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CONVEX OPERATORS

S. S. Kutateladze
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Introduction

Let Y be a real vector space, G: ¥ = R a convex function, and
Y'=L(Y, R) its algebraic dual. We assign to G its subdifferential at a point 7,
that is, the set
GO)=UeY" ly—1IH <GH—G({H) WeY)}
and its Young transforin G*: Y' = R U {40}, given by

G*(l)= sup (I (y) —G (¥))-
yey

Subdifferentials and Young transforms play a crucial role in the theory of
extremum probiems. The reasons for this are plain to see: for it is clear that a
~ subdifferential is 2 non-smooth analogue to a differential and that, just as in
the smooth case, Fermat’s criterion for an optimum holds:

0€07(G) <= G () =inf{G (y): yeY}.
‘The role of the Young transform is equally clear, since — G*(/) is a solution of

the extremum problem
y€eY, Gly) — Uy) — inf.

In particitlar, — G*(0) = inf {G(y): y € Y}.
This motivates our main theme, which is one of the central problems of
local convex analysis, namely, that of finding rules for computing the
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subdifferentials and Young transforms of complicated convex functions. It is
immediately clear that for an adequate formulation of this problem, that is, of
describing the subdifferential 33 (G ° F) and Young transform (G o F)* of a
composition with some mapping F: X = Y, we require a reasonable extension
of ideas, at least to the:presence of an order relation on Y consistent with the
vector structure. Thus, the need arises for an apparatus of the local investi-
cation of convex operators acting on arbitrary ordered vector spaces. An
account of such a device constitutes the main substance of this article.

It must be pointed out that the construction of a subdifferential calculus
for sufficiently general operators necessitates the rejection of standard geo-
metrical schemes of convex analysis, since arguments based on functional
separability are on principle unsuitable, say, for operators acting on the space of
all measurable functions. More precisely, to associate with a convex operator
F: X = Y the family of convex functions/o F: X = R, where [/ is a positive
functional on Y, though useful in a number of cases, can scarcely be regarded
as a universal method of analysis, for the simple reason that the only such
functional is/ = 0.

In this context we take in the paper as our starting point another purely
analytic approach, based on the theory of Kantorovich spaces. Namely, we
observe that, from a technical point of view, there are not all that many
essentially “non-linear’” convex operators. More precisely, with each
cardinality and cach K-space of images we can associate only one sublinear
operator, the canonical one. Then it turns out that all the other sublinear
operators are compositions of this one with linear operators. In the case of
convex operators, roughly the same situation prevails. Thus, all questions in
the subdifferential calculus reduce to the calculation of a single simply con-
structed operator. On this basis we solve the problem of the subdifferential of
a composition of convex operators at interior points of the domains of
definition. In other words, we obtain a universal formula that plays the same
role as the chain rule in the differential calculus of smooth functions. This
result can be reformulated at will to yield a formal generalization of the chain
rule for non-convex smooth mappings.

The case of subdifferentials at boundary points is more complicated. Here we
must employ more special arguments, based on the Mazur—Orlicz theorem.
Nevertheless, the most important formulae for applications, those of Moreau—
Rockafellar, Dubovitzkii—Milyutin, and Gol'shtein, together with the decom-
position formula, all admit perfect operator analogues. With the aid of these
formulae we obtain not only the basic rules for a change of variables in the
Young transform, that is, the formulae of Moreau and Ioffe—Tikhomirov
and the minimax formula for the vector case. but also some furdamental new
facts, such as a rule for computing (4 o F)*, where 4 is a positive linear
operator.

This article can be used as an introduction to the foundations of local con-
vex analysis. In particular, this means that proofs are given for all the essential
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facts. Furthermore, we do not assume familiarity with the theory of ordered
vector spaces. True, a reader unacquainted with this theory will have to dis-
regard a few unfamiliar words and unintelligible proofs. In extreme cases, any
K-space that occurs should be-thought of as the space R", or even R. We point
“out that the method of reasoning will, as a.rule, be non-traditional. At the same

time, it is absolutely necessary to emphasize that the introduction of K-spaces
is not an intermediate stage in the development of local convex analysis. The
fact is that if one of the essential principles of local analysis (such as the
theorem on the subdifferential of a sum) is valid when formulated en masse
for an arbitrary ordered vector space Y, then the bounded subsets of Y
necessarily have least upper bounds. Hence, a familiarity with the elements of
the theory of K-spaces is desirable.

In conclusion, I express my profound gratitude to G. P. Akilov, L. V.
Kantorovich, S. L. Sobolev, and V. M. Tikhomirov for their unfailing
interest in the research embodied in this article.

§ 1. The Hahn—Banach—Kantorovich theorem

The main purpose of this section is to prove the Hahn—Banach—Kantorovich
theorem on the existence of a majorized extension of a linear operator. This
theorem plays a fundamental role in several parts of analysis and its applications.
In particular, it forms the basis of all the methods used in the investigation of
convex operators.

1.1. Let X be a vector space and Y an ordered vector space, that is, a space
with a distinguished (convex) cone Y ", the cone of positive elements. We
adjoin to Y a largest element +oo (to be denoted more precisely by + ooy,
though no ambiguity is ever caused by the abbreviated notation). It is conven-
ient to assume that y + (+0) =+ and a(+°) =+ooforany y € Y U {+oo}
and any positive scalar a.

A mapping F: X = Y U {--oo} is called a convex operator if for any vectors
Xy, X, € X and any scalars o, @, = 0 with o; + «, = 1, the Jensen inequality
holds:

Flogz, + o) < oy Fzy + a, Fz,.
" It can be checked directly that the set
dom(F) = {z € X: Fz << o0}
is convex; it is called the effective set of F. It is often convenient in applications
to treat a convex operator F: X = Y U {-}-oco} as a mapping F: X = Y, defined
on the convex set dom(F) and satisfying the Jensen inequality there.

Now let Z be another ordered vector space and G a mapping from Y to
Z U {+o0}. Without saying so explicitly, we assume in what follows
that G is extended to a mapping from Y U {4-00} to Z U {+ 0} by setting
G(+00) = + oo,

1.1.1. Let [': X = Y U {-+0} be a convex operator and G: Y = Z U {0}



B LA e
BRI,

184 8. 8. Kutatelod:ze

an increasing convex operator. Then the mapping G o F: X = Z U {+oo} is
also convex.,

This obvious proposition provides a convenient method of constructing
convex operators. In particular, if Fy,. ... F,: X = Y U {-oco} are convex
operators, then it makes sense to speak of their sum F, + ...+ F,, namely,
the operator x = Fyx + ...+ F, x. We now suppose that Y is a vector lattice,
thatis, ¥ N (=Y")= {0}, and any y,, ¥, € ¥ have an upper bound y, \/ v,
and a lower bound y; A y,.We can then speak of the maximum
e Lk o N Fy OFF s iF

By X wve N Pt 2o B Npsa o\ Fra.

In what follows we need two important classes of convex operators. The
first of these consists of the simplest positive convex operators
F: X = Y U {-co}, namely, those that assume only the two values 0 and
+ oo; they are called indicators. This term stems from the fact than an indicator
plays a role analogous to that of the characteristic function of the
effective set dom (F). Furthermore, every convex set U in X is the effective set
of a unique indicator operator mapping into Y U {--o0}, which we denote by
Sy (U). Thus, §y (U)x = 0 for x € U and §y (U)x = + e otherwise. With the aid
of indicators we can form cut-offs of convex operators: if /: X = ¥ U {-+o0}
is a convex operator and U is a convex set in X, then F +8y(U) is called the
cut-off or restriction of F to U and is denoted by Fy;.

The second important class consists of the sublinear operators. A convex
operator P: X = Y U {-o0} is called sublinear if it is positively homogeneous.
Note that the effective set of a sublinear operator is a cone. In what follows
we adopt freedom of expression in reserving the term sublinear for those
operators P for which dom(P) = X. An arbitrary sublinear operator P will, as a
rule, be referred to as a sublinear operator defined on the cone dom(P).

A most important part in the theory of convex operators is played by the
concept of a subdifferential. Let F: X = Y U {0} be a convex operator and
let L(X, Y) denote the set of linear operators from X to Y. The subdifferential
of F at a point x in the effective set dom(F) is defined to be the set

0-(F) = {4 € L(X, Y): Az — AT < Fz — F7 (z € X)}.

Its elements are often called the subdifferentials of F at ¥, When P is a sublinear
operator. its subdifferential at zero is called the support set of P and is denoted
by 8(?). Thus, '

AP) = {4 € L(X, Y): 4z < Pz (z € X)).

The elements of the support set are called support operators. The analogous
concepts for a sublinear operator defined on a cone also make sense. In this
case we also speak of operators with support on a cone.

Subdifferentials of convex operators generalize the notion of a differential
to the case of non-differentiable convex mappings. In this connection the
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role that subdifferentials can play (and, as we shall see, do play) in various
problems of analysis becomes obvious. Equally clear are the questions that
arise in the investigation of subdiffercntials. We have to clarify conditions for
the existence of subgradients, for a subdifferential to be non-empty, we have
to know to what extent a subdifferential determines the behaviour of the
original mapping, and finally, we must find the subdifferentials of specific
operators, In the case of arbitrary ordered vector spaces, many of these
questions are unexplored (apparently because of their hopeless complexity, in
fact, the theory of arbitrary ordered spaces is not very rich in substantial
results). The situation is different in the case of ordered vector spaces having
the most restricted order structure, that of a K-space. We recall that a vector
lattice Y is called a Kantorovich space, or K-space, if any subset of Y that is
bounded above has a least upper bound. In the case of K-spaces it is possible to
develop a theory of convex operators that is fairly complete and satisfactory
from the point of view of applications. It is a fortuitous (but by no means
accidental) fact that the classical spaces of analysis (such as the spaces on the
Lebesgue scale) possess these remarkable structural properties.

