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lntroduction

Let Y be a real vector space, G: Y '+ R a convex function, and
Y' = L( , R) its algebraic dual. We assigr to 6 its subdifferential at a pointt
that is, the set

0i (G) : { t (Y 'z  I (u)* , ( t )  <  G( i l -G(D (v€7) } ,
and its Young transfonn G*: Y' + R U {*-}, given by

G*(t)== 
?tp 

(, (a)-G(il).

Subdift'erentlals and Young transforms play a crucial role in the theory of
exiremum probieins. The reasons for this are plain to see: for it is clear that a
subdifferential is a non-smooth analogue to a differential and that, just as in
the snt cotrr case' Fermatl; 

:T ;i:T,iffil;::1.
'ihe role of the Young transfonn is equally clear, since - G*(l) is a solr.rtion of
the extremum probiem

a e Y, G(il - l(y) + inf.
In particular, - Cjx(0) = inf {G(y): A €Y}.

This motivates our main theme, which is one of the central problerns of
local convex anal1,-sis, namely, that of finding rules for computing the
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strbdiffercntials rnd Young transforms of complicated convex functions. It is
irnrnediately clear that for an adequate fonnulation of this problem, that is, of
describing the subdifferential 0;(G. F) and Young transform (G o l)* of a
conrposition rvith sorne mapping F: X -+ Y, rve require a reasonable extension
of ideas, at least to the'presence of an orderrelation on )'consistent with the
vector structure. Thus, the need arises for an apparatus of the local investi-
gation of convex operators acting on arbitrary ordered vector spaces. An
account of such a device constitutes the main substance of this article.

It must be pointed out that the construction of a subdifferential calculus
for sufflrciently general operators necessitates the rejection of standard geo-
metrical schemes of convex analysis, since arguments based on functional
separability are on principle unsuitable, say, for operators acting on the space of
all measurable functions. More precisely, to associate with a convex operator
F: X + )/ the family of convex functions I " F: X + R, where / is a positive
functional on I, though useful in a number of cases, can scarcely be regarded
as a universal method of analysis, for the simple reason that the only such
f u n c t i o n a l i s / = 0 .

In this context rve take in the paper as our starting point another purely
analytic approach, based on the theory of Kantorovich spaces. Namely, we
observe that, from a technical point of vierv, there are not all that many
essentially "non-linear" convex operators. More precisely, with each
cardinality and c::ch K-space of images rve can associate only one sublinear
operator, the canonical one. Then it turns out that all the other sublinear
operators are compositions of this one with linear operators. In the case of
convex operators, roughly the same situation prcvails. Thus, all questions in
the subdifferential calculus reduce to the calcr;lation of a single simply con-
stnrcted operator. On this basis rve solve the problem of the subdifferential of
a composition of convex operators at interior points of the donrains of
dcfinition. In othcr words, rve obtain a universal formula that plays the same
role as the chain rule in the differential calculus of smooth functions. This
result can be reformulated at will to yield a formal generalization of the chain
rule for non-convex smooth mappings.

The case of subdifferentials at boundary points is more complicated. Here we
must employ nlore special arguments, based on the Mazur-Orlicz theorem.
Nevertheless, the most important formulae for applications, those of Moreau-
Rockafellar, Dubovitzkii-Milyutin. and Gol'shtein, together with the decom-
position formtrla, all admit perfect operator analogues. With the aid of these
formulae we obtain not only the basic rules for a change of variables in the
Young transfornr, that is, thc formulae of Nloreau and loffe-Tikhomirov
and the minimax formula for the vector case. but also some fundamental nerv
facts, such as a rtrlc for computing (l o I)*, s,here.4 is a positrve linear
operrtor.

This art ic le can bc used as an introduct ion to the foundat ions of local con-
vex analysis. ln particular. this means that prooli are given for all the essential

t
i
5

i
t

i

,

!

I
5
I
t:
t
'4

t

j

' t

far:ts. fitrrtherrnore' \\'

vcctor spaces. True, a

rt'gard a ferv ttnfamili'
K-space that occurs sl

out tltat the method '

time, it is absolutelY
is not an intermediat
fact is that if one of
theorem on the subd
for an arbitrary orde
necessarilY have leas
the theory of K-sPac

In conclusion,I e'
Kantorovich, S. L. S
interest in the reseal

$1

The main PurPos
theorem on the exi:
theorem PlaYs a ftrr
In particular, it for
convex oPerators.

l . l . Le tXbea r
with a distinguishc
ad jo in to la la rge
though no ambigtt
ient to assume tha
and anY Positive s

A maPPing F: )
x1 ,  X2  €X  and  a r
holds:

It can be checked

is convex;it is ca
to treat a convex
on the convex sc

Now let Z be
Z U {*o"}-Wit l
that G is extend
G(+"" ;= *oo '

1 .1 .1 -  Le t  F :



, . " .

Convex operators

iacts. Furthcnltore., rve do not a-ssturle familiarity lvith the theory of orclered
vcctor spaces. Trure, a reader unacquainted lvith this theory will have to dis-
regard a t'erv rrnfa-uriliar rvords and unintelligible proofs. In extreme cases, any
{-space thdt occtrrs should be-thought of as the space Rn, or even R. We point

'out that the method of reasoning will, as a.rule, be non-traditibnal. At the same
tinre, it is absolutcly necessary to emphasize that the introduction of K-spaces
is not an intermediate stage in the development of local convex analysis. The
fact is that if one of the essential principles of local analysis (such as the
thecrem on the subdifferential of a sum) is valid when formulated en masse
for an arbitrary ordered vector space Y, then the bounded subsets of )'
necessarily have least upper bounds. Hence, a familiarity with the elements of
the theory of K-spaces is desirable.

In concltrsion, I express my profound gratitude to G. P. Akilov, L. V.
Kantorovich. S. L. Sobolev, and V. It{. Tikhornirov for their unfailing
interest in the research embodied in this article.

$ 1. The Hahn-Banach-Kantorovich theorem

The main plrrpose of this section is to prove the Hahn-Banach-Kantorovich
theorem on the existence of a majorized extension of a linear operator. This
theorem plays a fundamental role in several parts of analysis and its applications.
In partictrlar, it fornrs the basis of all the methods used in the investigation of
convex operators.

l.l. Let X be a vector space and Y an ordered yector space, that is, a space
rvith a distinguished (convex) cone Y', the cone of positive elements. We
adjoin to l' a largest element ao (to be denoted more precisely by * -r,

thbuglt no ambiguity is ever caused by the abbreviated notation). It is conven-
ient to assume thaty + (  +oo) = +oo ard a(+o";  = +oo for any y e } /  U {*oo}
and any posit ive scalar a.

A mapping F: X'+ Y U {*oo} is called a convex operator if for any vecton
xr , - rz  CXand any  sca la rs  d r ,o (2  )  0  w i th  a ,  *  a2  =  1 ,  the  Jensen inequa l i t y
holds:

F(arr, * qzxz) { a1 Fo. I a, Fur.

It can be chcckecl directly that the set

dom(/) : {t ( X: Fz < **}

is corrvex;it is called the effective set of F. It is often convenient in applicaiions
to trc 'at  a convex operator F: X -> ) /  U{-foo} as amappingF: X -+ Y, def ined
on t l te convL-x set dom(O and sat isfying the Jensen inequal i ty therc.

Norv let Z be anotlter orclered vector space and G a rnapping from Y to
Z U {*a}.  Without saying so cxpl ic i t ly,  we assume in what fol lows
that G is cxtendcd to a mapping from Y U {-{-oo} to Z U {+*;  by sett ing
C ' ( + " " ) = * " o .

l . l . l .  L e t  I : ' .  X - +  Y  u  { - o " }  b e u c o t t ' r e x o p e r a t o r a n c l  G ' . Y - + Z  u  { * o o }

1 8 3
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(rtt increasitrg contte.y operdtor. Tltert tlte tnappiilg G " F': ,\' - Z U {*oo} is
olso cottre:Y.

This obvious proposit ion provides a con\ r"nient method of construct ing
convex opr 'rators. In part icular,  i f  ,Ft  , .  .  . ,  f 'n:  X'-> Y U {*oo} are convex
operators, then i t  nrakes sense to speak of their  sum F1 + .  .  .  + Fn, namely,
the operator-y +Fr-x +. .  .  + dx. We no\\ 'suppose that Y isavector lat t ice,
t h a t i s ,  l ' *  n ( - l ' * ) =  { 0 } , a n d a n y  V - r , l z  €  / h a v e a n u p p e r b o u n d  h V  ! / z
and a lorver botrnd yr A yr.We can then speak of the maximum
F ,  V  .  .  . V  F "  o f  . F ' r ,  . . . , F *

, F ,  V  . . .  V  F , , :  x t *  F r r  V . . .  V  F n r .

In what follows lve need two important classes of convex operators. The
first of these consists of tlie simplest positive convex operators
F: X -'> F U {*oo}, namely, those that assume only the twovalues 0 ancl
1e;tlre! are called indicators. This term stems from the fact than an indicator
plays a role analogous to that of the characteristic function of the
effective set dom(F). Furthermore, every convex set U in X is the effective set
of a unique indicator operator rnapping into ) 'U {*oo},  which we denote by
6vGD.Thus, 6y(U)x = 0 for x € U and 61. (Ax =* oo otherwise. With the aid
of irrdicators we can form cut-offs of convex operators: if It: X --> Y U {*-}
is a convex operator and U is a convex set in X, then F + 6 r(t/) is called the
ctrt-off or restriction of F to U and is denoted by Fu .

The second important class consists of the sublinear operators. A convex
operator P: X -> )/ U {f oo} is called sublinear if it is positively homogeneous.
Note that the effective set of a sublinear operator is a cone. In what follolvs
we adopt freedom of expression in reserving the term sublinear for those
operators P for which dom(P) = X. An arbitrary sublinear operator P will, as a
mle, be referred to as a sublinear operator defined on the cone dom(P).

A most irnportant part in the theory of convex operators is played by the
concept of a sirbdifferential. Let F: X -'+ Y U {*oo} be a convex operator and
let L(X, l') denote the set of linear operators from X to X. The subdifferential
of F at a point i in the effective set dom(O is defined to be the set

A;@) -: {A € L(X, Y): Ar - Ai < Fe - Fi (x € X)}.

Its elements are often called the subdifferentials of F at.?. When P is a sublinear
operator. its subdifferential at zero is called the support set of P and is denoted
by D(P).  Thus,

ae) : {A ( L(X, Y): Ar ( P" (r € X)}.
Tlre elements of the support set are called support operators. The analogous
concepts for a sublinear operator defined on a cone also make sellse. In this
casE- \!'e also speak of operators rvith support oll a cone.

Strbdifferentials of convex operators generalize the notion of a differential
to the case of non-differentiable conve\ nrappings. In this connection the
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role tltat subdifferentials can play (and, as we shall see, do play) in various
problems of analysis becomes obvior"rs. Eqtrally clear are the questions that
arise in the investigation of subdifferr-rntials. We have to clarify conditions for
the existerlce of subgradients, for a subclifferential to be non-empty, we have
to know to what extent a subdifferential determines t-he behaviour of the
original rnapping, and finally, we must find the subdifferentials of specific
operators. In the case of arbitrary ordered vector spaces, many of these
questions are trnexplored (apparently because of their hopeless complexity, in
fact, the theory of arbitrary ordered spaces is not very rich in substantial
results). Tire situation is different in the case of ordered vector spaces having
the most restricted order stnrcture, that of a K-space. We recall that a vector
lattice is called a Kantorovich space, or K-space, if any subset of I that is
bounded above has a least upper bound. In the case of K-spaces it is possible to
develop a theory of convex operators that is fairly complete and satisfactory
from the point of view of applications. It is a fortuitous (but by no means
accidental) fact that the classical spaces of analysis (such as the spaces on the
Lebesgue scale) possess these remarkable structural properties.

The main toois in the investigation of convex operators are the theorems on
qualified extension of linear operators, and we now turn our attention to these
results.

