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Foreword to the English Translation

This is a translation of the book that opens the series “Nonstandard Methods
of Analysis” in print by the Sobolev Institute Press at Novosibirsk.

Nonstandard methods of analysis consist generally in comparative study of two
interpretations of a mathematical claim or construction given as a formal symbolic
expression by means of two different set-theoretic models: one, a “standard” model
and the other, a “nonstandard” model. The second half of the twentieth century is
a period of significant progress in these methods and their rapid development in a
few directions.

The first of the latter appears often under the name coined by its inventor,
A. Robinson. This memorable but slightly presumptuous and defiant term, non-
standard analysis, often swaps places with the term Robinson’s or classical non-
standard analysis. The characteristic feature of Robinson’s nonstandard analysis is
a frequent usage of many controversial concepts appealing to the actual infinitely
small and infinitely large quantities that have happily resided in natural sciences
from ancient times but were strictly forbidden in modern mathematics for many
decades. The present-day achievements revive the forgotten term infinitesimal anal-
ysis which expressively reminds us of the heroic bygones of Calculus.

Infinitesimal analysis expands rapidly, bringing about radical reconsideration
of the general conceptual system of mathematics. The principal reasons for this
progress are twofold. Firstly, infinitesimal analysis provides us with a novel under-
standing for the method of indivisibles rooted deeply in the mathematical classics.
Secondly, it synthesizes both classical approaches to differential and integral cal-
culuses which belong to the noble inventors of the latter. Infinitesimal analysis
finds newer and newest applications and merges into every section of contemporary
mathematics. Sweeping changes are on the march in nonsmooth analysis, measure
theory, probability, the qualitative theory of differential equations, and mathemat-
ical economics.

The second direction, Boolean valued analysis distinguishes itself by ample
usage of such terms as the technique of ascending and descending, cyclic envelopes
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and mixings, B-sets and representation of objects in V(B). Boolean valued analysis
originated with the famous works by P. J. Cohen on the continuum hypothesis.
Progress in this direction has evoked radically new ideas and results in many sections
of functional analysis. Among them we list Kantorovich space theory, the theory
of von Neumann algebras, convex analysis, and the theory of vector measures.

The book [135], printed by the Siberian Division of the Nauka Publishers in
1990 and translated into English by Kluwer Academic Publishers in 1994, gave a
first unified treatment of the two disciplines forming the core of the present-day
nonstandard methods of analysis.

The reader’s interest as well as successful research into the field assigns a task
of updating the book and surveying the state of the art. Implementation of the
task has shown soon that it is impossible to compile new topics and results in a
single book. Therefore, the Sobolev Institute Press decided to launch the series
“Nonstandard Methods of Analysis” which will consist of the monographs devoted
to various aspects of this direction of mathematical research.

The present book opens the series and treats Boolean valued analysis. The
formal technique of the discipline is expounded in detail. The book also pays much
attention to studying the classical objects of functional analysis, namely, Banach
spaces and algebras by means of Boolean valued models.

This edition was typeset using AMS-TEX, the American Mathematical Soci-
ety’s TEX macro package.

As the editor of the series, I am deeply grateful to Kluwer Academic Publishers
for cooperation and support of the new project.

S. Kutateladze



Preface

As the title implies, the present book treats Boolean valued analysis. This
term signifies a technique for studying the properties of an arbitrary mathematical
object by means of comparison between its representations in two different set-
theoretic models whose construction utilizes principally distinct Boolean algebras.
We usually take as these models the classical Cantorian paradise in the shape
of the von Neumann universe and a specially-trimmed Boolean valued universe
in which the conventional set-theoretic concepts and propositions acquire bizarre
interpretations. Usage of two models for studying a single object is a family feature
of the so-called nonstandard methods of analysis. For this reason, Boolean valued
analysis means an instance of nonstandard analysis in common parlance.

Proliferation of Boolean valued analysis stems from the celebrated achievement
of P. J. Cohen who proved in the beginning of the sixties that the negation of the
continuum hypothesis, CH, is consistent with the axioms of Zermelo–Fraenkel set
theory, ZFC. This result by P. J. Cohen, alongside the consistency of CH with ZFC
established earlier by K. Gödel, proves that CH is independent of the conventional
axioms of ZFC.

The genuine value of the great step forward by P. J. Cohen could be understood
better in connection with the serious difficulty explicated by J. Shepherdson and
absent from the case settled by K. Gödel. The crux of J. Shepherdson’s observation
lies in the impossibility of proving the consistency of (ZFC) + (¬ CH) by means of
any standard models of set theory. Strictly speaking, we can never find a subclass
of the von Neumann universe which models (ZFC) + (¬ CH) provided that we use
the available interpretation of membership. P. J. Cohen succeeded in inventing
a new powerful method for constructing noninner, nonstandard, models of ZFC.
He coined the term forcing. The technique by P. J. Cohen invokes the axiom of
existence of a standard transitive model of ZFC in company with the forcible and
forceful transformation of the latter into an immanently nonstandard model by the
method of forcing. His tricks fall in an outright contradiction with the routine
mathematical intuition stemming “from our belief into a natural nearly physical
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model of the mathematical world” as P. J. Cohen phrased this himself [30].
Miraculously, the difficulties in comprehension of P. J. Cohen’s results gained

a perfect formulation long before they sprang into life. This was done in the famous
talk “Real Function Theory: State of the Art” by N. N. Luzin at the All-Russia
Congress of Mathematicians in 1927. Then N. N. Luzin said: “The first idea that
might leap to mind is that the determination of the cardinality of the continuum
is a matter of a free axiom like the parallel postulate of geometry. However, when
we vary the parallel postulate, keeping intact the rest of the axioms of Euclidean
geometry, we in fact change the precise meanings of the words we write or utter,
that is, ‘point,’ ‘straight line,’ etc. What words are to change their meanings if
we attempt at making the cardinality of the continuum movable along the scale
of alephs, while constantly proving consistency of this movement? The cardinality
of the continuum, if only we imagine the latter as a set of points, is some unique
entity that must reside in the scale of alephs at the place which the cardinality
of the continuum belongs to; no matter whether the determination of this place
is difficult or even ‘impossible for us, the human beings’ as J. Hadamard might
comment” [159, pp. 11–12].

P. S. Novikov expressed a very typical attitude to the problem: “...it might
be (and it is actually so in my opinion) that the result by Cohen conveys a purely
negative message and reveals the termination of the development of ‘naive’ set
theory in the spirit of Cantor” [192, p. 209].

Intention to obviate obstacles to mastering the technique and results by P. J.
Cohen led D. Scott and R. Solovay to constructing the so-called Boolean valued
models of ZFC which are not only visually attractive from the standpoint of classi-
cal mathematicians but also are fully capable of establishing consistency and inde-
pendence theorems. P. Vopěnka constructed analogous models in the same period
of the early sixties.

The above implies that the Boolean valued models, achieving the same ends
as P. J. Cohen’s forcing, must be nonstandard in some sense and possess some new
features that distinguish them from the standard models.

Qualitatively speaking, the notion of Boolean valued model involves a new
conception of modeling which might be referred to as modeling by correspondence
or long-distance modeling. We explain the particularities of this conception as
compared with the routine approach. Encountering two classical models of a single
theory, we usually seek for a bijection between the universes of the models. If
this bijection exists then we translate predicates and operations from one model to
the other and speak about isomorphism between the models. Consequently, this
conception of isomorphism implies a direct contact of the models which consists in
witnessing to bijection of the universes of discourse.

Imagine that we are physically unable to compare the models pointwise. Hap-
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pily, we take an opportunity to exchange information with the owner of the other
model by using some means of communication, e.g., by having long-distance calls.
While communicating, we easily learn that our interlocutor uses his model to op-
erate on some objects that are the namesakes of ours, i.e., sets, membership, etc.
Since we are interested in ZFC, we ask the interlocutor whether or not the axioms
of ZFC are satisfied in his model. Manipulating the model, he returns a positive
answer. After checking that he uses the same inference rules as we do, we cannot
help but acknowledge his model to be a model of the theory we are all investigating.
It is worth noting that this conclusion still leaves unknown for us the objects that
make up his universe and the procedures he uses to distinguish between true and
false propositions about these objects.†

All in all, the new conception of modeling implies not only refusal from iden-
tification of the universes of discourse but also admission of various procedures for
verification of propositions.

To construct a Boolean valued model, we start with a complete Boolean al-
gebra B, a cornerstone of a special Boolean valued universe V(B) consisting of
“B-valued sets” that are defined recursively as B-valued functions over available
B-valued sets. This V(B) will serve as a universe of discourse for ZFC. Also, we
appoint B as the target of the truth value sending each formula of ZFC to a member
of B. More explicitly, to each formula ϕ of ZFC whose every variable ranges now
over V(B), we put in correspondence some element [[ϕ]] of the parental Boolean alge-
bra B. The quantity [[ϕ]] is the truth value of ϕ. We use truth values for validating
formulas of ZFC. In particular, every theorem ϕ of ZFC acquires the greatest truth
value 1B , and we declare ϕ holding inside the model V(B).

This construction is elaborated in Chapters 1–3. Application of Boolean valued
models to problems of analysis rests ultimately on the procedures of ascending and
descending, the two natural functors acting between V(B) and the von Neumann
universe V. Preliminaries to the axiomatics of Zermelo–Fraenkel set theory are
gathered in the Appendix in order to alleviate the burden of the reader. This
Appendix also contains preliminaries to category theory.

In the concluding chapters we demonstrate the main advantages of Boolean
valued analysis: tools for transforming function spaces to subsets of the reals; oper-
ators, to functionals; vector functions, to numerical mappings, etc. Surely, selection
of analytical topics and objects and the respective applications to functional anal-
ysis is mainly determined from the personal utility functions of the authors.

We start with thorough examination of the Boolean valued representations of
algebraic systems in Chapter 4. The theory of algebraic systems, propounded in the
works by A. I. Maltsev and A. Tarski, ranks among the most vital mathematical

† The “E, Eir, and Em” of the celebrated Personal Pronoun Pronouncement seems by far
a better choice of pronouns for this paragraph (cf. [228]).
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achievements of general import. A profusion of algebraic systems makes information
on their Boolean valued representation a must for meaningful application to every
section of the present-day mathematics.

