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ON COMBINING NON-STANDARD METHODS. I. MONADOLOGY 

A. G. Kusraev and S. S. Kutateladze UDC 517.11+517.43 

The non-standard methods of analysis at this time are grouped into two main approaches, 
the infinitesimal analysis (Robinson's non-standard analysis) and the Boolean-valued analy- 
sis (see [I] and literature cited there). 

Robinson's non-standard analysis leads to a number of simplifications through an actual- 
ization of constructions which under the standard approach are considered potentially real- 
izable. The Boolean-valued analysis leads to a significant advancement in the theory of oper- 
ators by increasing the number of classical facts relating to functionals. We emphasize that 
this describes only a small portion of the typical properties of these approaches. 

When studying problems of functional analysis motivated by the theory of Kantorovich 
spaces, it is necessary to combine theoretical and technical methods offered by non-standards 
models of set theory. It should be specially noted that the Boolean-valued and infinitesimal 
variations of analysis along with the generality of the "nonstandard approach" have prin- 
cipal differences in their content and method. Therefore, there are many variations in their 
simultaneous application. One productive approach consists of studying the standard Boolean- 
valued model in a universe of internal Nelson sets (or more generally, external Kavai sets). 
In this case the specific methods related to the predicate of standard are used in a world 
external to the Boolean-valued universe, the world of descents. To be specific, by using a 
neoclassical statement of the non-standard analysis, a standard K-space E with a basis B is 
studied by applying a standard separable Boolean-valued universe u This variation of 
the study of cyclical extensional filters and related applications to the theory of K-spaces 
is described in [2, 3]. 

In some cases it is better to use a different approach, i.e., an application of infi- 
nitesimal methods to objects contained in V (B). Indeed, suppose we begin an analysis of an 
operator T acting on E by transforming it to a functional T+ through a lift to T(B). Then by 
interpreting results of infinitesimal functional analysis and performing a subsequent de- 
scent, we obtain the desired properties of the original T. This method has been realized 
in practice in several of our works and forms a basis for our subsequent analysis. 

The aim of the study initiated in this article is to develop and simplify certain formal 
possibilities which appear along the described path of combining the procedures of lifting 
and descending with an intermediate application of the apparatus of non-standard analysis in 
Robinson's case. Hereafter our main attention is devoted to the arising technical methods 
which are useful in analysis problems. Many interesting mathematical facts and problems con- 
nected with the formalization of processes of transfer and interpretation are consciously 

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 31, No. 5, pp. 69- 
78, September-October, 1990. Original article submitted November 22, 1989. 

762 0037-4465/90/3105-0762512.50 �9 1991 Plenum Publishing Corporation 



left out by us for future works. In this first article we have collected the simplest facts 
related to the monadology which will be needed in the future. 

i. Preliminary Results 

Throughout the following discussion we fix a complete Boolean algebra B and a separable 
Boolean-valued universe v(B). The truth estimate of a formula ~ of the Tsermelo-Frenkel set 
theory is denoted by [~]. Other terminology and symbolics of Boolean-valued analysis used 
below also agree with those of [I]. 

Applying methods of the infinitesimal analysis, we use the classical approach by A. 
Robinson realized inside V (B) [i]. In other words, in concrete situations we use standard 
and non-standard superstructures and the corresponding *-mapping (Robinson's standardization) 
represented by elements of v(B). Here the non-standard extension is assumed to be appro- 
priately saturated. Here descent standardization is by definition a descent of a *-mapping. 
Along with the notion of a descent standardization we also use the following expressions: 
"B-standardization," "prostandardization." Robinson's standardization of a B-set A is de- 
noted by *A. Correspondingly, a descent standardization of a set A with B-structure (i.e.~ 
a subset of v(B)), by definition represented as (*(A+))+, is denoted by .~A (here Ar is an 
element of a standard superstructure of "classical" elements in v(B)). Thus, *a~,A+--~a~ 
At$. We can also give a natural definition of a descent standardization ,r of an extensional 
relation r When necessary to consider descent standardization of standard names of elements 
in the yon Neuman universe u for convenience we use abbreviations *x:--*(x A) and, respectively, 
,x:= (*x)$ for x~ V. Rules regarding the placement and omittance of stars when using descent 
standardizations without special stipulations are as free as those used for Robinson's *- 
mapping. 