The main tools in the investigation of convex operators are the theorems on
qualified extension of linear operators, and we now turn our attention to these
results.

1.2. First of all we establish Kantorovich’s theorem on the extension of a
positive operator. We recall that an operator A from an ordered vector space X
to an ordered vector space Y is called positive if A[X*] C Y". The set of all
positive linear operators from X to Y is denoted by L*(X, Y).

1.2.1. THEOREM. Let Y be a K-space, X an ordered vector space, and Xy a
subspace of X with the property that X, + X" = X. Then any positive linear
operator Ay : Xy = Y admits a positive linear extension A: X > Y.

PROOF. We first assume that X is a hypersubspace of X, in other words,
that for some x' € X \ X,,, we have

X = {z +az’: 2, € Xy, @ € R).

The set U,» = {z, € X: xo < £’} is non-empty, by hypothesis, and is bounded
above by an element of X,. Thus, the set 4 [U,- ] has a least upper bound,

y' say. Putting A(xo +x")=A4gx, +»', we see that this is a well-defined linear
operator from X to Y, which agrees with 4, on X.

We claim that this operator is positive. If x, + ax’ > 0 and a= 0, then
A(xo + ax’)=Agxo = 0. But if a> 0, then —xo/a € U, that is, p' = —A¢x¢ /.
Hence A(x, + ax') > 0. If <0, then x’' <x,/| a |, that is,
¥y <=Ayx,/a, and again A(xy + ax’) = 0.

The proof of the theorem is completed by using a standard argument based
on Zorn’s lemma.

1.2.2. REMARK. It is clear that in this proof we have not invoked the full
strength of the condition that ¥ be a K-space. In fact, we have only required
that a set that is bounded above has a least upper bound. The uniqueness of
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this bound and the boundedness of finite sets, both of which properties hold
in K-spaces, were not needed. In the light of this remark it is both curious and
significant that Kantorovich’s theorem cannot be improved (see 1.3).

1.3. THEOREM. Let Y be a K-space. Then for any vector space X, any
sublinear operator P: X = Y, and any subspace X of X we have

(P + By (Xo)) = 9(P) + 6(dy (Xy))-

PROOF. It is obvious that B’(P;x ) D 3(P) + 3(8y (X,)). To prove the reverse
inclusion we take an operator 4 & a(PX ) and define an operator U, on the
subspace Xg X Y of X X Y by the rule

WUo(zg, ¥) = —Az + V.
If we order X X Y by means of the cone
Z={@x yEX XY: Pz< ¥},

then the operator %,: X, X Y — Y becomes positive, because 4 € 3(Px, )
Moreover, Xo X Y+ Z =X X Y. Thus, it follows from Kantorovich’s theorem
that ¥, has a positive extension 9: X X Y — Y. Weset 4,z = A(—z, 0).
Since elements of the form (0, ) belong to X, X Y, we see that
A0, y) = A0, y) = y. It follows at once that A, € 9(P). Besides, for
X0 € X, we have, 4,2y = —A(zy, 0) = Azy, sothatA —4, € by (X)),
and this completes the proof.

1.3.2. THEOREM. Let Y be an ordered vector space with the following
property: for any vector space X, any subspace X, of X, and any sublinear
operator P: X > Y,

a(Px,) = 9(P) + 8(8x(X)).

Then any subset of Y that is bounded above has a least upper bound.

This remarkable fact, known as the Bonnice—Silverman—To theorem,
indicates the range of applicability of the fundamental formula 1.3.1 of the
subdifferential calculus. Formally speaking, we do not need it in what follows.
Since the standard proof is not distinguished by its brevity, we omit it.

1.4. In this subsection we discuss those consequences of the Hahn—Banach—
Kantorovich theorem that are technically the simplest and are also very
important from the point of view of applications. Throughout we fix the follow-
ing notation: X is a vector space, Y is a K-space, and P: X = Y is a sublinear
operator.

1.4.1. The support set 9(P) is non-empty.

For the subdifferential of the cut-off P, is non-empty. Furthermore,

A(Pyoy) = 0(P) -+ d(by ({0})).
1.4.2. For cach point X € X the subdifferential 3z(P) is non-empty, and

0-(P) = {4 € d(P): AT = P7}.
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The validity of the last relation is verified by direct calculation. Thus, we
only have to show that 8z(P) is non-empty. To this end we consider the sub-
space X = {or: o € R} ;md any operator 4 € E](PX ) such that AX = PX. By
the Hahn—Banach—Kantorovich theorem, there is an A, € 9(P) for which
A4A—A; €05y (X)) Itis clear that A, is the required operator.

1.4.3. Foreachx €X

Pz = sup {4z: 4 € d(P)}.

This follows immediately from 1.4.2.
1.4.4. REMARK. By modifying slightly the proof of 1.4.2., we can show that
the set

d(P)x = {Az: A € (P)}

coincides with the order interval {¥ € Y: —P(—x) <y < Pz}.
The following important result is known as the Levin—Rockafellar lemmma.
1.4.5. Let X be another vector space and A € L(X,, X). Then

a(PoAd) = a(P) - A

The fact that 8(P)o A C d(P o A) is obvious. But if B € 3(P o A), then
Ker(B) = B~ [0] contains the kernel of 4, and by an algebraic lemma on
triples, there is a C € L(X, Y) for which B = Co A. It is clear that
PE= a(PA[X, }). By 1.3.1.. there isa C, € 9(P) such that C—C, € B(Sy(A [X:1)).
Since, by definition,

a6y (ALX,])) = {D € L(X, Y): Ker(D)> AlX,]},

it follows that B=C; o A, thatis, B€ o(P)° A.

The following proposition is known as the Mazur—Orlicz lemma and is a
special case of a theorem to be proved in full later on.

1 4. 6 For every cone H in X,

d(Py) = 9(P) -+ 9(6y (H))-

82. Support sets of sublinear operators

In this section we study the structure of support sets of sublinear operators
* and, in particular, we derive an explicit representation of the support set of
a composition of such operators.

2.1. We consider a vector space X, a K-space Y, and a subset U of L(X, Y).
Such a set 9 is called weakly order-bounded if for each x € X the set
{Az: A € ¥} is boundad. We can thus associate with any weakly order-
bounded set ¥ the sublinear operator

Py : x> sup{dz: 4 € U}

4

Then 6(Py) is called the support hull of 2 and is denoted by cop().
First of all. we use the results of the previous section to show that sublinear
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operators are not very numerous. More precisely, every sublinear operator can
be represented as a composition of some linear operator znd a universal
canonical operator. For a formal description of the situztion we need the
following subsidiary construction.

let Y be a K-space and 9 an arbitrary set. We consider the K-space Y%, the
product of the corresponding number of copies of Y, endowed with the
natural order structure. Let Ay or Ay denote the operator embedding ¥ in
the diagonal subspace of Y ¥, namely,

Ag: y — (.fz‘)AEg{—
We consider the following set:

(Yo = (Ag [Y]+ (FHE) N (Ag [YT— (1)),

that is, the subspace of Y¥ consisting of the bounded } -valued functions on
9.There is a canonical sublinear operator, denoted by ey or eg, sending
(YY) to ¥, which is defined by the rule

gg: (Ya)aeg — sup{ya: A€ A
When A is a weakly order-bounded set in L(X, Y), there is a natural linear
operator
A X > (YWa, (Ayz=(42)1:g

As an immediate consequence of this definition we have the following
fundamental lemma.

2.1.1. Let X be avector space, Y a K-space, and P: X = Y a sublinear
operator such that 3(P) = cop(A). Then P = gy o (.

2.2. With the aid of this lemma we can find natural representations of
support hulls.

2.2.1. Let Z be a K-space and P: Y = Z an increasing sublinear operator. Then

d(Poey) ={4€L*(Yw, 2): AcA-cd(P)).

First let Ay < Posggy forally € (Ym)m. Ify<O0.then egy <0, and
soA € L* (YY), Z).Butify = Agz, then
AoAgz=Ay < Poegy=(Poey) Ayz= Puz,
so that Ao Ay €4 (P).

Suppose now that 4 is known to be a positive operator with 4 « Ay € @(P).
Then

AyéA o A& o {-‘mygp o Emy.

as required.
2.2.2. We have

0 (eq) = {2 € L* (Y ¥, ¥): @od; =1y},
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where Iy denotes the identity mapping of Y onto itself.
To prove this we just apply 2.2.1 with P= [,
2.2.3. For any weakly order-bounded set i we have cop(3) = d(eg) o (UA).
For we see at once from 1.4.5 that

cop (A) =0 (Py) = 9 (eg o (AY) = 9 (eg) © (U).

Note that Proposition 2.2.3 is an analogue to a theorem of Choquet type
on integral representations.