Of the same high relevance are the constructions of Chapter 5. Mathematics, in
any case mathematics as the Science of Infinity, is inconceivable without the reals.
Boolean valued analysis has revealed the particular role of a universally complete
Kantorovich space. It turns out that each of these spaces serves as a lawful and
impeccable model of the reals. Recall that L. V. Kantorovich was the first who
introduced Dedekind complete (that is, boundedly order complete) vector lattices
as fruitful abstraction of the reals in the thirties. These spaces are also called K-
spaces or Kantorovich spaces in memory of Leonid Vital′evich Kantorovich, a great
mathematician and a Nobel Laureate in economics. Considering the new objects,
L. V. Kantorovich propounded the heuristic transfer principle. Kantorovich’s prin-
ciple claims that the members of a K-space are analogs of real numbers and to
each theorem about functionals there corresponds a similar theorem about opera-
tors taking values in a K-space. Time enables us to ascribe a clear and rigorous
meaning to this heuristic transfer principle. The relevant tools, including the fun-
damental theorem by E. I. Gordon, comprise the bulk of Chapter 5. Here we also
expatiate upon the problem of Boolean valued representation for Banach space, the
central object of classical functional analysis. It turns out miraculously that the
so-called lattice normed spaces, discovered at the cradle of K-space theory, depict
the conventional normed spaces.

Chapter 6 deals with the theory of operator algebras. Boolean valued analysis
of these algebras is the direction of research originated with the pioneer works by
G. Takeuti. Study in this direction is very intensive in the recent decades. Our
exposition leans upon the results of Chapter 5 about Boolean valued representation
of lattice normed spaces. This approach enables us to treat in a unified fashion
various analytical objects such as involutive Banach algebras, Banach modules,
Jordan–Banach algebras, algebras of unbounded operators, etc.

Our book is intended to the reader interested in the modern set-theoretic mod-
els as applied to functional analysis. We tried to make the book independent to the
utmost limits. However, we are fully aware that our attempts at independence were
mostly foiled. Clearly, the topic of exposition needs the mathematical ideas and ob-
jects plenty above our ability to devour them. We nevertheless hope that the reader
will understand our problems and forgive unintentional gaps and inaccuracies.

A. Kusraev
S. Kutateladze



Chapter 1

Universes of Sets

The credo of naive set theory cherishes a dream about the “Cantorian paradise”
which is the universe that contains “any many which can be thought of as one, that
is, every totality of definite elements which can be united to a whole through a
law” or “every collection into a whole M of definite and separate objects m of our
perception or our thought” [26].

The contemporary set theory studies realistic approximations to the ethereal
ideal. These are suitable formal systems enabling us to deal with a wide spec-
trum of particular sets not leaving the comfortable room of soothing logical rigor.
The essence of such a formalism lies in constructing a universe that “approximates
from below” the world of naive sets so as to achieve the aim of current research.
The corresponding axiomatic set theories open up ample opportunities to compre-
hend and corroborate in full detail the qualitative phenomenological principles that
lie behind the standard and nonstandard mathematical models of today. ZFC,
Zermelo–Fraenkel set theory, is most popular and elaborate. So, it is no wonder
that our exposition proceeds mostly in the realm of ZFC. The reader, who desires to
recall the subtleties of the language and axioms of ZFC, will look at the Appendix.

In the present chapter we consider a formal technique for constructing uni-
verses of sets by some transfinite processes that lead to the so-called cumulative
hierarchies. This technique is vital for Boolean valued analysis. Of profound im-
portance is the detailed description of how the von Neumann universe grows from
the empty set. So, we thoroughly analyze the status of classes of sets within the for-
mal system stemming from J. von Neumann, K. Gödel, and P. Bernays and serving
as a conservative extension of Zermelo–Fraenkel set theory.

Since the main topic of the book is conspicuously tied with Boolean algebra,
we start this chapter with the relevant preliminaries including the celebrated Stone
Theorem. For the sake of diversity, we demonstrate it by using the Gelfand trans-
form.
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1.1. Boolean Algebras

In this section we sketch the minimum about Boolean algebras which we need
in the sequel. A more explicit exposition may be found elsewhere; for instance, cf.
[74, 89, 171, 220, 250].

1.1.1. To fix terminology, we recall some well known notions.
An ordered set is a pair (M,≤), where ≤ is an order on M (see A.1.10). An

ordered set is also called a partially ordered set or, briefly, a poset. It is in common
parlance to apply all names of (M,≤) to the underlying set M of (M,≤). We
indulge in doing the same elsewhere without further circumlocution.

An upper bound of a subset X of a poset M is an element a ∈ M such that
x ≤ a for all x ∈ X . A least element of the set of upper bounds of X is called a least
upper bound or supremum of X and denoted by sup(X) or supX . In other words,
a = sup(X) if and only if a is an upper bound of X and a ≤ b for every upper
bound b of X . By reversal, i.e., by passing from the original order ≤ on a poset
M to the reverse or opposite order ≤−1, define a lower bound of a subset X of M
and a greatest lower bound, inf(X) of X , also called an infimum of X and denoted
by inf X . If a least upper or greatest lower bound of a set in M exists then it is
unique and so deserves the definite article.

A lattice is an ordered set L in which each pair {x, y} has the join x ∨ y :=
sup{x, y} and meet x ∧ y := inf{x, y}. Given a subset X of a lattice L, we use the
notation:

∨
X := sup(X),

∧
X := inf(X),

∨

α∈A

xα :=
∨

{xα : α ∈ A},
∧

α∈A

xα :=
∧

{xα : α ∈ A},
n∨

k=1

xk := x1 ∨ . . . ∨ xn := sup{x1, . . . , xn},
n∧

k=1

xk := x1 ∧ . . . ∧ xn := inf{x1, . . . , xn}.

Here (xα)α∈A is a family in L, and x1, . . . , xn stand for some members of L.
The binary operations join (x, y) �→ x∨ y and meet (x, y) �→ x∧ y act in every

lattice L and possess the following properties:
(1) commutativity:

x ∨ y = y ∨ x, x ∧ y = y ∧ x;

(2) associativity:

x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z.
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By induction, from (2) we deduce that every nonempty finite set in a lattice has
the join and meet. If every subset of a lattice L has the supremum and infimum
then L is a complete lattice.

A lattice L is distributive provided that the following distributive laws hold:

(3) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);
(4) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

If a lattice L has the least or greatest element then the former is called the zero
of L and the latter, the unity of L. The zero and unity of L are solemnly denoted
by 0L and 1L. It is customary to use the simpler symbols 0 and 1 and nicknames
zero and unity provided that the context prompts the due details. Note also that
0 and 1 are neutral elements:

(5) 0 ∨ x = x, 1 ∧ x = x.
Specifying the general definitions, note also that

∨
∅ = sup ∅ := 0 and

∧
∅ =

inf ∅ := 1. A complement x∗ of a member x of a lattice L with zero and unity is
an element x∗ of L such that

(6) x ∧ x∗ = 0, x ∨ x∗ = 1.
Elements x and y in L are disjoint if x∧y = 0. So, every element x is disjoint from
any complement x∗. Recall by the way that a set U is disjoint whenever every two
distinct members of U are disjoint. Note finally that if each element in L has at
least one complement then we call L a complemented lattice. It is rather evident
that an arbitrary lattice L may fail to have a complement to each element of L.

1.1.2. A Boolean algebra is a distributive complemented lattice with zero and
unity.

The above definition looks somewhat strange at first sight. Indeed, it does not
reveal the reasons for whatever distributive lattice to be called an algebra since the
term “algebra” refers to conventional objects (cf. Lie algebra, Banach algebra, C∗-
algebra, etc.). The arising ambiguity is easily eliminated because a Boolean algebra
is in fact an algebra over the two-element field. The principal importance of this
peculiarity is partially reflected in the subsection to follow. At the same time, it is
perfectly natural to view Boolean algebras in different contexts at different angles.
Below we will however treat a Boolean algebra primarily as a distributive comple-
mented lattice with zero and unity. It is worth emphasizing that the particular
Boolean algebras we deal with in functional analysis appear mostly as distributive
complemented lattices.

Note also that as a formal example of a Boolean algebra we may take the
one-element lattice; i.e., the singleton {x} with the only order relation x ≤ x. This
algebra is called degenerate. A degenerate Boolean algebra is a noble instance of
an algebraic system but an unassuming simpleton in the context of Boolean val-
ued analysis we are interested in. The slimmest nondegenerate Boolean algebra 2,
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alternatively denoted by Z2, is the two-element lattice with the underlying set
{0, 1}, 0 �= 1, and the order 0 ≤ 1, 0 ≤ 0, and 1 ≤ 1. Austerity notwithstand-
ing, the two-element Boolean algebra 2 plays an important role in the subsequent
chapters.

Therefore, speaking about a Boolean algebra B, we agree always to assume that
0B �= 1B , i.e., we eliminate the degenerate algebras from the further consideration.

Each element x of a Boolean algebra B has a unique complement denoted by x∗.
This gives rise to the mapping x �→ x∗ (x ∈ B) which is idempotent (i.e., (∀x ∈ B)
(x∗∗ := (x∗)∗ = x)) and presents a dual isomorphism or an anti-isomorphism of
B onto itself (i.e., it is an order isomorphism between (B,≤) and (B,≤−1)). In
particular, the De Morgan laws hold:

( ∨

α∈A

xα

)∗
=

∧

α∈A

x∗α,
( ∧

α∈A

xα

)∗
=

∨

α∈A

x∗α,

with xα ∈ B for all α ∈ A.

1.1.3. The three entities ∨, ∧, and ∗, living in every Boolean algebra B, are
jointly referred to as Boolean operations.

Recall that a universal algebra is an algebraic system without predicates. This
concept makes available another definition of Boolean algebra. Namely, a Boolean
algebra B is a universal algebra (B,∨,∧, ∗, 0, 1) with two binary operations ∨ and
∧, one unary operation ∗, and two distinguished elements 0 and 1 obeying the
conditions:

(1) ∨ and ∧ are commutative and associative;
(2) ∨ and ∧ are both distributive relative to one another;
(3) x and x∗ complement one another;
(4) 0 and 1 are neutral for ∨ and ∧, respectively.

Conversely, given a universal algebra B of the above type, make B into a poset by
letting x ≤ y whenever x ∧ y = x for x, y ∈ B. In this event, note that (B,≤) is
a distributive complemented lattice with join ∨, meet ∧, complementation ∗, zero
0, and unity 1.

1.1.4. Using the basic Boolean operations ∨, ∧, and ∗, we may define a few
other operations:

x− y := x ∧ y∗, x⇒ y := x∗ ∨ y,
x � y := (x− y) ∧ (y − x) = (x ∧ y∗) ∨ (y ∧ x∗),
x⇔ y := (x⇒ y) ∧ (y ⇒ x) = (x∗ ∨ y) ∧ (y∗ ∨ x).

We list several easy formulas of constant use in what follows:
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(1) x⇒ y = (x− y)∗, x⇔ y = (x � y)∗;
(2) x⇒ (y ⇒ z) = (x ∧ y) ⇒ z = (x ∧ y) ⇒ (x ∧ z);
(3) x ≤ y ⇒ z ↔ x ∧ y ≤ z ↔ y − z ≤ x∗;
(4) x ≤ y ↔ x⇒ y = 1 ↔ x− y = 0;
(5) x = y ↔ x⇔ y = 1 ↔ x � y = 0.