1.2. First of all we establish Kantoroviclt's theoretn on the extension of a
positive operator. We recall that an operator,4 from an ordered vector space X
to an ordered vector space Y is called positive if AIX.] c y*. The set of all
positive linear operators from X to Y is denoted by L"(X, n.

1.2.1. 
-rH EoR EM. Let Y be a K-space, X an ordered vector space, and Xs a

subspace of X with the property that Xo * X*: X. Then any positive ltnear
operator Ao: Xo * Y admits a positive lineor extension A: X -+ Y.

PROOF. We first assume that Xs is a hypersubspace of X, in other words,
that for some x' e X \ Xo, we have

X  -  { * o * d r ' i  f i s  € X o ,  a . € R l .

The set U*, = {ro eX6: xs ( r'} is non-empty, by hypothesis, and is bounded
above by an element of Xe. Thus, the set A lU*, ] has a least upper bound,
y' say. Putting A(xa + x') = Aoxa * y' , we see that this is a well-defined linear
operator from X to Y, rvhich agrees with As on Xs.

We claim that this operator is positive. If no * qx' 2 0 and d = 0, then
A ( x o  + o r " ' ) : A o x o > 0 .  B u t i f  a ) 0 , t h e n - x o l u e  U * ,  t h a t i s ,  y ' > - A o x s l a .
Hence A(xo + ax ' )  > 0. I f  o  {  0 ,  then x '  (xo/ l  a  l ,  that  is ,

.y '< -Aoxof a, and again A(xo + ocr ')  > 0.
The proof of the theorem is completed by using a standard argument based

on Zorn's lemma
1.2.2. R E M A R K. It is clear that in this proof vre have not invoked the full

strength of the condition that Y be a K-space. In fact, rve have only required
that a set that is bounded above has a least upper bound. The uniquetress of
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186 S. S. Kutateludze

this bouncl and the boundedness of finite sets, both of which properties hold

in /r.-spaces, were not needed. In the light of this remark it is both curious and

significant that Kantorovich's theorem cannot be improved (see l-3)-

1.3. THEOREM . Let Y be a K-spaCe. Then for any -vector space X, any

sttblittear operator P: X -+ Y, and any subspace Xo of X we hat'e

ag * 6y (Xo)) : 0(P) * d(6y (Xo)).

pROOF. It  is obvious that D(Px ) f  a(P) + a(6 y(Xo)).To prove the reverse

inclusion we take an operator A € A(Px,) and define an operator ?Io on the

subspaceXti X Yof X x Yby therule

2Io("0, V) : -Aro * V.

If we order X X )t by means of the cone

Z :  { ( n ,  i l  Q X  X Y z  P r (  Y } '

then the operator ?io: Xo X y +Y becomes positive, because A e d(Pxr)-

Moreover, Xs X Y + Z = X X Y. Thus, it follows from Kantorovich's theorem

that 2lohas a positive extension 2I: X x Y + Y. We set Arr: 2I(--t, 0)'

Since elements of the form (0, y) belong to Xe X Y, we see that

?I(0, y) : uo(O, y) : u. It follows at once thatAr € a(P). Besides, for

xo € Xs we have,  Af io :  -2 l (so,  0)  :  A*0,  so that  A -  Ar  e a(6y(Xo)) ,

and this completes the Proof.
1.3.2. TH Eo R E M. Let Y be an ordered vector space with the following

property: for any vector space X, any subspace Xs of X, and any sublinear

operator P: X -> Y,

0{P *,) : 0(P) + a(6v(Xo))'

Then any subset of Y ftat is bounded above has a least upper bound.

This remarkable fact, known as the Borutice-Silverrnan-To theorem,

indicates the range of applicability of the fundamental formula 1.3.1 of the

subdifferential calculus. Formally speaking, we do not need it in what follows.

Since tfue standard proof is rrot distinguished by its brevity, we omit it.

1.4. In this subsection we discuss those consequences of the Hahn-Banach-

Kantorovich theorem that are technically the simplest and are also very

important from the point of view of applications. Throughout we fix the follow-

ingno ta t ion :X isavec to rspace ,  ) / i s  a  K-space ,  andP:  f  +  Y isasub l inear

operator
t.4.1. Tlrc sttpport set aV) is non'ernpty.
For the subdifferential of the cut-off Ploy is non-empty. Furthernlore,

0(P nt) : ag) * d(6'' ( {0})).

1.4.2. For eoclt poirtt i e X the sttbdifferential ave) is non-entpty, and

The validity of th
only have to show t
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1.4.3. For each x
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The validity of the last relation is verified by direct calculatiotr. Thtts, we

only have to shorv that D.;(P) is non-empty. To this end we consider the sub-

space Xs= {a1:  a t  R}  at td  at ry  operator  AeA(Px^)  such thatAI  =Pf .  By

the Hahn-Barrach-Kantorovich theorem, tltere is air A r e 0(P) for which

A - Ar € a(6 y (X r,)).  I t  is clear that A1 is the required operator.

|  .4.3. For each x e X

Ptr: sqp {// :  A e 6g)}.

This follows immediately from 1.4.2.
1.4.4. R EivlAR K. By modifying sliehtly the proof of 1 .4.2., we can show that

the set

0(P)r :  {Ar .  A (ae)}

coincides with the orcler interval {y e Y: -P(-x) (-r, (Pc}.

The following important result is known as the Levin-Rockafellar lernma.

1.4.5. Let X1 be another vector space and A e L(Xr, X)- Then

A(P " A) :  Ae) " A'

The fact that 0(P) " A C a(P " A) is obvious. But if B € 0(P ",4), then
Ker(B) = B-r [0J contains the kernel of A, and by an algebraic lemma on
triples, there is a C e L(X,l/) for which B= C" A.It is clear that
C € AQAtx, 1).  By 1.3.1. ,  there is a C1 € a(P) such that C -  Ct € a(6/(r4txr l ) ) .
Since, by definit ion,

d(6" (,4txrl)) : {D €. L(X, Y): Ker(D)= AIXJ},

i t  fo l lo rvs  that  B = C,  "  A, that  is ,B eA(P) '4 .
The follor.r'ing proposition is known as the Mazur-Orhcz lemma and is a

special case of a theorem to be proved in full later on.
1.4.6. For every colre H in X,

0(P") : 0(P) * d(6r (I/)).

$2. Support sets of subl inear operators

In this section we study the structure of support sets of sublinear operators

and, in particu.lar, we derive an explicit representation of the support set of

a composition of such operators.
2.1. We consicler a vector space X, a K-space Y, and a subset tr of L(X, Y).

Suclr a set 2I is called v,eakll order-bor.tnded if for each x e X the set

{Ar: A e 2J) is bounded. We can thus associate with any weakly order-

boundeC set 2I the sublillear operator

P a : r *  s u p { y ' e :  A € W } .

Then ,a(Ps) is calleri the suTtport hull of ?i and is denoted by cop(2l).

First of all, we Llse the results of the previous section to show that sublinear
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opr-rators are not very nun-Ierous. Ivlore precisely, every s,ii:l irtear operator can

be rcpresented as a composit ion of sonte l incar operator :rci  a rtniversal
canonical openitur. For a forrnal description of the sittrrtion rve need the
toltowing subsidiary constntct ion,

Let l 'be a K-space and ?I an arbitrary set. We consider the K-space )'U, the
prodr.rct of the corresponding num.ber of copies of Y, endou'ed with the
natural order stmcture. Let A21, y or AU denote the op'erator embedding X in
the cliagonal subspace of Yu, namely,

Alt: a e (Y)oelt.

We consider the fol lowing set:

(yu),": (Alr 1l"l+ (y*)u) f^l (Au trl- ()' ')al),

that is, the strbspace of Yll consisting of the bounded )'-valued functions on

?i.There isacanonical subl inear operator, denoted by tx, y or eq, sending
(Yu)* to Y, which is defined by the nrle

When .4 is a
operator

(?I ) : .  X -*  (Y2l )* ,  (? I )s : (Ar) . t2s.

As an immediate consequence of this definition we have the followirrg

fttrt clam e n t al I e nnna.
2.1.L. Let X be a vectar space, Y a K-space, andP: . f  -+ f  a subl inear

operator wclt that 0(P; = cop(2i). Tltert P : eq " (U;.
2.2.Vlith the aid of this lemma we can find natural representations of

support hulls.
2.2.1. Let Z be a K-space and P: Y -+ Z an increasiltg sublinear operator. Then

(P)).

etr1U ( 0, and

Ao L,rx,r.: AA < P o suU : (P o utr1) A,:.r: Prt

so t l rat  ,  "  Au eA g).
Suppose now that A is known to be a positive operttor with .4 o Aq €. Ae).

:f hen

ly{  .4 "  A1 o EsyU dP'  e l iY.

as requi red.
2.?.2. l le  l tare

sU: (Yl),refl '* suP {Ya: ,4 € ?I}.

rveakly order-bounded set in L(X, )/). there is a natural linear

o (P  "eu) :  {A  ( t * ( (Yu) - ,  z ) :  A"  a , r€a

First letA1, (Po e2,y for al iy e 1YU)-. I fy ( 0. then
so,4 e L+ ((y!t)", ,  Z).But i f  1, = Au", then

d (ru) =, .  {d,€ r*  ( ( } ' t i ) - ,  } ' , ) ,  a o - \ i . :  / r } ,
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rrlterL' Iy. denotes the identttv niappittg of ,' onto itself.
To prove th is  rve just  apply  2.2.1 rv i th  P = Iy .
2.2.3. For an)' \ 'e(tkl l 'order-bottnded set 1I we have cop(?I) - 0(eu) " (U).
For.we see at once t ioni 1.4.5 thar

cop (?I )  :0  (Pw):= d (es i  "  (? I ) ) :  A (sat )  "  (? i ) .

Note that Proposition 2.2.3 is an analog;e to a theorem of Choquet type
on integral represen tations.

2.2.4.  EXAMPLE. Let  Y=R. lhen ( ) 'u) -  is  thespace ,* (2I )  o f  bounded
numerical functions on 2I. Thus, if /s is a linear functional on a vector space
X and ?i is a rveakly bounded set of such funciionals, then 2.2.3 asserts that

f o@){sup {f(r):  /  € 2I} (r € X)

i f  and only  i f

Io@):  J  '  ( )da ( r€x)
II

forsome finitely additive probability measure d on the algebra of subsets of
?i.  (The functional -x( ')  is given by the rule x(.):  f  * f(x).)

In applications we are interested in those cases when the ranges of values in
X of the relevant sublinear operators are equipped with a separable linear
topology r. Then each space of operators I(X, )') acquires the so-called
r-operator topologt,. that is, the topology induced on L(X,l') by the embedding
of this set in the space )tx endor,ved with ther Tychonoff topology. A topology
r is called adrnissible if the support set of any sublinear operator is compact in
tlte r-operator topology. The follorving proposition shows that admissible
topcllogies are unfortunately ferv in number.

2.2.5. A topolog)' ort l' is adntissible if and only if the order intervals in Y
are cofttpact in this topolog),.

If the inten'als are compact, then by Tychonoff's theorem and I .4.4, A(P)
is compact for anl' snblinear operator P, and this gives the sufficiency of the
conclition. The necessity follows fronr the fact that the image of the support
set 0(z v--> z V 0) under the continuous mapping A*.Ay coincides with
the order  in terval  {y '  (Y:  0<{y ' (y} .

2.3. An important role in what follorvs is played by some special operators
on a K-space Y, u'hose properties are set forth in this subsection.

An operator ct e L.(Y, Y) is called a ntultiplier if cr ( /y. The set of multi-
pl iers on Y is clenoted by A(n.

2.3.1. For an1'rnri l t ipl ier otanrl  anl,subset U of Y that is bottncled above,
we hri ,e ssup L/= sup otlul . l r t  part ictt lar, ais (o)-continuotts (that is, i f
)'r l, .v'. t.ltett ay, l cJ').

