АЛЕКСАНДРОВ PAR EXCELLENCE

Alexandr Alexandrov

Многие средства массовой информации объявили Григория Перельмана учёным 2006 года в связи с присуждением ему Филдсовской медали за доказательство гипотезы Пуанкаре. Перельман — последний аспирант Александра Даниловича Александрова (1912–1999), юбилейную дату рождения которого мы отмечаем в этом году. Много лет назад приезжий профессор уговаривал при мне Александрова устроить демарш на защите одной не очень сильной геометрической диссертации. Автор диссертации был еврей, а последним аргументом этого московского профессора была ксенофобия. Он указал нам на мрачноватую и живописную фигуру постороннего к защите человека, стоящего вдали коридора, и стал пенять нам в том смысле, что если мы не поступим так, как он просит, «все тут будут такие». По иронии судьбы в коридоре стоял Перельман, аспирант Александрова, студент Виктора Залгаллера и Юрия Бураго, учеников Александрова.

Александрова любили и ненавидели за одно и то же. Ценили его отзывы о своих работах и замалчивали развиваемые им подходы и направления в науке. Его обвиняли в сионизме и рассчитывали на его антисемитизм. Матерно склоняли его коммунистические убеждения и почтительно просили написать письмо в ЦК КПСС или журнал «Коммунист». Плевались на его философские сочинения и заставляли студентов сдавать по ним кандидатский минимум. Многие питерские профессора непрестанно восхищаются дворцовым комплексом Петергофа, но никак не могут простить ректору Александрову мудрое решение о строительстве там университетского городка. В годы перестройки Александрова обвинили в лысенкоизме и наградили орденом за вклад в сохранение и развитие отечественной генетики и селекции. Таков был масштаб личности этого человека.

Александров часто говорил, что человек — это его дело. Дело Александрова называется геометрия. Правильнее говорить о геометрии как особо любимой Александровым части универсальной науки — математики. Основатель теории категорий Саундерс Маклейн пропагандировал термин «работающий математик». Английский оригинал “the working mathematician” гораздо ближе к более приземленному выражению «математик-работяга». Математической работе Маклейн противопоставлял совершенную математику. Последняя должна быть неизбежной, проясняющей, глубокой, уместной, отвечающей на вопросы и своевременной. Совершенную математику делают совершенные математики, математики par excellence. Таким был Александров.

Вклад Александрова в математику проходил под девизом «Назад — к Евклиду». Сам он отмечал, что «пафос современной математики в том, что происходит возврат к грекам». Герман Минковский революционизировал теорию чисел с помощью синтетической геометрии выпуклых тел. Идеи и аппарат геометрии чисел стали основой функционального анализа, рожденного Банахом. Пионерские работы Александрова продолжили дело Минковского, обогатив геометрию методами теории меры и функционального анализа. Александров осуществил поворот к синтетической геометрии древних гораздо в более тонком и глубоком смысле, чем это обычно теперь понимают. Геометрия в целом не сводится к преодолению локальных ограничений дифференциальной геометрии поверхностей, основанной на инфинитезимальных методах и идеях Ньютона, Лейбница и Гаусса.

В работах Александрова получила развитие теория смешанных объемов выпуклых тел. Он доказал фундаментальные теоремы о выпуклых многогранниках, стоящие в одном ряду с теоремами Эйлера и Минковского. В связи с найденным решением проблемы Вейля Александров предложил новый синтетический метод доказательства теорем существования. Результаты этого цикла работ поставили имя Александрова в один ряд с именами Евклида и Коши.

Важный вклад Александрова в науку — создание внутренней геометрии нерегулярных поверхностей. Он разработал удивительный по силе и наглядности метод разрезывания и склеивания. Этот метод позволил Александрову решить многие экстремальные задачи теории многообразий ограниченной кривизны.

Александров построил теорию метрических пространств с односторонними ограничениями на кривизну. Возник единственный известный класс метрических пространств, обобщающих римановы пространства в том смысле, что в них осмыслено центральное для римановой геометрии понятие кривизны. В работах Александрова по теории многообразий ограниченной кривизны дано развитие геометрической концепции пространства в продолжение традиции, идущей от Гаусса, Лобачевского, Римана, Пуанкаре и Картана.

Александров расширил методы дифференциальной геометрии аппаратом функционального анализа и теории меры, стремясь привести математику к её универсальному состоянию времен Евклида. Математика древних была геометрией (другой математики вовсе не было). Синтезируя геометрию с прочими разделами математики современности, Александров восходил к античному идеалу единой науки — математики. Поворот к синтетическим методам единой математики был неизбежен, что в области геометрии иллюстрируют прекрасные результаты таких учеников и продолжателей идей Александрова, как Громов, Перельман, Погорелов и Решетняк.

Первым геометром России XIX века был Николай Иванович Лобачевский. Первым геометром России XX века стал Александр Данилович Александров.

С. Кутателадзе

7 января 2007 г.

Mathematics, abstract math.HO/0701244

Сибирский мат. журн., 2007, Т. 48, №5, 961–962.


Available in English


English Page Russian Page
© Кутателадзе С. C. 2007