It is worth observing that �, the so-called symmetric difference, has the properties
resembling a metric:

(6) x � y = 0 ↔ x = y;
(7) x � y = y � x;
(8) x � y ≤ (x � z) ∨ (z � y).

Moreover, the lattice operations become contractive with respect to this “metric,”
while complementation becomes an isometry:

(x ∨ y) � (u ∨ v) ≤ (x � u) ∨ (y � v),
(x ∧ y) � (u ∧ v) ≤ (x � u) ∨ (y � v),

x∗ � y∗ = x � y.

1.1.5. A Boolean algebra B is complete (σ-complete) if each subset (countable
subset) of B has a supremum and an infimum. By tradition, we speak of σ-algebras
instead of σ-complete algebras.

Associated with a Boolean algebra B, the mappings
∨

,
∧

: P(B) → B are
available that ascribe to a set in B its supremum and infimum, respectively. These
mappings are sometimes referred to as infinite operations. The infinite operations
obey many important rules among which we mention the infinite distributive laws:

(1) x ∨ ∧
α∈A

xα =
∧
α∈A

x ∨ xα;

(2) x ∧ ∨
α∈A

xα =
∨
α∈A

x ∧ xα.

From (1) and (2) the following useful equalities ensue:
(3)

( ∨
α∈A

xα
) ⇒ x =

∧
α∈A

(xα ⇒ x);

(4)
( ∧
α∈A

xα
) ⇒ x =

∨
α∈A

(xα ⇒ x);

(5) x⇒ ( ∨
α∈A

xα
)

=
∨
α∈A

(x⇒ xα);

(6) x⇒ ( ∧
α∈A

xα
)

=
∧
α∈A

(x⇒ xα).

Ensured are also the commutativity and associativity of suprema and infima,
we mentioned earlier in some particular cases, cf. 1.1.1 (1, 2):
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(7)
∨
α∈A

∨
β∈B

xα,β =
∨
β∈B

∨
α∈A

xα,β;

(8)
∧
α∈A

∧
β∈B

xα,β =
∧
β∈B

∧
α∈A

xα,β;

(9)
∨( ⋃

α∈A

Xα

)
=

∨
α∈A

∨
Xα;

(10)
∧( ⋃

α∈A

Xα

)
=

∧
α∈A

∧
Xα,

where Xα ⊂ B for all α ∈ A.
Note that (1)–(6) hold in an arbitrary Boolean algebra, whereas (7)–(10) hold

in every poset on duly stipulating existence of the suprema and infima in question.

1.1.6. Consider some methods of arranging new Boolean algebras.

(1) A nonempty subset B0 of a Boolean algebra B is a subalgebra of B
if B0 is closed under the Boolean operations ∨, ∧, and ∗; i.e., {x∨y, x∧y, x∗} ⊂ B0

for all x, y ∈ B0.
Under the order induced from B, every subalgebra B0 is a Boolean algebra

with the same zero and unity as those of B. In particular, B0 := {0B , 1B} is
a subalgebra of B.

A subalgebra B0 ⊂ B is regular (σ-regular) provided that for every set (count-
able set) A in B0 the elements

∨
A and

∧
A, if exist in B, belong to B0.

The intersection of every family of subalgebras is a subalgebra too. The same
holds for regular (σ-regular) subalgebras, which makes the definition to follow
sound.

The least subalgebra of B containing a nonempty subset M of B is the sub-
algebra generated by M . The regular (σ-regular) subalgebra generated by M is
introduced in much the same manner.

(2) An ideal of a Boolean algebra B is any nonempty set J in B obeying
the conditions:

x ∈ J ∧ y ∈ J → x ∨ y ∈ J,

x ∈ J ∧ y ≤ x→ y ∈ J.

The set Ba := {x ∈ B : x ≤ a}, with a ∈ B, provides an example of an ideal of B.
An ideal of this shape is called principal. If 0 �= e ∈ B then the principal ideal Be
with the order induced from B is a Boolean algebra in its own right. The element e
plays the role of unity in Be. The lattice operations of Be are inherited from B,
and the complementation of Be has the form x �→ e− x for all x ∈ B.

An ideal J is proper provided that J �= B. A regular ideal of B is often called
a band or component of B.
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(3) Take Boolean algebras B and B′ and a mapping h : B → B′. Say
that H isotonic, or isotone, or monotone if (x ≤ y → h(x) ≤ h(y)). (Note by the
way that an isotonic mapping from B to B′ with the opposite order is antitonic.)
Say that h is a (Boolean) homomorphism if for all x, y ∈ B the following equalities
are fulfilled:

h(x ∨ y) = h(x) ∨ h(y),
h(x ∧ y) = h(x) ∧ h(y),

h(x∗) = h(x)∗.

Every homomorphism h is monotone and the image h(B) of B is a subalgebra
of B′. If h is bijective then we call h an isomorphism referring to B and B′ as
isomorphic Boolean algebras. An injective homomorphism is a monomorphism.
A homomorphism h (of B to a complete B′) is complete if h preserves suprema and
infima; i.e., h(sup(U)) = sup(h(U)) and h(inf(V )) = inf(h(V )) for all U ⊂ B and
V ⊂ B for which there are sup(U) and inf(V ).

Assume given a set C and a bijection h : B → C. We may then equip C
with an order by putting h(x) ≤ h(y) whenever x ≤ y. In this event C turns into
a Boolean algebra and h becomes an isomorphism between B and C.

(4) Let J be a proper ideal of a Boolean algebra B. Define the equiv-
alence ∼ on B by the rule

x∼y ↔ x � y ∈ J (x, y ∈ B).

Denote by ϕ the factor mapping of B onto the factor set B/J := B/∼. Recall that ϕ
is also called canonical. Given cosets (equivalence classes) u and v, i.e., members of
B/J ; agree to write u ≤ v if and only if there are x ∈ u and y ∈ v satisfying x ≤ y.
We have thus defined an order on B/J . In this event B/J becomes a Boolean
algebra which is called factor algebra of B by J . The Boolean operations in B/J
make ϕ a homomorphism. So, ϕ is referred to as the factor homomorphism of B
onto B/J .

If h : B → B′ is a homomorphism then ker(h) := {x ∈ B : h(x) = 0} is
an ideal of B and there is a unique monomorphism g : B/ ker(h) → B′ satisfying
g ◦ ϕ = h, where ϕ : B → B/ ker(h) is the factor homomorphism. Therefore, each
homomorphic image of a Boolean algebra B is isomorphic to the factor algebra of
B by a suitable ideal.

(5) Take a family of Boolean algebras (Bα)α∈A. Furnish the product
B :=

∏
α∈ABα with the coordinatewise order or product order by putting x ≤ y for

x, y ∈ B whenever x(α) ≤ y(α) for all α ∈ A. In this event B becomes a Boolean
algebra.
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Each Boolean operation in B consists in implementing the respective operation
in every coordinate Boolean algebra Bα, i.e., it is carried out coordinatewise. The
zero 0B and unity 1B of B are as follows: 0B(α) := 0α and 1B(α) := 1α (α ∈ A),
where 0α and 1α are the zero and unity in Bα. The Boolean algebra B is the
Cartesian product or, simply, product of (Bα)α∈A.

(6) We again assume given a family of Boolean algebras (Bα)α∈A.
Then, there are a Boolean algebra B and a family of monomorphisms ıα : Bα → B
(α ∈ A) obeying the following conditions:

(a) The family of subalgebras (ıα(Bα))α∈A of B is independent; i.e.,
every collection of finitely many nonzero elements xk ∈ ıαk(Bαk), with αk �= αl for
k �= l and α1, . . . , αn ∈ A, satisfies the condition x1 ∧ . . . ∧ xn �= 0;

(b) The subalgebra of B, generated by the union of ıα(Bα), coin-
cides with B.

If a Boolean algebra B′ and a family of monomorphisms ı′α : Bα → B′ (α ∈ A)
obey the same conditions (a) and (b) then there is an isomorphism h of the algebra
B onto the algebra B′ such that ıα ◦ h = ı′α (α ∈ A).

We call the pair (B, (ıα)α∈A) the Boolean product or tensor product of (Bα)α∈A

and denoted it by the symbol
⊗

α∈ABα.

(7) A completion of a Boolean algebra B is a pair (ı, A) satisfying the
following conditions: (a) A is a complete Boolean algebra; (b) ı is a complete
monomorphism from B to A; and (c) the regular subalgebra of A, generated by
ı(B), coincides with A.

Naturally, A itself is also called a “completion” of B. Say that pairs (ı, A)
and (ı′, A′) are isomorphic if there is an isomorphism h : A → A′ such that h ◦
ı = ı′. All completions of B are isomorphic to one another and so each of them is
sometimes referred to as the completion of B. Avoiding circumlocution, we exploit
this advantage of the English usage to full extend in similar circumstances. The
completion of a Boolean algebra may be obtained for instance by using the classical
method of Dedekind cuts.

1.1.7. Examples.

(1) Given a nonempty set X , note that the inclusion ordered powerset
P(X) of X is a complete Boolean algebra. This algebra is often the boolean of X .
The Boolean operations on every boolean are the set-theoretic operations of union,
intersection, and complementation.

(2) Let X be a topological space. Recall that a closed and open subset
of X is called clopen. The collection of all clopen sets in X , ordered by inclusion,
is a subalgebra of the boolean P(X). Denote this subalgebra by Clop(X). The
Boolean operations in Clop(X) are inherited from P(X). Hence, they are set-
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theoretic. However, Clop(X) is not a regular subalgebra P(X); i.e., the infinite
operations in P(X) and Clop(X) may differ essentially.

(3) A closed subset F of a topological space X is called regular if F =
cl(int(F )); i.e., if F coincides with the closure of the interior of F . By analogy,
a regular open set G is defined by the formula G = int(cl(G)). Let RC (X) and
RO (X) stand for the collections of all regular closed subsets and all regular open
subsets of X .

Equipped with the order by inclusion, RC (X) and RO (X) become complete
Boolean algebras. The mapping F �→ int(F ) is an isomorphism between RC (X)
and RO (X). Despite RC (X) and RO (X) are included in the boolean P(X), they
are not subalgebras of the latter. For instance, the Boolean operations on RC (X)
have the form

E ∨ F = E ∪ F, E ∧ F = cl(int(E ∩ F )), F ∗ = cl(X − F ).

(4) Denote by Bor(X) the Borel σ-algebra of a topological space X
(i.e., the σ-regular subalgebra of the boolean P(X) generated by the open sets
of X). Consider the ideal N of Bor(Q(X)) comprising the meager subsets of X
(also called the first category sets in X). The factor algebra Bor(Q(X)/N ) is
a complete Boolean algebra called the algebra of Borel sets modulo meager sets or
briefly Borel-by-meager algebra.

