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Alexandrov (1912-1999)

 Alexandr Danilovich
Alexandrov was the
first and foremost
Russian geometer of
the twentieth century.

e He contributed to
mathematics under
the slogan:

* “Retreat to Euclid.”




His Contribution

The works of Alexandrov made tremendous
progress in the theory of mixed volumes of
convex figures. He proved some fundamen-
tal theorems on convex polyhedra that ranked
his name alongside the names of Euclid and
Cauchy.

Alexandrov enriched the methods of differen-
tial geometry by the tools of functional anal-
ysis and measure theory, driving mathematics
to its universal status of the epoch of Euclid.
The mathematics of the ancients was geom-
etry (there were no other instances of math-
ematics at all). Synthesizing geometry with
the remaining areas of the today's mathemat-
ics, Alexandrov climbed to the antique ideal of
the universal science incarnated in mathemat-
ics. Return to the synthetic methods of math-
esis universalis was inevitable and unavoidable
as well as challenging and fruitful.




Abstract
Convexity

Minkowski Duality

A convex figure is a compact convex set. A con-
vex body is a solid convex figure. The Minkows-
ki duality identifies a convex figure S in RN and
its support function S(z) := sup{(z,z) |z € S}
for z ¢ RV, Considering the members of RV as
singletons, we assume that RN lies in the set
¥ of all compact convex subsets of RN,

The classical concept of support function gives
rise to abstract convexity which focuses on the
order background of convex sets.



H-Convexity

Let E be a complete lattice E with the ad-
joint top T := 4occ and bottom L = —oc.
Unless otherwise stated, Y is usually a Kan-
torovich space which is a Dedekind complete
vector lattice in another terminology. Assume
further that H is some subset of E which is by
implication a (convex) cone in E, and so the
bottom of E lies beyond H. A subset U of H is
convex relative to H or H-convex, in symbols
U e ¥(H,E), provided that U is the H-support
set U;;f :={h € H| h < p} of some element p
of E.

Alongside the H-convex sets we consider the
so-called H-convex elements. An element p €
FE is H-convex provided that p = sup UH; ie.,
p represents the supremum of the H-support
set of p. The H-convex elements comprise the
cone which is denoted by €nv(H,E). The con-
vex elements and sets are “glued together" by
the Minkowski duality ¢ : p+ UL,



Hyperspaces

Positive Functionals
over Convex Objects

The Minkowski duality makes ¥y into a cone in
the space C(Sy_1) of continuous functions on
the Euclidean unit sphere Sy_1, the boundary
of the unit ball 3. This yields the so-called
Minkowski structure on ¥y. Addition of the
support functions of convex figures amounts
to taking their algebraic sum, also called the
Minkowski addition. It is worth observing that
the linear span [¥x] of ¥y is dense in C(Sy_1),
bears a natural structure of a vector lattice
and is usually referred to as the space of con-
vex sets. The study of this space stems from
the pioneering breakthrough of Alexandrov in
1937 and the further insights of Radstrém,
HOrmander, and Pinsker.



Choqguet
Theory

A similar idea was suggested by Loomis in 1962
within Choquet theory:

A measure p affinely majorizes or dominates a
measure v, both given on a compact convex
subset @ of a locally convex space X, provided
that to each decomposition of v into finitely
many summands vq,..., 4y, there are measures
K1, ---,wm Whose sum is g and for which every
difference uyp — vy, annihilates all restrictions to
Q of affine functionals over X. In symbols,

K> AfF(QV

Cartier, Fell, and Meyer proved in 1964 that

Lfduzqudv

for each continuous convex function f on Q if
and only if,u>>Aff(Q)u. An analogous necessity
part for linear majorization was published in
1970.



Majorization

Majorization is a vast subject. We only site
one of the relevant abstract claims of subdif-
ferential calculus:

Theorem. Assume that Hq,..., Hy are cones
in a Riesz space X. Assume further that f and
g are positive functionals on X. The inequality

F(hy Ve Vhy) 2 g(hyV -V hy)

holds for all h € Hp (k := 1,...,N) if and
only if to each decomposition of g into a sum
of N positive terms g = g1 + --- + g there is
a decomposition of f into a sum of N positive
terms f = f1 + -+ fy such that

fe(hy) > gr(hy) (hg € Hg; k:=1,...,N).