2.2.4. EXAMPLE. Let Y =R. Then (Y%),, is the space L.(2) of bounded
numerical functions on . Thus, if f; is a linear functional on a vector space
X and U is a weakly bounded set of such functionals, then 2.2.3 asserts that

fo@)<sup{f(z): €U}  (z € X)

if and only if

fo@=|2()de  (z€X)
!
for some finitely additive probability measure « on the algebra of subsets of
2. (The functional x(+) is given by the rule x(-): f= f(x).)

In applications we are interested in those cases when the ranges of values in
Y of the relevant sublinear operators are equipped with a separable linear
topology 7. Then each space of operators L(X, Y) acquires the so-called
T-operator topology . that is, the topology induced on L(X, Y) by the embedding
of this set in the space Y¥ endowed with the Tychonoff topology. A topology
7 is called admissible if the support set of any sublinear operator is compact in
the r-operator topology. The following proposition shows that admissible
topologies are unfortunately few in number.

2.2.5. A topology on Y is admissible if and only if the order intervals in Y
are compact in this topology.

If the intervals are compact, then by Tychonoff’s theorem and 1.4.4, 8(P)
is compact for any sublinear operator P, and this gives the sufficiency of the
condition. The necessity follows from the fact that the image of the support
set d(z — z \/ 0) under the continuous mapping A~ Ay coincides with
the order interval {y’ €Y: 0y’ <y)}. -

2.3. An important role in what follows is played by some special operators
- on a K-space Y, whose properties are set forth in this subsection.

An operator « € L™(Y, Y) is called a mulriplier if @ <Iy . The set of multi-
pliers on Y is denoted by A(Y).

2.3.1. For any multiplier c and any subset U of Y that is bounded above,
we huve eesup U = sup o[U]. In particular, « is (o)-continuous (that is, if
y. Ly, then ), Lay).

For since a and /y are positive, a has the bounds

asup U = sup allU], Iy — 2)sup U = sup(ly — a)lU].
Also a+ (Iy —a)= Iy, so that
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sup U =asup U + (Iy — o) sup U = sup a[U] + sup(ly — a)[U] =
= sup U,
2.3.2. Any rwo multipliers coinmuite.
We use the realization of a K-space Y as a foundation' of the K-space C..(Q)
for some external compactum Q (see [9]). In other words, for every positive
z € C(Q) we have

c=suply EY: 0 < y < 3.

Thus, any multiplier y € A (Y) admits an extension to a multiplier ¥ € A(C.. (Q)),
given by the obvious relation

vz = sup{yy: 0 < y < 2.

It is clear that this extension is unique.

We now take two multipliers &, 8 € A(Y) and consider their extensions
&, B € A(C.(Q)). Note that & [C(Q)] C C(Q) and 'E[C(Q)] C C(Q), where
((Q) is the space of continuous functions on Q. It follows at once that the
restrictions of & and § to C(Q) belong to A(C(Q)), hence they commute on
C(Q), since their action there is simply that of multiplication by suitable
functions. To conclude that & and E commute on C,_ (Q). it now remains to
point out that C(Q) is a foundation of C_ (Q). And so their tracesaand f on Y
also commute.

2.3.3. If a multiplier ccis invertible, then oY) is a foundation of Y, and o is
an order isomorphism benween Y and o[ Y].

First of all, let us verify that o[ Y] is a normal subspace of Y. For if
0 <z <y, then bearing in mind that

A(Y) = a(z — z \/ 0)

and 1.4.4, we can find a multiplier 8 € A(Y) such that z = f ¢ . Since

Boa=ao B, by 2.3.2, it follows that z €Ea[Y]. Now if z € Y is such that

|z| A lay | =0 forally €Y, then
O=lz|Alaew|=Zalz|Alayl=cllz|AlyD)=0

by 2.3.1. By hypothesis. Ker(a) = {0}, and this means that|z | V/ |y |=0

forall y € Y. Thus, z = 0, and «[ Y] is a foundation of Y.

It remains to check that if e > 0, then y > 0. If this were not so, we could
find a projecticn (that is. an idempotent multiplier) Pr on Y such that Pry <0
(this follows. for example, from the above theorem on realization). Applying
2.3.2, we would then have

a:Pry <0< Proay = aoPry,

so that awe Pry = 0. Hence. Pr v = 0, and this is a contradiction.

2.4. This subsection is a mark of respect for the geometrical concepts of
duality. Here we discuss the question of an intrinsic characterization of support
sets. Formally speaking no use is made in what follows of the facts cited
below, therefore, we present them in a concise form.

! In the Western literature a foundation is sometimes called a quasi-order dense ideal (see [23]). (Transl.)
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A weakly order-bounded set ¥ in the space L(X, Y) of linear operators is
called operator convex if for any A,, A, € A and any multipliers
®,.a, EA(Y)withay + 0y =1y

o 04; + aged, €U

A weakly order-bounded set % in L(X, Y) is called strongly operator con-
vex if Zog 0 4, € U, for any (o)-summable family (at) of multipliers with
Lop =y and any family (4,) of members of 9 where the summation is
pointwise, that is, for each x € X we take the (0)-sum of the family (¢, ° 4,x).

2.4.1. The support set of any sublinear operator is strongly operator convex.

We include a proof of the next proposition to illustrate the technique of
inversion by multipliers.

2.4.2. For every weakly order bounded set U there is a smallest operator
convex set op(A) containing A, namely,

op (W ={3 anodn €A ar€A(Y), 2 =1}

By 2.4.1, the existence of the set op(¥) is clear, because A < cop(A) and
cop(A) = d(Py). Thus, we only have to check that if a weakly order-bounded
set 9’ is operator convex, then for any set of multipliers oy , . . ., &, With

|3

Ct;‘=fy,

k=1

andanvA,....,A, € A’ we have

n
N oo AU

Suppose that this is true for some n = 2, and consider the operators

n
B= E Opo Ap 4 %ps © An‘l‘h

=y
n+1
Qs -ooy Zas EA(Y) hgi op=1Iy, Ay, s Appa €.

It is clear that

n T

B—0tp4q0 Apsy €0 ((kgl ak) oA\ ... V (k.-_.j‘;l ah) 8 An)-

By invoking 2.2.2 and 2.2.3, we find multipliers f; € A(Y) such that
S 5l:=; I}'! B"'an-f*!”*‘lu‘f-l: 2 Bso(g ak)u“lﬂ'
k=1 =1 k=1

Applying Proposition 2.3.2, we obtain

B = (kgl o) = _:’jl Bio ditaniyo Apsy-

Hence, B € 2’ since 9’ is operator convex.
2.4.3. For any weakly order-bounded set U there is a smallest strongly
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sup U = asup U -~ (Iy — ) sup U = sup alU] + sup(ly — a)lU] =
= sup U,
2.3.2. Any nwo multipliers co:nmuite.
We use the realization of a K-space Y as a foundation! of the K-space C..(Q)
for some external compactum Q (see [9]). In other words, for every positive
z € C»(Q) we have

s=sup{y€Y: 0 < y < z}

Thus, any multipliery € A () admits an extension to a multiplier 5 € A(C..(Q)),
given by the obvious relation

Fo = supfyy: 0 < y < 2

It is clear that this extension is unique.

We now take two multipliers «, § € A(Y) and consider their extensions
& B € A(C..(Q)). Note that &[C(Q)] € C(Q) and B[C(Q)] C C(Q), where
C(Q) is the space of continuous functions on Q. It follows at once that the
restrictions of & and B to C(Q) belong to A(C(Q)), hence they commute on
C(Q), since their action there is simply that of multiplication by suitable
functions. To conclude that & and f commute on C., (Q), it now remains to
point out that C(Q) is a foundation of C_ (Q). And so their tracesaxandf on Y
also commute.

2.3.3. If a multiplier ccis invertible, then o[Y] is a foundation of Y, and ocis
an order isomorphism berween Y and o Y].

First of all. let us verify that «[ Y] is a normal subspace of Y. For if
0 <z <y, then bearing in mind that

A@Y) = 8z — z \/ 0)

and 1.4.4, we can find a multiplier § € A(Y) such that z=f o ay. Since

Bo a=ao f, by 2.3.2, it follows that z €Ea[Y]. Now if z € Y is such that

|z| A lay | = 0 forally €Y, then
=lz|ANlay|Zalz|Alayl=a(lz|Aly]) =0

by 2.3.1. By hypothesis. Ker(a) = {0}, and this means that|z | V |y |=0

forally € Y. Thus, z =0, and «[ Y] is a foundation of Y.

It remains to check that if aar > 0, then y > 0. If this were not so, we could
find a projection (that is, an idempotent multiplier) Pr on Y such that Pry <0
(this follows. for example, from the above theorem on realization). Applying
2.3.2, we would then have

a=Pry < 0 << Proay = a«Pry,

so that ao Pr y = 0. Hence, Pry = 0, and this is a contradiction.

2.4 This subsection is a mark of respect for the geometrical concepts of
duality. Here we discuss the question of an intrinsic characterization of support
sets. Formally speaking no use is made in what follows of the facts cited
below, therefore, we present them in a concise form.

1 In the Western literature 2 foundation is sometimes called a quasi-order dense ideal (see [23]). (Transl.)
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operator convex set stop () containing A, namely,

stop (A) ={D az= Az A€W a:€A(Y), Doz =TIy}
Thus, we have
A < op (A) < stop (A) < cop (A),

and these inclusions are proper, in general. So far little of interest is known in
situations when the operator cop admits a representation, say, in terms of op
and some “good” operator, for instance, the topological closure operator. We
confine ourselves here to the simplest model situations illustrating the direction
of research into such questions and the nature of the difficulties that arise.

