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Let X be a vector lattice, Y be a K-space, and T ~2+(X, Y) be a positive linear opera- 
tor. An operator S~+(X, Y) is called a fragment (more rarely, a comment) of T, and we 
write S~ B(T), if SA(T--S)=O. It is clear that B(T) is the set of extreme points of the 
order interval [0, T], serving as the subdifferential of the sublinear operator x § Tx + 
(x ~ X). It is also obvious that the fragments arise as a result of application of the order 
projection to T in the K-space ~r(X, Y):~F+(X, Y)-~+(X, Y) of regular operators. The con- 
struction of the fragment algebra B(T) has sense for the investigation of the K-space 
Y) as well as for the general theory of operators. Important results have been obtained in 
this direction in recent years [1-5]. Facts, available in the most complete form, about 
projections in a operator space often use sometimes-inconvenient supposition about the exis- 
tence of projections on principal components in the domain of definition. 

The aim of the present article is to fill the arising gaps. The main object of investi- 
gation is the set ~ of the order projections in ~r(X, Y) that generates the fragments of T 

and for which, by definition, Tx + = snp{PTx: P ~ ~}for x ~ X. If the last condition is ful- 
filled for each T~+(X, Y), then the set ~ is said to be generating. 

With the aim of economy of words in formulations, in the sequel the space Y will be as- 
sumed to be extended. In addition, its filter of (weak order) unities is denoted by E and 
the basis is denoted by B or, more precisely, by B(Y). In the use of the technique of lower- 
ings and lifts we bear in mind a separated universe ~(B) constructed over B. The terminology 
and notation, used here, of the Boolean-valued analysis are consistent with the ones adopted 
in [6, 7]. Let us observe only that the liftY+ is considered, according to the Gordon theo- 
rem, as the canonical realization ~ of the field of real numbers R in V (B). Thus, Y = ~$. 
The sign [~] symbolizes in the sequel the truth value of the formula ~ in the Zermelo-Frankel 
theory. 

Attracting the device of infinitesimal analysis, we use a nonclassical formulation, 
going back to E. Nelson (details and bibliography are given in [8]). Moreover, without spe- 
cial stipulations, we accept the convention on the standardness of entourage, i.e., in the use 
of the theory of inner sets all disconnected variables in a formal expression of the treatment 
are assumed to be standard. The sign ~ has the usual meaning in the K-space Y: x ~ y for 
x, y ~ Y means that (v~te ~ E)Ix-- y] ~ ~. It is clear that for Y ~ R we mean infinitesimality 
of the number (x - y). 

The plan of the work is as follows. With the help of the analogue of the Milman theo- 
rem for a dense subfield of R we describe methods of generation of fragments of functionals 
and give connected (with it) representations of projections on principal components. Then 
the general case is analyzed with the help of the lift in the Boolean-value universe V (B) and 
of lowering of the results obtained for functionals. It is clear that we can give direct 
proofs of the statements, to be established, without appealing to the transfer principles. 
In this connection, it is necessary to use the operator version of the so-called Milman in- 
version - [7, Theorem 2.4.11] and the piecewise uniform approximation of the precise bound- 
aries (cf. [4, Proposition 2.1]). The selected path seems to no less justified, but is more 

principled in a certain sense. 

i. GENERATION OF FRAGMENTS OF FUNCTIONALS 

i.i. Let X be a vector space over a dense subfield R of the field R. Further, let 
p: X~R be a sublinear functional and U be a generating set for ~, i.e., p(x)=sup{l(x): 
[ ~  U} (x ~ X). Let T denote the topology of pointwise convergence in X#:=~(X, R) on 
elements of X. By the classical Milman theorem, for R=R the inclusion Ch(p)~c|~(U) , is 
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fulfilled for the set Ch (p) of extreme points of the subdifferential 8p. This inclusion 
(the Milman inversion of the Krein-Milman theorem) is valid also in the case, being con- 
sidered presently by us. 

1.2. THEOREM. Each extreme point of the subdifferential 8p belongs to the ~-closure 
of the generating set for p. 

It is clear that T is a locally convex topology in the vector space X * over the field 
R. In addition, by the Tikhonov theorem, 3p is T-compact. Let V denote the T-closure of the 
convex hull of U. It is obvious that V:=c1~(co(U)) is a convex ~-compact set. Let us sup- 
pose that a dertain element T ~ Op does not belong to V. By the separatedness theorem, there 
exists a ~-continuous linear functional F over X ~ such that sup {f(/): l~ V} = f(lo) < r < f([) 
for 10~ V and r~ll; Since F is continuous, we have IF(l)[ <~tll(xl)IV...Vil(x~)I for certain 
xl, ..., x~X, t~R and all l~X +. By the same token, for suitable numbers al, ..., .a~R we 

have F(1)=a11(xl)+...§ Working in the standard entourage, we choose numbers al, ..., 