Fcrr since a and I y are posit ive, a has the bounds

cr.sup D > -*rrp a[[ i l ,  ( /" -  a) sr ip U > srrp(,I ,  -  o.)tL/| .
A lso a *  ( ly  - -  c)  = Iy .  so that

189
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(Ir- -  a.) sup [ i  ]  sup q.IUl f  sup(/y - cr)[U] :

: Sup U.
2.3.2. Anv tv'o ttult ipl iers co:nmute.
We use the realization of a K-space Y as a follndationr of the K-space C*(8)

for some external compactum 0 (see [9J). In other words, for every positive
z e C*(O) we have

: : sup {y€Y :0<y (z } .

Thus, any multiplier ? € A ( X) admits an extension to a multiplie ri e A(C- (QD,
given by the obvious relation

l ; r -  sup {1y :0<y (z } .

It is clear that this extension is unique.
We now take two mtrltipliers q, Pe A(y) and consider their extensions

d,T en(c- (0). Note that d tcQ)l c c(Q) anaTrc(ql c c(Q),where
C(0 is the space of c_ontinuous t'unctions on Q. It follows at once that the
restrictions of d and F to C(q belong to r\(C(Q)), hence they commute on
C(Q), since their action there is simply that of multiplication by suitable
functions. To conclude that d and! commute on C-(Q),it now remains to
point out that C(0 is a fotrndation of C- (Q). And so their traces q and S on Y
also commute.

2.3.3. If a ntultiplier a is in ,-ertible, tlzen d[ yl is a foundatiort of Y, and ot is
an order isomorphism bettveen Y and aLYl .

First of all. let us verifl' that a[YJ is a normal subspace of Y. For if
0 ( z.( a],, then bearing in mind that

Aff) :  o(zt+ z V 0)

and 1.4.4, we can f ind a mult ipl ier Pe A(n such thatz=9o ay. Since

F"  o t :do  F ,by  2 .3 .2 ,  i t  f o l l ows  tha t  z€a lY l  .  Now i f  ze  Y issuch  tha t

I  z  I  A  l a Y  |  :  A  f o r a l l  Y  e Y , t h e n

0 -  l ,  I  A  laa l )  a  la  I  A  lav  l *a( lz l  A  lv  D >0
by  2 .3 .1 .By  hypo thes is .  Ker (a )=  {0 } ,  and  th i smeans tha t  l z  I  V  l y  l=  0
for all y e Y.Thus, z = 0, and a[)'] is a foundation of I/.

It remains to check that if 00, > 0, then y ) 0. If this were not so, we could
find a projection (that is, an idempotent multiplier) Pr on X snch that Pr y 10
(this follorvs. for example, from the above theorem on realization). Applying
2.3.2, we would then hai 'e

q " P r y  <  0  <  P r o o . , y  :  q , o P ,  V ,

so that a o Pr.l ' = 0. Hence. Pr r' = 0, and this is a contradiction.
2.4. This subsection is a mark of respect for the geometrical concepts of

duality. Here we discr.rss the qtrestion of'an intrinsic characterization of support
sets. Formally speaking no use is made in what follows of the facts cited
b=lt,*, t!g:f"re, we present thenr in a concise form.

I ln th. Western literature e foundaticn is sometimes called a quasi-order dense ideal (see l2?lr.(Transl.)

A weakly order
called operatar co
dr,  oz € n(D wit

A weakl]r order
vex if Ea, " /g €
XoE = /y and any
pointwise, that is,

2.4.1. The supt,
We include a pr

inversion by mult
2.4.2. For ever;

convex set op(U)

op (u)
By ?.4.1,  the e.

cop(?I) : d(Pu)"
set ?I' is operator

and any .41 .

Suppose that t

Cf,1; . -

It is clear that

B -a

'By invoking2.2
,l

s
t)

k : l

Applying Propo

Hence, B € !['
2.4.3- tor an
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A rveakly order-bounded set T in the

cal leci operator convex i f  for any Ar, A,

0r . ez € A()') u'ith ar * otz = Iy

a 1 o  A 1  *  a z .  A z  (  2 I .

A rveakly o.rder-bounded set ?I in L(X, Y) is called strongly operator con-

t,ex if X a, o A t e !J, for any (o)-suntmable famill (ar) of multipliers with

Iof = Iy ind any famiV @g) of members of 2I where the summation is

pointrviie, that is, fbr each x"€ X rve take the (o)-sum of the family (aE " A{).

2.1.7. The support set of any sttblinear operator is strongly operator convex.

We include a proof of the next proposition to illustrate the technique of

inversion by multipliers.
2.4.2. For ever1, weakly order bounded set 2I there is a smallest operator

convex sef op(!I) contatning A, namely, 
rL

op (U) :  {J, ayo A6: AaQ.Wt an €A (y), 
J, 

o,n: IvI.

By 2.4.1, the existence of the set op(2l) is clear, because ?I c cop(U) and

cop(?l) - 0(P u). Thus, we only have to check that if a weakly order-bounded

rei ?I' is op.raior convex, then for any set of multipliers crr orn with

&n :  f  v ,

a n d  a n y  A r , . .  . , A n  €  2 i ' we have
n

J ou. ,{1 ( ?I'
h : l

Suppose that this is tnre for some n2 2, and consider the operators

B .  i  o o  o A n * d n * r o A n * r r
A: l  

z *  I

s.n+r€ A (Y) I on : fv, Ar, ' ' ', /r,+t € !I'
A:1

B - a n * r o A n + L € a ( ( a n ) .  A t V o.n) " A") -

By invoking2.2.2 and2.2.3, we find multipliers p, € A()') such that

t 9 l

space L(X, D of linear operators is
€ 2I and any multipliers

n

5.l
Et

G l t  " . '

It is clear that
17

\l

a2't

7l'

V(T
h:t

?l

I  Pn : rY ,
h : 1

B - o n * t o A n + t :  X  p , " ( ) - . j  
" u ) o z 1 r .s : l  h : l

Applying Proposit ion 2.3 .2, we obtain

B : ( . i  o o , "  i p , o l , *  . , ' n * t o A n r t .
A:1 ." :  I

Fience, r.€ l l '  s i t tce ?I '  is operator convex.

2.4.3. [;or aruy weakly order-botutded set 2I there is a smallest strongly
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srlp Li =r a sup t- - :  t /1- * ct) sup Li ) srrp d.[[ / \  - f  strp(/1'  -  a)[U] ==

2.3.2. Artt '  t*o , t l t l t ipl iers co:r lrute. 
:  suP U'

We use the realization of a K-space y as a foundationr of the K-space C*(Q)
fcrr some external compactum Q (see [9]).  In other words, for every posit ive

z e C*(Q) we have

: : S U p { y € } ' : 0 < y ( z } .

Thus, any rnult ipl ier 7 €,\ (  D aclmits an extension to a nrult ipl ie r7 e A(C- (QD,
given by the obvious relation

l t :  s u p { 1 y :  0  <  y  {  e } "

It  is clear that this extension is unique.
We now take trvo mtrltipliers a, p € A( y) and consider their extensions

d,T en(c- (0). Note that d ICQ)I c c(0 ano 3'tc( q) c c(Q),where
C(0 is the space of continuous t'unctions on Q. It follows at once that the
r.rii i.tio,r, of d and !' t.-, C(0 bc-long ta L(C(Q), hence they commute on
C(Q), since their act ion there is simply that of mult ipl icat ion by suitable
functions. To conclucle that d and p commute on C- (Q), i t  now remains to
point out that C(0 is a foundation of C- (0). And so their traces a aud p on Y
also commtrte.

2.3.3.lf a ntultiltl ier ais invet'tible, then d[f] is a foundatiort of Y, and ais
an order isomorphisrn betv,een Y and alYl .

First of all. let tts verifl ' that a[I] is a normal subspace of Y. For if
0 ( z ( a-1,, then bearing in mind that

A ( ) - ) : ' 0 ( z + z  V 0 )

and I .4.4, we can f ind a mult ipl ier Pe A(n sttch that z: I  o

F"  a_  ao  p ,by  2 .3 .2 .  i t  f o l l o rvs  tha t  z  €a lY l  .  Now i f  z  eY

l z  I  A  l a y  |  -  0  f o r a l l  y  € t ' , t h e n

0-  l r lA  lou l la  l z lA  lqv l *a ( l z lA  I
by 2.3.1. By hypothesis. Ker(a) = {0} ,  and this means that I  z
for all y e y' .Thtis. z = 0, and crr[ )'] is a foundation of Y.

It remains to check that if al, ) 0, then y ) 0. If this were not so, we could
f ind a project ion (that is. an idempotent mult ipl ier) Pr on X such that Pr y 10
(this follorvs. for example, from the above theorem on realization). Applying
2.3.2, we \\ 'olr ld then hai 'e

. 1  . P r  y  <  0  <  P r o c . . U :  c r , o P ,  A ,

so that a o Pr -) '  = 0. Hetrce, Pr l '  = 0. and this is a contradict ion.
2.4. This subsection is a mark of respect for the geometrical concepts of

,Jual i ty. Here we dis.-uss the que st ion of 'an intr insic characterization of support
sets. Fornral l-v speaking no usr- ismacle in what fol lows of the facts cited
b.lgt,  t l t rr . fo.c' ,  we prc-SCflt  thent i tr  a concise form.

I  In the \ \ 'estcrr  l i te ia iure:  founcla i ic .n is  soniet imes cal lec l  a quasi-orc ler  densc ideal  (sec t23l) . (Transl . )

ay. Since
is such that

al)>0
lVly l=o

A we akly order
called operator cc
Gr ,  dz € n(Y)  rv i

A weakly orde:
vex i f  Ea,  "  AE (

X og = ^I1' and atri
pointrvise, that is

2.4.1. The supl
We include a p

inversion by mult
2.4.2. For ever

convex ser op(!l)

op (u

By 2.4.1,  the e
cop(!I) : d(Pli).
set ?i' is operato

a n d  a n y  4 r , . .  . ,

Suppose that '

@ l t  "

It is clear that

B - t

By invoking 2.2
' t

s
+l

A : :

Appl-ving Propr

H e n c e , B €  ! i '
2.4-3. For a,
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opartrtor cont'ex -sc/ stop (l l) coil tait i l ttg !1, nunely

stc,p (! i) :-  t>1, s:.  J::  / :  € ?l;  a: € A () ') ,  I  o,:_.I").
Thus, rve have

?l c op (?I) c stop (2I) c cop (?[),

and these inclttsions are proper, in general. So far little of interest is known in
situations when the operator cop admits a representation, say, in terms of op
and some "good" operator, for instance, the topological closure operator. We
confine ottrselves here to the sirnplest model situations illustrating the direction
of research irtto s'-rctr questions and the nature of the difficultiss that arise.

2.4.4. EXAlvl PLE. Let l 'be a discrete K-space, that is, a foundation in a
product ,Rs of l ines. Note that

(Y!l)". ,  -= {y € ,Ru*8: sup lu (A, .)  I  € y}.
A€,]I

We consider the set |3 :  {pat A e 2{},where

Pe: (Y^)ae'ti * Ae

is a coordinate project ion. I t is clearthat en, :  PS. An operator a: (Yu)* ->Y
beiongs to 0(eri) i f  and only i f

cru @) - |  y (. ,  B) t ipts,
!1

where p6 is a finitely additive probability measure on the algebra of subsets of
2[.Thus. qo € stop($) if and only if there exists numbers da,n for wtrich

0 ( a r , u ( 1 , ) - ]  oo ,  B :  l ,
aeQI

asu  (B) :  )  o r ,  nA  (A ,  B l .
4€ !i

At ihe same time. to the elements of op({3) there corresponC families (c2,6 )
such that a1,B = 0 for all B € S and all but finitely many A eDI.

For any vector space X the space L(X, Y) can be endorved with the
simple operator topologl', which is defined as being induced by pointwise
convergence in .R8. But if Y is a subspace of l""(8), then it makes sense to
etrdow L(X, D rvith the strong operator topology, which is defined as being
induced by trniform convergence on S. By considering the closuresop($)and
stop($) in the corresponding topologies and invoking 2.2.3, we obtain the
follorving results.