As an illustration, we cite several simple rules of placement of stars and variations of 
principles of transfer and idealization in the described situation. 

i.i. Given sets F, G ~#(V (m) and an extensional relation r we have 

,(G N F ) = , G  N ,F ,  ,(G U F ) =  (,G U , F ) ~ ;  
. ~  (.G) = . r  (G). 

Proof. The proof consists of successive application of rules of descending and lifting 
and properties of *-mappings. For example, the second formula is derived using the follow- 
ing : 

, ( ~  u ~ ) =  (,((G u F)t))~ = (*(a t  u F~)) = (*(Gt) u *(~t))~ = ((*(Gt))~ u (*(Ft))~)f~ = ( ,G u , F ) H .  

1.2. Suppose (A t ) t ~  is a family of non-empty sets with a B-structure and (b~)~z is a 
decomposition of the unit. Then we have the following for an intermixing: 

P r o o f .  L e t  A:=Z~b~A~. C l e a r l y ,  f o r  a l l ~  we h a v e  b~ ~[A~t=A~I=[*(A~)=*(A~)]. 
T h e r e f o r e ,  ( , h ) +  i s  an i n t e r m i x i n g  o f  ( ( , A 0 t ) ~  w i t h  p r o b a b i l i t i e s  ( b ~ ) ~ .  I n  t h i s  c a s e  [2] 

we h a v e  ,A=~_~zb~,A~, as  d e s i r e d .  

1 . 3 .  P r i n c i p l e  o f  T r a n s f e r .  L e t  ~ = ~(x, y) be  an e q u a t i o n  o f  t h e  T s e r m e l e - F r a n k e l  
t h e o r y  (wh ich  does  n o t  c o n t a i n  any  f r e e  v a r i a b l e s  b e s i d e s  x and y ) .  Fo r  e v e r y  n o n - e m p t y  
element F of V (B) and every z we have 

(~z ~ , F )  [~ (x, *z)l = 1 ++ (~x ~ F$) [~ (x, z)] = i;  

( v x  ~ , F )  [~ (x, *z)] = t ++ (Vx ~ F~) [~ (z, z)] = t. 

I f  G i s  a s u b s e t  o f  V(B) t h e n  we h a v e  

(~x~ ,G) [~(x, *z)] = l +-~ ( ~ x ~  Gt$ ) [~(x,  z)] = 1; 

(VX ~ ,G)  [~ (x, *z)] = t ++ (Vx ~ G) [~ (x, z)] = 1. 

P r o o f .  Us ing  t h e  n e c e s s a r y  d e f i n i t i o n s  and c o n s e c u t i v e l y  a p p l y i n g  b o t h  t h e  maximum 
principle of the Boolean-valued analysis and the transfer principle of Robinson's standard- 
ization (Leibnitz' principle), we obtain the following: 

(~x ~ ,F)  [r (x, *z)] = 1 +~ [(~x ~ *F) ~ (x, *z)] = t ++ [(Zx ~ F) ~ (x, z)] = ~ ~-~ (Zx ~ F$) [~ (x, z)] = 1; 

(Vx ~ ,V) [~ (x, *z)] = t - ~  [(Vz ~ ( .G)t)  ~ (x, *z)] = t 
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~-~ [(Vx ~ *(Gf)) ~ (z, *z)] = i ~ [(Vx ~ @) ~ (x, z)j = I ~-~ A [~ (x, z)] = 1 +~ (Vx ~ G) [~(x, z)] = ~. 
x ~ G  

The o t h e r  two e q u i v a l e n c e s  a r e  p a r t i a l  c a s e s  o f  t h e  p r o v e n  o n e s .  