244 EXAMPLE, Let Y be a discrete K-space, that is, a foundation in a
product R® of lines. Note that

(}«’9].)0‘_ — {y E R‘:’l"{%: sup Iy ('As ') lE Y}'
AeY

We consider the set 5 = {p,: 4 € A}, where
Pa: (Va)aey > Ya

is a coordinate projection. It is clear that &y = Pg. An operator a: (Y, ¥
belongs to d(ey) if and only if

ay (B)=\ y (-, B)dps,
o
where pj is a finitely additive probability measure on the algebra of subsets of
A.Thus, &y € stop(F) if and only if there exists numbers ay p for which

0<<a,y <, EG'A.BEL
AEY

ooy (B) = A%jﬁj as,ny(d, B).

At the same time. to the elements of op($) there correspond families (g )
such that ay p = 0 for all BE€ B and all but finitely many 4 € .

For any vector space X the space L(X, Y) can be endowed with the
simple operator topology, which is defined as being induced by pointwise
convergence in R® Butif Yisa subspace of l.(2), then it makes sense to
endow L(X, Y) with the strong operator topology, which is defined as being
induced by uniform convergence on 8. By considering the closuresop(8)and
stop(*P) in the corresponding topologies and invoking 2.2.3, we obtain the
following results,

2.4.5.If Y is a foundation in R®, then a set of operalors' is a support set if
and only if it is weakly order-bounded, operator convex, and closed in the
simple operator topology.

2.4.6.If Y is a foundation in le (), then a set of operators is a support set
if and only if it is weakiy order-bounded, strongly operator convex, and closed
in the strong operator topology,
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The case of arbitrary K-spaces has not been studied thoroughly (see [36]).
2.5. We now turn our attention to the determination of the support sets of

composites of sublinear operators.
2.5.1. THEOREM. Let P,: X = Y be a sublinear operator and P,: Y = Z an
increasing sublinear operator, where Y and Z are K-spaces. Then

9 (PyoPy)={Ao(0(Py)): Aolap,y€0(Pa), ACL* (Y*™)a, Z)).
If 9 (Py) = cop () and 9 (P,) =cop (Us), then
d (on I),) = {A o (?Iﬂ' 3'3‘53 = d (S{EEQJ Ao f,\ml =0po ("212), A S L"‘((}'ml)c\;, Z)}.
PROOF. We know from 2.1.1 that
pg“P,ZPEDEQilc(ng).
Appealing to the results of 2.2 we have in succession
0 (Pgo Py) =0 (Paogy o (Ay) =0 (Proey ) (As)=
={Ae L (Y¥)a, Z): Ao Ay €0 (eg,) o (Ua)}o (Ay),

as required.
2.5.2. For any projection Printo a K-space Y we have

d(PyoPy)= || (0(AePrePy)4+0(AePrioPy)),

AP,
where Pré = | y — Pris the complementary projection. In particular,
a(pzf’P:): U 3(A°P1)-
AEH P,

We define ¥, = Pr[Y]. A direct verification shows that the subspace
(Y%‘P!))m of (Y2®))_ isa component, that is, is the range of values of same

projection Pr,. Here
) PJ’DOAa(pl)=ﬂa(pl)0Pr.
By 2.5.1, each element of a(P, o P,) has the form B o {(9(P,)), where

Be L' (Y**")w, Z) and BoAyp,) €0 (Py).

Defining A = B o Ayp , we have
BoPrye Agp,y==BeAsp,yecPr=AoPr,
: Boprgﬂ.ﬁa(pl)zﬁ'n L\a{pllopl'd=AnPrd.
Again applying 2.5.1 and using the definition, we obtain
BoPryo(d (Py)€d(AeProPy),
BePrlo(d(Py)€Ed(A=Prte Py),
B {9 (Py))=DBoPrye(d (Py))+ BoPrle(d(Py)).
Thus, we have

G (PyoPy) {d(AoPreP)+a(AsPr?e Py): A€ (P,)).
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The reverse inclusion obviously holds.
253.If Py, ..., P,: X =Y are sublinear operators, then
B(Pyt o + PO (PYS .. 0P
0Py ...V Pp)= U r]{ai°a(})l)+--‘+an°a(Pn))'
s

-0 O EA(
5!1-}-- wlia +an=—=IY

It is enough to prove this in the case n = 2. If we write P; + P, =+ 0o (P, P;),
where +: Y X Y = Y denotes the operator of addition and (P,, P,) is defined
by
(Pyy Py) 2 = (Pyz, P,2),
then by defining Pr: (v;,¥,)>(¥;, 0) and applying 2.5.2, we obtain the
formula for the sum. Furthermore,

O(PyV Pp)=0(e30 (Py, Pp))= U d(ae(Py, Py))=

agd(e,)
= U d(mePytogePy)= | d (augo Py) =0 (00 Py).
a1+u2=1}- o, o, =I
%y thE.r\(}‘) ey, %EA(}’)

Thus, to complete the proof, we only have to show that d(a e P)=a o 3(P) for
any sublinear operator P and any multiplier a € A(Y). Since it is obvious that
oo 9(P) C d(a o P), we take an A € d(a o P) and prove that A E ace 9(P).

By 2.3.3, A[X] C a[Y], therefore, as is easily seen from the results on
properties of multipliers, it is sufficient to consider the case when Ker(a) = {0}.
But then we can again apply 2.3.3 to find that «™! o A4 is in the support of P.

To conclude this section we give an interesting characterization of lattice
homomorphisms.

2.5.4. Let X be a vector lattice, Y a K-space, and T € L*(X, Y). Then the
following conditions are equivalent:

(1) T preserves the bounds of finite sets;

2) forany T' € L*(X, Y) such that T' < T there is a multiplier « € A(Y)
for which T'=«o T.

We define sublinear operators Py, P,: X X X = Y by the rules

Py(zy, 25) = Tz \/ z,) and Py, 25) = Tz, \/ Tx,.

Condition (1) means that these operators or, what is the same, their support
sets are equal. By calculating 8(P, ) and 9(P, ), we obtain the required result.

§3. Subdifferentials of convex operators

The main aim of this section is to evaluate the subdifferentials of convex
operators in an explicit form. We first give a method for studying such
operators at interior points of their effective sets, and then we discuss the
general case, where we have to employ specific methods. From this we derive
rules for change of variables in the Young transform.
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3.1. Let U be a convex set in a vector space X. An element & € X is called
an admissible direction at a point X € U if x + ah € U for some @ > 0. The set y
of all admissible directions at X forms a cone Fds (U), called the cone of !
admissible directions.

Now consider a K-space Y, a convex operator F: X = Y U {400}, and a
voint X € dom(F). For each

h € Fd(dom(F))
we put ’

2z (@) = (F(T + oh) — Fi)la.

A simple calculation based on Jensen’s inequality shows that the function
a—>Z;z j (@), defined on some interval (0, @), is decreasing. Thus, if this
function is bounded below (for example, when 95 (F) # @), then
A . F(Z4+o)—FF .
F' () h = {0)-}:.‘[% s S S 12f 2z, (@)

is defined and is called the derivative of F in the admissible direction h at X.
We need some properties of these derivatives.

3.1.1. If 35 (F) # Q, then F'(X) is a sublinear operator defined on the cone
Fdz (dom(F)), and

OF) = O(F'@).
It is clear that F'(X) is sublinear. If 4 is an operator such that

A(x —X) < FX — Fx for all x € X, then for any admissible direction / and
any sufficiently small « > 0,

aAh < F (T +ah) —FZ, that is, A€a (F' (%)).
But if 4 € 3(F'(x)), then

Az — AZ<F' () (e — 7)< Fz — Fx
for x €Edom(F).
© 3.1.2.If X is an interior point of dom(F) (that is, the set dom(F)—X is
absorbing), then 3z (F) # @ and dom(F'(X)) = X. If, in addition, X is a
K-space, dom(F) = X, and F is (o)-continuous at X, then F'(x) is (0)-continuous
on X,

_For it follows from the definition that for any 4 € X and any sufficiently
smalla >0

T R P TN T NG S AP Che ol 21 .

—2 L@ —F @ (=N<F @h<zg, (@),

and this guarantees that £'(¥) is (0)-continuous at zero. It remains to point out
that for any sublinear operator P

| Pz — Py | <P(z —y) V P(y — 2).
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The reverse inclusion obviously holds.
253.1f Py, ... P,. X =Y are sublinear operators, then
9Pyt ... +P)=0(P)+...+8(Py),
d(Py\ ...V Pp)= U (@ed @)+ .. +a,00(Py))-
(V1 0y A(Y)
lxl-}-. . .+G(ﬂ:--IY
It is enough to prove this in the case n = 2. If we write Py, + P, =+ 0 (P, P;),
where +: ¥ X Y = Y denotes the operator of addition and (P,, P,) is defined
by
(plv PQ)x = (P]-’JJ, Pzz):

then by defining Pr: (v,, ¥, ), 0) and applying 2.5.2, we obtain the
formula for the sum. Furthermore,

0 (Py\ Py)=0(e30 (Py, Pp))= ] 0(ao(Py, Py))=

GE@(EE)
= U (Ao Pytaye Py)= |J d(ayo Py) <0 (0y0Py).
Ccl+r12=.l'}. [+ +a2=I
@y, ,EAY) @y, 6, EALY)

Thus, to complete the proof, we only have to show that 9(cco P)=a o 9(P) for
any sublinear operator P and any multiplier & € A(Y). Since it is obvious that
oo 3(P)C d(ao P), we take an A € (e P) and prove that A € ae 3(P).