We arrive at an isomorphic algebra if instead of Bor(Q(X)) we take the σ-
algebra of sets with the Baire property. (A subset M of X has the Baire property if
there is an open set G in X such that the symmetric difference M � G is a meager
set.) If X is a Baire space; i.e., if X lacks nonempty open meager subsets; then the
algebra in question is isomorphic to the algebra RC (X) of regular closed sets.

(5) Assume given a σ-complete Boolean algebra, B and a positive
countably additive function μ : B → R. Countable additivity, as usual, means
that

μ

( ∞∨

n=1

xn

)
=

∞∑

n=1

μ(xn)

for every disjoint sequence (xn) of B. A function μ with the above properties is
called a (finite) measure.

Let N := {x ∈ B : μ(x) = 0}. Then N is a σ-complete ideal. There is
a unique countably additive function μ̄ on the factor algebra B := B/N for which
μ = μ̄ ◦ ϕ, where ϕ : B → B is the factor mapping. The algebra B is complete,
and the function μ̄ is strictly positive; i.e., μ̄(x) = 0 → x = 0. If ρ(x, y) := μ̄(x � y)
then ρ is a metric, and the metric space (B, ρ) is complete. Assume that (X,B, μ)
is a finite measure space; i.e., X is a nonempty set, B is a σ-complete subalgebra
in P(X), and μ is the same as above. The algebra B is called the algebra of
measurable sets by measure zero sets.
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(6) Assume that (X,B, μ) is the same as in (5), and denote by M(μ) or
M(X,B, μ) the set of the equivalence classes of μ-measurable almost everywhere
finite functions on X . Recall that measurable functions are equivalent provided
that they may differ only on a measure zero set. Furnish M(μ) with an order by
putting f̄ ≤ ḡ if and only if f(x) ≤ g(x) for almost all x ∈ X . Here f̄ is the coset
of f . In this event M(μ) becomes a lattice. Denote by 1 the coset of the identically
one function on X . Put B := {e ∈M(μ) : e∧(1−e) = 0}. Under the order induced
from M(μ), the set B is a complete Boolean algebra with the following Boolean
operations:

c ∨ e = c+ e− c · e, c ∧ e = c · e, e∗ = 1− e (c, e ∈ B),

where +, · , and − stand for the addition, multiplication, and complementation
of M(μ).

(7) Assume that H is a complex Hilbert space, and L (H) stands for
the bounded endomorphism algebra of H; i.e., the algebra of all bounded linear
operators from H to H.

Given a set A in L (H), define the commutant A′ of A by the formula A′ :=
{T ∈ L (H) : (∀S ∈ A) (TS = ST )}. Define the double commutant or bicommutant
of A to be the set A′′ := (A′)′. A subalgebra A of L (H) is selfadjoint whenever
T ∈ A → T ∗ ∈ A. A von Neumann algebra is a selfadjoint subalgebra A of L (H)
that coincides with the double commutant of A.

Consider a commutative von Neumann algebra A. Denote by P(A) the set of
all orthoprojections belonging to A. Furnish P(A) with the following order:

π ≤ ρ↔ π(H) ⊂ ρ(H) (π, ρ ∈ P(A)).

In this event P(A) becomes complete Boolean algebra whose Boolean operations
have the form:

π ∨ ρ = π + ρ− π ◦ ρ, π ∧ ρ = π ◦ ρ, π∗ = IH − π.

1.1.8. Comments.

(1) The theory of Boolean algebras originated from the classical work
by G. Boole “An Investigation of the Laws of Thought on Which Are Founded the
Mathematical Theories of Logic and Probabilities” [16, 17]. The author himself
formulated his intentions as follows: “The design of the following treatise is to
investigate the fundamental laws of those operations of the mind by which reasoning
is performed; to give expression to them in the language of a Calculus, and upon
this foundation to establish the science of Logic and construct its method....”

Pursuing this end, G. Boole carried out, in fact, algebraization of the logical
system lying behind the classical mathematical reasoning. In a result, he become
the author of the algebraic system omnipresent under the name of Boolean algebra.
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(2) The principal objects of G. Boole’s book are propositions. In the
modern language, the proposition algebra or sentence algebra is the Boolean algebra
resulting from identification of equivalent formulas in the set of all sentences of
propositional calculus. We may put this formally as follows:

Let T be a first-order theory based on classical (two-valued) logic. Furnish the
set of all sentences Φ in the theory T with a preorder by putting ϕ ≤ ψ whenever
the formula ϕ→ ψ is a theorem of T . Consider the associate equivalence ∼ in Φ:

ϕ∼ψ ↔ ϕ ≤ ψ ∧ ψ ≤ ϕ (ϕ, ψ ∈ Φ).

Arrange the factor set A(T ) := Φ/∼ with the induced order. In more detail, if |ϕ|
is the coset of ϕ ∈ Φ then |ϕ| ≤ |ψ| implies ϕ ≤ ψ. The resultant poset A(T )
is a Boolean algebra called sometimes the Lindenbaum–Tarski algebra of T . The
Boolean operations in the algebra A(T ) have the form

|ϕ| ∨ |ψ| = |ϕ ∨ ψ|,
|ϕ| ∧ |ψ| = |ϕ ∧ ψ|,

|ϕ|∗ = |¬ϕ|.
Translation of the logical problems of formal theories into the language of the corre-
sponding Boolean algebras, the Lindenbaum–Tarski algebras, is called the Boolean
method.

(3) The classical ways of deduction (syllogisms, the excluded middle,
modus ponens, generalization, etc.) are constructs that originated from abstracting
the actual operations of mind in the process of reasoning.

Inevitably displaying the reality in rough, the two-valued logic provides, strictly
speaking, only an approximate and incomplete description for the laws of thought,
which explains interest in nonclassical logical systems. One of these systems is elab-
orated within intuitionism. Avoiding details, we briefly describe the corresponding
sentence algebra.

A pseudo-Boolean algebra is a lattice L with zero and unity in which to x,
y ∈ L there corresponds the pseudocomplement x⇒ y of x relative to y.

By definition, the pseudocomplement x ⇒ y is the greatest of the elements
z ∈ L obeying the inequality z ∧ x ≤ y. Hence, the following equivalence holds (cf.
1.1.4 (3))

z ≤ x⇒ y ↔ x ∧ z ≤ y (x, y, z ∈ L)

which may also be considered as the definition of x⇒ y. A pseudo-Boolean algebra
is a distributive lattice. A complete lattice is a pseudo-Boolean algebra if and only
if the following distributive laws hold in it:

x ∧
∨

α∈A

xα =
∨

α∈A

x ∧ xα (x, xα ∈ L).
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The set of all open subsets of a topological space, ordered by inclusion, exhibits an
example of a complete pseudo-Boolean algebra.

A Brouwer lattice is another name for a pseudo-Boolean algebra. However,
the commonest title of a pseudo-Boolean algebra is a Heyting algebra. It may be
demonstrated that the Lindenbaum–Tarski algebra of intuitionistic logic is a Heyt-
ing algebra. Therefore, Heyting algebras are characteristic of intuitionistic logic
in much the same way as Boolean algebras are characteristic of classical logic (for
details, cf. [14, 204]).

(4) As exemplified by intuitionistic logic, study of some types of non-
classical logics leads to various classes of algebraic systems which are distributive
lattices. The most popular instances are as follows: an implicative lattice or pseu-
docomplemented lattice, a topological Boolean algebra (i.e., a Boolean algebra B
with the operation I : B → B obeying the interior axioms: I(x ∧ y) = Ix ∧ Iy,
x ≤ y → Ix ≤ Iy; I2 = I; I0 = 0; and I1 = 1), a Post algebra, etc. (see [14,
69, 204]). A general theory of lattices is an established direction of research which
bears a firm and deep relationship with various branches of mathematics.

(5) Origination of all these logics or lattices is associated with “inves-
tigation of the laws of thought” in the spirit of the Boole design we have cited.

Analysis of the laws of the microcosm gives rise to a principally different type
of logic. The logic of quantum mechanics differs significantly from classical, intu-
itionistic, and modal logics.

An ortholattice is a lattice L with zero, unity, and a unary operation of ortho-
complementation ( · )⊥ : L→ L obeying the following conditions:

x ∧ x⊥ = 0, x ∨ x⊥ = 1;
x⊥⊥ := (x⊥)⊥ = x;

(x ∨ y)⊥ = x⊥ ∧ y⊥, (x ∧ y)⊥ = x⊥ ∨ y⊥.
A distributive ortholattice is a Boolean algebra.

We call two elements x and y orthogonal and write x ⊥ y if x ≤ y⊥ or, which
is equivalent, y ≤ x⊥. An ortholattice L is an orthomodular lattice or a quantum
logic provided that to all x, y ∈ L, x ≤ y, there is an element z ∈ L such that x ⊥ z
and x ∨ z = y, which amounts to the fact that x ≤ y implies y = x ∨ (y ∧ x⊥).

The lattice of all closed subspaces of a Hilbert space with orthogonal comple-
mentation provides an example of quantum logic.

1.2. Representation of a Boolean Algebra

The Stone Theorem opens up a distinct possibility of representing a Boolean
algebra as the Boolean algebra of clopen subsets of a compact space. The basic
goal of this section is to prove this theorem and to describe some opportunities it
affords.
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1.2.1. Let 2 := Z2 := P({∅}) := {0, 1} be the underlying set of the two-
element Boolean algebra now viewed as a field with the following operations:

0 + 0 := 0, 0 + 1 = 1 + 0 := 1, 1 + 1 := 0,

0 · 1 = 1 · 0 := 0, 0 · 0 := 0, 1 · 1 := 1.

Note that every member of 2 is idempotent.
Consider an arbitrary set B with the structure of an associative ring whose

every element is idempotent: (∀b ∈ B)(b2 = b). In this case B is called a Boolean
ring. A Boolean ring is commutative and obeys the identity b = −b for b ∈ B.
Each Boolean ring is obviously a vector space and, at the same time, a commutative
algebra over 2. Recall that the unity of an algebra differs from its zero by definition.
So, we may and will identify the field 2 with the subring of a Boolean ring comprising
the zero and unity of the latter. We usually reflect the practice in symbols by
letting 0 stand for the zero and 1, for the unity of whatever ring. This agreement
leads clearly to a rather popular notational collision: the addition and multiplication
of 2 may be redefined on making 0 play the role of 1 and vice versa.

It is customary to endow a Boolean ring B with some order by the rule:

b1 ≤ b2 ↔ b1b2 = b1 (b1, b2 ∈ B).

The poset (B,≤) obviously becomes a distributive lattice with the least element
0 and the greatest element 1. In this event the lattice and ring operations are
connected as follows:

x ∨ y = x+ y + xy, x ∧ y = xy.