~"IR, infinitely near to al,...,an, respectively. Let us also observe that by virtue of 
the hypothesis of standardness of x k and the inequality -p(-xk)<~ l(x~)<~ p(x~) we have l(x~)~ ~i~R, 

i.e., l(x~) is a finite number for each l~Op and k : = 1 ..... n. Let us set x:= i ai~x1~. Then 
k=l 

F (Z) = l (x) + ~]  (~h - -  gh) Z (x~) ~ Z (x), 
h ~ l  

for l~Op , since (a~--ak) is an infinitesimal quantity for k : = 1 ..... n. Hence F(1)+e>~l(x) 
for each standard ~ > 0. Therefore, for such an e > 0 

p ( x ) =  sup {/(x): l ~  U} ~ sup {F( / )+  e: l~  U} <~F(lo)+ e. 

Hence ~ On t h e  o t h e r  hand ,  

(v~te > 0) r<~F([)<~[(x)§ 

C o n s e q u e n t l y ,  ~176 We h a v e  o b t a i n e d  a c o n t r a d i c t i o n ,  i m p l y i n g  t h a t  Y = 8p, and 
t h e r e f o r e ,  on t h e  b a s i s  o f  t h e  Milman t h e o r e m ,  m e n t i o n e d  a b o v e ,  c L ( U ) ~ C h ( p ) .  > 

1 . 3 .  L e t  us  r e c a l l  t h a t  f o r  a s e t  A in  a K - s p a c e  t h e  symbol  AV d e n o t e s  t h e  r e s u l t  o f  
addition to A of the suprema of its finite subsets. The symbol A(+) denotes the result of 
addition to A of the suprema of increasing nets of elements of A. The symbols A(++) and 
A (+++) are interpreted in a natural manner. 

Now we fix a set ~ of positive projections and the corresponding set 5P(f):={pf: p~} 
of the fragments of a positive functional f in a vector lattice X over a dense subfield 
(with unity). 

1.4. The following statements are efl_uivalent: 

(1) ~(/)v(t~t)= S(/); 

(2 )  g_~__generates t h e  f r a g m e n t s  o f  f .  

( 3 )  ( V x a ~  p/(x)~/(x+); 
(4) _A functional g from [0, f] is a fragmen t of f if and only if for each x~X~ 

inf ((pdg) (x) -~ p ( f - -  g) (X)) = 0; 
p~-~ 

(5) (ve~ ~ ~ Ipf-gl(x)~ 0; 

(6) mf{Ipf--g[(x): p~}=0 for each fragment g ~B(f) andeach~ositive element x. 

(7) Forx~X + and g~B(f) there exists an element p~(/)V(t$) ensuring t h ~  
I pf - g I(x) = 0. 

Implications (i) § (2) ~ (3) are straightforward. 

(3) ~ (4). We will work in the standard entourage. First of all, let us observe that 
the fulfillment of the equality, in which we are interested, for some functionals f and g 
such that O<~g<~f, ensures for a standard x~0 the existence of a p~, for which Sg(x)~O 
and p(f--g)(x)~O. Therefore, ~176 and ~ )~~ 
i.e., gA(/--g)----O. 

Let us now establish that under condition (3) the equality, needed by us, is ensured 
by the usual criterion for disjunctness: 
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i,~f (~ (x,) + ( / -  e) (z~)) = o. 
xl~0,x2>~0 

x l ~- x 2 = x  

For a f i x e d  s t a n d a r d  x we f i n d  i n n e r  p o s i t i v e  x~ and x2 such  t h a t  x 1 + x 2 = x and,  more-  
o v e r ,  g(xl)zO a n d f ( x J ~ g ( x J .  By v i r t u e  o f  c o n d i t i o n  ( 3 ) ,  on t h e  b a s i s  o f  Sec.  1 .2  t h e  f r a g -  
ment g b e l o n g s  t o  t h e  weak c l o s u r e  o f  2 ( / ) .  I n  p a r t i c u l a r ,  t h e r e  e x i s t s  an e l e m e n t  p ~ 2 ,  
such t h a t  g(xl )z  pf(xl) and g ( x J z  p](xJ. Therefore,  pdg(xJz O, s i n c e  / g  <~ / f .  F inal ly ,  /g (x )  z 
0. Hence p( f - -g)(x)=p/(xJ+p](x l ) - -pg(x)  ~ g ( x J + g ( x l ) - - p g ( x ) - ~ / g ( x ) z O .  This ensures the 
needed e q u a l i t y .  