1 . 4 .  P r i n c i p l e  o f  I d e a l i z a t i o n .  Suppose  X+ and Y a r e  ( c l a s s i c a l )  e l e m e n t s  of  Y (B) and 
= ~(x, y, z) i s  a f o r m u l a  o f  t h e  T s e r m e l o - F r a n k e l  t h e o r y .  Then e v e r y  e l e m e n t  i n t e r n a l  t o  

V (B) satisfies 

( V f m A c  X ) ( a g ~  .Y)  ( V z ~  A) [~(*Z,g,z)l=l - ~ ( a g ~  . Y ) ( V x ~  X) [~(*x,g,z)] = t. 

P r o o f .  I n d e e d ,  a p p l y i n g  t h e  p r i n c i p l e  o f  t r a n s f e r  o f  B o o l e a n - v a l u e d  a n a l y s i s ,  we o b t a i n  

[ ( v A ~ . ( X I ) )  ( a g ~ * y )  ( V x ~ A )  ~ ( * x , y , z ) ]  = [ ( a y e .  y )  ( v x ~ x )  ~(*z,  g, z ) ] .  

I t  r e m a i n s  t o  show t h a t  ~ , ~ = ( X f ) = ~ = ( X ) t t :  = {A}: A ~ e ~ ( X ) } }  and a p p l y  r u l e s  o f  e s t i m a -  
t i o n  in V (B). 

2. Descents of Monads 

In this paragraph we state fragments of monadology necessary for the representation 
and comparison of filters in the Boolean-valued model. The presentation is conducted anal- 
ogously to the theory of cyclic monads in [2, 3]. 

2.1. Let ~ be a basis of a filter in some subset of V (B) and ~': ={G~: G~}. As 
usual, a symbol ~ denotes a filter inside V (B) with a basis ~'~. An element ~t is called 
the lift of a filter ~. Given a filter ~- inside V(B), its descent ~* is defined as a set 
of supersets of a basis {Fr F~r Finally, the cyclic envelope ~$ of the basis of the 
filter ~ is defined as a filter with a basis {G~r G ~}. 

2.2. Given a filter ~ of sets with B-structure, we define its descent monad m(~-)to 
be 

m ( ~ ) : =  N , F .  

2.3. i) The descent monad of a filter is the descent of the monad of its lift; 

2) the lift of a descent monad is a monad of the lift of a filter; 

3) every set F of elements of V (B) satisfies F~-fr ~+,f~m(~); 

4) descent monads of a filter $~ and its cyclic envelope ~-~$ are equal to each other. 

Proof. Assertions i) and 2) are proven simultaneously as follows: 

z ~ m ( ~ - )  ~-~ (VF ~ Y - )  z 

A [= ~ * ( F f ) ]  = i -,->- [ ( V F  ~ .Y" f )  z 

To prove assertion 3), we use the fact 
*-mapping contains a monad of this filter. 
the following (compare with Sec. 1.3): 

, F  ~ (VF ~ .Y') [z ~ * (Ff)] = ~ ~--. 

that a set belongs to a filter if and only if its 
Then, calculating the truth estimates, we obtain 

Assertion 4) is satisfied since ~-}~)-----~-) inside V (B). 

2.4. Suppose (~)~ is a family of filters, (b~)~ =- a decomposition of the unit, and 
~:=~%=sb~-~ ~ is a mixing of (~-t)~= with probabilities (b~)~_=. Then 

m (~-~) = E b~m (~r-~). 

Proof. By the definition of mixing we have [3-=~-~t]~b~ for ~Z. Since filters inside 
V(B) are equal if and only if their monads are equal, we have 

(V~E) [~=~]~>b~(V~Z) [~(~)=~(~)]~>b~ .... 

(V~ ~ E) bt~ (~z-)+ = b ~  (~V-[)$ ~-~ m (~ '~)  = ~] b~m (~'~). 

2.5. Suppose r is an extensional relation and a filter ~- touches the effective domain 
of definition of r Then the descent monad of the image of the filter is the image of the 
descent monad) i.e., 
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m (r (~)) = (,r  (~ (~)). 