Moreover, to each element b ∈ B there is a unique b∗ ∈ B, the complement of b,
such that

b∗ ∨ b = 1, b∗ ∧ b = 0.

Obviously, b∗ = 1 + b. Hence, each Boolean ring is a Boolean algebra under the
above order.

In turn, we may transform a Boolean algebra B into a ring by putting

x+ y := x � y, xy := x ∧ y (x, y ∈ B).

In this case (B,+, · , 0, 1) becomes a unital Boolean ring whose natural order co-
incides with the initial order on B. Therefore, a Boolean algebra can be viewed as
a unital algebra over 2 whose every element is idempotent.
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1.2.2. Let B be an arbitrary Boolean algebra.
(1) A character χ of B is a Boolean homomorphism or, which is the

same, a ring homomorphism χ from B to 2. Denote by X(B) the set of all characters
of B and make X(B) into a topological space on furnishing it with the topology of
pointwise convergence. To put it more explicitly, the topology on X(B) is induced
by the product topology of 2B , where we consider 2 with the unique compact
Hausdorff topology on this set, the discrete topology of 2. Recall that a topological
space X is connected whenever the only clopen subsets of X are ∅ and X . A
topological space X is totally disconnected provided that each connected subspace
of X is at most a singleton. The topological space 2B , called sometimes a Cantor
discontinuum, is Hausdorff, compact, and totally disconnected. A topological space
with all these properties is a Boolean space. Evidently, X(B) is a closed subset of
2B . Therefore, X(B) itself is a Boolean space. Say that the Boolean space X(B) is
the character space of a Boolean algebra B.

(2) Recall that a nonempty subset F of B is a filter on B provided
that

x ∈ F ∧ y ∈ F → x ∨ y ∈ F ,

x ∈ F ∧ x ≤ y → y ∈ F .

A filter other than B is proper. A maximal element of the inclusion ordered set of
all proper filters on B is an ultrafilter on B.

Let U(B) stand for the set of all ultrafilters on B, and denote by U(b) the set of
ultrafilters containing b. Introduce in U(B) the topology with base {U(b) : b ∈ B}.
This definition is sound since it is easy to check that U(x∧y) = U(x)∩U(y) (x, y ∈
B); i.e., U(B) is closed under finite intersections. The topological space U(B) is
often referred to as the Stone space of B and is denoted by St(B).

(3) Denote by M(B) the set of all maximal (proper) ideals of a Boolean
algebra B. An ideal here may be understood in accord with 1.1.6 (2) or in the
conventional sense of ring theory. Clearly, a set J in B is an ideal of B if and
only if J∗ := {x∗ : x ∈ J} is a filter on B. Moreover, J ∈ M(B) ↔ J∗ ∈ U(B).
Therefore, the mapping J �→ J∗ is a bijection between M(B) and U(B). The set
M(B) is usually called the maximal ideal space of B and is always furnished with
the inverse image topology translated from U(B) which makes the mapping J �→ J∗

a homeomorphism.

1.2.3. Recall the prerequisites we need for applying the Gelfand transform in
the case of a Boolean algebra.

(1) A Boolean ring B is a field if and only if B is the pair of 0 and 1.
Hence, there is a unique Boolean field to within isomorphism; namely, 2.
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� Indeed, a nonzero element x ∈ B is invertible, and so the following implica-
tions hold:

xx−1 = 1 → xxx−1 = 1 → xx−1 = x→ x = 1. �

Given χ ∈ X(B), denote by χ∗ the mapping x �→ χ(x)∗ (x ∈ B). Obviously,
ker(χ) := {x ∈ B : χ(x) = 0} is an ideal, and ker(χ)∗ is a filter.

(2) The mappings χ �→ ker(χ) (χ ∈ X(B)) and χ �→ ker(χ)∗ (χ ∈ X(B))
are homeomorphisms of X(B) onto M(B) and U(B), respectively.

� The mapping χ �→ ker(χ) is injective. If J ∈M(B) then B/J is a field and,
by (1), B/J is isomorphic to 2. Fix such an isomorphism λ : B/J → 2; and put
χ := λ ◦ ϕ, where ϕ : B → B/J is the factor mapping. Obviously, ker(χ) = J and
so the mapping under discussion is bijective. The remaining claims are obvious. �

(3) For x in B to equal zero it is necessary and sufficient that χ(b) = 0
for all χ ∈ X(B).

� Assume that x �= 0. Then the principal ideal {y ∈ B : y ≤ x∗} is proper,
and so it can be extended to a maximal ideal J ∈ M(B). This claim, known as
the Krull Theorem, is immediate from the Kuratowski–Zorn Lemma (cf. A.3.9).
By (2), J = ker(χ) for some χ ∈ X(B). Since x /∈ J ; therefore, χ(x) �= 0. �

1.2.4. Stone Theorem. Each Boolean algebra B is isomorphic to the Boolean
algebra of clopen sets of a Boolean space unique up to homeomorphism, the Stone
space of B.

� Denote by C(X(B), 2) the algebra of continuous 2-valued functions on the
character space X(B) of B which is a Boolean space. The Gelfand transform GB
sends an element x ∈ B to the 2-valued function

x̂ : χ �→ χ(x) (χ ∈ X(B)).

Obviously, GB : B → C(X(B), 2) is a injective homomorphism, i.e., a monomor-
phism (cf. 1.2.3 (3)). Take f ∈ C(X(B), 2) and put Vf := {χ ∈ X(B) : f(χ) = 1}.
The set Vf is clopen. By the definition of the topology of X(B), there are b1, . . . , bk ∈
B and c1, . . . , cl ∈ B such that

Vf := {χ ∈ X(B) : χ(bn) = 1 (n ≤ k), χ(cm) = 0 (m ≤ l)}.

Assign b0 := b1 ∧ . . .∧ bk, c0 := c1 ∨ . . .∨ cl, and b := b0 ∧ c∗0. The set Vf can be
presented as follows:

Vf = {χ ∈ X(B) : χ(b0) = 1, χ(c0) = 0}
= {χ ∈ X(B) : χ(b) = 1} = {χ ∈ X(B) : b̂(χ) = 1}.
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Therefore, f = b̂, and so GB is an isomorphism.
Assume now that Q1 and Q2 are Boolean spaces such that the mapping h :

C(Q1, 2) → C(Q2, 2) is an isomorphism of these algebras.
If χ is a character of C(Q2, 2) then χ ◦ h is a character of C(Q2, 2). Hence,

χ �→ χ ◦ h is a homeomorphism between the character spaces.
On the other hand, the character space of C(Qk, 2) is homeomorphic to Qk.

The Boolean spaces Q1 and Q2 are thus homeomorphic. It suffices to note that the
algebra C(X(B), 2) is isomorphic to the algebra of clopen sets of the space X(B)
and so, of the space U(B) as well. �

The isomorphism of this theorem between B and Clop(St(B)) is occasionally
called the Stone transform of B.

1.2.5. In the sequel we are mostly interested in complete Boolean algebras.
The notion of a complete Boolean algebra is closely tied with that of an extremally
disconnected compact space. Recall that a Hausdorff topological space X is ex-
tremally disconnected provided that the closure of each open set in X is open too.
Clearly, an extremally disconnected space is totally disconnected.

Ogasawara Theorem. A Boolean algebra is complete if and only if its Stone
space is extremally disconnected.

� Let B be a complete Boolean algebra. Assume further that h is an isomor-
phism of B onto the algebra of clopen sets of the compact space Q := St(B). Take
an open set G ⊂ Q. Since Q is totally disconnected; therefore, G =

⋃
U , where U

stands for the set of all clopen subsets of G.
Put U ′ := {h−1(U) : U ∈ U } and b :=

∨
U ′. The clopen set h(b) is the closure

of G. Indeed, cl(G) ⊂ h(b) and h(b)\ cl(G) is open. If the last set is nonempty then
h(c) ⊂ h(b)\ cl(G) for some 0 �= c ∈ B. This implies in turn that h(c)∨h(u) ≤ h(b)
for all u ∈ U ′, which contradicts the equality b =

∨
U . Consequently, cl(G) = h(b)

is an open set.
Assume now that the compact space Q is extremally disconnected. Let G stand

for some collection of clopen subsets of Q, and put G :=
⋃

G . The set G is open and
the closure cl(G) of G must be open by the hypothesis about Q. Obviously, cl(G)
is the least upper bound of G in the Boolean algebra of clopen sets Clop(Q). �

1.2.6. Examples.

(1) The Stone space of the Boolean algebra {0, 1} is a singleton. In
case a Boolean algebra B is finite, it has 2n elements for some n ∈ N, and the Stone
space of B consists of n points.

(2) Take a nonempty set X . The Stone space of the boolean P(X) of
X is the Stone–Čech compactification β(X) of X made into a discrete topological
space.
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(3) If Q is a Boolean space then the Stone space of the algebra Clop(Q)
of all clopen subsets of Q is homeomorphic to Q.

(4) Assume that B and B′ are Boolean algebras, and h : B → B′ is
a homomorphism between them. Denote the Stone transforms of B and B′ by
ı : B → Clop(St(B)) and ı′ : B′ → Clop(St(B′)). There is a unique continuous
mapping θ : St(B′) → St(B) such that

h(x) = (ı′)−1θ−1(ı(x)) (x ∈ B).

The mapping h �→ St(h) := θ is a bijection between the sets of all homomorphisms
from B to B′ and the set of all continuous mappings from St(B′) to St(B). If B′′

is another Boolean algebra and g : B′ → B′′ is a homomorphism, then St(g ◦ h) =
St(h) ◦ St(g). Moreover, St(IB) = ISt(B).

Denote by Boole the category of Boolean algebras and homomorphisms, and let
Comp stand for the category of Hausdorff compact spaces and continuous mappings.
Then the above may be paraphrased as follows (see A.3):

Theorem. The mappingS is a contravariant functor from the category Boole
to the category Comp.

Two important particular cases of the situation under consideration are worthy
of special attention.

(5) A Boolean algebra B0 is isomorphic to a subalgebra of a Boolean
algebra B if and only if the Stone space St(B0) of B0 is a continuous image of the
Stone space St(B) of B.

(6) A Boolean algebra B′ is the image of a Boolean algebra B under
a homomorphism (or B′ is isomorphic with a factor algebra of B) (see 1.1.6 (4)) if
and only if the Stone space St(B′) of B′ is homomorphic to a closed subset of the
Stone space St(B) of B.

(7) Assume that B :=
∏
α∈ABα, with (Bα)α∈A a nonempty family

of Boolean algebras. The Stone space St(B) of B coincides with the Stone–Čech
compactification of the topological sum

⋃
α∈A St(Bα) × {α} of the Stone spaces

St(Bα) of Bα.
(8) Let B :=

⊗
α∈ABα be the Boolean product of a nonempty family of

Boolean algebras (cf. 1.1.6 (6)). Then the Stone space St(B) of B is homeomorphic
to the product

∏
α∈A St(Bα).