?.4.5. If Y is a founcltttiort irt /l$, ilten a set of operators is a support set if '
and onlf if it is x'eakll,order-bouttdecl, operator convex, and closed in the
sirtttrtle opera t ot' t oTtologt

2.4.6. If Y is o lr11177dotiort irt /- (S), then a set of operators ts a sltpport set
if ctrtd ortlf if it i.s v,eaki.r' arclcr-boundecl, strottgll' oTterator convex, and closed
irt tlrc strortg or;e rutor iopologl'.

'fire casc of arbitr
2.5. We now tum

ucrutposites of sublin
2 . 5 . 7 .  T H E O R E M

in cre asirtg stt blinear

0  (Pr "  P r )  :

If 0 (P r) -* cop (?I r) c

0 ( P r " P ) : { c o

P R O O F .  W e  k n o '

Appealing to the rer

0 (Pr"  Pr)  :  A (Pz"

as required.
2.5.2. For anY 7r,

0 (Pt

where P/ = Iv - P

We defino Yo :

(y$tr, l)-  of (Yae
projection Prs. FIe

B y  2 . 5 . 1 ,  e a c h  '

Defining A= B o

Again applYing 2

Tlrtts, we have

a (P,
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Convex operalors

The case of arbitrary K-spaces has not been studied thoroughly (see t301 1.
2.5. We now turn our attention to the determination of the support sets of

u:olnPoSites of su blin ear opc-rators.
2.5.1.  THEoRErta.  Let  Pt :  X -+ f  be a subl inear  operetor  and P2:  Y - -> Z an

increasing sublinear operator, where 1' and Z are K-tpaces. Then

A (Pr "  P ) : {A" (d  (Pr ) ) i  Ao  Aarp , )  (0  (P r ) ,  A€ .L*  11y0(P ' ) ; - ,  Z ) } .

I f  A Qt) 
- cop (2Ir)and A (Pr): cop (2Iz), then

0(Pr "  P t ) : {A"  (? I r ) :  i l a r€ .4 (eAI " )  4oAU,  :@2. (2 [z ) ,  AQL+( (Y ' r ) * ,  Z )1 .

P R O O F. We know from 2.1 . l  that

P2o  P  1 -  Pzo  t !1 ,  "  (? I r ) .

Appealing to the results of 2.2 we have in succession

0 (Pr"  P)  :  0  (Pzo o2i r .  (? I r ) )  -  0  (Pz"  sryr )  .  (2 I1)  :

: {A €. t. ((Yut)*, Z): ,4 o ADI' € d (uur) . (?Ia)} " (?I r),

as requirecl.
2.5.2. For an7, proiection Pr into a K-space Y we have

0  (Pz .  P ) :  
o ruYo, ,  

@ (Ao  Pro  Pr ) *  0  (A"  Prdo  P , ) ) ,

where Prd = Iy - Pr ls the cornplementarl, projection. In particular,

o (P- t "  Pt ) :or !o, ,  a  (A"  Pt) .

We defin e Y o : Pr[ Y] . A direct verification shows that the subspace
(fB(P'))- of (ya(P'))- is a component, that is, is the range of values of same
projectior f.o. Here

Pro o Aa(pr): Aa(pr) " Pr.

By 2.5. 1, each element of 0(P2 o Pr ) has the form B " 
( 0(Pt ) ), where

B e. L* 11Yo(P)1*, Z'1 and Bo Aa(p,) QA F).

De f in ing  A=B o  Au" , ,wehave

Bo Prs.o Ao(pr) :  B oAutrr;  o Pr : ,4 o Pr,

B "Pt! o Aa(p,) : fl o Aarp,) o Prd: .4. o Prd.

Again applying 2.5.1 and using the definition, we obtain

B  " P r o .  @  @  ) 7  e A  @ o  P r  o  P r ) ,

.  ,  B " P t f  " @ ( P t ) ) Q A @ o P r d o f ' t ) ,
B .  (0  (Pr) )  :  B oPreo (a (P,) )  *  B"  Pr f  .  (0  (Pr) ) .

Thtts, v,'e have

1 9 3

0  ( P r "  P r )  c  { A ( y ' . P r  "  P )  * d  ( A o p r d .  p r ) :  A € A  e r ) | .
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fhe reverse inclllsion obviously holds.
2.5.3. IJ ' f ' r , .  .  . ,Pnt  X - '>  Y are suhl inear  operators,  then

0 (P t+  .  .  .  +Pn)  : '  0  (P)+ . .  .  .  +A(P" ) ,
0  ( P ,  V  . . .  V  P , , ) :  U  ( a t " 0  ( P r ) *  . . . +  d n o 0  ( P " ) ) .

li;.. '#::;i'
It is enough to prove this in the case n = 2.If we write Pt * Pz =* o (P1, Pr),

wlrere +: Y X Y -> Y denotes the operator of addition and (Pt , Pr) is defihed
bY 

(Pr ,  Pr) ,  :  (Pt r ,  Prr ) ,

then by defining Pr: ( j  r , !  z)*Ur ,  0) and applying 2.5.2, we obtain the
formula for the sunl. Furthermore,

0 (P,  V Pr) :0 (ez"  (P r ,  Pr) ) :  U 0 (a.  (P b P))  :
q,eo@z)

:  
o r *# :  , ,0  

(a1"  P ' *qz "  P ' ) :  
o r *our :  , "u  

(o t "  P ) *0  (az "  Pz ) ' '

ay o'reN(Y ) ctil ar€AtY)

Thus, to cornplete the proof, we only have to show that 0(a o P): s o 0(P) for
any sublinear operator P and any multiplier a € A(X). Since it is obvious that
a. 0(P) C E(a o P'),rve take an A € D(a o P) and prove that A € a o a(P).

By 2.3.3, AtXl c a[)'J , therefore, as is easily seen from the results on
properties of multipliers, it is sufficient to consider the case when Ker(a) = {0}.
But then we can again apply 2.3.3 to find that a-r " A is in the support of P.

To conclude this section we give an interesting characterization of lattice
homomorphtvns.

2.5.11. Let X be a vector lattice, Y a K-space, and T e L*(X, Y). Then the

folloving c ondi tions are e qttivalent :
(l) f preserves the bounds of finite sets;
(2) for any T' e L*(X, Y) suclt that T' 4 T there is a multtplier a € A(X)

for whiclt T' : or o T.
We define sublinear operators P1 , Pz; X x X -> f by the rules

Pt(ru rz) : T(q V ,) and Pr(*r, nz) : Tq \f Trr.

Condition ( I ) means that these operators or, what is the same, their support
sets are equal. By calculating D(Pr ) and A(P2), we obtain the required result.

$3. Subdifferentials of convex operators

The main aim of this section is to evaluate the subdifferentials of convex
operarors in an explicit form. We first give a method for studying such
operators at interior points of their effective sets, and then we discuss the
general case, where rve have to employ specific methods. From this rve derive
rules for change of variables in the Young transform.

3.1. Let U
an adrnissible
of all admissi
admissible dit

Now consi
point I € dor

we put

A simple calc
a*Zv,rr (a),
function is br

is defined anr
\Ye need som

3.1 .1 . rf d:
Fd; (dom(^F).

It is clear t
A(x - t )< f
any sufficien

But if A e dt

for x € dom
3.1.2. If 1

absorbing), t
K-space, dot
on X-

For it fol
small c ) 0

and this gut
that for anl
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3.1. Let U be a convex set in a vector space X. An element h e X is cal led
art admissible directionat a point -i € U if i + ah € U for some A > 0. The set
of all admissible directions at i forms a cone Fdy(A, called the cone ttf
udmissib le dire c t iorts.

Norv consider a K-space Y, a convex operator F: X -+ f U {**}, and a
point .f € dom(F). For each

w'e put
h € Fd;(dom(f))

z;, n@) : (F(7 * ,th,) - Fi)la.

A simple calculation based on Jensen's inequality shows that the function
ot*Zi,t (q), detined on some interval (0, A), is decreasing. Thus, if this
ftrnction is bounded belorv (for example, rvhen 0; (F) + @), then

F ' ( . r )  h :  ( o ) - l i ^  F  ( i * ! . t t ) - F i : i n f  
z ;  ^ ( q )

, t , ,  0 cJ' q. r '  n '

is definecl and is called the clerivative of F irt the admissible direction h at 7.
We need sonre properties of these derivatives.

3.1.1 .IJ'd*(n + Q, then F'(t) is a sublinear operator defined on the cone
Fd; (dom(F)), and

A;(F) : 0(F'(i)).

It is clear that i-'(;) is sublinear. If ,4 is an operator such that
A(x - x) < Fi - Fx for all .x e X, then for any admissible direction ft and
an1' surficientlv t-tt::;:'.F 

(i 1- att) - Fr, thatis, A Qa (F, (r)).

Bnt i f  A e A@ '( i)) ,  then

As - A7<F'(7)(r - i)(Fu - Ff

for x € dom(f').
3,1.2. If x is an interior point o/dom(F) (that is, the sel dom(f)-f fs

absorbing), then D;(F) + Q and dom(F'(f)) - X. If, in addition, X is a
K-space, dom(F) = X, and F is (o)-continuous at7, then F'(x) is (o)-continuous
on X.

For it folloivs from the definition that for any h € X and any sufficiently
small  a ) 0

- zx, -r' (e)

aird tlris guatantees that f 
'(i) is (o)-continuous at zero.It remains to point out

that for any subl inear operator P
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' fhc 
rcvcrsc inc lus iot r  obv iously  holds.

2.5.3. |J-1" , .  .  . ,P, r t  X -+ Y are suhl inear  operators,  then

0  ( P t +  .  .  . +  P " ) = . , t t  ( P r )  - f  .  .  .  + A  ( P " ) ,

d  ( P t  \ '  . . .  V  / ' , , ) :  U  ( e t " 0  ( P , ) * . . . +  d n o 0  ( P " ) ) .

x;;. ':t:::'
I t  is  enough to prove th is  in  the case r t  =2. I f  we wr i teP,  *  P,  = *  o (Pr ,  Pz) ,

wlrere +: I X Y -+ Y denotes the operator of addition and (P1 , Pr) is clefined
by

( P t ,  P r ) x : ( P & ,  P r r ) ,

def in ing Pr :  Q t , ! 'z )*b,  r ,  0)  and apply ing 2.5.2,  we obta in the
for the sum. Furthermore,

P): A (e2. (P t,  P2)) -:  U 0 (a " (P t, ,  P)) :
aeo@2)

:  U  0 (  - t " P t * a z " P z ) -  U  A ( o r " P ) - - 0 ( a r " P ) .
ar*ar: I  y ,
a, ctr€t\(Y)

o.r*ar : I  y
a' ar€r\tY)

' fhus, 
to cornplete tire proof, lve only have to show that 0(a o P): a . 0(P) for

any sublinear operator P and any multiplier c € A()/). Since it is obvious that
a " 0(P) C 0(a o P),rve take an A € 0(a o P) and prove that A € do a(P).

By 2.3.3, AtX] c orl) 'J ,  therefore, as is easi ly seen from the results on
properties of multipliers, it is sufficient to consider the casc when Ker(a) = {0}.
But then we can again appiy 2.3.3 to f ind thata-r o r4 isin the support of P.

To conclude this section we give an interesting characterization of lattice
hornomoryhivns.

2.5.'1. Let X be a vectar lattice, Y a K-space, and T e L*(X, l '). Then the

followirtg corzditions are e quivalent :
( I ) f preserves the bounds of finite sets;
(2) for ent, T' e L*(X, Y) sttclt that T' 4 T there is a multiplier a € A(Y)

for v,ltich T' : cr o T.
We define sr-rblinear operators P1 , Pz'. X x X -> f by the rules

Pt(rr, sr) : T(r, V er) and Pr(*r, nr) : Tq \f Txr.

Condition ( I ) means that these operators or, what is the same, their support
sets are equal. By calculating E(P, ) and d(P2), we obtain the required result.

