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SIMULTANEOUS LINEAR INEQUALITIES:
YESTERDAY AND TODAY

S. S. Kutateladze

Это небольшой обзор теории линейных неравенств, одного из псевдонимов
выпуклого анализа, с особым вниманием на булевозначную интерпретацию
некоторых следствий леммы Фаркаша.

1. Agenda

Linear inequality implies linearity and order. When combined, the
two produce an ordered vector space. Each linear inequality in the sim-
plest environment of the sort is some half-space. Simultaneity implies
many instances and so yields intersections of half-spaces. This yields
polyhedra as well as arbitrary convex sets, identifying the theory of lin-
ear inequalities with convexity.

Convexity stems from the remote ages and reigns in the federation
of geometry, optimization, and functional analysis. Convexity feeds gen-
eration, separation, calculus, and approximation. Generation appears as
duality; separation, as optimality; calculus, as representation; and ap-
proximation, as stability.

This talk addresses the origin and the state of the art of the relevant
areas with a particular emphasis on the Farkas Lemma. Our aim is to
demonstrate how Boolean valued analysis may be applied to simultane-
ous linear inequalities with operators. This particular theme is another
illustration of the deep and powerful technique of “stratified validity”
which is characteristic of Boolean valued analysis.

2. Environment

Assume that X is a real vector space, Y is a Kantorovich space also
known as a complete vector lattice or a Dedekind complete Riesz space.
Let B := B(Y ) be the base of Y , i.e., the complete Boolean algebras of
positive projections in Y ; and letm(Y ) be the universal completion of Y .
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Denote by L(X,Y ) the space of linear operators from X to Y . In case X
is furnished with some Y -seminorm on X, by L(m)(X,Y ) we mean the
space of dominated operators from X to Y . As usual, {T ≤ 0} := {x ∈
X : Tx ≤ 0}; ker(T ) = T−1(0) for T ∈ L(X,Y ). In the rest of notation
we will follow [1] without further specification.

3. Kantorovich’s Theorem

The Hahn–Banach Theorem amounts to existence of positive exten-
sions as visualized by the diagram
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Theorem. If W is ordered by W+ and A(X)−W+ = W+−A(X) =
W , then

(∃X ≥ 0) XA = B ↔ {A ≤ 0} ⊂ {B ≤ 0}.

4. The Alternative

Theorem. Let X be a Y -seminormed real vector space, with
Y a Kantorovich space. Assume that A1, . . . , AN and B belong
to L(m)(X,Y ).

Then one and only one of the following holds:
(1) There are x ∈ X and b, b′ ∈ B such that b′ ≤ b and

b′Bx > 0, bA1x ≤ 0, . . . , bANx ≤ 0.

(2) There are α1, . . . , αN ∈ Orth(m(Y ))+ such that B =
∑N

k=1 αkAk.

5. Inhomogeneous Inequalities

Theorem. Let X be a Y -seminormed real vector space, with
Y a Kantorovich space. Assume given some dominated operators
A1, . . . , AN , B ∈ L(m)(X,Y ) and elements u1, . . . , uN , v ∈ Y . The fol-
lowing are equivalent:
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(1) For all b ∈ B the inhomogeneous operator inequality bBx ≤ bv

is a consequence of the consistent simultaneous inhomogeneous operator
inequalities bA1x ≤ bu1, . . . , bANx ≤ buN , i.e.,

{bB ≤ bv} ⊃ {bA1 ≤ bu1} ∩ · · · ∩ {bAN ≤ buN}.

(2) There are positive orthomorphisms α1, . . . , αN ∈ Orth(m(Y ))
satisfying

B =
N∑

k=1

αkAk; v ≥
N∑

k=1

αkuk.

6. Inhomogeneous Sublinear Inequalities

Lemma. Let X be a real vector space. Assume that p1, . . . , pN ∈
PSub(X) := PSub(X,R) and p ∈ Sub(X). Assume further that
v, u1, . . . , uN ∈ R make consistent the simultaneous sublinear inequali-
ties pk(x) ≤ uk, with k := 1, . . . , N .

The following are equivalent:

(1) {p ≥ v} ⊃
N⋂

k=1

{pk ≤ uk};

(2) there are α1, . . . , αN ∈ R+ satisfying

(∀x ∈ X) p(x) +
N∑

k=1

αkpk(x) ≥ 0,
N∑

k=1

αkuk ≤ −v.