(4)  + ( 5 ) .  By v i r t u e  o f  t h e  i d e n t i t y  I p f - - g l ( x ) = / g ( x ) + p ( f - g ) ( x ) ,  c h o o s i n g  p ~ 2  such 
t h a t  / g ( x ) ~  0 and p( /  -- g) (x) z 0, we g e t  t h e  d e s i r e d  r e s u l t .  

The e q u i v a l e n c e  (5)  ~-+ (6)  i s  o b v i o u s .  The i m p l i c a t i o n s  (5)  + (7)  § (1)  a r e  p r o v e d  
w i t h  t h e  h e l p  o f  d e v i c e s ,  s e t  f o r t h  in  [ 2 - 4 ] .  

1 .5 .  The s e t  o f  p r o j e c t i o n s  2 i s  a g e n e r a t i n g  s e t  i f  and o n l y  i f  t h e  f o l l o w i n g  r e p r e -  

s e n t a t i o n s  a r e  v a l i d  f o r  a r b i t r a r y  p o s i t i v e  f u n c t i o n a l s  f and g and a p o i n t  x I> 0 :  

fVg(x) = sup (p/(x) + pag(x)); 

/ A g  (x) = inf (pdf (x) -';- pg (X)). 

< This is a direct consequence of 1.4. 

2. PROJECTIONS OF FUNCTIONALS OF PRINCIPAL COMPONENTS 

2.1. The following statements are equivalent for positive functionals f and g and a 
generating set of projections 2 : 

(1) g ~ {/}~; 

(2)  For  each  f i n i t e  x ~ f * ' X : = { x ~ X :  ( ~ 5 ~ ~  ~ }  t h e  r e l a t i o n  pg(x)zO, i s  v a l i d ,  p ro  7 
vided p/(x) ~ 0 for P ~ 2 ; ,  

(3)  (Vx~X+)(Ve>O)(H6>O)(Vp~2)  pf(x)<~6-+ pg(x)<e. 

(1)  + ( 2 ) .  Us ing ,  e . g . ,  t h e  c l a s s i c a l  Rob inson  lemma, we c h o o s e  an i n f i n i t e l y  l a r g e  
n a t u r a l  number N z + ~  such  t h a t  Np/(x)z  0 f o r  a f i n i t e  p o s i t i v e  v e c t o r  x.  Le t  us o b s e r v e  
t h a t  g(x)~(g/\N])(x),  f o r  t h i s  N s i n c e  g c o i n c i d e s  w i t h  i t s  p r o j e c t i o n  on { f}dd .  Hence,  con-  
s i d e r i n g  t h e  r e l a t i o n s  

pg (x) = p (g -- ghN/) (x) + p (gANI)  (x) ~ (g - - g A N I )  (x) + Np/(x), 

we c o n c l u d e  t h a t  pg(x)~ O. 

A p p l y i n g  t h e  Ne l son  a l g o r i t h m ,  we see  t h a t  (3)  i s  e q u i v a l e n t  t o  t h e  c o n d i t i o n  

( 2 ' )  (VStx~X+)(VP ~ 2 )  p](x) z O ~ p g ( x ) z O .  

Thus,  s i n c e  (2)  + ( 2 ' ) ,  i t  r ema ins  o n l y  t o  e s t a b l i s h  t h a t  ( 2 ' )  § ( 1 ) .  

(2') § (i). We take a functional h such that hA/----0. By virtue of 1.4(4), for a stan- 
dard z~X + there exists an element p~2, such that ph(2)~0 and //(x)~O. By condition 
(2'), pdg(x)~O. Consequently, AAg)(z)~<~ +~dg(x))=0. On the basis of 1.4(4), we con- 
clude that hAg=0, i.e., g~{/}dd, since h is arbitrary. 

2.2. THEOREM. Let f and g be positive functionals on X and x be a positive element of 
X. The following representations hold for the projection Pf on the component {f}dd: 

(i) Pig(x) ~ inf* {~ pd/(x)~ 0, p ~  2} (the sign ~ symbolizes the sharpness of a for- 
mula, i.e., the attainability of equality). 