Proof. Considering the fact that inside V (B) the monad of the image is the monad of the 

filter $rt , we compute as follows (compare with Seco I.I): 

( , , )  (m (~))  = ( , ( ~ f ) )  ~ (~  ( ~ t ) ~ )  = ( ( , e l ) )  (~  ( ~ f ) ) ) ~  = ,~ ( ~ f  ( ~ t ) ) ~  = ~ ( ~  (~)~).~ = m (r 

Here we used Sec. 2.3 (2)  and a r u l e ' @ f ( ~ t ) = @ ( ~ )  t 

2.6. The following statements are equivalent: 

i) filters ~-t and ~t intersect inside v(B); 

2) for all Y ~  and G ~  we have F~nG~; 

3) descent monads m(~) and m(~) have a common point. When equivalent conditions (I)- 
(3) are satisfied, we have 

m(5~ r') n m (9~) = m (~'f l ,  V d~ +) ; 
._,ar-t V .~t = (~rf~ V 5~f ~) t. 

Proof. We have 

t V = [ ( w <  n 

= k A [ F f n @ @ ~ ] = t m ( ~ ) f n m ( ~ ) f @ ~ l ,  

from which the desired conclusions follow. 

2.7. Filters $r and $~ satisfy 

m ( ~  A ~ )  = (m ( ~ )  U ~ (~ ) )5 ;  

s t  A Y = ( ~  A ~)~. 

Proof. By definition, a filter (~g-A~) f inside V(B) has a basis {(FUG)f:F~-, G~}f. 
Therefore, by using an equation (F U G) t = F~ U G~, we conclude that (~- A ~)f = ~f /~ ~f. Thus, 
Sec. 2.3 implies that 

~ ( ~  A ~)f = ,~ ((~- A ~)t) = ~(.~t A ~ )  = ~ ( ~ t )  U ~ (~ t )  = ,~(~) f U ,,~(~)f. 

I t  remains to  r e c a l l  t h a t  (m(~-) f  U m(~) f )#=(m(Sr)Um(~)) fk  

2.8 .  THEOREM. Let. ~ be a set  of  f i l t e r s  and ~ t  := {~ - t :  ~ z - ~ $ } f  i t s  l i f t  to  V (B) .  Then 
the following statements are equivalent: 

I) the set of cyclic envelopes ~f~:={~r~l:$c~} is bounded from above; 

2) the set gt is bounded from above in v(B); 

3) n { m ( ~ ) : ~ }  v~ ~; 

When the equivalent conditions (i)-(3) are satisfied, we have 

re(sup ~ f t ) =  ~ { m ( ~ - ) :  ~ ~ ~}; 
sup ~ t  = (sup ~) t 

P r o o f .  I f  ~ f $  i s  bounded  f r o m  a b o v e  t h e n  f o r  9 ~ : = s u p ~ 1 4  a n d i ~ ' ~  " we h a v e  ~ > ~ l # ,  
and therefore m(~)~m(3r#$)=m(~) ,  as  i m p l i e s  by Sec .  2 .3  ( 4 ) .  Thus ,  m ( ~ ) ~ N { m ( ~ - ) : ~ } .  
Now s u p p o s e  t h a t  f e  s u p ~ f r  T h e r e  e x i s t s  a f i n i t e  s e t  g0 ~ ~ s u c h  t h a t : F ~ s u p ( g 0 f l , ) .  T h e r e f o r e ,  
, F  ~ m(sup(~~ . S e c t i o n  2 .5  t h e n  i m p l i e s  t h a t  , F  ~ N {m (Y-): ~ - =  6~ F i n a l l y ,  we o b t a i n  

re(sup ~ l ~ ) ~  N {m(~-) :  ~-  ~ ~~ g 0 ~  ~n~(~~ = N {m(9~): ~-  ~ g } .  

