclic closure of
the standardization of the filter of supersets of U.

2. The cyclic monadic hull of a set is the cyclic closure of its monadic hull:

e (U) = mix (ua(U))
for every U. '

4 Let U# % and let V be a standard set such that V > mix(p(U)). By Theorem 2.3 of [1],
there exists W in the filter *{U; < X: U, > U} such that VoW1 and so Vo pu,(U). Thus pe(U)=
mix(e(U)) , since the set on the right is a monad. Conversely, if V=u.(U) and V is standard,
then V contains the cyclic closure of a superset of U and thus V > U. Hence Vo p((*{W: W=
U})4+) and it remains to appeal again to Theorem 2.3 of [1].D

3. Cyclic filters in X that are maximal with respect to inclusion will be called pro-
ultrafilters in X. An essential point in X is defined to be an element of the monad of a
standard pro-ultrafilter. The external set of all essential points of X will be denoted by
@X. It is useful to emphasize that the pro-ultrafilters in X are precisely the descents of
the ultrafilters in the ascent X+ of X.

4, Nonstandard Pro-Ultrafilter Criterion, A filter is a pro-ultrafilter if and only if,
first, its monad is cyclic, and, second, it is easily captured by a standard cyclic set.

<dLet & be a filter. We have to prove that the following proposition is valid:
(F is a pro-ultrafilter) <« u(F) =mix W@ ) A (VW) ¥V =V § >p(F) =V V p(F) = V).
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If V is standard, then either u(&F)n I'=9 or W{F N T %2, In the first case }" =X\ eF.
In the second, we have a filter ¥ with monad W(F)NT1. Clearly, if & is a pro-ultrafilter
and V a cyclic set, then ¥ =% (by the criterion for cyclic filters contained in Theorem 2.2
of [1]). Thus '=& , proving the implication -.

We now prove the implication «. Let & be a cyclic filter finer than & . C(learly,
=% >G &F {otherwise G2 (F)2w(%)]. Thus GeF . Consequently, $=F. b

5. Standard Pro-Ultrafilter Criteria. Let & be a cyclic filter im X. Then the follow-
ing statements are equivalent:

(1) # is a pro-ultrafilter;
(2) for any finite set & of subsets of X, either (U&) €F or EtleF for some E=&;

(3) for every finite sequence of cyclic sets, & contains either one of them or the com-
plement of each of them;

(4) if U is an arbitrary set, then either U'*:=F, or ' €% ;
(5) for every cyclic V, either Ve or "eF.

< To prove (1) » (2), we use the transfer principle and the nonstandard pro-ultrafilter
criterion of Sec. 4. Thus, let ¥ be a standard filter and & a standard finite set of stan-
dard subsets of X. There are two possibilities: either W{(F)INLE =2 or W(FIINLEFZ. In
the first case, the set (U&)' is obviously in #. In the second, there exists E= & such
that £ WF)* 2. Thus EH N w(F)=2. Since E4y is standard, it follows from Sec. 4 that
Eti=uw(¥) and therefore Et: e&.

The implications (2) + (3) » (4) » (5) are evident. The fact that (5) implies (1) fol-
lows from Sec. 4 and the transfer principle. >

6. COROLLARY. Let ¥ be a filter in X. The filter # ' is a pro-ultrafilter if and.
only if, for every subset U of X, either ['!‘{=F or there exists ¥ in & such that F*ic=l".

7. COROLLARY. Let ¥ be a filter in X. Then # is a pro~ultrafilter if and only if

F = (F)*i, where F is the grill of ¥, defined by
UeF «— (N\feF) UNF=2.

N < Suppose it is known that & is a pro-ultrafilter. Clearly, F<=F and so F=F
(F)i+. If Ve(F)1r, there exists U in &, such that "=C 4. Then Uty is surely an element
of ¥, by (4). Thus also T €&.

Suppose now that F=(F)1+. Since by definition every element of the set on the right
of this equality is a superset of a cyclic set, ¥ is a cyclic filter. Let U be an arbitrary
cyclic set. If UNF =9 for some FE€F, then {"=F. But if UNI# 2 for every Fe& , then

U is an element of (F)1i and therefore U'=F . It now follows from (5) that #% is a pro-
ultrafilter. o

8. The family (¥ )!+, figuring in Sec. 7 is called the cyclic grill of & of (rarely) a
pro-grill. The meaning of this concept and its mode of application are clarified in connec-
tion with the technique of descents and ascents. Recall that if & is a family of nonempty
subsets of X4 then the descent &' is defined by

be&' - LUcXAN@AEe& ) UL ].
9. If & is a filter and & its grill, then within y(B)

(F) =)t
(B? To prove this, it suffices to observe that by the rules for evaluation of true values
in V R

[LreFl= A 14tnFt =0
FaF b

where A is a subset of X. D>

10. An extensional filter is a pro-ultrafilter if and only if its cyclic grill is a
filter.

ot
<
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< Clearly, a filter & is a pro-ultrafilter if and only if & coincides with its grill
within V(B). But this happens if and only if the grill of & is a filter within V(B), "1t
remains to appeal to Sec. 9.