(2)  Pig(x) = sup inf {pg (x): pa/ (x) <~ e, p ~ 2}; 
e>0 

(3)  P/g(x) ~ inf*{~ / ( x - -  !1) ~ 0 ,  0~<~/~<x}; 

(4) (V~ > O) (~5 > 0 )  (Vp ~ 2 )  pf(x)<~6-~Pjg(x)<~/g(x)+e, 

(5)  ( V e > O ) ( ~ 8 > O ) ( V O ~ < g  ~<x) /(x--g)<-6-+Pjg(x)<~g(g) +e, 
(va > O) ( v 6  > O! (~0 ~< y < x )  i ,  x - -  ~) ~< 6A g (,~) ~< P ~  (x) § ~. 
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<a For  b r e v i t y ,  l e t  us s e t  h:=P~g. I t  i s  c l e a r  t h a t  h(x )~g(x )and  pg(x)>~ph(x). I f  
f f ( x ) z  O, t h e n  pdh(x).~ 0 and ,  t h e r e f o r e ,  h(x)=~ ~ C o n s e q u e n t l y ,  e ach  s t a n d a r d  
e l e m e n t  o f  t h e  o u t e r  s e t  {~ p ~o~, paf(x) z 0} m a j o r i z e s  h ( x ) .  By t h e  t r a n s f e r  p r i n c i p l e ,  
we c o n c l u d e  t h a t  t h e  l e f t - h a n d  s i d e  o f  (1 )  does  n o t  e x c e e d  t h e  c o r r e s p o n d i n g  r i g h t - h a n d  s i d e .  
To prove the attainability of equality in (i) we observe that /~ (~--h)=0. Therefore, by 
virtue of 1.5, paf(x)~O and pg(x)~ph(x) for a certainp~. Since h~{f} ae, on the basis of 
2.1(2) we deduce that p~h(x)~O. Finally, pg(x)~ph(x) +Sh(x)~-h(x). By the same&token, h(x) = 
~ and (I) is established. 

To prove (2), taking ~ > 0, in the standard entourage we get 

inf {pg(x): p'~/(x)<~ e} ~< inf* {pg (x )+  ~: p~f(x)<~ e} 

inf* {~ pdf(x)~ O} + 6 = h(x)+& 
Since 5 is arbitrary, we have 

h (x) ~ sup inf {pg (x): PS" (x) ~ el. 
~>0 

Again ,  f i x i n g  a s t a n d a r d  number 5 > 0 f o r  each  i n f i n i t e s i m a l  ~ > O, on t h e  b a s i s  o f  (1)  we 
c o n c l u d e  t h a t  t h e  f o l l o w i n g  i n n e r  c o n d i t i o n  i s  f u l f i l l e d :  

inf {pg(x): p~/(x)< e} + 6 >1 h(x). 

I n d e e d ,  t h e  i n e q u a l i t y  pal(x)<-% e i m p l i e s  t h e  r e l a t i o n  pef(x)..~ 0 and,  t h e r e f o r e ,  pg(x)+ 6 t>- ~ 
>~ h(x). By the Cauchy principle, the above-mentioned inner condition is fulfilled for a 
certain standard strictly positive number g. Using the transfer principle, we finally de- 
duce that 

(V6 > 0) (~e > 0) h ( x ) - b  <~ inf {pg(x): p~f(x)<~ e}, 

which completes the proof of validity of (2). 

To verify (3), we proceed according to the pattern of proof of (i). Namely, if O<~y~x 
and f(x--y)~.O, then, since h(x)=h(y)+h(x-y)<~g(y)+h(x-y)and h~{f} ~', we see that h(x- 
y)~0, and therefore h(x):~~ To establish the sharpness in (3), let us note the equa- 
tion f/~ (g--h)= 0. This equation ensures the validity of the following statement: f(x-y)~ 0 
and h(y)~g(y) for a certain y from the interval [0, x]. Since h~{fl ~d, on the basis of state- 
ments 2.1 we have h(x)~h(y). Therefore, h(x) = ~ 

Statements (4) and (5) are verified in a similar manner by the application of the Nelson 
algorithm. We give the appropriate computations, e.g., for (5). To this end, we decipher 
the statement established in (3). In the first place, a certain inequality and, in the second 
place, the sharpness of this inequality constitute the content of (3). Analyzing the inequal- 
ity, we deduce that 

( v 0 < v ~ < x )  / ( x - y ) ~ 0 - ~ h ( x ) ~ < ~  
~-~ (V~te > O) (VO ~ / / ~  x) ](x-y)~O---,-h(x)<~g(~l)+e 

~ (w'~ > O) (vO < v < x) ( ~ 6  > 0) (/(x-y)<6--,-h(z)<g(v)+~)-~- 
~-~ (W~e > O) (5t~6 > O) (vo < y ~< x) f ( x - y )<~5- , -h (x )< .g (y )+e .  

Considering the statement about sharpness, we have 

(~y) (0 ~ y ~ x) A / ( x  - y) ~ 0A h (x) = ~ (~) *+ (~y) (0 ~ y ~ x) A ( v~t6 > 0) / (x - ~,) ~< 

~< ~A ( v %  > O) I h (x) -- g (Y) I <~ ~ ~ (V% > 0) (V~t6 > 0) (~y) 

Applying the transfer principle twice, we complete the proof. 