The a b o v e  a r g u m e n t s  p r o v e  i m p l i c a t i o n s  (1 )  + (2 )  + (3 )  and  t h e  d e s i r e d  e q u a t i o n  f o r  d e -  
s c e n t  monads .  Zf (3 )  h o l d s  t h e n  f o r  any  f i n i t e  s u b s e t  g0 o f  $ an i n t e r s e c t i o n N { m ( ~ ) : ~ g ~  
i s  n o n - e m p t y .  T h e r e f o r e ,  See .  2 . 6  i m p i i e s  t h a t  t h e r e  e x i s t s  an e x a c t  u p p e r  bound sup(~f0f~) 
and t h e r e f o r e  a b o u n d  sup~ ' f r  

The p r o o f  i s  c o m p l e t e d  by t h e  f o l l o w i n g  c a l c u l a t i o n  o f  t r u t h  e s t i m a t e s :  

[sup ~ t  =,(sup g )  *] = [~ ( (sup g )  b =  n {~ ( ~ ) :  ~ ~ {g~ : ~ ~ ~}tI] 

= : [m(supgf+)  f = N{m(~-) t : ~ - ~ ~  - - - [m(sup~f~)  f = N {m(~-): ~ - ~  g } t ] .  

765 



2.9. It is useful to note that the union of an infinite set of descent monads and 
even the cyclic envelope of this union are not in general descent monads. This situation 
is similar to that of usual monads. 

2.10. Suppose (~r~)~ is a family of cyclic filters. Then the descent monads satisfy 

Proof. Let ~- be the product of these filters. Then, using the obvious notation, we 
f have ~-= sup[Pr{ ~ (~-~): $~ ~]. Using a symbol (St)~ for a lift of a mapping ~ ~ ~-~ and 

using Secs. 2.3 and 2.8, we obtain 

m( ~ - ) =  D {m(Pr~(Sr-[)): [ ~  E} = (D {~(pr~l(~ar'[): [ ~  ~}~)4 

Thus, 

3. Descent Monads of Proultrafilters 

In this paragraph we characterize proultrafilters, i.e., maximal cyclic filters whose 
lifts are ultrafilters in the Boolean-valued universe. 

3.1. The following statements hold: 

(i) given a cyclic filter Sr and a cyclic set U, we either have.U D m(~-)~,or U'~-; 

(2) given an extensional filter ~r and a cyclic set U, we either have .UDm(!~-)=/=~, or 
,(u') ~ m(~). 

Proof. Applying 2.3 (i), we see that it suffices to prove statement (i). To accomplish 
this, we ascertain that there exist two mutually exclusive possibilities: 

( v f ~ )  Unff~,=/=~, ( a F ~ )  UnF=~. 

In  t h e  second  c a s e  we have  U ' ~ .  In  t h e  f i r s t  one ,  u s i n g  Sec.  2 . 5 ,  we o b t a i n  ,U  D m ( ~ )  =/= 

3.2. Non-Standard Criteria of Proultrafilters. The following statements are equivalent: 

(i) 91 is a proultrafilter; 

(2) ~ is an extensional filter whose descent monad is minimal with respect to inclusion; 

(3) we have 
= (x) + : =  {A}4: x ~  ,A} 

for every point x in the descent monad m(~l); 

(4) 91 is an extensional filter whose descent monad is easily caught by a cyclic set, 
i.e., every U=Ut$ satisfies either m(91)~,U, or m(~)~,(U'); 

(5) 91 is a cyclic filter such that every cyclic U such that ,U D m(~-)v a ~5 satisfies 

U~91. 

Proof. It is convenient for us to carry out an excessively detailed proof using a scheme 
(I) + (2) + (3) ~ (4) § (i) and (i) +-+ (5). 

(i) + (2). If m(~)~m(~9), then ~t~t~=~. Therefore,~gt~=~ and m(~/)=m(~t~) =m(~). 

(2) + (3). Consider 91~. If in V (B) we have ~(91t)~(~), then m(~)=m(~) �9 Therefore, 
~(9~t)=m(~l)t=m(~)#=m(~). Thus, ~t is an ultrafilter in V (B). In other words, 

[(Vx~l~(91t)) A ~ t -*-~ x ~ * A ] =  ~. 