Proof. (2) → (1): If x is a solution to the inhomogeneous simulta-
neous inequalities pk(x) ≤ uk with k := 1, . . . , N , then

0 ≤ p(x) +
N∑

k=1

αkpk(x) ≤ p(x) +
N∑

k=1

αkuk(x) ≤ p(x)− v.

(1)→ (2): Given (x, t) ∈ X×R, put p̄k(x, t) := pk(x)−tuk, p̄(x, t) :=
p(x) − tv and τ(x, t) := −t. Clearly, τ, p̄1, . . . , p̄N ∈ PSub(X × R) and
p̄ ∈ Sub(X × R). Take

(x, t) ∈ {τ ≤ 0} ∩
N⋂

k=1

{p̄k ≤ 0}.

If, moreover, t > 0; then uk ≥ pk(x/t) для k := 1, . . . , N and so
p(x/t) ≤ v by hypothesis. In other words (x, t) ∈ {p̄ ≤ 0}. If t = 0
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then take some solution x̄ of the simultaneous inhomogeneous polyhe-
dral inequlities under study. Since x ∈ K :=

⋂N
k=1{pk ≤ 0}; therefore,

pk(x̄+ x) ≤ p(x) + pk(x) ≤ uk for all k := 1, . . . , N . Hence, p(x̄+ x) ≥ v
by hypotyhesis. So the sublinear functional p is bounded below on the
cone K. Consequently, p assumes only positive values on K. In other
words, (x, 0) ∈ {p̄ ≤ 0}. Thus

{p̄ ≥ 0} ⊃
N⋂

k=1

{p̄k ≤ 0}

and by Lemma 2.2. of [1] there are positive reals α1, . . . , αN , β sych that
for all (x, t) ∈ X × R we have

ḡ(x) + βτ(x) +
N∑

k=1

αkp̄k(x) ≥ 0.

Clearly, the so-obtained parameters α1, . . . , αN are what we sought for.
The proof of the lemma is complete.

Theorem. Let X be a Y -seminormed real vector space, with Y
a Kantorovich space. Given are some dominated polyhedral sublin-
ear operators P1, . . . , PN ∈ PSub(m)(X,Y ) and dominated sublinear
operator P ∈ Sub(m)(X,Y ). Assume further that u1, . . . , uN , v ∈ Y
make consistent the inhomogeneous simultaneous inequalities P1(x) ≤
u1, . . . , PN (x) ≤ uN , P (x) ≥ v.

The following are equivalent:
(1) for all b ∈ B the inhomogeneous sublinear operator inequality

bP (x) ≥ v is a conseqence of the simultaneous inhomogeneous sublinear
operator inequalities bP1(x) ≤ u1, . . . , bPN (x) ≤ uN , i. e.,

{bP ≥ v} ⊃ {bP1 ≤ u1} ∩ · · · ∩ {bPN ≤ uN};

(2) there are positive α1, . . . , αN ∈ Orth(m(Y )) satisfying

(∀x ∈ X) P (x) +
N∑

k=1

αkPk(x) ≥ 0,
N∑

k=1

αkuk ≤ −v.

Proof. The claim is an instance of Boolean valued interpratation of
the Lemma.
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Remark. The above theorem shows that the Lagrange principle is

valid for the extremal proiblem

P1(x) ≤ u1, . . . , PN (x) ≤ uN , P (x)→ inf .

In other words, the finite value of the contrained problem is the value
of the unconstrained problem for an appropriate Lagrangian. It is worth
observing that we do not assume any constraint qualification other that
polyhedrality. Recall that the Slater condition allows us to eliminate
polyhedrality as well as considering a unique target space. This is well
known in a practically unrestricted generality (for instance, see [2]).

7. Freedom and Inequality

Abstraction is the freedom of generalization. Freedom is the loftiest
ideal and idea of man, but it is demanding, limited, and vexing. So is
abstraction. So are its instances in convexity, hence, in simultaneous
inequalities.

Freedom of set theory empowered us with the Boolean-valued models
yielding a lot of surprising and unforeseen visualizations of the ingredi-
ents of mathematics. Many promising opportunities are open to modeling
the powerful habits of reasoning and verification. Convexity, the theory
of simultaneous linear inequalities in disguise, is a topical illustration of
the wisdom and strength of mathematics, the ever fresh art and science
of calculus.

Inequality paves way to freedom.
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This is a brief overview of the theory of simultaneous linear inequalities, an alias
of convex analysis, with a particular emphasis on the Boolean valued interpre-
tation of some consequences of the Farkas lemma.