3. GENERATION OF FRAGMENTS AND PROJECTIONS OF OPERATORS ON PRINCIPAL COMPONENTS 

3.1. Let /: AXB-~ Y be .... an extension mapping and fv(a) := sup /(a, V)for a~A and V cB. 
Then the mapRing /v :A-+ g is also extensional, and /v# =/#v~. 

By virtue of the general rules of lifting, for a ~A we successively deduce that 

/~ (a) = sup / (a ,  V) = sup / (a ,  V) t = sup f ( { a / •  V) t -- 

= sup/ l ( ({a}  X V) I ) ~  Sup fl({a}~ X V~) =supf~({a} X V~)= sup [~(a, V I ) =  f%~(a).  

S i n c e  f+ i s  a f u n c t i o n  in  t h e  c o n s i d e r e d  B o o l e a n - v a l u e d  u n i v e r s e ,  w i t h  t h e  h e l p  o f  t h e  
a b o v e - p r o v e d  r e l a t i o n ,  f o r  a~, and a2 in  A we have  
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[a~ = a2] < [ f t . ,  ( a l ) =  f fv t  (aQ] : = [sup p (ai, V f ) =  s~lp/~ (a2, Vf)] = [/, ( a ~ ) = / v  (aJ] .  

Thus ,  f v  i s  an e x t e n s i o n a l  mapp ing .  M o r e o v e r ,  

[fvf (a) = f*~, (a)] = '[/. (a) = ]f~t (a)] = I (a ~ A) 

by virtue of what we have already established. 

3.2. The following statements are equivalent for a set of pro.iections ~ in ~r( X, Y) 
and T~+(X, Y): 

(1)  2 ( T )  lJ, v ( t + t ) =  B(T); 

(2 )  ] g e n e r a t e s  t h e  f r a g m e n t s  o f  T. 

(3)  An o p e r a t o r  S ~ [ 0 ,  T] i s  a f r a g m e n t  o f  T i f  and o n l y  i f  f o r  e a c h x ~ X  + 

inf (pdSx + P ( T - -  S) x) = 0; 

(4)  (Vx ~ ~ ( a p  ~ ~f r  PTx ~ Tx +. 

L e t  us  c o n s i d e r  X A be t h e  s t a n d a r d  name o f  X in  t h e  s e p a r a t e  B o o l e a n - v a l u e  u n i v e r s e  
V(B) constructed over B =B(Y). Let us observe that XA is a vector lattice over the standard 

name R A of the field R. In addition, R A is a dense subfield of ~ in V (B). Here, as usual, 

= Yt is an element that plays the role of the field of real numbers in V (B). Let us real- 

ize by the general rules the liftings of mappings of X into Y to the mappings of X A into 

in V(m. Then it is easily verified thatXAr$:=~"(XA,~) ~ ={R~: R~(X~Y)I. 

The lowered-down structures turn xAr$ into a K-space and even into an extended module 
over the algebra of orthomorphisms [6, 9]. Furthermore, we find ourselves, in essence, in 
the scalar situation, studied earlier. For the sake of completeness, we elucidate certain 
typical moments, needed by us. 

Let us recall that for R~'(X, Y) the lift R+ is defined by the rule[B~xA=Rx]=i 
for x~X. In addition, Re becomes a regular form onX A - an element of X A~ in V (B>. For 
P~ the mapping /~#-+(pR)f (R,~(X, Y)) is extensional. Indeed, for ~B we have 

~R~x = nR~x-+ (Vx ~ X) nPR~x = ~PR2x-+ n ~ [(PR~) f = (PR~) # 1. 

Thus ,  t h e  l i f t  P+ - a p r o j e c t i o n  in  X A~ in  V <m-  i s  d e f i n e d .  The r u l e  o f  a c t i o n  o f  P+ i s  as  
f o l l o w s :  P f R f = ( P R ) t  f o r  R ~ f ' ( X ,  Y). 

It is useful to observe that for S, T~-~+(X, Y) we have (SAT)~ =S~ /~T~ in V (s). In- 
deed, since [(SAT)#<S# AT#]=i, we deduce that 

[(SAT)f =Sf  AT~]=rSf AT f<(SAT)}]= 
- [ ( V R ~ X  A~+) R < S f  A R < ~ T t - + R < ( S A T ) f l  = A+( [ R f < S f A t ~ f < T ' ~ - - + R f < ~ ( S A T ) f l .  
-- Re~ X,Y) 

Let us set ~:=[R i +<S#]A[R#<T#]. It is certain that ~R<~=S and ~R~<~T. Therefore, 
~R~<n(SAT) . Hence 

[ n f < ( S A T ) f ] = [ ( V x ~ X A + ) R f x < ( S A ) T f x ] =  A [ R x < ( S A T ) x ] > ~ ,  ~ x  + 

i.e., the estimate, in which we are interested, is equal to one. In other words, the mapping 

R~'(X,Y)-+R#~xA~$ realizes an isomorphism of the structures ~(X, Y) and xA~$. By 
the same token, we can assert that S is a fragment of T if and only if S+ is a fragment of T+ 
in V (~). 