Using rules of truth calculation, we conclude that 91= 9/t~ ---- (x) ~ for all x~m(~)= ~(91t)~. 
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(3) § (4). Using 3.1 (2), we see that a cyclic U either satisfies m(~)c,(U'),or ,U 
m(~)~Z. In the second case an element x~m(~-) ~ ,U by definition satisfies x~,U, and 
U#$ = U~. Therefore, .U~ m(~). 

(4) § (i). Suppose ~ is a cyclic filter such that ~. Choose a cyclic set U~ ~. 
If m(~)~,(U'), then 2.3 (1)-(3) imply thatU'~H='~. This is a contradiction. Thus, we 
have a case where .U~m(~). Again using 2.3 (1)-(3), we conclude that U ~. Consequently, 

is a maximal cyclic filter, i.e., a proultrafilter. 

(I) *-+ (5). If ~ is a proultrafilter and a cyclic U satisfies,U~m(~)ve~, then state- 
ment (3) implies that U~. On the other hand, if U~, where U=Uf$ and ~ is a cyclic 
filter majorizing ~, then ,U~m(~)~,U ~m(~)=.U=/=~. Therefore, U~ by condition of (5). 
Thus, ~ = ~. 

3.3. It is useful to compare the derived criteria for proultrafilters with those cited 
in [3]. To feel the difference in the formalism of the two, we emphasize that descent monads 
are obviously unions of descent monads of proultrafilters. On the other hand, the standard 
monads of extensional filters do not reduce to unions of their essential points. 

4. Quantification on Descent Monads 

In this paragraph we cite some basic facts related to the deciphering of statements 
containing quantors extended to descent monads. 

4.1. Suppose ~ =~(x) is a formula of the Tsermelo-Frankel theory~ The truth estimate 
of ~ is the same on any descent monad of any given proultrafilter 9~, i.e., 

:(v~, v ~ ( ~ ) )  [ ~ ( x ) ] = [ ~ ( y ) ] .  

Proof. It is known [4] that the existence and universality are equivalent for ultra- 
monads, i.e., in V (B) we have (Vx~(~t)) ~p(x)+~(~y~(~t)) !~p(y). Using 2.3 (2) to calcu- 
late the truth estimates, we obtain 

A [~(~)I = I(w~ ~(~)f)~(~)I = [(w~ ~(~)) ~(~)] 

= [(~Y~ ~('at)) ~(~)] = [(~ m('a)f)~(Y)] = V [~(~)I, 
u~(~) 

which implies the desired result. 

4.2. THEOREM. Suppose ~=~(x, y, z) is a formula of the Tsermelo-Frankel theory and 
~-, 5 v are filters of sets with B-structure. Then the following rules of quantification hold 
(where y and z are internal in v(B)): 

( 1 ) (~x ~ m (:~r-)) [cp (x, y, z)] = t ~ (VF ~ ::7-) (:~x ~ , F )  [q~ (:c, b', z)] = 1; 

(2)  ( v z ~  m(~- )) [~p(~, ~, z)]= ~ (aF ~ Y-~+) (Vz ~ , ~ )  [~p (z, ~, z)/= ~_; 

(3)  ( v x ~  m(Y-))(av ~ m(~)) [q~(x, ~, z ) l =  ~ ~ ( v a ~  ~)  (aF ~ Y'~*) (W: ~ ,F)(~V ~ , ~ )  [,~ (z, ~, ~)t ----- ~; 

( 4 )  ( ~ x ~  m ( ~ ) ) ( v u  ~ ~ ( ~ ) )  [(p (x, ~, ~)1 = ~ + ~ ( a ~  ~ ~ " ) ( v ~  ~ ~ - ) ( ~ z  ~ . ~ ) ( v ~  ~ .~)[~;  (z, ~, z)l = ~. 