$3. Subdifferentials of convex operators

'fhe 
main aim of this section is to evaluate the subdifferentials of convex

operators in an explicit form. We first give a methocl for stuclyittg srtch
oprcrators at interior points of their effect ive sets. and then rve discuss the
gencral case, where rve'have to employ specif ic metltods. From this rve derive
rules for chanee of variables in the Yor"urg transform.

then by
formtrla

o(PrV

3.1.  Let  [ I  be i
an admtsstble clir'
of all admissible ,
adnrissible direct,

Now consider
point f € dom(^ft

we put

A simple calcula
ot*21,7, (a), det
furtction is bonri

is defined and is
\Ye need solne p

3.1.1 . rf Ai{r.
Fc.; (dom (F)\, a

It is clear thir
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Convex operators

3.1. Let Ube a convex set in a vector space X. An element h e X is cal led
an admissible direction at a point i € U it ; * ah€ U for some A > 0. The set
of all admissible directiotrs at I forms a cone Fdr(A, called the cone tsf
admissib Ie dire c tiorts.

Now consider a K-space Y, a convex operator F: X -+ f U {**}, and a
point f € dom(F). For each

tl'e put
h e Fd;(dom(F))

z;. n@) : (F(7 * q,h,) - Fil)la.

A simple calculation based on Jensen's inequality shows that the function
anZr,tr (cy), detined on some interval (0, d), is decreasing. Thus, if this
fr.rnction is bounded belorv (for example, lvhen d;(F) + Q), then

F', (7) /2 : (o)-li  ̂  F (i*!]t - Ff : inf z; ^ (q)

is defined and is called tne arriv,oor,r, 
"f; 

irt the 
"o*rrrr',ur, 

ornrrron h at i.
We need sonle properties of these derivatives.

3.1.1 .IJ'\t(n + Q, then F'(7) is a sublinear operator defined on the cone
,F r/; (dom(F)), and

a;V) : o(F'(fr))-

It is ciear that l-'(;) is sublinear. If .4 is an operator such that
A(x -x) < Fi - Fx for all -r e X,then for any admissible direction ft and
an1' sufficiently small a ) 0,

aAh,<f (t ! ah) - FE, that is, AeA @' @)).

But if A e A({ '(i)), then

As - A7<F'(7)(r -7) (Fz - FF

for x € dom(I').
3.1.2. If x is an inteior point of dom(F) (that is, the sel dom(f) -i is

absorbing), then a;(.F) + Q and dom(F'(t)) = X. If, in addition, X is a
K-space, dorn(F) = X, and F is (o)-conttnuous at7, then F'(x) is (o)-continuous
on X.

For it folloivs from the definition that for any h € X and any sufficiently
snrall a ) 0

- zi, -r, (a)

aird tiris guatantees that f 
'(i) 

is (o)-continuous at zero.It remains to point out
tliat for any suL'linear operator P

r9s

I ltn - Pv l( P(, -- v) V P(v - x\.
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3.1.3.  Let  X,  anJ X t te  yector  spaces,  l 'a  K-s; tace,  A € L(Xr ,  X) ,ancl
f - :  X -> f  u  {+w) aconvex operotorsuci t  that ,4f  * l , f r t rsonrc ) '€X isen
iitterior Poiut of the effet:tit'e se r dorn( fi. Il'e consider the affine olterator
A, : x,-nAx * ),. Titen

A; (F , Ar) :  d  ̂ , , ,  (F) " A.

Direct calculat ion shows that (F o Ar) '(_?) = F'(Ayi) " A, and i t  merely
rema i r i s  to  app ly  3 .1 .1 .  and  1 .4 .5

3.1.4. Let Y ancl z be K:-spaces, F-: f, + l ', {+- *} a corvex operator, ancl
G: Y -' Z U {---} an increasing cont'ex operotor. Assttnrc that dom(G) = 1'
Qncl tltst f is an interior poirtt o/dom(F).ff G is (o)-cctntirtuous at FE, then

(G " I  ) '  ( i - ;  == G'11-f1 " I" ' ( i ) .
First of all rve note that for any .x € X

f'@ -f q:r,) : FV + aF'(T)1' * az(a. r),

wlrere z(a, x) J 0 as a J 0. For w,e can take

z(a, r) :  27,*e.) _ F,(D ,.

For siinilar reasons we have for each y e Y

G(I.a: r a!/) :  G(FV! - c.G'G'i)A ! atr(a, A),

rvliere w(a,.1') J 0 as a .1. 0. llaving fixed a sufficiently small positive number
cyo we cleduce fronr the monotonicity of G that for 0 ( a ( so

G " F  ( i - ,  a r ) - G "  F T : G  ( F i - - a F ' ( i )  r - . _ . r z ( a ,  r ) ) - G ( f 4 g

< G  ( F t  - r  a . F '  ( 7 ) , ,  d z  ( r y y ,  d )  * G  1 F z 1  :

=: cC' (,1'T) (1"-' (i) r -- 3 (q.0, r)) - au, (a, F' (O r -+- z (oo, r))(

{oG' (Fi).  l"  (7) r - .r  (G' \FD z (,e0, r) 4- u,(d. F, ( i)  r- l  z (ao, ,))).

For the sarne reasons

G . F (.7 -l- o'T) - G . FrlG (Fr -,/.F' (.4 r) * G (I?7) _---

aG' (Ffl " Ir' (O r -i- ant (q, F' (Z) r).

F-inal ly, rve obtain the two-sicled bouncis
( ; '  ( f ' -7)  .  F '  (7)  ?--  tL . (a,  I "  ( i ' t  t ) (  f  ( ;  ,  F ( I  *  qr )  - -  G , I : t ) /a(

< / ; '  (F ' i ) .  | - '  (4  r .  ( , : , '  ( f ' n  z ( .q "0 ,  a : ) -  u , (a ,  F , (n r - l z (an ,  r ) ) .

Passing to t i ie l i ini t  as a .1. 0. u'e have

(; '  ( f i )  .  I"  1:r1 r{(G . F) '  ( ; fr  r( ( , '  (}  i )  .  F'  ( i)  . t : ' -  G' (F4 r.  (er, a-}.

' l  
he last  incqtr l l i t l '  t to lc ls  for  an1 '  ao )  0 .  l lu .ncc an appl icat ion of  -1.  1 .2 f  ie  lds

t lte- rcclu irc..1 rcsir lt.
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Convex operators 197

3.1.5.  R EMAR K.  I t  is  c lear  that  Proposi t ion 3.1.4 remains t rue under  weaker
l i l ,pothescs. For example. i t  is suff icient to assume that G'(Fi) is (o)-continuous.
I{orvever, it is irnpossible to abandon the appropriate continuity condition
altogett ier (see 3.2.6).

3.2. We now pass on to the computation of subdifferentials.
3.2.1.  l -HEoR E M. Let  F:  A '  -> f  U{ t  x}be e 'convex operator  and

G: Y'o Z u {1-""} an increasiitg cortvex operator such that dom(G) ) F[dom(O].
If x is an interior point o/ dorn( F) and ,Et is an interior point o/ dom( G) such
thar G'(Ff) is (o)-continuous, then

0;(Go f)  =={A" (0*(F)) :  A" Luv.r ,Qlr ;G);  A€.L- ((yu;( ' ) '1*,  z)1.

PROOF. Invoking the resul ts of  $3.1 and Theorem 2.5.1.  we see at once
that

a;(G ' F) - u t!r"o'"' 
;i:;,,,,i ["'1",".:H G' (Fi)); AcL* ((yu('''i")-, z)].

It remains to point out that 0;(4 - A(F '(;)) and 06(G): a(G'(fD).
3.2.2.  coRoLLARY. For anl t  project ionPr and any K-space Y

0; (G o F)  :  -U  ̂  @;( ' { .  Pr .  F)  +  A; (Ao Prd "  F) ) .- -  
lea._(G)

Note that the representation in 3.2.? is substantially less refined than that in
3.2.1. For this reason the corollary remains true in much more general
situations to be discussed below.

For the purpose of applications it is useful to attach a more precise meaning
to t lre formula in 3.2.1.

3.2.3. Let F: /  + Y U {**} be a convex operator, G: Y -> ZU {*w} an
increasing convex operator sttclt that dom(G) ) F[dom(F)1 , andi an interior
point of don(F) such thar FE is an tnterior point of dom(G).

IVe consider the local approrimation F": X -> Y tJ {f *} of F given by

F e: r i--> sup {.-12 - Ai -7 Fi: A €.0; (F)1,

Then F" ts a convex operator. dom(F.)= X, and

0;(F"):  0;(F),  (G. Fs) '  ( i )  :  G'gA " F'  (4,

A;(G " F") :{A. (0,(F)) : . ,1 o lo ' , "  t€ 0r;(G);  A€L. 11y%"')* ,  Z)} .

l l

r l

. First of all rve note

Thus,

that tlie local approximation F" has the representation

F"r :  F7+ F '  ( i )  ( r - i ) .
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(G " F")' (.D .,r .=. (o)-lirn o-' (G (1, (* -t. o"r)) - G " FrO :
c L l L l

- (o)- i i rn o-t (G (Fr+ F' ( i)  (ar)) -G (Fq): G' (Fi l  "  F' ( i , \  s.

3.2.4. R E M A R K. General ly speaking, to establ ish 3.2.3 we clo not need to
lnake use of directional derivatives. It is sufficient simply to shorten the
expression for the subdifferential of a composition by using the following
representations:

Fe: e4 . (2[)u, .qi :00 (F1 , U : LuF - (?I) t

lVe carry out the corresponding construction in a substantially more important
and complicated situation.

Le t  ? I  beaweak lyo rder -boundedse t  i nL (X ,  Y ) ,andy€  (Y ! l ) - .  An
operator F: X -> f U {+oo} is called regular if it has a representation
F  _  e? i .  ( ! [ ) r .

3 .2.5.THEORE ln.  Let  F:  X -+ f  U {+ x l  be a regular  convex operator  and
G: Y -> Z U { + *1 an increasing convex operator such that Fi is an interior
point o/ dom( G). Then

a-*(G " .F) :  { .4  "  (U) :  A(  L*  ( (Y!{ )* ,  4 ;  e"  A21 € a F;G) i  Ao {21)vE:  A"  L: I ,F i l } .

P R o o F .  B y  3 . 1 . 3 ,

A;G o F) :  0;(G o tzr o (?l)y) :  d(!r)r;  (G. e21) .  (2I).

We put (?I),/t : i ' and claim that

an G" ef l )  : {A € t "  ( ( ra\* ,  z1: ,4 o a w.€0" , tT(G);  Au :  A oAu "  egi l } .

To see tlris, we first asstrme that for all : e (Yll)-

A z - A U < G  "  t q z  - G " e U U .

rc h e (Yu)* , /z =i 0, then for sufficiently srnall values of a ) 0 the element
y * alt  belongs to clom(G. ep1). and

o,Ah<G " etr (/- t  al) -G '  eq17^(0,

so that A e L+((YU)", ,Z).Furtherinore. since

Au " uu7 /,r!1., . t21 o AgI - Iy

the element A, o eniT satisf ies

0</  "  A?i  o  eqtT- /V<G ( . l l  .  A121 "  eryD -G "  eqi7:0.

Also. for any ),o e Y

A " L21!lo- A "Al i  "  u u, l  :  A " Lnpo-l/<G o tU o A21Uo * G ot?ty: GAr-G " eQI{,

s o  t h a t  d " A r y |

A Q L +  r

then for any z €

Az-  &:  Ar^-

which indicates
Thus, bearinl

%(G " f):  aT

3 .2 .6 .REMA
not, in general,
on G. By analY:
Thus ,T fX= l * ,

Fx=x  V  0 , t h
F'(x)h = A.