By 2.3.3, A[X] C «[Y], therefore, as is easily seen from the results on
properties of multipliers, it is sufficient to consider the case when Ker(a) = {0}.
But then we can again apply 2.3.3 to find that «™! o A4 is in the support of P.

To conclude this section we give an interesting characterization of lattice
homomarphisms.

2.5.4. Let X be a vector lattice, Y a K-space, and T € L*(X, Y). Then the
following conditions are equivalent:

(1) T preserves the bounds of finite sets;

(2) forany T' € L*(X, Y) such that T' < T there is a multiplier « € A(Y)
for which T'=wo T.

We define sublinear operators Py, P,: X X X = Y by the rules

Py, Ix,) = T(x, \/ z,) and Py(z,, x,) = Tz, \/ Tz,

Condition (1) means that these operators or, what is the same, their support
- sets are equal. By calculating 8(P,) and 9(P, ), we obtain the required result.

§ 3. Subdifferentials of convex operators

The main aim of this section is to evaluate the subdifferentials of convex
operators in an explicit form. We first give a method for studying such
operators at interior points of their effective sets, and then we discuss the
general case, where we have to employ specific methods. From this we derive
rules for change of variables in the Young transform.
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3.1. Let U be a convex set in a vector space X. An element i € X is called
an admissible direction at a point X € U if x + ah € U for some @ > 0. The set
of all admissible directions at x forms a cone Fd; (U), called the cone of
admissible directions.

Now consider a K-space Y, a convex operator F: X = Y U {-}-o0}, and a
voint X € dom(F). For each

h € Fd(dom(F))
we put :

2z () = (F(T + ah) — F3)la.

A simple calculation based on Jensen’s inequality shows that the function
a—>Z; j(a), defined on some interval (0, @), is decreasing. Thus, if this
function is bounded below (for example, when 9z (F) # @), then
F' @) h = (0)-lim ZEEN=FF _ 560 (@)
ey 0 o '

is defined and is called the derivative of F in the admissible direction h at X.
We need some properties of these derivatives.

3.1.1. If 05 (F) # @, then F'(X) is a sublinear operator defined on the cone
Fdz (dom(F)), and

0-(F) = (F'(3)).

It is clear that F'(X) is sublinear. If 4 is an operator such that
A(x —X)< Fx — Fx for all x € X, then for any admissible direction /# and
any sufficiently small > 0,

adh <F (F-+-ah)—F7, thatis, Aco (F' (3)).
Butif 4 € B(F'(E)), then
Az — AZ<F' (@)(z — ) <Fz — Fz

forx €dom(F).
3.1.2. If X is an interior point of dom(F) (that is, the set dom(F) —X is
absorbing), then 0z (F) # @ and dom(F'(X)) = X. If, in addition, X is a
K-space, dom(F) = X, and F is (0)-continuous at X, then F'(X) is (0)-continuous
on X.
_For it follows from the definition that for any 4 € X and any sufficiently
smalla >0

—z @O —F @(—h)<F (B h<s, , (@),

_and this guarantees that F'(X) is (0)-continuous at zero. It remains to point out
that for any sublinear operator P

| Pr — Py | <Pz —y) V Ply — 2).
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3.1.3. Let Xy and X be vector spaces, Y a K-space, A € L(X,, X), and
F: X = Y U {40} a convex operator such that AX +y for some yEeXisan
interior point of the effective ser dom(F). We consider the affine operator

/ly tx—Ax +v. Then

Oz (F<4)) =0, -(F)o A,

Direct calculation shows that (F o Ay Y(xX)= F'(A,X) e A, and it merely
remains to apply 3.1.1. and 1.4.5.

3.1.4. Let Y and Z be K-spaces, F: X = Y U {40} a convex operator, and
G: Y > Z U{+oo} an increasing convex operator. Assume that dom(G) = Y
and that X is an interior point of dom(F). If G is (o)-continuous at Fx, then

(G < F)' (@) = G'(FT) < F'(D).
First of all we note that for any x € X
F(& + ax) = FT + aF ' (D)z + az(a. 2),
where z(a, x) { O as« 0. For we can take
Ko, 2) = zz (2) — F'(3) a.
For similar reasons we have foreachy € Y
G(FT + ay) = G(FT) — aG' (FT)y + aw(a, y),
where w(a, ) 0asa ) 0. Having fixed a sufficiently small positive number
@y we deduce from the monotonicity of G that for 0 < a < ¢,
GoF (Z+azx)—GoFT=G(FTI—aF' () 2+az(e, 2))—G (FO<
<G (FT+aF' (T)x—az (%, 1)) —G (FZ) =
=aG" (FT) (F' (D)« —3 (%, 7)) —aw (@, F’ (Z) z+ 2 (2, 1)<
<G (FZ) o F' () 2+ (G' (F3) 2 (g, @)+ (a, F' (B) 2+ 2 (¢, 2)))-
. For the same reasons
GoF(Z+07)—G o Fz>G (Fr—aF' (7) 1) —G6 (F7) =
= a6’ (F7)s F' (Z) 2+ aw (a, F’ (%) z).
Finally, we obtain the two-sided bounds
G (FZ)» F' (B)a -+ w(o, F (D) o) <<(G - F (7~ ox)—6 - FRloa<
SO (FX) < F' (D) 2—G' (FD 30, 2) — w (o, F' (Z) -+ 2 (ag, 7).
Passing to the limit as & 0, we have
G (FR) = F' (7)< (G - F) (F) 2 <G (FT) o F' (F) i -~ G (FF) 2 (. 7)-

The last inequality holds for any a, > 0. Hence an application of 3.1.2 yields
the required result.
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3.1.5. REMARK, It is clear that Proposition 3.1.4 remains true under weaker
hypotheses. For example, it is sufficient to assume that G'(FX) is (0)-continuous.
However, it is impossible to abandon the appropriate continuity condition
altogether (see 3.2.6).

3.2. We now pass on to the computation of subdifferentials.

3.2.1. THEOREM. Let F: X = Y U{-—co}he a convex operator and
G: Y= Z U {00} an increasing convex operator such that dom(G) D Fldom(F)].
If X is an interior point of dom(F) and FX is an interior point of dom(G) such
thar G'(FX) is (0o)-continuous, then

9-(F)

- (GoF)={Ao (97 (F)y: Ao Aa;‘p, EE)F; (G); AELY (Y * ooy Z)}.
PROOF. Invoking the results of §3.1 and Theorem 2.5.1. we see at once
that

0z(GoF)=0((GF) (D) =0(C' (F7)= F' (7)) =
(Ao O (P (@) Aoy iy, €0 (G (FD); ACL (YD), 2},

It remains to point out that 83 (F) = 3(F'(x)) and 9z (G) = 3(G'(FX)).
3.2.2.COROLLARY. For any projection Pr and any K-space Y
0=(GoFy= | . (0z (4> Pro F) 4= (Ao Pr%s F)).
E ;( )

Note that the representation in 3.2.2 is substantially less refined than that in
3.2.1. For this reason the corollary remains true in much more general
situations to be discussed below.

For the purpose of applications it is useful to attach a more precise meaning
to the formula in 3.2.1.

3.23.Let F: X = Y U {00} be a convex operator, G: Y = Z U {40} an
increasing convex operator such that dom(G) D F[dom(F)], and X an interior
point of dom(F) such thar FX is an interior point of dom(G).

We consider the local approximation Fe: X — Y |J {-}-o0} of F given by

Fe: x—sup{Axz— Az -+ Fz: A€o (F)}
Then F. is a convex operator, dom(F¢)= X, and
0 (F)=0:(F), (G-F) @=CFDF @B,
05(GoF) ={Ae (G5 (F)): Ao Ao €0,z (G); ACLH (Y2 Yoo, Z))-
First of all we note that the local approximation F, has the representation

Fer=FZ-+—F' (%) (2—7).
Thus,
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(GoFe)' (7) o= (0)-lim o™t (G (F (x+ax)) —G o FeZ) =
o}l

= (0)-lim &t (G (FZ+ I (3) (ax)) — G (FZ)) = G (F7) o F' (2) .

b

3.2.4. REMARK, Generally speaking, to establish 3.2.3 we do not need to
make use of directional derivatives. It is sufficient simply to shorten the
expression for the subdifferential of a composition by using the following
representations: ‘

Fo=gyo(U)y, A=0;(F), y=AyFz—(MWT.
We carry out the corresponding construction in a substantially more important
and complicated situation.

Let 9 be a weakly order-bounded set in L(X, Y),and y € (Y¥%).. An
operator F: X = Y U {-+oo} is called regular if it has a representation
F = %o ().

3.2.5. THEOREM. Let F: X = Y U {-+} be a regular convex operator and
G: Y > Z U {00} an increasing convex operator such that Fx is an interior
point of dom(G). Then

0= (GoF)={Ao(A)y: ACL* (YY), Z); Ao Ay €0,=(G); Ao(A), T= Ao AyF7).
PROOF. By 3.1.3,
35 (G o F) = 03 (G o ey o (AY) = Oqyy, 5 (G = ) (W)
We put (%), = y and claim that

0= (Goeg) ={A€ L* (Y¥)x, Z): AcAy€0 (G’) A= Ao Ag o egi}.