Alexandrov’s
Theorem

Alexandrov Measures and
the Blaschke Structure

The celebrated Alexandrov Theorem proves the
unique existence of a translate of a convex
body given its surface area function. Each
surface area function is an Alexandrov mea-
sure. So we call a positive measure on the unit
sphere which is supported by no great hyper-
sphere and which annihilates singletons. Thus,
each Alexandrov measure is a translation-inva-
riant additive functional over the cone ¥j. This
yields some abstract cone structure that re-
sults from identifying the coset of translates
{z+1z | z € RN} of a convex body r the cor-
responding Alexandrov measure on the unit
sphere which we call the surface area func-
tion of the coset of ¢ and denote by u(x). The
cone of positive translation-invariant measures
in the dual ¢/(Sy_1) of C(Sy_1) is denoted




Dual
Hyperspace

Given 1,9 € ¥y, we let the record r =pn~th mean
that ¢ and y are equal up to translation or, in
other words, are translates of one another. We
may say that =N is the associate equivalence
of the preorder E[RN on ¥y which symbolizes
the possibility of inserting one figure into the
other by translation.

Arrange the factor set “//N/[RN which consists
of the cosets of translates of the members of
¥n. Clearly, ‘I/N/IRN is a cone in the factor
space [¥w]/RN of the vector space [#] by the
subspace RV,



|dentification

There is a natural bijection between ¥ /RN
and oy. Namely, we identify the coset of sin-
gletons with the zero measure. To the straight
line segment with endpoints = and y, we assign
the measure |z — yl(=g—y)/ja—y| T S(y—2)/|z—1))>
where | - | stands for the Euclidean norm and
the symbol e, for z € Sy_1 stands for the Dirac
measure supported at z. If the dimension of
the affine span Aff(x) of a representative ¢ of
a coset in “VN/IRN is greater than unity, then
we assume that Aff(x) is a subspace of RY and
identify this class with the surface area func-
tion of ¢ in Aff(x) which is some measure on
Spn_1NATF(z) in this event. Extending the mea-
sure by zero to a measure on Sy_1, wWe obtain
the member of o/ that we assign to the coset
of all translates of r. The fact that this cor-
respondence is one-to-one follows easily from
the Alexandrov Theorem.



Blaschke’s Sum

The vector space structure on the set of reg-
ular Borel measures induces in &y and, hence,
in #5/RY the structure of an abstract cone or,
strictly speaking, the structure of a commuta-
tive R-operator semigroup with cancellation.
This structure on ¥x/RY is called the Blaschke
structure and the references therein). Note
that the sum of the surface area functions of
r and p generates a unique class r#y which is
referred to as the Blaschke sum of ¢ and y.

Let C(Sy_1)/RY stand for the factor space of
C(Spy_1) by the subspace of all restrictions of
linear functionals on RN to Sy_1. Denote by
[#7y] the space @/y—af)y of translation-invariant
measures. It is easy to see that [#/y] is also the
linear span of the set of Alexandrov measures.



Mixed Volume
as Duality

The spaces C(Sy_1)/FY and [a/y] are made
dual by the canonical bilinear form

(o= [, fau(f € CSy-2)/RY, e o).

For t € ¥n/RN and vy € &y, the quantity {t, 1)
coincides with the mixed volume V1 (y,r). The
space [&/y] is usually furnished with the weak
topology induced by the above indicated dual-
ity with C(Sy_1)/RN.



Dual Cones

Cones of Feasible Directions

By the dual K* of a given cone K in a vector
space X in duality with another vector space Y,
we mean the set of all positive linear function-
alson K; i.e., K* :={yeY | (Vz € K) (z,y) >
0}. Recall also that to a convex subset U of X
and a point z in U there corresponds the cone

Uz ‘= Fd(U,z) ‘= {h € X | (3a > 0) 3+ah € U}

which is called the cone of feasible directions
of U at z. Fortunately, description is available
for all dual cones we need.

Let r € &y. Then the dual Jze"ﬁj of the cone
of feasible directions of &/yn at T may be rep-
resented as follows

dyg=A{f ey | ({&f) =0}



Decomposition
and Inclusion

Let r and y be convex figures. Then

(1) p(®) — uy) € Yy © p(x) >pypy);

(2) If £ > gy then p(r) >pau(y);

(3) £ = g2y © p() Braply);

(M Ify-3Tc MR}E then y =pn T;

(5) If u(y) — u(F) € 5 then y =N T.

It stands to reason to avoid discriminating be-
tween a convex figure, the respective coset

of translates in ‘)‘/N/IRN, and the corresponding
measure in &y.