3.3. As aPPli
the representat

3.3. tr .  Let Y
acting in Y, an
Then

O;(Fr V ,

where the unit

I

I  (r) :  l (ccr,

The next P
(Yu)* that a

3.3.2. Let
A e L*((F'ltr,

For let B

[jtrrthermort

'Ihis resul
compositior
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so that ,4 o A, € Artit (G). Conversely, if we know that

A e. L* ((Yr\*, z) ,, A . Lv( 0 
"*; 

(G), zl o Ai1 " er,il : 4tr,

tlren for any z e (Y2\*

Az - AT : Az -y' 
" Ag' eryil( A " L1I(tAtt) - A oA* (eryD (6 " eDIz- G " er217,

wlriclr indicates that A € at(G . etl).

Thrrs, bearing in mind that e21 " (2I)v 7: Ff, we finally obtain

qG o F)  :  Aui ) r ;1G'  ep1)  '  (? I ) :

{A Q. t  * (Yw)*, Z): A o LL]Q 0 r i  G); A" (2I)s i :  A. AuF4 " (?I)-

3.2.6, R E M A R K. Theorem 3.2.5 shows that even the regularity of F does

not, in general, guarantee the validity of 3.2.1 without additional conditions

on G. By analyzing the formula it is not hard to choose concrete examples.

Thus, if X = l*, G € 0(x*trxn) is ageneralized limit,and Fis the operator

Fx =x V 0, then forfr= - |  ln and lr,  = I  we have (G " F) '( i)h= 1, whereas

F'(x)lt = 0.
3.3. As applications of the above theorems we can obtain various results on

the representation of subdifferentials, and we mention a few of them now.

3 .3 .1  .  Le t  Y  beaK-spac€ ,  F t , . . . ,Fn :  X  -+  yU { * * }  convex  opera to rs

acting in Y, oncl i an interior potrtt of a set U C dom (Fr ) n . . . O dom (F")'

Then
0; (F t - i -  . .  .  +F" ) *  a ; ( / ' ) *  . . .+  0 ; (F" ) ,

0 ; (F ,  V  . . .VF , , ) :  U  - (a ,o  O; (F t )+ . . . *qn 'Av(F" ) ) ,
( o c r , . . . ,  a n ) € l ( ; r - )

where the union ranges over the'foltowing set:
n n

f  (a :  f (a , ,  . . .  ,  dn )  (A (Y) " :  
u I , "o  

== f {  
, } ,oo  

oFn i :F t i  V  . .  .  V  F r i } .

The next proposition determines the form of the positive operators on
(Yu)* that appear in the formulae above.

3.3.2, Let Y and Z be K-spaces. For any set 2I and any operator
A € L+(1fll;- . Z) the following system of condittons is compatible:

q " e . A  G u t , ) ,  A - c r , o  ( l  o A Q I , r " d  ( e 2 1 ,  y ) ) .
'  

Fo,  le t  B - - .  f  oAo. ,y .  Then R e L ' ( r ' ,  Z)and,  by 2.2.1,

a (B " ru. y) == {C € tr.  ((} ' ! \*,  Z); C o Au, 
" 

- B}.

Furtlrerrnore. by applying I .4.2 we show by direct calcitlation

0 ( lJ " EU,r) :  cop (R " d (e21, 
")).

This result enables us to find other representations of the subdifferentials of a

composi t ion.

r99
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3.3.3.  I . t ' t  t r ;  - \ ' - - )  l -  U { - l - * }  bc a cont 'e  x  o! )erator ,  ; , .J

G : Y - - > Z ; { - - - * }

rui lttcrectsirtg cortvex operator suclt that

dom(G) :  f ldonr( f )1.

If i is art interior point o/dom(O anct Fi on interior [:r,i77s of dom(G), thert

d; (G " f '")  : .  {cr .  (A " 0; (F)): a €.0 (ta-trt ,  z);  - t '  ( .0 r;(G)},

0;(G " 1'") =: {a " (da; (G) " d; (f)):  oL( A (uu...  ,- ,"a-l . \ ,  z)}.

Both of these representations follorv irnmediately front 3.2.3 and 3.3.2.
3.4. We now concern ourselves with the str-rdy of the sLibdifferentials of a

composition at arbitrary points of the effective sets. The theory of sublinear
operators that are not defined everywhere has by no means yet reached an
adequate state, therefore, definitive results of the qualiti ' of those obtained
above are still conspicuous by their absence. However, the situation is far from
hopeless. In particular, it turns out that the formulae for calculating subdiffer-
entiais most conlmonly used in applications carry over to the case of boundary
points under conditions that are not too burdensome. It is helpful to bear in
mind that the approach described here, based on the ltlazur-Orlicz theorem,
yields new proofs of some of the results described in tli: preceding subsection.

3 .4 .1 .  THEoREM.  Le t  X  be  avec to r  space ,  Y  a  K-space ,  P ;  f ,  ->  Y  U  { f  oo }
a sublinear opercttor, and (xg)ge p and Ot)tE= sltbs€ts oJ-X and Y, respectively.
If the smaliest canein X containing the elernents (-xr ) ;ttd the effective set
dom(P) is a subspace, then the following assertiotts cre c';Tuivalent;

(l) There is an operator A e L6, Y) suclt that

A e  ae) ,  ArE laz  (E  €  E ' .

. ,  t r ,  €  R*  and  any  Ers .  .  . tEn  e  7 :uch  tha t

?'.trEi( dom (P)

y'e have

o (,i ?vixEi) =,I, ?.i!/';i.

PROOF. We have to ver i fy  that (2)  *  ( l ) .To th is  e; ' . . :  we consider the sub-
space Xr .  the d i rect  sum of  the l ines (R) t r : ,3 f lc1 we i :e t ine operators B and C
by

(2) I  or any )t ,  ,

Let fo denote
(-xr  )se =.  By hv1:

Thus. for every x.

f i o  J .Ba t  (  don

Consequently, we

P ( r r = B z r ) - C

>C
In other words, ei

P l rn  :  i t

It is not hard tr
sublinear. Appeal
and ertend it sonr
shorvs that the re:

3.5. The Mazt't
culat iort of subdi:
need the follorvin

Tu'o cones,Iy't
to be in general p
cone containitrg /
genera! ltositictn i

{ 1 ,

k=  1 , . .
Let us

positiott.
3 . 5 . t .
3.s .2.
3.s.3.

Hr . . . . ,
positioit.

n) tlte c,

- f l -  l '

l ist son

I fH r , .
If the c
If the c
H,  : . ' i t t

\\ 'e only have
1/1 ancl II2 are t
th r - r l  { say  I {2 ,1
posi t ion.  This  f
3tl5q-rpbittg sct. L
n'hol"' space )i.

TL

ŝ(-)
i : l

Bz- I  , (E)  r : ,
9  - ^
E L -

Cz- :  I  r (E )y : ,

B (L  (X , ,  - r  .

c  e .L  (x , ,  l - , .

I{ere z e X, is rcgarclcd as a function: E --+ R that is lr . . :- .-zero only on f ini tely
rnany points of 3.
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Let Xe denote the smallest corle containing both dorn(P) ancl the family
(--r,  ) t€= . By hy'pothesis, rve l tavc'

X6 := Btf l l  -  clom(P) :  r loni lrr ;  -  BtXIl ,
P( I lh)2Ch ( / ,  (  x l  f l  B-1[dom(P)] ) .

Thtrs, for every xo € x6 there are eiements z r,  z2 e xI such that

r,o *- Br, ( dorn(P) ,  -ra * Bz, ( dorn(P), P(I lzr. l  Bzr))C(2, * zr).

Conscquently, rve have the bounds

P ( : v o * B z r ) - C t ,

In other words. each xo € Xs determines an element

Pf ia :  in f  { t t ( *o - l -  Bzr)  -  Crr :  zrQ Xl ,  ro  *  Brre.  dom(P)} .

It is not hard to check that the resulting operator P1 defined on Xs is
subl inear. Appealing to 1.4.1, we take any elenrent of the support set of P,
anc! extend it somehorv to a linear operator defined on X. A routine calculation
sltows that the resulting operator has the required properties.

3.5. The lvlazur-Orlicz theorem fumishes a suitable apparatus for the cal-
culaiion of subdifferentials. First of all rve apply it to describe support sets. We
need the following definitions.

fwo cones II, and I{, (not necessarily distinct) in a vector space X are said
to be in general position if IIr - H2 * H, * IIr. in other lvords, if the smallest
cone containing Hr and -II2 is a subspace of X. Thecones Hr, . . ., Hn are in
gerrcral positiort if for any rearrangement {1,, . . . j l,r}of the indexing set

{1, 
'n}the 

cones Hio andr=fl  
tHirare 

in general posit ion for al l

k =  |  n -  l .
Let us list some of the most frequently encountered cases of cones in general

posit ion
3.5.1.If IIt, . . ., Hn are sttbspaces of X, then they are in general position.
3.5.2. If tlte cones Hr,. . ., Hn coirtcicle, then they are tn gerzeral position.
3.5.3. If the cone Ht fr. . . n Hn corttains an interior point of each of

Ilt, . . .,Hn x'itlt the possible exceptiort of one, then these cones are in general
posttiort

We only have to vc:r i fy 3.5.3. ' fo do this i t  is clearly suff icient to show that i f
II , and II2 are cones such that H , A II2 contains an interior point i- of one of
thern (,say Hr, for the sake of cle finiteness), then I{, and H2 are in general
pcrsit iort.  This fol low,s at once from thr ' fact that thc cone Hz - / / ,  must be an
ahsorbing set. l lecause II2 - Ht ) I I2 -.T. Fience. this cone is the
rvhole space ,\ .
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3 .5 .4 .  Lc t  P r , . . . ,Pn :  X  - -+  f  U  { * * }  be  sub l ineoroper ( t to rswhose
eJ/ectit' 'e scls dom(Pr),. . ., clom (pr) are in general position. Tlten.

0(P,  + . .  .  +  P) :0 (Pr )  + . .  .  +  A(pn) .
It is sufficient to consider the case n = 2 and to verify that

6(P, *  Pr)  c.o(pr)  + o(pr) .

To this end rve take A € A(p | * pr). Then

for all

Hence, i f

then

}, iq € dom (Ps) [l dom (P2)

and lve obtain the bound

n
p, (.i )upi)

i : l  i l t  
-  . /  . l 3 t  .  . / -  

l ? t . - ,

Thus, applying 3.4.1we find an Ar e L(X, y) for which

Ar, € O(Pr), Atr) -Prt * Ar (e ( dom (pr)).

It merely renrains to point out that A - Ar € a(p2 ).
3.5.5. Let Y be att orclerecl yectorspace and pr: x + r u{*-} asubrinear

operator. AIso, let Z be a K-space and pr: y -+ z u {*-} an increasing sub-
linear operator. If the cone dom(p, ) anct the support ltull of the set
Pt [dom(Pr )] are in general position, then

0 ( P r " P r ) : .  U  0 ( A " p t ) .
Ae1(Pr)

This proposition is provecr in just the same way as 3.5.4.
we give some simple consequences of 3.5.4. and 3.5.5.
3-5.6. rf Y is a K-space and pr rs any projection in y, trten

0  (Pr .  P ) :  

" ,Ho , ,  
@ (Ao  p r  o  p r )  *  0  (A"p rd  o  p r ) ) .

3 .5-7.  Let  Y l te  a K-space and pr , .  .  . ,pn:  x  + )z  u { foo)  s t tb l inear
operators v'ltose effective sers clom(pr ), . . .. dom (pr) are in'general positiort.
Then

n

s
L:

i : t

PrxlAx - pzx

e ( dom(Pr) {) dom(pr).

}"n € dom (P,), where ?rt € R* and e1 ( dom (pr),

a (Pt v "
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arbitrary points-
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0o(6t) : ,
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such that hs : I
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lrt and ttre sim
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TL

s
L; -  {

e
#
*1.
iit
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3.6. We now establ ish
arbitrary points.

o 1 , . . . , c r r € A ( Y )

the basic fonnulae for calculating subdifferentials at

3.6.1.  THEoR E t t t .  Let  Y be a K-space ancl  Fr ,  .  .  . ,  Fn:  X -> y  u {+o"}
convex operators such that the cones o! admissible directions

Fd;(dom(Ft)),  . .  . ,  Fd;(dom(f"))

are in general positiort. Then the Moreau-Rockafellar formula bolds:

0;(\ . * F) : 1v(Ft) * . . . * O{,Fn).