Let us now consider the lift ~f, defined by the rule ~%:={P%: P~}f. Using statement 
3.1 and what we have just noted, we see that ~ generates the fragments of T if and only if 

generates the fragments of T+ in V(B). This proves in essence the equivalences (i) +-~ 
(2)  ~ ( 3 ) .  

Finally, let us verify the equivalence (2) +-+ (4). Using the definitions and the esti- 
mation rule, for x'~X we successively deduce that 

[T f xA+ = sup{(PT t) xA: P ~  Y' ~" }1 = I ++ 
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~-+ [(Ve > O) (~P ~ :~ f) (PT } )xA + e ~ fx-'-] = I ~-+ 

~ - + ( V ~ E )  V [ ( T x + - - P f T f x A ) ~ e l =  t + + ( V e ~ E )  V [ ( T x + - - P T z ) ~ ] = I + - ~  

++ (re  ~ E) (~ (Pa)) (~ (g~)) (v~) z% (Tx + - Pr <~ e , ~  (v% ,~ E) (~ (P~)) (~ (~))  (v~) a~ (Tx + - P~Tx) <~ e 

(~ ( P 0 )  ( ~ ( ~ ) )  (v~) (w% ~ E) ~ (Tx + - I ) ~ x )  ~< e ~ (~ (P0 )  ( ~ ( ~ ) )  (vD ~ (rx  + - P~rx) ~ O. 

Here we have used the  n a t u r a l  n o t a t i o n  about  the  f ami ly  (PC) of  e lements  of  ~ 2nd  the  par-  
t i t i o n  of  u n i t y  (v~) in B. Choosing as P the  mixing of  (Ps) wi th  p robabYl i t i e~  (u~),  we 
a r r i v e  a t  t he  d e s i r e d  r e s u l t .  

3 .3 .  h s e t  9 ~ i s  g e n e r a t i n g  i f  and only_ i f  f o r  a r b i t r a r z S ,  T~=~f+( X, Y) and z ~ X +  

(sVT) z = sup (PSx + p~rx);  

(S A T) x = inf (PSx ~- Parx).  

This is an obvious consequence of 3.2 (or 1.5). 

3.4. The following statements are equivalent for__positive operators S and T and a ~9_q- 

erating set ~ of projections in ~(X, Y) : 

(1) s,~ {T}-~fi 

(2) ( V x ~ " , X ) ( v p ~ ) ( V a ~ B ( y ) )  u P T x , ~ O - + g P S x ~ O ;  

( 3 )  (Vx~m'X)(V~B(y)) ~TX~O-- , -r~Sz~O; 

(4)  ( V x > ~ O ) ( V e ~ E ) ( S 6 , ~ E ) ( V P ~ ) ( V r ~ B ( y ) )  z~PTx<~6-+r~PSx<~e; 

( 5 )  ( v z  >! O) (v~  ~ E) ( ~,,5 ~ E) ( v ~  , ~  B (Y) ) ~ r x  ~ ,5 ~ z~Sx <~ ~. 

I t  i s  u s e f u l  to  observe t h a t  f o r  / ? ~ + ( X ,  Y) 

Thus, for 

By virtue 
V (m. 

[ R f = 0 I = [ ( V x ~ X  A) R f x = o l =  A [ R f x A = 0 ] =  /% [ R x = 0 l .  
x6?_X x E X  

n ~ B : = B ( Y )  

[ R f = 0 ] ~ > ~ n R - - - - 0 + + n B f  =0. 

of the above equivalences, we establish that S~{T} ~ if 
Indeed, 

[st  ~ {Tt}~1 = t ++ [ ( v R ~  x A~+) ; q A T f  = 0 - ~ R A S  f -- 01 = 1 -  

(VR ~ ~ +  (X, Y)) [R f A T ~" ---- 0 --'- B f A s f = 01 -- i -,-,- 

~ ( v ~ + ( x ,  Y)) ( w ~ B )  a R A : ~ r = o - , - n R A ~ S = o .  

and only if S f ~  {TI} ~ in 

The condition in the last line obviously ensures the relation S ~ {T} dd . In its turn~ if the 
last relation is valid and the operator R~+(X, Y) and the projection ~B are such that 
nRA~T=O , then nICAT=O trivially. Therefore, ~RA3=0, and hence nRA~S=0. By the 
same token, S+ belongs to the component {Tf} ~d in V(s). 