Isoperimetric-Type
Problems

Comparison Between
the Blaschke and Minkowski Structures

The isoperimetric-type problems with subsidiary
constraints on location of convex figures com-
prise a unique class of the challenging extremal
problems with two essentially different parame-
trizations. The principal features of the latter
are seen from the table.



Problem’s
Ingredients

Object of Minkowski's Blaschke's
Parametrization Structure Structure
cone of sets /RN N
dual cone b o
positive cone oy N
typical linear ViGn, +) Vi(-,3n)
functional (width) (area)
concave functional VN VIN-D/N(Ly
(power of volume)
simplest convex isoperimetric Urysohn's
program problem problem
operator-type inclusion inequalities
constraint of figures on ‘‘curvatures"”
Lagrange's multiplier surface function
differential of volume
at a point ¥
is proportional to Vi, -) Vi(-,T)

Thus the classical isoperimetric problem is not
a convex program in the Minkowski structure
for N > 3. In the Blaschke structure this prob-
lem is a convex program whose optimality cri-

terion reads:

“Each solution is a ball.”




Convex
Problems

The problems are challenging that contain some
constrains of inclusion type: for instance, the
isoperimetric problem or Urysohn problem with
the requirement that the solutions lie among
the subsets or supersets of a given body. These
problems can be solved in a generalized sense
“modulo” the Alexandrov Theorem. Clearly,
some convex combination of the ball and a tetra-
hedron is proportional to the solution of the
Urysohn problem in this tetrahedron. If we re-
place the condition on the integral width which
is typical of the Urysohn problem by a con-
straint on the surface area or other mixed vol-
umes of a more general shape then we come to
possibly nonconvex programs for which a sim-
ilar reasoning yields only necessary extremum
conditions in general. Recall that in case N =
2 the Blaschke sum transforms as usual into
the Minkowski sum modulo translates.



Soap
Bubbles

The task of choosing an appropriate parametriza-
tion for a wide class of problems is practi-
cally unstudied in general. In particular, those
problems of geometry remain unsolved which
combine constraints each of which is linear in
one of the two wvector structures on the set
of convex figures. The simplest example of
an unsolved “combined” problem is the inter-
nal isoperimetric problem in the space RN for
N > 3. The only instance of progress is due
to Pogorelov who found in 1995 the form of a
soap bubble inside a three-dimensional tetra-
hedron. This happens to be proportional to
the Minkowski convex combination of the ball
and the solution to the internal Urysohn prob-
lem in the tetrahedron. The above geometric
facts make it reasonable to address the general
problem of parametrizing the important classes
of extremal problems of practical provenance.



External
| Problems

The external Urysohn problem. Among the
convex figures, circumscribing pp and having
integral width fixed, find a convex body of
greatest volume.

Theorem. A feasible convex body T is a so-
lution to the external Urysohn problem if and
only if there are a positive measure g and a
positive real & € Ry satisfying

(1) au(n) >prp@) +

(2) V®) + § Jsy_, Fdu = ViGN, D)

(3) ©(z) = op(z) for all z in the support of u.



Uryhson-Type
Problems

If, in particular, 1o = 3ny—1 then the sought
body is a spherical lens, that is, the intersec-
tion of two balls of the same radius; while the
critical measure p is the restriction of the sur-
face area function of the ball of radius &l/(¥-1)
to the complement of the support of the lens
to Sy—1. If rg is an equilateral triangle then
the solution t looks as follows:
+05

Note that t is the union of g and three con-
gruent slices of a circle of radius & and centers
01—03. The critical measure u is the restric-
tion of u(32) to the subset of S; comprising
the endpoints of the unit vectors of the shaded
zone.



Current
Hyperplanes

The internal Urysohn problem with a current
hyperplane: Find two convex figures T and 7
lying in a given convex body re, separated by
a hyperplane with the unit outer normal zg,
and having the greatest total volume ofrand j
given the sum of their integral widths.

Theorem. A feasible pair of convex bodies 1
and § solves the internal Urysohn problem with
a current hyperplane if and only if there are
convex figures ¢ and y and positive reals & and
B satisfying (1) T = r#ain: (2) § = n#a;n;
(3) n(r) > Bezg, p(h) 2 Be—zg; (4) T(2) = ro(2)
for all z € supp(z) \ {z0}; (5) §(2) = ro(2) for
all z € supp(x) \ {—=z0}, with supp(x) standing
for the support of r, i.e. the support of the
surface area measure u(p) of .
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