P B O o F . We only have to show that when

a;(Ft * . . . * F) + A
then each of the operatorS Fr , . . ., F, is differentiable in all directions of the
corresponding cone of admissible directions. For by 3. 1.4 and 3.1.5, in this
case

( F t  - l - . . .  f  F " ) ' ( 7 )  :  F i @ )  * . .  .  +  F ; ( i ) ,

and i t  remains to use 3.5.4.
It is sufficient to consider the case /? = Z.We may assume without loss of

generaliry that,t = 0 and FrI- = FrF = 0, since otherwise, we can take the
operators

Gri :t,+ Fr(E * ,) - Frd, Gz; n *. F2(E * s) - Fzn,

for which.clearly

G 1 0 : G r A : 0 ,

?o(Gr) : 0;(F), ?o(Gr) - 0;(Fr), ?o(G, * Gr) : O;(Ft * Pt)'

Let h e Fdv(dom(F, )). Bv hypothesis, we can find elements

hr € Pd; (dom (F t)) and h2( Fd; (dom (Fr))

such that hz = h + h r. We may assllme that 3h, 3hr € dom(F1 ) and
h, A dom(Fz ). Then for sufficiently small positive a

. F lcth t)5! aFrlzl, . I' r(,zh 2) {aF rh, r,
F r(oh r) ) A(eh, r) - F r(ah r)

for any operator A in 0;(Fr * Fr). Furtherrnore, becattse of the convexity of
I' ', ancl the simplifying assumptions $,:e have made,

Fr(ahr) : F{3c,.iz'3 * Sahri} -l 0/3){}'1(i3a./r)'3 + Ir(3ahr)13{

(F1(3ah)/3 + aFrhr-
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I '1(3ah) 3)u(Ah 2 - F rlt, -- Frlt r).

Thrrs. the function a n Fr@l)la,which is definetl  for sulf iciently small  values
of q, is bounded below, and this means tltat l71 is differentiable at zero in the
direction /1. For analogous r€.asonS, Fz is differentiable in all directions belong-
ing to Fd,1(dom(/i  )).  This completes the proof.

In fact, the method clescribed in the proof of 3.6.1 yields more. For
example, the follorving version of the It{azur-Orlicz theorem holds.

3.6.2. Let 1'be a K-space artd suppose thatwe are givenaconL'ex operator

and farnilies

F:  X -> ) ' iJ  { ** }

(o:):e= c X and (y)i€= c.Y.

If the conical hull of (xr)E q= otld tlte cone Fd7(dom(D) of admissible
directions are in general position, then the follou'iirg assertions are eqttivalent:

(l) Tltere is an operator A e L(X, ,') sttch that

AQA;$ ) ,  A4 lUe  (E€E) .

(2) For any )r,,, . . ., tru € R' and €r, . . ., En €7 such that

: i i  { 7 artcl ft- : ?uir= ( dom (F),
i : ' l  i : l  

= i  -  \  / '

x'e ltave

F G+ I  ? ' ' '= , )  -  F i>:  ' , r r , '
i : 1  i : l

This modification of 3.4.1is also used frequently in applications. All the

Ssrne; in concrete situations it is usuaily' simpler to pass directly to directional
derivatives, thereby reducing the matter to the case of sublinear operators.

3.6.3. Let Y be a K-space and F, G: X --> Y U {*-} be convex operators
sr.tclt tltat

dom(F) :  dom(G).

If F + G > 0, then there is an A e L(X, Y) and a )' e Y such tlmt

F  -  A .o l t )  nnd  Au  +  G>0.

This reprcsentation is of independent interest and is cal led the proposit ion

on the separation of operutors. Since it is not rised in what follows, we omit

the proof .
3.6.1. THEOR E M. I.et X be a rect()r space, \ '  t tn orclerecl vector space, and Z

o K-sprrce. AIso, Iet

be a crsnl'ex '

he an irtcreat

lor  sonte V €

holcls:

P R O O F .  ]

so  tha t  C  e i
Let urs no

x € dom(Jr)

In fact, for i

aC ( . c  -7 ) :

(G (o

wltere ur(a)
The ques

.,4 € 06y(G)

Using the a
x l  .  '  '  ' r X n

For lve ma

is strictly 1
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I: ' : X -+ )- , { j-*}

bc a cont'e.Y lperator artd

G:  Y  - ->Z  r  { -F " " } :

be an increasing convex operator suclt tlrct dom(G) I tr[dom(F)],and that Ff

for some.Te dom(O ts an interior poirtt of dom(G). Then Gol'shtein's formula
Itolds:

0; (G o F; =: '' 
^ 0-, (rl " F).

.,t!or._ G)

PROOF. I f  C€a ; (A "  F )  f o r some  A€AF7(G) , t hen

Ct -  Cn<A " Fu -  A "  F <G(Fr) -  GVA,

so tha tC€Ar (G . I ) .
Let us now assume that C € d;(G ' F). Note first of all that for any

x € dom(f)

C r - C f r < G ' ( F i ) ( F r - F D

In fact, for all s such that 0 ( a ( I we have by definition

aC ( t -7 ) :C  (q " r+  ( t  -  a )  7 )  ' -C ,<  G (F  (a* - l -  ( l - c { )E) ) - -C  ( r4<

{G (ct \ ' r+  (1 -  e)  Fv)  -C VA:  G (FE- la (Fr-  F i l  -G @4 -

: d.G' (Fi) (Fr- Fi) f ara (cu),

where rc(a) J 0 as o .1. 0.
The qtrestion of interest to us is whether there is an operator

A € dp" (G) suclt that

Cs - Cr<A(Fo - F7) (e ( dom(r)).

Using the above bound, we see that for any Lr tr, e R* and any
x r , . . . , x n  € d o m ( F )

i  ^ ,  (cr , -c t )< G'gA( > , . ,  (Fr , -FA)
i : l  i : I

For rve may assllme without loss of generality that

to:  !  i ,
i : 1

is strictly positive. Then the element

I  s - r ^
flg -= -:- )', t"iT;

/ . 0
i :  I
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bclongs to dont(F),  hence
11

)  ; . ,  (cr ,-c71:) ,s(crs-cr)( loG (FQ gro-tr ' \ :
r : 1  

1 t

: G (Fi) (i,s (Fq- ttt)) <G' (Ft) (:. I ' iFri- l 'oPt).
i : t

Consequently, the existence of the required operator,4 is assured by the Mazur-
or'licz theorenr. Thus, C e d;(A " F), and this completes the proof.

3 .6 .5 .  THEoREM.  Le t  Y  be  a  K-space  and  le t

F r ,  . . . ,  F n i  X  + Y [ J  { * * }

be convex operators such that the cones of adrnissible directtons

Fcl;(dom(Fr)), . . ., Fd;(dom(f,))

are in general position. Then the Dubot,itskii-Milyutin forntula holds:

a ; @ r V . . .  V F , , ) :  U  _ ( a ;  ( a r . F r ) +  . .  .  * 0 ; ( o n o  F , ) ) ,
( & t , .  . . , a n ) € l ( r )

v.,here the union is taken over tlie following set:

f  ( A : { ( c r , ,  . . . , d n )  ( A ( Y ) ' :  i  o u  - I v i  t  o u o F n V : F f t V . . . V F n i } .
h : l  A :1

We obtain this fact as a consequence of the following more general
assertion.

3.6.6. Let Y be a vector lattice, Z a K-space, and A e L.(Y, Z). Let

Fr, .  ,  . ,  Fri  X +)/ lJ {{-*}

be convex operators such tlmt the cones of admissible directiorts

Fd;(dom(/r)), . . ., Fd;(dom(1",))

are in general position. Then the following decompositiort formula holds:

0 ;  (A .  F ,  V  . . .  \ /  Fn )  ==

n r t ? l

: {  :  0 ; (Ano  F 'n ) :  Ax ( .L *  ( y ,  z ) ,  2  An :  A ;  2  Aoo  Fnv :A (F f iV .  . .  V  F* i ) | .: r \
h - .1  h : l  A :1

We consider the coltvex operators

t :  Yn - ->Y,  t (At , ,  ! tn)  :  Ur  V .  ,  .V Vn,
(I'r,, Fn), X -->Y'', (Fr, F,)t : (Ffi, Fnr).

Tlren i t  is clear that we have the fol lowing representation:

*
t

i
t,
t
t
I

3

f');,
{,
t
$

Thtrs, by 3.6.4,

l v ( A " F t

A direct calculat

d ( . 4 " e ) =

Thus, the requir,
3.7. In this str

transform.
L e t Y b e a K -

dom(.F) * Q. Fc

The operator F r

Young transforr
For (x, t) e )

Thus, the result

This IIp is calle
from the fact tl
operators suPP'

3 .7  .L  1 'H  E  C
a K-space. Alsc
an increasing c
dom(G), then .

(

This formtila i
P R O O F .  F i

( G " F ) * A *
!r€

Now let I



A"Fr  V . .

Tht ts ,  by  3 .6 .4 ,

a;@.F 'V. . .V f , )

direct calculat ion (see 2.2.1) shorvs that
7L

r; f  dortt  (G.F )

r Idour (1, ' ;

Ncrw le.t A

A

i

t ' .

Con';ex operators

.  V  F ^  -  A  o 6 o ( . [ 1 1

:  U a; (8"
B€o 

1tr1*,, ,  . ,F7rl ;(A'e) 
- '

F").

(F r ,  ' . . , / n  ) ) .

2Q7

Z
{** }

F* A : 
,,,' i*f;t"' 

(At -' F ')'

Tii.: operator,F* is called the Young transform of ^F. As a nlle, we study the
Yor-rng transform rvith the aid of the following construction.

F o r ( x ,  t ) e  X  X R r v e d e f i n e

{ 
,F (r l t) ,  t  > 0, r l t  Qdom (P),

H r { r ,  l ) : {  0 ,  / : 0 ,  u : 0 ,

t f oo, otherwise.

Thtrs, the resulting sublinear operator IIp: X X R --> f U {**} is such that

A  ( A " u ) :  { ( y r ,  . . . r U n ) ' - *  )  A n l l t i  A a € L *  ( Y ,  Z ) ,  , I .  / o : A ) .

Thrrs, the required result fol lorvs by appealing to 1.4.2 and 3.6.1.
3.7.ln tiris subsection, we apply the above results to the study of the Young

transform.
Let Y be a K-space and F: X -+ f U {**} a convex operator such that

dom(F) + 8. For.4 e L(X, l ') we define

dom(//y) : {(t, q e. X X R *: c ( I dom(^F)}.

This IIp is called the fl\rnzander transforrn of l-. Its importance clearly stems
from tire fact that affine operators majorizedby F can be identified with linear
operators supporting H p .

3.7.1. TH Eo R E M. Let X be a vector space, Y an orclered vector space, and
a K-space. Also,let F: / -+ f U {**} be a con,)ex operator and G: Y -+ Z U
an increasing convex operator. If Fldom(F)) contains an interior point of
dom(G), then for any A e L(X, Z)

(G"F)*A :  in f  { (B o F)* t r  + G'+B:  R C.  L+(Y,  Z)} .

This forntula is exact, that is, the infiruuTt otl tlrc rigltt-hand side is attainecl.
PROOF. F i rs t  o f  a l l  we note thdt  for  any B € L"(Y,  Z)

( G " F ) *  A = .  s u p  ( A r - - G o F r ) : .  s u p  ( A r * B " l ' r * B " F r - G . ^ i c ) {
cc fdont  (6" t r ' )

r c € d o r n  ( G ; f )

<(Ii . F)* A-i sup (Ily -GU) : VJ " F)* .' l -l- G*lJ -
y [ d o r n  ( G )

€ donr(( G o l:1* ). 
'[hen 

for (.x, t) € X X R r,ve liave
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' t t '  * t((] " l ')"d(y'/6.p(.r, I

l f  rve assurne thai 1fto. l) :  ( .x, t \-+ (f lo(-x, r),  /) ,  then

Har : Ifc " (Hr, 1).