E !.-‘
To see this, we first assume that forall z € (Y¥)
Az —AG<G o eqz—G oy,

If h € (Y%)%, h<0,then for sufficiently small values of a > 0 the element
y + o belongs to dom(G o eg)- and

aAh<<G o gy (V- ah)— G o ey <0,
so that A € L*((Y%),Z). Furthermore. since
Agoeq=>l g+ eyoBy=
the element Ay oeqy satisfies
Og/l -] A%i o EQ[.!?MAFQG (E‘\: L Am =} FQII}-) — (; o EQI!}‘:G.

Also, forany yo € Y

Ao zlmy.—.-— Ao !f\g[ o 891§= Ao A‘élyo—-f[ngG o E‘.‘{ o Amyu —Go 35}[.‘72 Gyo~—G o amf,




Convex operators 199
so that AeAy ¢ BP_WE (G)- Conversely, if we know that
)} - -
AcL? ((} J')Oci z), A°£Q{Easw’, (@), A"Aﬂ"emy:‘dyi

then for any z € (Y %),
Az—,‘iy': Az— Ao ﬂm -] SQIEH“{“A o AQI (Smﬂ) i Aﬂ (EE{QQG" 8915'“_‘00 am‘tjv

which indicates that 4 € 35(G ° egy).
Thus, bearing in mind that eg o (%), 7= Fz, we finally obtain

0z (G o F) =0y, (Gotg) o (A)=
(AL (YY), 2): Ao By €0,z (G); Ao (W) F=AoAgFT)o ().

3.2.6. REMARK. Theorem 3.2.5 shows that even the regularity of ¥ does
not, in general, guarantee the validity of 3.2.1 without additional conditions
on G. By analyzing the formula it is not hard to choose concrete examples.

Thus, if X =1, G € d(x—Tim x,,) is a generalized limit, and F is the operator
n

Fx=x\/ 0, then forX,=— 1/n and h,, = 1 we have (G o F)'(X)h = 1, whereas

F'(x)h = 0.
3.3. As applications of the above theorems we can obtain various results on
the representation of subdifferentials, and we mention a few of them now.
3.3.1. Let Y be aK-space, F,, . .., F,: X > Y U {00} convex operators
acting in Y, and X an interior point of aset U C dom (Fy)N...N dom (£),).

Then
a;(Fi il gt 'Jl_Fn)=6§(F1)+ « % +a£.(Fﬂ.)!

O=(Fy\/ ...V Fr)= U (@odz(F)+ ... t+amod (Fa),
e (g oo -y ER)EDT(X)

where the union ranges over the following set:
I'(@)={(e1, ..., 2a) EA (V)™ kzlaszl-; hg apo FpZ=FZ \/ ...\ FoZ}.
= =1

. The next proposition determines the form of the positive operators on
(Y¥).,. that appear in the formulae above.

3.3.2. Let Y and Z be K-spaces. For any set 9 and any operator
A E LH(YY).. Z) the following system of conditions is compatible:

@€0(ey, ,), A=ac(dely yod (ey, y))
. Forlet B = Ao Ag,y. Then B € L*(Y, Z) and, by 2.2.1,
0 (Bogy ) ={CEL (Y¥)w, 2): Coly y=B}.
F_l.lrtltermorc, by applying 1.4.2 we show by direct calculation
0 (Beey y)=cop(Bo0d(eq y))

This result enables us to find other representations of the subdifferentials of a
composition.
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3.3.3. Let F: X = Y U {-Foo} be a convex operator, av:d
G:Y > 7| {+o}
ar irncreasing convex operator such that
_ dom(G) = Fldom(F)].
If X is an interior point of dom(F) and FX an interior point of dom(G), then
9z (G o Fe)={ac (A0 (F)): a€d(eir), 2); A€z (G)}
0-(GoFg) ={0o(0,(G)o0-(F)): a€d (Eaf; 2150-(F), z)}

Both of these representations follow immediately from 3.2.3 and 3.3.2.

3.4. We now concern ourselves with the study of the subdifferentials of a
composition at arbitrary points of the effective sets. The theory of sublinear
operators that are not defined everywhere has by no means yet reached an
adequate state, therefore, definitive results of the quality of those obtained
above are still conspicuous by their absence. However, the situation is far from
hopeless. In particular, it turns out that the formulae for calculating subdiffer-
entials most commonly used in applications carry over 1o the case of boundary
points under conditions that are not too burdensome. It is helpful to bear in
mind that the approach described here, based on the Mzzur—Orlicz theorem,
yields new proofs of some of the results described in ths preceding subsection,.

3.4.1. THEOREM. Let X be a vector space, Y a K-space, P: X > Y U {+ o0}
a sublinear operator, and (x;)ye= and (Vg );cx subsets of X and Y, respectively.
If the smallest cone in X containing the elements (—x¢) and the effective set
dom(P) is a subspace, then the following assertions are ¢ juivalent:

(1) There is an operator A € L(X, Y) such that

A €oP), An>y: (EEE
(2) Forany \y,....,\, ER and any &,, . . ., §, € = such that

n

‘Ei l,-:rai ¢dom (P)

we have

1 n n
P (2 hag) = D hayy,
i=1 LR
PROOF. We have to verify that (2) = (1). To this end we consider the sub-
space X, the direct sum of the lines (R), .z, and we Cefine operators B and C
by

E
e

Bz=3z(®)a, BelL(X, X,
Cz=2 2@y CELXy Y.
gEE
Here z € X, isregarded as a function: = — R that is non-zero only on finitely
many points of =,
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Let X, denote the smallest cone containing both dom(P) and the family
(—X¢ )i = - By hypothesis, we have

Xy = BIX]] — dom(P) = dom(P) — BIX}],
P(BRY=Ch  (h€ X () B-Yldom(P)]).
Thus, for every x, € X, there are elements z,, z, € X; such that

2y + Bz € dom(P), —xo + Bz, € dom(P), P(Bzy + Bz,) =C(z; + 2,).

Consequently, we have the bounds
P(zy -+ Bz) — Czy>— P(—x, + Bz,) + P(Bz; -+ Bzy) — Cz. >
=C(z + 23) — C3y — P(—zy + Bz,) = —P(—x, + Bz,) -+ Cz,.

In other words, each x, € X, determines an element
Pyzy = inl{P(xy -+ Bz;) — C3: 7 € X, 2y + Bz; € dom(P)).

It is not hard to check that the resulting operator P, defined on X, is
sublinear, Appealing to 1.4.1, we take any element of the support set of P,
and extend it somehow to a linear operator defined on X. A routine calculation
shows that the resulting operator has the required properties.

3.5. The Mazur—Oirlicz theorem furnishes a suitable apparatus for the cal-
culation of subdifferentials. First of all we apply it to describe support sets. We
need the following definitions.

Two cones A, and I, (not necessarily distinct) in a vector space X are said
to be in general position if H, — H, = H, — H,, in other words, if the smallest
cone containing #, and —, is a subspace of X. The cones H,, . . ., H, are in
general position if for any rearrangement {iy, . . ., i,}of the indexing set

n
{1, ..., njthecones /f;, and N H; arein general position for all
k i3

s=k+1
=i o= L
Let us list some of the most frequently encountered cases of cones in general
position.

3.5.1.IfH,,. .., Hy are subspaces of X, then they are in general position.

3.5.2. If the cones H,, . . ., H, coincide, then they are in general position.

3.5.3.If the cone Hy, N ... N Hy, contains an interior point of each of
Hy. ..., Hy with the possible exception of one, then these cones are in general
Position. :

We only have to verify 3.5.3. To do this it is clearly sufficient to show that if
H, and H, are cones such that #, N H, contains an interior point X of one of
them (say /,, for the sake of definiteness), then //, and H, are in general
position. This follows at once from the fact that the cone /, — /{; must be an
absorbing set, because H, — H, 2 H, —X. Hence. this cone is the
whole space X.
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3.54.LetPy,...,P,: X > Y U {400} be sublinear operators whose
effective sets dom(P,), . . ., dom(P, ) are in general position. Then,

Py - uve w -PrY =3P 4, -+ -+ (Py).
It is sufficient to consider the case 7 = 2 and to verify that
0(Py + Py) < a(Py) + a(P,).
To this end we take 4 € 3(P, + P,). Then
Piax>Az — P,z

for all
z € dom(P,) M dom(P,).
Hence, if
'}E dixi€dom (Py), where A;€R* and z;¢dom (Py),
then ol

n

> Az € dom (Py) () dom (Py)
]

and we obtain the bound

n " ?’I n
P, ({5_‘.1 hizi) = — Py ( 3 hazy) + A 21 hizy) = =2 At (Pyzry— Azy).
= d=1 i= =1

Thus, applying 3.4.1 we find an A, € L(X, Y) for which
A, €9(Py), Aix>—P,z+ Az (z € dom(P,)).

It merely remains to point out that A —A; €0(P,).

3.5.5. Let Y be an ordered vector space and Py: X = Y U{ -+ o} g sublinear
operator. Also, let Z be a K-space and P,: Y > Z U {+o0} an increasing sub-
linear operator. If the cone dom(P, ) and the support hull of the set
Py [dom(P,)] are in general position, then

0(ProPy)= | 8(AsPy).
Agd(Py)

This proposition is proved in just the same way as 3.5.4.