(9) An absolute of a compact space X is a compact set aX meeting the
following conditions:

(a) X is a continuous irreducible image of aX ; i.e., there is a con-
tinuous surjection of aX onto X whereas X is not a continuous image of any proper
closed subset of aX ;
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(b) every continuous irreducible inverse image of X is homeomor-
phic to aX .

If oB is the completion of a Boolean algebra B then St(oB) = a St(B); i.e.,
an absolute of the Stone space of B is homeomorphic to the Stone space of the
completion oB of B.

1.2.7. An atom of a Boolean algebra B is a nonzero element a of B such that
{x ∈ B : 0 ≤ x ≤ a} = {0, a}. In other words, a �= 0 is an atom of B if a ≤ x or
a ≤ x∗ for whatever x ∈ B.

An algebra B is atomic if to each nonzero element x ∈ B there exists an atom
a ≤ x. A Boolean algebra is atomless if it contains no atom.

Say that a Boolean algebra B is completely distributive if the following complete
distributive laws hold

∧

m∈M

∨

n∈N
xm,n =

∨

f∈NM

∧

m∈M
xm,f(m)

for xm,n ∈ B, with m and n ranging over arbitrary sets M and N . As usual, NM

is the set of all mappings f : M → N . Assuming M and N countable, say that B
is σ-distributive or countably distributive (see 5.2.15 (6) below).

Theorem. Let B be a complete Boolean algebra. The following are equivalent:
(1) B is isomorphic to the boolean P(A) of a nonempty set A;
(2) B is completely distributive;
(3) B is atomic.

� (1) → (2) It suffices to note that the set-theoretic union and intersection
obey the complete distributive laws.

(2) → (3) Consider a double family {xb,t ∈ B : b ∈ B, t ∈ 2}, where 2 := {0, 1},
xb,0 := b∗, and xb,1 := b. In this case

1 =
∧

b∈B
xb,0 ∨ xb,1 =

∧

b∈B

∨

t∈2

xb,t.

Since B is a completely distributive Boolean algebra; therefore,

1 =
∨

{c(f) : f is a function from B to 2},

where c(f) :=
∨{xb,f(b) : b ∈ B}. This yields b = ∨{b ∧ c(f) : f ∈ 2B} for b ∈ B.

Hence, to a nonzero b ∈ B there is some g ∈ 2B such that b∧c(g) �= 0. On the other
hand, for arbitrary b ∈ B and f ∈ 2B only the following two cases are possible
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(a) f(b) = 0 → xb,f(b) = b∗ → c(f) ≤ b∗ ↔ b ∧ c(f) = 0,
(b) f(b) = 1 → xb,f(b) = b→ c(f) ≤ b.

Therefore, if b �= 0 then either b ∧ c(f) = 0 or c(f) ≤ b; i.e., c(f) is an atom of B
provided that c(f) �= 0. However, there are sufficiently many nonzero c(f), and so
B is atomic.

(3) → (1) Denote by A the set of all atoms of B. Given x ∈ B, denote by h(x)
the set of all atoms a ∈ B such that a ≤ x. The mapping h : B → P(A) is clearly
an isomorphism. �

1.2.8. Comments.

(1) The Stone Theorem shows that every Boolean algebra is perfectly
determined from its Stone space. In more detail, each property of a Boolean algebra
B translates into the topological language, becoming a property of the Stone space
St(B) of B. This way of studying Boolean algebras is the representation method.

(2) The basic idea behind the Stone Theorem remains workable in the
case of distributive lattices. For a distributive lattice L the role of the Stone space
St(L) of L is played by the set of all prime ideals (or filters) which is equipped with
a topology in a special way. Recall that a proper ideal J ⊂ L is prime whenever

x ∧ y ∈ J → x ∈ J ∨ y ∈ J.

The Stone spaces of distributive lattices may be used for constructing new lattices
and finding the topological meaning of lattice-theoretic properties (the representa-
tion method), cf. [14, 69, 204].

1.3. Von Neumann–Gödel–Bernays Theory

The axiom of replacement ZFϕ4 of Zermelo–Fraenkel set theory ZFC is in fact
an axiom-schema embracing infinitely many axioms because of arbitrariness in the
choice of a formula ϕ. It stands to reason to introduce some primitive object that is
determined from each formula ϕ participating in ZFϕ4 . With these objects available,
we may paraphrase the content of the axiom-schema ZFϕ4 as a single axiom about
new objects. To this end, we need the axioms that guarantee existence for the
objects determined from a set-theoretic formula.

Since all formulas are constructed by a unique procedure in finitely many steps,
we find highly plausible the possibility of achieving our goal with finitely many
axioms. It is this basic idea stemming from von Neumann that became a cornerstone
of the axiomatics of set theory which was elaborated by Gödel and Bernays and is
commonly designated by NGB.

The initial undefinable object of NGB is a class. A set is a class that is a mem-
ber of some class. A class other than any set is a proper class. Objectivization of
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classes constitutes the basic difference between NGB and ZFC, with the metalan-
guage of the latter treating “class” and “property” as synonyms.

Axiomatic presentation of NGB uses as a rule one of the two available modifi-
cations of the language of ZFC. The first consists in adding a new unary predicate
symbol M to the language of ZFC, with M(X) implying semantically that X is
a set. The second modification uses two different types of variables for sets and
classes. It worth observing that these tricks are not obligatory for describing NGB
and reside routinely for the sake of convenience.

1.3.1. The system NGB is a first-order theory. Strictly speaking, the language
of NGB does not differ at all from that of ZFC. However, the upper case Latin
letters X, Y, Z, . . . , possible with indices, are commonly used for variables, while
the lower case Latin letters are left for the argo resulting from introducing the
abbreviations that are absent in the language of NGB.

Let M(X) stand for the formula (∃Y )(X ∈ Y ). We read M(X) as “X is
a set.”

Introduce the lower case Latin letters x, y, z, . . . (with indices) for the bound
variables ranging over sets. To be more exact, the formulas (∀x)ϕ(x) and (∃x)ϕ(x),
called generalization and instantiation of ϕ by x, are abbreviations of the formulas
(∀X)(M(X) → ϕ(X)) and (∃X)(M(X)∧ ϕ(X)), respectively. Semantically these
formulas imply: “ϕ holds for every set” and “there is a set for which ϕ is true.” In
this event the variable X must not occur in ϕ nor in the formulas comprising the
above abbreviations.

The rules for using upper case and lower case letters will however be observed
only within the present section. On convincing ourselves that the theory of classes
may be formalized in principle, we will gradually return to the cozy and liberal
realm of common mathematical parlance. For instance, abstracting the set-theoretic
concept of function to the new universe of discourse, we customarily speak about
a class-function F implying that F might be other than a set but still obeys the
conventional properties of a function. This is a sacrosanct privilege of the working
mathematician.

We now proceed with stating the special axioms of NGB.

1.3.2. Axiom of Extensionality NGB1. Two classes coincide if and only
if they consist of the same elements:

(∀X)(∀Y )(X = Y ↔ (∀Z)(Z ∈ X ↔ Z ∈ Y )).

1.3.3. We now list the axioms for sets:
(1) Axiom of Pairing NGB2:

(∀x)(∀ y)(∃ z)(∀u)(u ∈ z ↔ u = x ∨ u = y);
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(2) Axiom of Union NGB3:

(∀x)(∃ y)(z ∈ y ↔ (∃u)(u ∈ x ∧ z ∈ u));

(3) Axiom of Powerset NGB4:

(∀x)(∃ y)(∀ z)(z ∈ y ↔ z ⊂ x);

(4) Axiom of Infinity NGB5:

(∃x)(∅ ∈ x ∧ (∀ y)(y ∈ x↔ y ∪ {y} ∈ x)).

These axioms coincide obviously with their counterparts in ZFC, cf. A.2.3, A.2.4,
A.2.7, and A.2.8. However, we should always bear in mind that the verbal formu-
lations of NGB1–NGB5 presume a “set” to be merely a member of another class.
Recall also that the lower case Latin letters symbolize abbreviations (cf. 1.3.1).
By way of illustration, we remark that, in partially expanded form, the axiom of
powerset NGB4 looks like

(∀X)(M(X) → (∃Y )(M(Y ) ∧ (∀Z)(M(Z) → (Z ∈ Y ↔ Z ⊂ X)))).

The record of the axiom of infinity uses the following abbreviation

∅ ∈ x := (∃ y)(y ∈ x ∧ (∀u)(u /∈ y)).

Existence of the empty set is a theorem rather than a postulate in NGB in much
the same way as in ZFC. Nevertheless, it is common to enlist the existence of the
empty set in NGB as a special axiom:

(5) Axiom of the Empty Set:

(∃ y)(∀u)(u /∈ y).

1.3.4. Axiom of Replacement NGB6. If X is a single-valued class then,
for each set y, the class of the second components of those pairs of X whose first
components belong to y, is a set:

(∀X)(Un (X) → (∀ y)(∃ z)(∀u)(u ∈ z ↔ (∃ v)((v, u) ∈ X ∧ v ∈ y))),

where Un(X) := (∀u)(∀ v)(∀w)((u, v) ∈ X ∧ (u, w) ∈ X → v = w).
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As was intended, the axiom-schema of replacement ZFϕ4 turns into a single
axiom. Note that the axiom-schema of comprehension in ZFC (see A.2.5) also
transforms into a single axiom, the axiom of comprehension. This latter reads that,
to each set x and each class Y , there is a set consisting of the common members of
x and Y ;

(∀x)(∀Y )(∃ z)(∀u)(u ∈ z ↔ u ∈ x ∧ u ∈ Y ).

The axiom of comprehension is weaker than the axiom of replacement since the
former ensues from NGB6 and Theorem 1.3.14 below. However, comprehension is
often convenient for practical purposes.

The collection of axioms to follow, NGB7–NGB13, relates to the formation of
classes. These axioms state that, given some properties expressible by formulas, we
may deal with the classes of the sets possessing the requested properties. As usual,
uniqueness in these cases results from the axiom of extensionality for classes NGB1.

1.3.5. Axiom of Membership NGB7. There is a class comprising every
ordered pair of sets whose first component is a member of the second:

(∃X)(∀ y)(∀ z)((y, z) ∈ X ↔ y ∈ z).

1.3.6. Axiom of Intersection NGB8. There is a class comprising the com-
mon members of every two classes:

(∀X)(∀Y )(∃Z)(∀u)(u ∈ Z ↔ u ∈ X ∧ u ∈ Y ).