Note that dom(tHe, l)) = dom(//p), and furthermore.

(Hr, t)  Iaom(// j ' ) l  f l  dom(,F/")c (rtdom(F)l ^ dom(G)) x {1}.

We order )'X R by means of the cone f X {0}. The:.,HG becomes an
hcreasing operator and (IIr, l) is sublinear. By 3.5.5 ', '. 'e have

0 (Hc.r): u a (c " (i l o, I i.
ca1\H G)

In other words, there is an operator Ij e L*(Y, Z) and :n element z €Z such
that for all x e X, ),e Y, and t € R*

Ar -  t (G" F\*A<tB " F(r l t )  -  tz,
Bv * tz{tG(ytt).

This yields the inequalities

-z )G*8 ,

and the proof is complete.

(G " F)* A> (B o I ' i*-- l  -  z,

3.7.2. co R O L LA RY . If F is a subltnear operator', i)ien the follotvirtg exact

formula ltolds:

(G"  F )xA :  in f {G t  B :  A  CO(B "  F ) ;  B  a  L+( r ' ,  Z ) } .

$/e only consider the case when (G " F)* A < + oc. Then for some
B € L*(Y,  Z)

Here
(G"  F)*A -  (B "  F)*A + G*8.

s u p  ( A r - B o F s ) - ( t .
r € d o m  ( I )

so that A e A@ o F). This yields the required result.
The next two propositions are proved similarly.
3.7.3. If G is a sublinear operator, then we hat,e ri:: follotving exact fornrula:

(G . F)*:ril[, (B " F)*.

3.7.4. Let X, ond X be vectorspaces, Y a K-spac;. tnd F: X-+f U {*""}
a convex operator v,hose effective set contains an ir::rior potnt belonging to
the irnage of X , uncler some offine nwppirtg A* , tti::,: A € L(X t, X) and
x e X. Then lor any B e Lq r, l') we hat'e the foli,. ".ing exact forrnula:

(1 , .  A . . ) *B  :  i n f  { I ' . ;C  -  C : r :  B  , -  C .  A \ .

3.7.5. R E M A R K. These assertions are theorent\ ,. ' ?r :l lector minimar. Tltus,

in the case of 3. j

Hence,

3.7.6. Let Y t
such that tlre efJ
transforms are ir

where @ denotes

r ie .

Since He ..  I  
|  . . .

3.7.7. Let Y 1
operators suclt t

Honnander tran
A e L*(Y, Z), tl

(A "F rV " '

The proof fo
and to Moreaul

3.7.8. R E MA
the Ioffe*Tikh
exact in the na'
anyBeL (X ,2

Bn€

It turns out
entirely suitab
must be handl

3.7 .9. Let I
f/rcr dom F ha,
is an element
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in t l rr :  casc of 3.7.3 r,vi th dom(G) =

-  ( c  o  / ) *  0 :

( ,B"  y ' ) *0 -

Fience,

rEl,%,..-.J#,r, 
B o Ft:*,u'o?I,", 

"!)',%, 
B o Ft'

3.7.6. Let Y be a K-space and Fr, .  .  . ,  Fn; f  -+ y U {+a) convex operators
sttclt that the effective sels dom(Hr,),. . ., dom(Hrn) of their Hiirmander
transforms are in general position. Then the Moreau formula holds:

(F,*  . . .  + F,)*- - .Ft  @ . .  .  @ tr* ,
*'lrcre @ denotes the operation of inf-convolution, that is,

r io . . .e )FnA: in f  i )  F f ,An:  Ang.L(x ,Y) ,  
Ar r :A | .

Since Hrr* . . .+Fn= HFr+.  .  .  +  I Ipr ,  th is  proposi t ion fo l lows f rom 3.5.4.

3.7.7. Let Y be a vector lott ice, i l td Fr, .  .  . ,  Fn: X'+ I U {*oo) convex
operators suclt that tlte effective sels dom(Hpr),. . ., dom(Hrn) of their

Ili)nnancler transfonns are in general position. If Z is a K-space and
4 € [.(]', Z), then the following decornposition fomtula holds

(A" FrV. . . V F)*:inf l#r@^, Fil*: Au€ L* {) ' ,  Z), 
-f ir 

ar:/}.

Tlre proof follorvs on the same lines as that of 3.6.6, with appeals ta 3.7.3
and to Moreatr's formula.

3.7.8. R EMAR K. When Y = Z and A = Iy, this clecomposit ion is cal led
the loffe-Tikhonirov fornnila. We also point out that all these formulae are
exsct in the natural sense. For example, the exactness of 3.7.7 means that for
any B € [,(X, Z) the follorving system of conditions is compatible:

rL

Bng L (X, Z) ,  B: x .BE, An€ L* (Y, Z), A-
ft:1

(A" F1v . .  .  Vf ' ,") * B: L Vo. Fn)* Be.
&,=t

It turns out that in a number of cases the Flonnander transform is not
errtirely suitable; thus, 3.7.1 says nothing lvhen G is linear. Such situations
nrust be hanclled in a different way.

3.7.9. Let Y be a K-space ancl f:: X -+ l'U {-l-*} econyex operatorsuclt
tliat clomF has an irtterior poirtt i for v'hiclt Fi > 0. Then for any h e X iltere
is an elernenf

l'- rve have

i i r f  sup  B"Fr ,
r (dom (F) BaA G)

in f  B "  Fr .
s€donr ( f ' )

rL

) ,4u,
h:1
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,S (F, dh==tll ISP ,
a>0

where S(F, D: X * Y is a subltnear operator.
The existence of S(F, i)h e )'is guaranteed by the condition ̂ Ff > A,

together with 3.1.2. The sublinearity of S(,F, x) can be verified by direct
calculation.-

With the aid of 3.7 .9 we obtain a representation of the Young transform of a
composition with a regular operator.

3.7.10.  THEOREM. Let  F -  e ,  "  (? l )y ,  where 2I  ,s  aweakly  order-
bounded set in L(X, Y) and I e lYlt; *. Also,let Z be a K-space and
G: Y -+ Z U {*oo} an increasing cortrex operator. If FlXl contains an
interior point of dom(G), then for any A e L6, Z) the following exact

formula holds:

(G.  F)*A:  in f  {G* (8"  Au)  -  BV:  B"  (2I )  -  A,  R €.L*  ( (Y\* ,  Z)) .

P R OO F. First of all rve choose x € X so that Fx is an interior point of
dom(G). Then it is clear that L,2rFx is an interior point of dom(G " eu).
Hence, since both G and the canonical operator Efl are increasing, (?I)rr is also
an interiorpoint of dom(G " e?i). Therefore, we can apply 3.7.4, that is, the
following eract formula holds:

( G " F ) *  A : i n f  { ( G o s l r ) *  B - B y :  A - B  " ( 2 I ) ,  B Q L ( Y a l t ,  z ) 1 .

If ^B belongs to L. (Q-\*, Z), then

( G " e q ) * B :  s u p  ( B t - G " e p r z ) (
z€dorn (C"eU)

z€dom (C'oe21) 
-- 

u€,fom (G)

On the other hand, if B e dom((G " ery)*), then

fi " L gF x { a.B z - (G " eU) * B <, o eQI (Lq1F x * qz) - G (F x I aegz)

for all a ) 0 and any Z e Vfl)- . By appealing to 3.7.9,we find that

B € A(S(G(.)  -  B "  L,sFr + (Go etr)*B, Fx) "  e*1.

By 2.2.1, this implies that the operator B is positive and that

B oAs € a (S G 0 -  B o L,rx,Fr+ (GoeU)* B, Fx)) .

Hence, for any u € Y we have the bound

B " A,q1u(G (^Fz + u) - B " L,qrEr+ (G " eq)* B,

that is, (G . e,x)x BIG* (B " Aat), and this completes the proof.
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Con-ve-t operatlrs

GUIDE TO TTIIT LIT.ERATURE

I )e ta i led bib l iogaphics cover ing the t je lds of  conve.r  analysis and thc theory of  extrcmum problerns

a r e  t o  b e  i o u n c l  i n  [ 9 ] ,  [ 3 4 ] ,  a n d  [ 4 3 ]  ( s e e .  a l s o  [ 6 ) , 1 3 9  i ,  [ 1 2 ] ,  [ 3 2 ] ,  [ 4 6 i ,  a n d  [ 4 9 ] ) ,  t h e r e f o r e ,  r v e

conf i lc  c lurselvcs here to a bare nr in imum of  l i terary '  comments.

$1.  Th:  not i t ' rn of  a subdi f ferent ia l  goesback to the geornet : ical  ideas of  Minkorvski .  A systemat ic

slrrdy of sr:bdift 'erentials in relation to the theory of ertrenrum problems began with the papers of l\{oreau

[-r0 j  and Dubovi tsk i i  and i \ , l i iyut in Ia] .  For the t i ieory of  orc lered vector  spaces see [9] ,  [20] ,  [21] ,
and  I z i4 ] ,  and  tb r  examp les  o f  convex  opera t ( ) r s  see  [2 ]  and  [29 ] .  Theorems 1 .2 .1 .  and  1 .3 .1 .  r ve re  d i s -

covered in th is general i t l 'by Kantorovich [21] .  For the subsequent research intc i  extension problcms see

[  ] ,  [ 22 ]  .  and  [44 ]  .  A  p roo f  o f  Theoren t  1 .3 .2 .  i s  i n  [7 ]  and  [40 ]  .  Lemma 1 .4 .5  r vas  es tab l i shec l  i n

the scala: '  case b1'-  Rockafel iar  (see I i8] ) ,  and in the general  case b1'  Levin [27] .

S2.  The canonical  opcrator  method was proposed in [23] .  The support  set  of  a sum u'as hrst

descr ibed in [27 ] .  Proposi t ion2.4.2 u 'as f i rs t  establ ished (by a s l ight ly  d i f ferent  n lethod) in [35] .  A

detailed surve'- of quesiioirs in the theoil ' of sublinear operators, other than those related to the calculus,

i s  to  be  found  in  [36 ]  .  Abou t  2 .2 .5  see  [8 ]  and  [18 ] .
$3.A sur\ . 'ey of  the theor l .of  subdi f fcrent ia ls for  numerical  funct ions appears in [18] .  The resul ts of

$3.1,  together w' i th the tbrmula for  the subdi f ferent ia l  of  a sum of  convex operators at  an inter ior  point ,

rvere obtained by Ler. in in [18]  and [27J.  For d i ;ect ional  der ivat ives of  non-cortvex funct ions see [31.
The version given of the Ma.zur-Orlicz theorern, the fornrula foi the subdifferential of a sum of convex

operatorsdef ined on a s ingle sct ,  and Proposi t icn 3.6.3 are al l  establ isheci  in 1+i l - -1421- Abibl iography

covering this area is given in [22]. The general tbrnulae of t]re subdifferential calculus were announced in

[24] . I 'heorern 3.2.5 appears her,"' for the first tirne. The subdifferential calculus is carried over to locally

Lipschitz functions in Chapter XI of [. i9] , which also contains a bibliographi'. A history of the Young

transfornr is given in [9] anC [46] . The Young vectc)r transflorm in an infinite-dimensional situation

apparent ly  occlr rs f i rs t  in [281.  Proposi t ion 3.7.5 rvas f i rs t  d iscovered by Rubinov.  General  ru les for  a

chang,c of variables in a Yourig transforni were proposerl in [2 5 ] . Research into Young transforms borders

on rvork on nrultiple criteria decision making. A detailed bibliography of articies in this area can be found

i n  1 4 1 1 .  I n  t h i s  c o n t e x t ,  r v e  a l s o  m c n t i o n  [ 3 ] ,  [ 4 ] ,  [ 1 5 ]  - - t 1 7 1 ,  a n d  [ 3 7 ] - [ 3 8 1 .
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