We give some simple consequences of 3.5.4. and 3.515;

3.5.6. If Y is a K-space and Pr is any projection in Y, then

0 (Pyo Py) = Y (9(AoProPy) 40 (A Prie Py)).
ALo(Py)

3.5.7. Let Y be a K-space and Py, . . ., Py: X = Y U {+oo} sublinear
operators whose effective sets dom(?,), . . ., dom(P,) are in general position.
Then
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1 Fee ,+an=IY

Gy ooy & EALY)

O(PyV e VPi)= (0(ctioPy)+ ... 48 (@0 P,)).

3.6. We now establish the basic formulae for calculating subdifferentials at

arbitrary points.
3.6.1. THEOREM, Let Y be a K-spaceand Fy, .. ., F,: X > Y U{+ oo}
convex operators such that the cones of admissible directions

Fd(dom(F,)), « ., Fd-(dom(F,))
are in general position. Then the Moreau—Rockafellar formula bolds:
0(Fy + .« o + Fp) = 0:(Fy) + o o o + OLFy).
PROOF, We only have to show that when

OAFy + oo+ Fp) £ 3

then each of the operators Fy, . . ., F,, is differentiable in all directions of the
corresponding cone of admissible directions, For by 3.1.4 and 3.1.5, in this
case

(Fy+ooo+ Fo)'@) = Fi@ +. . . + Fi®),

and it remains to use 3.5.4.

It is sufficient to consider the case n = 2. We may assume without loss of
generality that ¥ = 0 and F,X = F,X = 0, since otherwise, we can take the
operators

Gy x> Fi(T + o) — Fi7, Gy: 2+ Fo(Z + 2) — Foz,

for whith clearly

G0 = 6,0 = 0,
95(Gy) = a;(F:l)s 90(G,) = 3§(Fa)’ 90(G, + G,) = 6;(F1 + F,).

Let i € Fdz(dom(F,)). By hypothesis, we can find elements
hy € Fd- (dom (7)) and hy€ Fd; (dom (F3))

such that ki, = h + h,. We may assume that 3/, 32, € dom(F,) and
h, € dom(F3,). Then for sufficiently small positive «
Filah) <<aF k. . Fy(oh,) <<aFh,,
Filah,) = A(zhy) — Fy(ah,)
for any operator A in 9z (F; + F,). Furthermore, because of the convexity of
F; and the simplifying assumptions we have made,
Fylohy) = Fy(Bah/3 4 3ah,'3 4 03y Fy(3ah)/3 -+ Fy(3ahy)/3<
< Fy(3ah)/3 + aFih,.
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Finally. we obtain
Fi(3ah)/3 =a(Ah, — Fohy — Fihy).

Thus, the function a+> F, (a/1)/e, which is defined for sufficiently smali values
of «, is bounded below, and this means that /7, is differentiable at zero in the
direction /1. For analogous reasons, F, is differentiable in all directions belong-
ing to Fdg(dom(F,)). This completes the proof.

In fact, the method described in the proof of 3.6.1 yields more. For
example, the following version of the Mazur—Orlicz theorem holds.

3.6.2. Let Y be a K-space and suppose that we are given a convex operator

F: X »Y|J {+o0}

and families

@)z =X and (yoiez =Y.

If the conical hull of (x; )¢ = and the cone Fds (dom(F)) of admissible
directions are in general position, then the following assertions are equivalent:
(1) There is an operator A € L(X, Y) such that

Aco-(F), An>y  (REB).

(2) Forany \y,.. N\, ER and §,. .. ., &, € = such that

M hi<!1and i '31 }»iﬂ‘gi cdom (F),

i=1

we have

Pe+ 3 ims)—pas $ v,

=1

This modification of 3.4.1 is also used frequently in applications. All the
same, in concrete situations it is usually simpler to pass directly to directional
derivatives, thereby reducing the matter to the case of sublinear operators.

3.6.3. Let Y be a K-space and F, G: X = Y U {00} be convex operators

such that
dom(F) = dom(G).

If F+ G =0, then there isan A € L(X, Y)and a y € Y such that
F—A,>0 and A, + G=0.
This representation is of independent interest and is called the proposition

on the separation of operators. Since it is not used in what follows, we omit

the proof.
3.6.4. THEOREM. Let X be a vecter space. Y an ordered vector space, and Z

a K-space, Also, let
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F: X Y |] {+oo}
be a convex operator and
G: Y - Z |} {-oo}:

be an increasing convex operator such thar dom(G) D Fldom(F)], and that FX
for some x € dom(F) is an interior point of dom(G). Then Gol’shtein’s formula
holds:

0=(GoF)= | 0-(A=F).
: Ao =Gy

Fx !
PROOF. If CE€ 3;(A4 o F) for some A € 95 (G), then

Cx — CT< A Fr — A - FE<G(Fz) — G(F7),

so that C € 05(G o F).
Let us now assume that C € 85(G o F). Note first of all that for any
x € dom(F)

Crx — CT<G'(FL)(Fx — F2).

In fact. for all & such that 0 <« < 1 we have by definition
aC (z—7)=C (az+(1—a) ) —CT<6 (F(ax+- (1 —a) 7)) -6 (Fa)<
<G (alz+(1—o)F7)—G (F7) =G (FTi+a (Fz—F1))—G (Fx) =
=ali' (FT) (Fx—FI) + aw (@),
where w(a) $ Oasa ) 0.
The question of interest to us is whether there is an operator
A € 0gz(G) such that
Cr— Cz< A(Fz — FZ) (z € dom(F)).

Using the above bound, we see that for any Ay, ..., A\, €ER" and any
Xy,..., X, €dom(F)

i, (Cx; —CT) LG’ (FI)(‘“} (Fzi— F3)).

For we may assume without loss of generality that

n

is strictly positive. Then the element

L 53
Ty - s '\.'l fi X
.0
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belongs to dom(F), hence

N 2 (Cai—CT) =y (Cxog— CT) K oG (F7) (Fag— FE) =
i

f=

=G (FZ) (b (Fz,—F2) <G’ (FZ) (}J 7iFz;— ) FF).

=]

Consequently, the existence of the required operator A is assured by the Mazur—
Orlicz theorem. Thus, C € 8;(A4 o F), and this completes the proof.
3.6.5. THEOREM. Let Y be a K-space and let

Foo o Frt XY U {40}
be convex operators such that the cones of admissible directions
Fdy(dom(Fy), . . ., Fd (dom(F,))

are in general position. Then the Dubovitskii—Milyutin formula holds:

O=(F,\/...\/F,)= U @z@cF)+...+0= (o Fr)),

(Cyye -« 2tn)ET(E)

where the union is taken over the following set:
r n T
P ={(01y o0y 0n) EA(Y): hgl oy = Iy; kgl apoF)z=Fz\/...\|F Z}.

We obtain this fact as a consequence of the following more general

assertion.
3.6.6. Let Y be a vector lattice, Z a K-space, and A € L*(Y, Z). Let

Fiy ooy Frt X 5Y | {400}
be convex operators such that the cones of admissible directions
Fd;(dom(Fy)), . . ., Fd-(dom(F,))
are in general position. Then the following decomposition formula holds:
o2 (Ao Fy \ an\/ Fy) =
7

—{ D05 (dno Fy): A€ L (¥,2), 3 Ay= 45 3 tyo Fy7=A (P EV ... VFo2).

R=1

['ﬂﬁ

|

We consider the convex operators

e Y Y, - )=V -\ s
By onmy Bp)s X=X (B, . o oy B (Foky 50 Fa)e

Then it is clear that we have the following representation:




#

(5]
(=]
-1
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AoFi \ oo | Fy = Acee(Fy, .. .5 F).
Thus, by 3.6.4, ;

O-(AoF \/...\VF,)= U O=(Bo (Fiy vuey Fp))e
B o ,FnE)“""f)

A direct calculation (see 2.2.1) shows that
L n
0(Aoe)={Ws o yn) > 2 Awpi: AEL (Y, 2), X A=Al

Thus, the required result follows by appealing to 1.4.2 and 3.6.1.

3.7. In this subsection, we apply the above results to the study of the Young
transform.

Let Y be a K-space and F: X - Y U {+oo} a convex operator such that
dom(F)# @. For 4 € L(X, Y) we define

F*A= sup (Az—F2).
xE dom (F)

The operator F* is called the Young transform of F. As a rule, we study the
Young transform with the aid of the following construction.

For (x, 1) € X X R we define

tF (z/t), t>0, z/t€dom (F),
}:{F(z' t)ﬂ 0, t=0, I=0,
-+ oo, otherwise.

Thus, the resulting sublineaf operator Hp: X X R = Y U {0} is such that
dom(Hy) = {(z, t) € X X R*: z € t dom(F)}.

This H is called the Hormander transform of F. Its importance clearly stems

~ from the fact that affine operators majorized by F can be identified with linear

operators supporting Hp.
3.7.1. THEOREM. Let X be a vector space, Y an ordered vector space, and Z

a K-space. Also, let F: X = Y U {40} be a convex operator and G: Y = Z U {40}

an increasing convex operator. If F[dom(F)] contains an interior point of
dom(G), then forany A € L(X, Z)

(GoF)*A = inf{(BeF)*4 + G*B: B € L*(Y, Z)}.

" This formula is exact, that is, the infinum on the right-hand side is attained.