The desired equivalences now follow from 2.1 with regard for what we have noted above 
and the rules of computation of estimates. For example, for (5) we have 

[ S t ~ { T f } ~ q = l  ~ [ ( V z ~ X  A + ) ( v ~ > o ) ( ~ a > o )  S f x < ~ r f x < d = l  

+-. (Vx ~ X + ) ( W  ~ E)(~6 ~ P ) [ s f z ~ < 6 - + r f x ~ < ~ l = l ~  
(Vx ~ x § (ve  ~ E) (u6 ~ E) [Sx <~ 6 -~ r x  <~ ~] = t 

+ - , - ( V x ~ X + ) ( V e . ~ E ) ( 3 6 ~ E ) ( V a ~ B )  [Sx<~6]~n-~[Tx<~e]>~z~ -~+- 

+ - - ~ - ( V x ~ X + ) ( v e ~ E ) ( : ~ 6 ~ E ) ( V z c ~ B )  z~Sx<~6--+nTx<~. > 

3.5. THEOREM. Let X be a vector lattice and Y be a K-space with the filter of unities 
E and basis B(Y). Further, let S and T be positive operators from .q~r(X, Y) and R be the 
projection of S on the component {T} dd. The following representations are valid for a posi- 
tive x ~ X �9 

( 1 ) /::x = sup i . f  {~Sy + aaSx: 0 <~ y <~ x. ~ ~ B (Y). aT (x -- y) <~ d;  
;e~E 

(2) Rx = supinf{(nP)dSx: ~ P T x ~ ,  P c . ~ ,  ~ B(Y)}, 
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where ~ is a generating set of projections in ~r(X, Y). 

We pass to the Boolean-valued universe V (m over the Boolean algebra B := B(Y). Since 

the component {T+} dd in V ~B) coincides with the lift of the component {T+} dd in the lowering 

XA~$ -with the image of the component {T} dd under the lift of mappings, by virtue of 3.1 
we see that R+ is the projection of S+ on the principal component {T+} dd in X Ar in V (B). 
Now, using the first part of 2.2(5) and working in V ~B), for x~X + we deduce that 

[(w> 0)(~a> 0)(vy ~ x~) (0 ~<v<~ ~ A T f (x A -- ~) <a)~ 
-~Rtx~<~stv+~] = I-- ( V e ~ E ) ( ~ ) ( V y ~ X )  

[0~<v A~<x' A Tt(x~--v ~)<*~Rtxv<~stv A+~I= i** 
~-+ (re ~ E) (~6 ~ E) (V0 < y ~< x) [T(x - y) ~< 6 -+ Bx ~< SY + e]---- i ++ 

+-~(Ve~E)(~6~E)(VO<~y<~x)  [T(x-y)<~f]<~(Bx<Sy+e]+~" 

+ - ~ ( v e , ~ E ) ( a 6 ~ E ) ( v O < ~ y < ~ x ) ( V ~ B )  [T(x--y)<~6]>~z~ -~ 
--,- [;Rx <~ Sg+ e] >~ a ~ ( re  ~E )  (~6 ~ E )  (v0 ~< g ~< x) 

- + ( v e ~ E ) ( ~ 6 ~ E ) ( V O < ~ y < ~ x ) ( V ~ B )  ~T(x -g )<~6  ~ 
-~ Rx <. ~Sg + ~dSx + e. 

Let  us s e t  r(6):=inf{'gSy+,~dSx: g T ( x -  y)<_ 6, a ~ B ,  O<~y<~x}. I t  i s  c l e a r  t h a t  in t h i s  
n o t a t  ion 

( V e , ~ E ) ( ~ 6 ~ E )  Rx<~r ( f )+e~Bx<~sup{r (6 ) :  6~E} .  

In a s i m i l a r  manner, from the  second p a r t  of  2 . 2 ( 5 )  we conclude  t h a t  

[ ( W > 0 )  (V6>0)  (~0~<y~< xA) T t ( x ~ -  Y) < 6  h S ~ y<~ 

~ B ~ x a 6 e ] = I + - ~ ( V e ~ E ) ( V 6 ~  E) V [ T ( x - - Y ) ~ 6 A S y ~  
O..<y~<x 

for a certain family (y~) of elements of the interval [0, x] and a certain partition of 
unity (~) in the algebra B. It is obvious that r(6)~a~Sy~+~ISx for all the named param- 
eters. Hence ~r(~)~Sy~xq-e for each ~ and, therefore, r(~)~xq-e. Since ~ is arbi- 
trary, we have sup {r(6): 6 ~ E} ~x. Together with the earlier-established reverse inequality, 
this ensures the vality of (i). 