In  a d d i t i o n ,  f o r  s t a n d a r d i z e d  f r e e  v a r i a b l e s  we h a v e  

( I ' )  ( a z u r e ( S t ) ) ,  [~(x, *y, * z ) ] =  i ~-~ ( v Y ~ f ) ( a x ~ F f ~ )  [~(,r, ,~A z ) ] =  t; 

( 2 ' )  (Vx~ra (~z ' ) )  [q~(x, *y, * z ) l = l - ~ - , - ( : ~ F ~ S m ; ) ( y x ~ F ) [ q : ( x .  ~2, z ) ] = l ;  

( 3 ' )  (Vx ~ m ( y - ) ) ( a  u ~ m ( ~ ) )  

y ,  z ) ]  = 1; 

(4') ( N x ~ m ( $ r ' ) ) ( V y ~ m ( ~ ) )  

y ,  z)] = i. 

Proof. 
deduce that 

[q~(~, u, * z ) ] - -  i . ~ ( v c  ~ ~ ) ( ~ F ~ y - t + ) ( v ~  ~ , v ) ( ~ y  ~ Gt4 ) [q:(z, 

[qo(x, g, * z ) ] =  t +-,-(:aG~S~t+),(VF~.Y-)(~x~Ft4:)(Vy~G):[qc(x. 

We Begin by proving rules (i) and (2). Applying Nelson's algorithm i~ v(B), we 

( w ~  m (st)) Iq~(., y, ~)1 = ~ ~ [ ( w ~  ,~ ( g ~ ) )  ~ ( . ,  y, ~)] = t 

++ [ (ag  ~ S t) ( W  ~*F)  ~ (., u, ~)] = i ~ (aF  ~ ~ + )  (Vz ~ .F) [~ ( . ,  y, ~)] = ~. 
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We now prove statement (3). Applying (2) and then (i), we have 

-,--,- ( v z  ~ m ( ~ ) )  (VG ~ ~ )  (~y  ~ , ~ )  [~ (x, y, z)] = 1 

+-~ (VG ~ ~ )  (Vx ~ m (~-)) [(~y ~ *G) ~ (z, y, z)] = 1 

Statement (4) is  proven s i m i l a r l y .  The equivalences  contained in ( 1 ' ) - ( 4 ' )  fol low from the 
already established ones by applying the transfer principle 1.2. 

5. Procompact Filters and Mappings of Compact Spaces 

In the future we will need criteria of procompact (cyclically compact) sets and filters 
(see [5]). To save space, as in [2], we restrict our attention to the case of uniform spaces. 

Thus, let (X,~) be a uniform space in V (B) and (X$,~ ~) its descent. Clearly, a descent 
monad m(q~ +) is an equivalence relation on ,X. For its notation we use the same symbol of 
infinite closeness z as that used for ~(ql) in V(B). Thus, ~x = m(~$(x)). 

5.1. An element x is a contact point of the cyclic envelope of a filter ~r if and only 
if ~xnm(gz-) v e ~ '  i.e., if x is micro-limiting for m(~z-). 

Proof. It suffices to use Sec. 2.6, since x~cl ($c#$)++N~-t$ V qL~(X)++m($C)Nm(ql~(x)) 
~Z. 

5.2. If U is internal in V(B) then let eI=(U$) be the set of all micro-limiting points 
of U+, i.e., the microclosure of U+. The set cl=(U#) is closed. Every subset U of X satis- 
fies cl~ (,U) = cl (U~). 

Proof. For y~cl=(U$) and a cyclic open neighborhood ~ of a point y there exists x 

such that ~x~Ui~Z and x~C. Since .~x, we have ( u  The ideal- 

ization principle dictates that ~y~U$=/=~, i.e., y~cl~(U$). Clearly, c]=(U$) =(cl~(U))$. The 
latter observation concludes the proof. 

5.3. A point y in ,X is called descent nearly standard, or simply nearly standard if 
there is no danger of confusion, if for some x ~ X$ we have *x ~ y. Thus, the descent nearly 
standard points of ...X are elements which are infinitely close to the points of the standard 
kernel of the set *X in V (B). 