PROOF, First of all we note that.for any B € L*(Y, Z)
(GoF)*A= sup (Az—GoFz)== sup (Az—BoFx+4BoFz—GoFz)<<

x€ dom (G-F) xEdom (G-F)
< sup (Ar—BoFz)-- sup (BeFx—GoFz)<
xgdom (F) xedom (GaF)
S(BoF)* A+ sup (By—Gy) = (BoF)* A--G*B.
vedom (G)

Now let A € dom((G o F)*). Then for (x, t) € X X R we have
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Az — HGo FY* A< Hoplz,
If we assume that (Hp, D (x, )= (Hp(x, 1), 1), then
IIG;F = Lr& Cl (IIF, 1).

Note that dom((Hg, 1)) = dom(/), and furthermorz.

(Hy, 1) [dom(H )] N dom(H) < (Fldom(F)] = dom(G)) X {1}.
We order ¥ X R by means of the cone Y™ X {0}. Ther H; becomes an
increasing operator and (Hp, 1) is sublinear. By 3.5.3 e have

d (He.r) = C_GL% )a(co(ﬂf, §1).
EELRLG

In other words, there is an operator B € L*(Y, Z) and zn element z € Z such
that forallx €EX, y € Y,and fER"

Azr — G o F)*A< B o F(x/t) — ¢z,
By + z<tG(ylt).

This yields the inequalities

—zG*B, (GoF)*A>(BeFi*d —13,

and the proof is complete.
3.7.2. COROLLARY. If F is a sublinear operator, *ien the following exact
Sformula holds:

(G- F)*4 = inf{G*B: A €3(Bo F); F < LYY, Z)}.

We only consider the case when (G o F)* A <+ o= Then for some
BEL'(Y,Z)
(Go F)*A = (B o F)¥4 - G=B.
Here
sup (dz—BoFz)=I,
xgdom (F)
so that A € 9(B o F). This yields the required result.
The next two propositions are proved similarly.
3.7.3. If G is a sublinear operator, then we have v':: following exact formula:
(GoF)*= inf (BoF)*
BEO(G)
3.7.4. Let X and X be vector spaces, Y a K-spacc. and F: X > Y U {00}
a convex operator whose effective set contains an ir:z=rior point belonging to
the image of X under some affine mapping Ay, wiz:re A € L(Xy, X) and
x € X, Then forany B € L(X;, Y)we have the foli- . ing exact formula:

(I s i)t il =ant{FsC— Uz Bl = U et}
3.7.5. REMARK. These assertions are theorenis -+ avector minimax. Thus,
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in the case of 3.7.3 with dom(G) = Y we have

—(Go F)Y*0= inf sup Bo/rluz,
xedom (F) B2d (G)

(Ba FY*0= — inf BorFuz.
x€dom ( F)
Hence,
sup inf BoeFzx= inf sup BoFz.
Bgo (G) xEdom (F) xzdom (F) BES ()
3.7.6. Let Y be a K=spaceand F,, . . ., F,: X > Y U {00} convex operators
such that the effective sets dom(h"u-l ), - . ., dom(Hy ) of their Hormander

rransforms are in general position. Then the Moreau formula holds:
(Frt...+F)*=F1©® ... ® 3,
where @ denotes the operation of inf-convolution, that is,

n n
YD i @ 1«*;";/1=inf[k21 Fidy: A6 L(X,Y), :gi A, =4).

Since Hr 4 _+p, =Hp *+... %+ Hp, , this preposition follows from 3.5.4.

3.7.7. Let Y be a vector lattice, and Fy, . . ., F,: X = Y U {400} convex
operators such that the effective sets dorn(h‘}—.-1 Vsneny dom(HFn)of their
Hormander transforms are in general position. If Z is a K-space and
A€ LY, Z), then the following decomposition formula holds:

(AsFiV.. VE)*=nl{ @ (o) HEL'(Y, 2), 3} A= 4).

The proof follows on the same lines as that of 3.6.6, with appeals to 3.7.3
and to Moreau’s formula,

3.7.8. REMARK. When Y = Z and A = Iy, this decomposition is called
- the Ioffe—Tikhomirov formula. We also point out that all these formulae are
exact in the natural sense. For example, the exactness of 3.7.7 means that for
any B € L(X, Z) the following system of conditions is compatible:

n n
Bi€L(X, Z), B=3 By, AEL'(Y,2), A=3 4,
= k=1

(Ao F\\/...\/Fp)*B =k}=_‘,1 (Ap o Fp)* By.

It turns out that in a number of cases the Hormander transform is not
entirely suitable; thus, 3.7.1 says nothing when & is linear. Such situations
must be handled in a different way.

3.7.9. Let Y be a K-space and F: X = Y U {0} a convex operator such
that domF has an interior point X for which Fx 2 0. Then for any h € X there
is an element
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S'{F, 5) h=inf 28
(e

=0

where S(F, X). X = Y is a sublinear operator.

The existence of S(F, X)i € Y is guaranteed by the condition Fx =0,
together with 3.1.2. The sublinearity of S(F, X) can be verified by direct
calculation.

With the aid of 3.7.9 we obtain a representation of the Young transform of a
composition with a regular operator.

3.7.10. THEOREM. Let F = sg% o (A),, where U is a weakly order-
bounded set in L(X, Y)and y €(Y%). Also, let Z be a K-space and
G: Y > Z U {0} an increasing convex operator. If FIX] contains an
interior point of dom(G), then for any A € L(X, Z) the following exact
formula holds:

(G- F)* A=inf{G* (BoAy) —By: Bo (A=A, BelL* (YY), 2)}.

PROOF. First of all we choose x € X so that Fx is an interior point of
dom(G). Then it is clear that Ay Fx is an interior point of dom(G 591).
Hence, since both G and the canonical operator ey are increasing, (), is also
an interior point of dom(G e ey). Therefore, we can apply 3.7.4, that is, the
following exact formula holds:

(GoF)* A=inf{(Goey)* B—By: A=Bo(¥), BEL(YYw, Z)}.
If B belongs to L* (Y ¥)w, Z), then
(Geeg)*B= sup (Bz—Gogys)<<

zedom (Gozm)
< sup (BoAgoegz—Goegz)<< sup (BoAgu—Gu)=G*(BolAy).
zedom (Geegy) uedom (G)

On the other hand, if B € dom((G ° £9)*), then
BoAyFz+aBz—(Goeg)* BKGoey (AgFzr+z) =G (Fz+ aeyz)
for all &> 0 and any Z € (Y ¥)» . By appealing to 3.7.9, we find that
B € 9(S(G(+) — B o AyFz + (G o eg)*B, Fz) o gg).
By 2.2.1, this implies that the operator B is positive and that
BoAyg€d(S(G(-)—BeAyFz+ (Goey)* B, Fz)).
Hence, for any « € Y we have the bound
BoAqu<G (Fz-+u)—BoAyFz+(Goey)* B,

thatis, (Geey)* B=G*(B<Ay), and this completes the proof.

-
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GUIDE TO THE LITERATURE

Detailed bibliographies covering the fields of convex analysis and the theory of extremum problems
are to be found in [19], [34],and [43] (see.also [6], [39], [12], [32], [46], and [49]), therefore, we
confine ourselves here to a bare minimum of literary comments.

§ 1. The notion of a subdifferential goes back to the geometzical ideas of Minkowski. A systematic

-study of subdifferentials in relation to the theory of extremum problems began with the papers of Moreau
[30] and Dubovitskii and Milyutin [14]. For the theory of ordered vector spaces see [9], [20], [21],
and [44], and for examples of convex operators see [2] and [29]. Theorems 1.2.1. and 1.3.1. were dis-
covered in this generality by Kantorovich [21]. For the subsequent research into extension problems see
[1],[22], and [44]. A proof of Theorem 1.3.2.isin [7] and [40]. Lemma 1.4.5 was established in
the scalar case by Rockafellar (see [18]), and in the general case by Levin [27].

§2. The canonical operator method was proposed in [23]. The support set of a sum was first
described in [27]. Proposition 2.4.2 was first established (by a slightly different method) in [35]. A
detailed survey of questions in the theory of sublinear operators, other than those related to the calculus,
is to be found in [36]. About 2.2.5 see [8] and [18].

§3. A survey of the theory of subdifferentials for numerical functions appears in [18]. The results of
§3.1, together with the formula for the subdifferential af a sum of convex operators at an interior point,
were obtained by Levinin [18] and [27]. For directional derivatives of non-convex functions see [13].
The version given of the Mazur-Orlicz theorem, the formula for the subdifferential of a sum of convex
operators defined on a single set, and Proposition 3.6.3 are all established in [41] —[42]. A bibliography
covering this area is given in [22]. The general formulae of the subdifferential calculus were announced in
[24]. Theorem 3.2.5 appears here for the first time. The subdifferential calculus is carried over to locally
Lipschitz functions in Chapter X1 of [49], which also contains a bibliography. A history of the Young
transform is given in [19] and [46]. The Young vector transform in an infinite-dimensional situation
apparently occurs first in [28]. Proposition 3.7.5 was first discovered by Rubinov. General rules for a
change of variables in a Young transform were proposed in [25]. Research into Young transforms borders
on work on multiple criteria decision making. A detailed bibliography of articles in this area can be found
in [47]. In this context, we also mention [3], [4], [15] ~[17], and [37]—[38].
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