Equation (2) is deduced in the same manner as (i). We should only note that ~# :={P#: 
p~}# is a generating set of projections in % A~ in V (m. Let us also note the following 
useful identities : 

(~p)aQ = Q - ~pQ = ~Q - ~pQ + ~Q = ~(Q - pQ)+ ~eQ = ap~Q + ~Q. 

Finally, computing the truth values of the variants of 2.2(4), carried over to F (B) , for a 
positive x~X we get 

( V e ~ E ) ( ~ t 6 ~ E ) ( V P ~ , ~ ) ( v ~ n ~ B )  r~PTx<~6-+r~P~Sx+r~Sx+e>~Bx; 

(Ve ~ E) (V6 ~ E) ([K (PO) i ~t (nO) u~P~Tx <~ 6 A n~PgSx <~ ~ B x  + s 

for a suitable family (P~) of elements of ~ and a suitable partition of unity (~5) in the 
algebra B. 

3.6. Equation 3.5(1) is obtained as the solution of a problem, given to me by E. V. 
Kolesnikov. Meeting him recently, I have come to know that he has successfully found an 
analogous expression for the projection on the principal component by modifying the argu- 
ment of Ch. Aliprantis and O. Burkinshaw in [i] (see [I0]). 

i. 

2. 

3. 
4. 
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TANGENTIAL COMPONENT OF A TENSOR FIELDt 

I. V. L'vov and V. A. Sharafutdinov UDC 517.9:512.62 

The present article deals with the proof of the tangential component theorem used in [i]. 
The theorem on conjugate tensor fields on a sphere, which arises in the process of this proof, 
is in our opinion of independent interest. We shall preface a statement of the problem and 
formulation of results for vector fields to the consideration of tensor fields of arbitrary 
degree, since in this particular case both theorems mentioned are especially obvious. 

An arbitrary vector field g:R~-+R ~ expands uniquely into the sum g(x) = f(x) + Z(x)x, 
where <f(x), x> = 0, g: R~-+R. We shall call the terms of this expansion, respectively, the 
tangential and radial components of field g, since vector f(x) is tangent to the sphere ix] = 
const, and vector Z(x)x is parallel to x. These components as a rule have singularities at 
x = 0, even if g(x) is a smooth (i.e., infinitely differentiable) field. In connection with 

n this, the problem arises: let f be a smooth vector field on R0=Rn\{0} that satisfies <f(x), 
x> = 0; what order additional conditions must it satisfy in order that there exist a field 
that is smooth on all R ~ , for which f is a tangential component? The answer to this question 
is simple. In order to state it, we introduce into consideration the tangent bundle space 
TO={(x, ~)~R ~XR ~] <x, ~>=0, I~I=I} of the unit sphere ~={~R~l I~]=i} and note that for 
vector field g and its tangential component f on T~ we have 

</(x), ~> = <~(x), ~> ((~, : ~ ) ~ ) .  

For the given field f that is a priori smooth on R~, the function on the left-hand side of 
this equation is defined and smooth only on an open subset T~Q={(x, ~)~T~ix#0} of manifold 
T~. As for the right-hand side of this equation, it belongs to C~(T~) if g is smooth on R ~. 
Thus, we arrive at the following necessary condition for a positive answer to the problem 
posed: function <f(x), ~> ~C~(T0~)must be the restriction to T0~ of some function in C~(T~). 
The tangential component theorem asserts the sufficiency of this condition for n ~ 3. 

If for field f the answer to the above-posed problem is positive, then a second problem 
is pertinent: with what degree of uniqueness is field g determined by its tangential compo- 
nent f? From the proof presented below, this answer follows from the problem: the germ 
Jet, g(0) [i.e., the values at x = 0 of all partial derivative of field g(x)] is uniquely 
determined by field f(x), while the radial component of g can be arbitrary outside any neigh- 
borhood of zero. The proposed proof consists of successive consideration of all partial de- 
rivatives of field f(x) and determination of their singularities at x = O. In this connec- 
tion we arrive immediately at the following problem: to describe the structure of pairs of 
tangent vector fields a, b:~R" on the sphere satisfying <a(x), y>=<x, b(y)> for x, y~, 
<x, y> = 0. We shall call these conjugate fields. We introduce one example of conjugate 
vector fields. For x~R$, we denote by Px the orthogonal projection of R ~ onto ~={y~R~l<x, 
y>~=0}. If A:R~R ~ is a linear operator and A* is conjugate to A, then the fields defined 

tDedicated to Yurii Grigor'evich Reshetnyak on his sixtieth birthday. 
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