1.3.7. Axiom of Complement NGB9. To each class X there is a class
comprising the nonmembers of X :

(∀X)(∃Y )(∀u)(u ∈ Y ↔ u /∈ X).

This implies the existence of the universal class U := ∅ which is the comple-
ment of the empty class ∅.

1.3.8. Axiom of Domain NGB10. To each class X of ordered pairs there
is a class Y := domX comprising the first components of the members of X :

(∀X)(∃Y )(∀u)(u ∈ Y ↔ (∃ v)((u, v) ∈ X)).

1.3.9. Axiom of Product NGB11. To each class X there is a class Y :=
X ×U comprising the ordered pairs whose first components are members of X :

(∀X)(∃Y )(∀u)(∀ v)((u, v) ∈ Y ↔ u ∈ X).

1.3.10. Axioms of Permutation NGB12 and NGB13. Assume that σ :=
(ı1, ı2, ı3) is a permutation of {1, 2, 3}. A class Y is a σ-permutation of a class X
provided that (x1, x2, x3) ∈ Y whenever (xı1 , xı2, xı3) ∈ X .
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To each class X , there are (2, 3, 1)- and (1, 3, 2)-permutations of X :

(∀X)(∃Y )(∀u)(∀ v)(∀w)((u, v, w) ∈ Y ↔ (v, w, u) ∈ X);
(∀X)(∃Y )(∀u)(∀ v)(∀w)((u, v, w) ∈ Y ↔ (u, w, v) ∈ X).

The above axioms of class formation proclaim existence of unique classes, as
was mentioned above. It is so in common parlance to speak about the complement
of a class, the intersection of classes, etc.

1.3.11. Axiom of Regularity NGB14. Each nonempty class X has a mem-
ber having no common elements with X :

(∀X)(X �= ∅ → (∃ y)(y ∈ X ∧ y ∩X = ∅)).

1.3.12. Axiom of Choice NGB15. To each class X there is a choice class-
function onX ; i.e., a single-valued class assigning an element ofX to each nonempty
member of X :

(∀X)(∃Y )(∀u)(u �= ∅ ∧ u ∈ X → (∃!v)(v ∈ u ∧ (u, v) ∈ Y )).

This is a very strong form of the axiom of choice which amounts to a possibility of
a simultaneous choice of an element from each nonempty set.

The above axiom makes the list of the special axioms of NGB complete. A
moment’s inspection shows that NGB, unlike ZFC, has finitely many axioms. An-
other convenient feature of NGB is the opportunity to treat sets and properties
of sets as formal objects, thus implementing the objectivization that is absolutely
inaccessible to the expressive means of ZFC.

1.3.13. We now derive a few consequences of the axioms of class formation
which are needed in the sequel.

(1) To each class X there corresponds the (2, 1)-permutation of X :

(∀X)(∃Z)(∀u)(∀ v)((u, v) ∈ Z ↔ (v, u) ∈ X).

� The axiom of product guarantees existence for the class X × U. Consecu-
tively applying the axioms of the (2, 3, 1)-permutation and (1, 3, 2)-permutation to
the X × U, arrive at the class Y of 3-tuples (alternatively, triples) (v, u, w) such
that (v, u) ∈ X . Appealing to the axiom of domain, conclude that Z := dom(Y ) is
the sought class. �
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(2) To each pair of classes there corresponds their product:

(∀X)(∀Y )(∃Z)(∀w)
(w ∈ Z ↔ (∃u ∈ X)(∃v ∈ Y )(w = (u, v))).

� To prove the claim, apply consecutively the axiom of product, (1), and the
axiom of intersection to arrange Z := (U× Y ) ∩ (X × U). �

Given n ≥ 2, we may define the class Un of all ordered n-tuples by virtue of
1.3.13 (2).

(3) To each class X there corresponds the class Z := (Un × Um) ∩
(X ×Um):

(∀X)(∃Z)(∀x1) . . . (∀xn)(∀ y1) . . . (∀ ym)
((x1, . . . , xn, y1, . . . , ym) ∈ Z ↔ (x1, . . . , xn) ∈ X).

(4) To each class X there corresponds the class Z := (Um × Un) ∩
(Um ×X):

(∀X)(∃Z)(∀x1) . . . (∀xn)(∀ y1) . . . (∀ ym)
((y1, . . . ym, x1, . . . , xn) ∈ Z ↔ (x1, . . . , xn) ∈ X).

� To demonstrate (3) and (4), apply the axiom of product and the axiom of
intersection. �

(5) To each class X there corresponds the class Z satisfying

(∀x1) . . . (∀xn)(∀ y1) . . . (∀ ym)
((x1, . . . , xn−1, y1, . . . , ym, xn) ∈ Z ↔ (x1, . . . , xn) ∈ X).

� Appeal to the axioms of permutation and the axiom of product. �
1.3.14. Theorem. Let ϕ be a formula whose variables are among X1, . . . , Xn,

Y1, . . . , Ym and which is predicative; i.e., all bound variables of ϕ range over sets.
Then the following is provable in NGB:

(∀Y1) . . . (∀Ym)(∃Z)(∀x1) . . . (∀xn)
((x1, . . . , xn) ∈ Z ↔ ϕ(x1, . . . , xn, Y1, . . . , Ym)).

� Assume that ϕ is written so that the only bound variables of ϕ are those
for sets. It suffices to consider only ϕ containing no subformulas of the shape



Universes of Sets 25

Y ∈ W and X ∈ X , since the latter might be rewritten in equivalent form as
(∃x)(x = Y ∧ x ∈ W ) and (∃u)(u = X ∧ u ∈ X). Moreover, the symbol of
equality may be eliminated from ϕ on substituting for X = Y the expression
(∀u)(u ∈ X ↔ u ∈ Y ), which is sound by the axiom of extensionality. The
proof proceeds by induction on the complexity or length k of ϕ; i.e., by the number
k of propositional connectives and quantifiers occurring in ϕ.

In case k = 0 the formula ϕ is atomic and has the form xı ∈ xj, or xj ∈ xı,
or xı ∈ Yl (ı < j ≤ n, l ≤ m). If ϕ := xı ∈ xj then, by the axiom of membership,
there is a class W1 satisfying

(∀xı)(∀xj)((xı, xj) ∈W1 ↔ xı ∈ xj).

If ϕ := xj ∈ xı then, using the axiom of membership again, we find a class W2 with
the property

(∀xı)(∀xj)((xj, xı) ∈W2 ↔ xj ∈ xı),

and apply 1.3.13 (1). In result, we obtain a class W3 such that

(∀xı)(∀xj)((xı, xj) ∈W3 ↔ xj ∈ xı).

Hence, in each of these two cases there is a class W satisfying the following formula:

Φ:= (∀xı)(∀xj)((xı, xj) ∈W ↔ ϕ(x1, . . . , xn, Y1, . . . , Ym)).

By 1.3.13 (4), we may replace the subformula (xı, xj) ∈ W of Φ with the con-
tainment (x1, . . . , xı−1, xı) ∈ Z1 for some other class Z1 and insert the quantifiers
(∀x1) . . . (∀xı−1) in the prefix of Φ.

Let Ψ be the so-obtained formula. By 1.3.13 (5), there is some class Z2 for Ψ
so that it is possible to write (x1, . . . , xı−1, xı, xj) ∈ Z1 instead of the subformula
(x1, . . . , xı, xı+1, . . . , xj) ∈ Z2 and to insert the quantifiers (∀xı+1) . . . (∀xj−1) in
the prefix of Ψ. Finally, on applying 1.3.13 (3) to Z2, find a class Z satisfying the
following formula:

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈ Z ↔ ϕ(x1, . . . , xn, Y1, . . . , Ym)).

In the remaining case of xı ∈ Yl, the claim follows from existence of the products
W := Uı−1 × Yl and Z := W × Un−ı. This completes the proof of the theorem for
k = 0.

Assume now that the claim of the theorem is demonstrated for all k < p and
the formula ϕ has p propositional connectives and quantifiers. It suffices to consider
the cases in which ϕ results from some other formulas by negation, implication, and
generalization.
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Suppose that ϕ := ¬ψ. By the induction hypothesis, there is a class V such
that

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈ V ↔ ψ(x1, . . . , xn, Y1, . . . , Ym)).

By the axiom of complement, the class Z := U − V := U\V meets the required
conditions.

Suppose that ϕ := ψ → θ. Again, by the induction hypothesis, there are classes
V and W making the claim holding for V and ψ and such that

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈W ↔ θ(x1, . . . , xn, Y1, . . . , Ym)).

The sought class Z := U− (V ∩ (U−W )) exists by the axioms of intersection and
complement.

Suppose that ϕ := (∀x)ψ, and let V and ψ be the same as above. Applying
the axiom of domain to the class X := U− V , obtain the class Z1 such that

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈ Z1 ↔ (∃x)¬ψ(x1, . . . , xn, Y1, . . . , Ym)).

The class Z := U − Z1 exists by the axiom of complement and is the one we seek
since the formula (∀x)ψ amounts to ¬(∃x)(¬ψ). �

1.3.15. Each of the axioms of class formation NGB7–NGB13 is a corollary to
Theorem 1.3.14 provided that the formula ϕ is duly chosen. On the other hand,
the theorem itself, as shown by inspection of its proof, ensues from the axioms of
class formation. It is remarkable that we are done on using finitely many axioms
NGB7–NGB13 rather than infinitely many assertions of Theorem 1.3.14.

Theorem 1.3.14 allows us to prove the existence of various classes. For instance,
to each class Y there corresponds the class P(Y ) of all subsets of Y , as well as the
union

⋃
Y of all elements of Y . These two classes are defined by the conventional

formulas:

(∀u)(u ∈ P(Y ) ↔ u ⊂ Y ),

(∀u)(u ∈
⋃

(Y ) ↔ (∃ v) (v ∈ Y ∧ u ∈ v)).

The above claims of existence are easy on putting ϕ(X, Y ) := X ⊂ Y and ϕ(X, Y )
:= (∃V )(X ∈ V ∧ V ∈ Y ). Analogous arguments corroborate the definitions of
Z−1, im(Z), Z � Y , Z“Y , X ∪ Y , etc., with X , Y , and Z arbitrary classes.

1.3.16. Theorem. Each theorem of ZFC is a theorem of NGB.
� Each axiom of ZFC is a theorem of NGB. The only nonobvious part of the

claim concerns the axiom of replacement ZFϕ4 which we will proof.
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Assume that y is not free in ϕ , and let {x, t, z1, . . . , zm} stand for the complete
list of variables in the construction of ϕ. Assume further that, for all x, u, v,
z1, . . . , zm, the following formula holds:

ϕ(x, u, z1, . . . , zm) ∧ ϕ(x, v, z1, . . . , zm) → u = v.

The formula is predicative since each bound variable of ϕ ranges over sets. By
Theorem 1.3.14, there is a class Z such that

(∀x)(∀u)((x, u) ∈ Z ↔ ϕ(x, u, z1, . . . , zm)).