11. Essentiality Criterion. A point is essential if and only if it can be separated by
a standard cyclic set from any standard set not containing it.

< Written symbolically, our assertion is
retx = (NU=UH) 2&U—~>@V=V1) zeVAUNY = 2.

Suppose first that x is an essential point and let U be a cyclic set such that ze&( -
By Sec. 3, the complement U' is an element of the filter (x)t¢ generated by the cyclic super-
sets of x [because (x)tV is a pro-ultrafilter by assumption}. Thus, for some V we have 2=V
and VHNU==4,

If the separability condition is fulfilled, then the cyclic filter (x)++ satisfies the
conditions of the pro-ultrafilter criterion of Sec. 4. 1In fact, let U = U4{ be an arbitrary
cyclic set. We must show that either U or U' occurs in (x)4v. If z=U, then by definition
Ue(z)tt. But if z= 1", then by assumption there exists some V &(z)t¢ such that T'nU=2,
i.e., Vel and U'=s(@)t). >

12. COROLLARY. If the monad of an ultrafilter # contains an essential point, then
w(F)y=<X and, in addition, F *! is a pro-ultrafilter.

< Let V be an arbitrary cyclic set and rEu(F)N°N. If g1, then VN uw(F)* 2 and
so 'eF ; therefore also VeEF . If z&V, then by Sec. 11 there exists a cyclic U such
that z€U and UNV=#2. Clearly, U= %{. Hence it follows that V' €F 1. It remains
to refer to Sec. 5, to conclude that & ‘) is a pro-ultrafilter. As already remarked, UW(F )t} c
X in this case. Since (F i) =mix(t{F)) , our assertion follows from Proposition 2.3 of

[1].

13. Extensional Filter Criterion. A filter is extensional if and only if its monad is
the cyclic monadic hull of the set of its essential points.

< Symbolically written, our assertion is
(F is extensional )« [ (F )= mix (. ("p(F))).
The condition that # be extensional may be written |¥ is a filter in X#] = 1. Using

the transfer principle of Boolean-valued analysis, we see that for some set ¥ of pro-ultra-
filters in X

[Fes = p [Fews’]
I

Hence it follows that for a cyclic set F in X

FefF —Tas #".
SI=Y
Hence, for a standard cyclic F,
F:\}l(.?'ﬁ)ﬁ]?:}l(,( U ‘u(;;‘.‘)\‘
=Y )
where ‘% is the standard kernel of ¥, i.e., the external set of standard elements of % By
Sec. 2, this can be rewritten as

!
\ \ o EY

.u(g’ﬁ)=n‘ix Wy ).
1 (. ( U U( ))\/)
It remains to observe that by Proposition 2.5 of [1] monads of pro-ultrafilters consist

only of essential points and the set ¥ is the collection of pro-ultrafilters majorizing &#. >

14. COROLLARY. A standard set is cyclic if and only if it is the cyclic monadic hull
of its essential points.

15. Let ¥ be a filter in X and b an element of the Boolean algebra B. Let 0F be the
image of ¥ under multiplication by b. Then

b(OF ) = bF ",
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< Indeed, we have the estimate

) =F = Aot eT = A Rt =Ft] = A A TeeF iz A Al =a>h
( FEF X

reF IS aax FEF REX :
This implies our assertion. &
16. Let #.% be filters within V(B) and b= DB, Then
bF = DG — WF = D%

< If [F# <%]=D, then by the maximum principle, for every F =&  there exists Ge
such that

[Fr=2Gi=[F=%]=0
In other words, 47! >0G*, and so if F and G are cyclic then bF > bG. Thus bF < bZ
Suppose now that 0F <=b% . Then, successively applying Sec. 15, we obtain
bF S UG — (DF ) < (bF) — O(bF ) S b(F )~ b(bF )= b(DE )~ bF = VS
Finally, we conclude that [F < @]=b «— 0F <b%. This gives the required equivalence.

17. Nonstandard Criterion for Mixing of Filters. Let (¥:):ez be a standard family of
extensional filters and (0:):=z a standard partition of the identity. A filter & is a mixture
of (#:):=z with probabilities (6:):=z if and only if

(V=3 b F ) = bou(F ).

< By the general definition, F is an element of a mixture IZi-:0.%:, if there exists a
family (F:):.: such that /.= F. (:=Z) and at the same time F > ..:0:.F.. Applymg rules 1.1 and
1.2 of [1] and using the extensmnallty of the filters in the famlly (F:)izz, we conclude that,
first, & is also extensional, and, second, that the ascent &' is a mixture of (F% Jezz with
the same probabilities. Using the separability of v(B) and sec. 16, we successively obtain

Fl=30F - (VE<E) bF ' =bFi —

m

e%VterT“«hT«
> (Ve @ Z) 0:F = 0T« (Ve @ 3) 0 (0:F) = 1 (0:F o) — (Vi€ E) ba (F) = bey (F 0.

We have here used the fact that the monad of the image under a standard map is the image of
that monad.
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