5.4. Criteria of Procompactness of Filters. Given a filter ~ r , the following state- 
ments are equivalent: 

(i) $c is procompact (cyclically compact), i.e., every cyclic filter which is thinner 
than ~- has a contact point; 

(2) every proultrafilter majorizing $c~$ converges; 

(3) a descent monad m(~-) consists of nearly standard points; 

(4) ~r~ is compact in v(B); 

(5) Sr~ is cyclically compact. 

Proof. (i)§ If x is a contact point of a proultrafilter ~, majorizing ~r%$,then 

~x~m(~)=~ , so then 3.2 (2) implies that m(~)~=x. Therefore, ~-~x. 

(2) + (3). Suppose y ~ m(Sr). Then (y)+ is a proultrafilter. Clearly, y is infinitely 

close to the limit of (y)+. 

(3) + (4). Using the rules of lifting, we conclude that a monad ~(/~-~ consists of 
nearly standard points in V (B). 

(4) + (5). If ~ is a cyclic filter thinner than ~r~, then ~(~)c ~($r~;) in V (B). Using 
Sec. 5.1, we see that ~ has a contact point. 

(5) ~ (1). It suffices to note that ~r#$ and ~r~ are majorized by the same proultra- 
filter. 

5.5. A Criterion of Procompactness. A set A++ is precompact (cyclically compact) if 
and only if every point of ,A is descent nearly standard. 

Proof. It suffices to apply Sec. 5.4 to a filter with a basis {A++}. 
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5.6. It is useful to compare criterion 5.4 with criterion 3.2 in [2] for the nearly 
standardness of essential points of Robinson's standardization of a given cyclic set~ 

5.7. A point y of a set ,X is called descent pre-standard, or simply pre-standard if 
there is no fear of confusion, if a microhalo =y contains a descent monad. Thus, the de- 
scent prestandard points of ,X represent the pre-standard points of *X in V (B). 

5.8. Given a filter ~-, the following statements are equivalent: 

(i) every descent pre-standard point of m(~') is descent nearly standard; 

(2) every cyclic Cauchy filter thinner than ~-t$ converges; 

(3) the filter ~'t$ is complete; 

(4) ~'~ is complete in V (B). 

Proof. The equivalence (i) +-+ (4) follows from the usual criterion of completeness of 
the filter s -t, which consists of a requirement that pst(*X)N~(~-t)~nst(*X)in V(B) (see [6]). 

(I) ~ (2). Suppose ~is a cyclic Cauchy filter ~-~~ If x~m(~), then x~(~)~, 
so therefore x is a descent pre-standard point. Thus, x is descent nearly standard, and 
there exists FIEX such that ~YNm(~)~- Using Sec. 5.1, we see that y is a contact point 
of ~. Since ~ is a Cauchy filter, we have ~-+ y. 

(2) § (i). Suppose x~m(~) and ~x= m(~). Clearly, ~t~ is a cyclic filter which is 
a Cauchy filter. Section 2.6 implies that we have a filter ~$ V~ t~. By assumption, it has 
a limit y. We see that x~m($~-)nm(~)~m(~(y)). Therefore, x is a descent nearly standard 
point. 

Finally, it remains to show that (2) § (3), since the implication (3) § (2) follows 
directly from the definition. 

(2) § (3). Thus, suppose ~ is a Cauchy filter which is thinner than ~t$. Clearly, 
~$~z-~$. Since the uniformity of ~ is cyclic, ~$ is also a Cauchy filter. Since 
statement (2) implies that ~$ converges, ~ also converges. 

5.9. A filter ~" is called pro-pre-compact (cyclically completely bounded) if ~t is 
completely bounded in V (B) . The following results are direct consequences of the introduced 
definitions and known criteria [6]. 

5.10. A filter is pro-pre-compact if and only if every point of its descent monad is 
descent pre-standard. 

5.11. Hausdorff's Criterion. A cyclic filter is procompact if and only if it is com- 
plete and pro-pre-compact. 
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