This property of ϕ shows that the class Z is single-valued; i.e., Un (Z) is provable
in NGB. By the axiom of replacement NGB6, there is a set y satisfying

(∀ v)(v ∈ y ↔ (∃u)((u, v) ∈ Z ∧ u ∈ x)).

Obviously, y satisfies the desired formula

(∀ z1) . . . (∀ zm)(∀ v)(v ∈ y ↔ (∃u ∈ x)ϕ(u, v, z1, . . . , zm)). �
1.3.17. Theorem. Each formula of ZFC that is a theorem of NGB is a the-

orem of ZFC.
� The proof may be found, for instance, in [30]. It uses some general facts of

model theory which lie beyond the framework of the present book. �
Theorems 1.3.16 and 1.3.17 are often paraphrased as follows.

1.3.18. Theorem. Von Neumann–Gödel–Bernays set theory is conservative
over Zermelo–Fraenkel set theory.

1.3.19. Comments.

(1) Expositions of set theory are in plenty. We mention a few: [18, 26,
30, 32, 48, 55, 60, 73, 77, 83, 88, 94, 153, 166, 168, 208, 241, 254].

The formal theory NGB, as well as ZFC, is one of the most convenient and
simple axiomatic set theories. To survey other axiomatics, see [18, 55, 218, 254].

(2) Among the other axiomatic set theories, we mention the so-called
Bernays–Morse theory that extends NGB. Bernays–Morse set theory assumes the
special axioms NGB1–NGB5, NGB14 and the following axiom-schema of compre-
hension:

(∃X)(∀Y )(Y ∈ X ↔M(Y ) ∧ ϕ(Y,X1, . . . , Xn)),
with ϕ an arbitrary formula without free occurrences of X .

(3) Theorem 3.1.17 belongs to A. Mostowski. It implies in particular
that ZF is consistent if and only if so is NGB. The latter fact was established by
I. Novak and J. Shoenfield (cf. [217, 254 ]).

It is immediate from 1.3.14 that if the quantifiers of ϕ range over sets then
the axiom-schema of comprehension is a theorem of NGB. The Bernays–Morse set
theory allows quantification over arbitrary classes in the axiom-schema of compre-
hension. This theory may be enriched with the axiom of choice NGB15.
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1.4. Ordinals

The concept of ordinal is a key to studying infinite sets. It is designed for
transfinite iteration of various mathematical constructions and arguments as well
as for measuring cardinality. The topic of the present section is to explain how this
is done.

1.4.1. Consider classes X and Y . Say that X is an order relation or, simply, an
order on Y provided that X is an antisymmetric, reflexive, and transitive relation
on Y .

The antisymmetry, reflexivity, and transitivity properties of a relation within
NGB are written in much the same way as in the language of ZFC (cf. A.1.10). An
order of X on Y is total or linear if Y × Y ⊂ X ∪X−1.

A relation X well orders Y or is a well-ordering on Y , or Y is a well ordered
class provided that X is an order on Y and each nonempty subclass of Y has a least
element with respect to X .

Classes X1 and X2, furnished with some order relations R1 and R2, are similar
or equivalent if there is exists a bijection h from X1 on X2 such that (x, y) ∈ R1 ↔
(h(x), h(y)) ∈ R2 for all x, y ∈ X1.

1.4.2. By definition we let

(x, y) ∈ E ↔ (x ∈ y ∨ x = y).

The class E exists by the axiom of membership NGB7 and Theorem 1.3.14. A mo-
ment’s thought shows that E is an order on the universal class U.

A class X is transitive (not to be confused with a transitive relation) if each
member of X is also a subset of X :

Tr (X) := (∀ y)(y ∈ X → y ⊂ X).

An ordinal class is a transitive class well ordered by the membership relation. The
record Ord (X) means that X is ordinal. If x is a set and Ord (X) then we call X an
ordinal. The terms “ordinal number” or “transfinite number” are also in common
parlance. Denote by On the class of all ordinals. We usually let lower case Greek
letters stand for ordinals. Moreover, we use the following abbreviations:

α < β := α ∈ β, α ≤ β := α ∈ β ∨ α = β, α+ 1:= α ∪ {α}.

If α < β then we say that α precedes β and β succeeds α. Using the axiom of
regularity NGB14, we may easily prove the following:
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1.4.3. A class X is an ordinal if and only if X is a transitive class well ordered
by membership.

� Assume that a transitive class X is well ordered by membership. Choose
a nonempty subclass Y ⊂ X and show that Y has a least element. There is at least
one element y ∈ Y . If y = 0 then y is the sought least element in Y . If y �= 0 then,
by the axiom of regularity, there is an element x ∈ y such that x ∩ y = 0.

In this case x is the least element of y because y is well ordered. Since the
class Y is well ordered by membership, x is the least element in the class Y as well.
Hence, X is an ordinal class. Sufficiency of the hypothesis is thus proven, while
necessity is obvious. �

Therefore, NGB and ZFC allow us to use a simpler definition of ordinal as
follows:

Ord (X) ↔ Tr (X) ∧ (∀u ∈ X)(∀ v ∈ X)(u ∈ v ∨ u = v ∨ v ∈ u).

It is worth observing that the equivalence of the above definitions of ordinal can
be established without the axiom of choice. Most of the properties of ordinals below
may be deduced without the axiom of regularity, using only the initial definition of
ordinal. This peculiarity, important as regards proof of consistency of the axiom of
regularity with the remaining axioms of ZF, is immaterial to our further aims.

1.4.4. In the sequel we use some auxiliary facts about ordinals which are listed
now.

Assume that X and Y are arbitrary classes.

(1) If X is an ordinal class, Y is a transitive class, and X �= Y ; then
the formulas Y ⊂ X and Y ∈ X are equivalent.

� If Y ∈ X then the class Y is a set and Y ⊂ X since X is transitive.
Conversely, assume that Y ⊂ X . Since X �= Y ; therefore, Z := X − Y �= ∅.

The class Z has the least element x ∈ Z with respect to the order by membership.
This implies that x ∩ Z = ∅ or x ⊂ Y . Moreover, x ⊂ X since x ∈ X and X is
a transitive class.

Take y ∈ Y . Since X is totally ordered; therefore, x ∈ y, or x = y, or, finally,
y ∈ x. By transitivity of Y , the first two relations yield x ∈ Y , which contradicts
the membership x ∈ Z. Hence, y ∈ x and so Y ⊂ x. Considering inclusion x ⊂ Y
proven above, conclude that x = Y and, finally, x = Y ∧ x ∈ X → Y ∈ X . �

(2) The intersection of every two ordinal classes is an ordinal class.

� This is obvious. �
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(3) If X and Y are ordinal classes then

X ∈ Y ∨X = Y ∨ Y ∈ X.

� Let the intersection X ∩ Y = Z coincide with none of the classes X and Y .
Then, according to (1) and (2), Z ∈ X and Z ∈ Y ; i.e., Z ∈ X∩Y = Z. For Z ∈ X ,
however, the relation Z ∈ Z is impossible. Hence, either Z = X and Y ⊂ X , or
Z = Y and X ⊂ Y . We are left with appealing to (1). �

1.4.5. Theorem. The following hold:
(1) Each member of an ordinal class is an ordinal;
(2) The class On is the only ordinal class that is not an ordinal;
(3) For every α, the set α+ 1 is the least of all ordinals succeeding α;
(4) The union of a nonempty class of ordinals X ⊂ On is an ordinal

class. If X is a set then the union
⋃
X is an upper bound of the

set X in the ordered class On.
� (1) Take an ordinal class X and x ∈ X . Since X is transitive, x ⊂ X and

so x is totally ordered by membership. Prove Tr (x). If z ∈ y ∈ x then z ∈ X since
X is transitive.

Of the three possibilities: z = x, x ∈ z, and z ∈ x, the first two result in the
cycles, z ∈ y ∈ z and z ∈ y ∈ x ∈ z, each contradicting the axiom of regularity.
Therefore, z ∈ x and so z ∈ y → z ∈ x; i.e., y ⊂ x, which proves Tr (x) and, at the
same time, Ord (x).

(2) By 1.4.4 (3), the class On is totally ordered; by (1), it is transitive. Hence,
Ord (On). If On were a set then On would be an ordinal, which leads to the
contradiction On ∈ On.

Hence, On is an ordinal class but not an ordinal. For an arbitrary ordinal class
X , the formula X /∈ On yields X = On. Indeed, 1.4.4 (3) opens the sole possibility:
On ∈ X , which contradicts the fact that On is a proper class.

(3) If α is an ordinal, then, obviously, the set α + 1 := α ∪ {α} is totally
ordered. Given x ∈ α + 1, we obtain either x ∈ α or x = α, and in both cases
x ⊂ α. However, α ⊂ α+1. Hence, x ⊂ α+1, which proves that α+1 is transitive.
All in all, α + 1 is an ordinal and α < α + 1. If α < β for some β then α ∈ β and
α ⊂ β, i.e., α∪{α} ⊂ β. By 1.4.4 (1), either α∪{α} ∈ β or α∪{α} = β. Therefore,
α+ 1 ≤ β.

(4) Assume that X ⊂ On. Take y ∈ Y :=
⋃
X and choose x ∈ X so that

y ∈ x. Since x is an ordinal; therefore, y ⊂ x and, moreover, y ⊂ Y . The class On
is transitive (see (2)), and so x ∈ X yields x ⊂ On. Consequently, Y ⊂ On.

Thus, Y is a transitive subclass On, and so Y is an ordinal. If α ∈ X then
α ⊂ Y and, by 1.4.4 (1), α ≤ Y . While if β is an ordinal and β ≥ α for all α ∈ X
then Y ⊂ β and Y ≤ β by 1.4.4 (1). Hence, Y = sup(X). �
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1.4.6. The least upper bound of a set of ordinals x is usually denoted by
lim(x). An ordinal α is a limit ordinal if α �= ∅ and lim(α) = α.

In other words, α is a limit ordinal provided that α cannot be written down as
α = β + 1 with β ∈ On. Let KII stand for the class of all limit ordinals. The class
of nonlimit ordinals KI is the complement of KII; i.e., KI := On−KII = {α ∈ On :
(∃β ∈ On) (α = β + 1)}. Denote by ω the least limit ordinal whose existence is
ensured by Theorem 1.4.5 and the axiom of infinity. It is an easy matter to show
that ω coincides with the class of nonlimit ordinals α such that each predecessor of
α is also a nonlimit ordinal:

ω = {α ∈ On : α ∪ {α} ∈ KI}.
The members of ω are finite ordinals, or positive integers, or natural numbers,

or simply naturals. This is why ω is called the naturals in common parlance.
The least ordinal, the zero set 0 := ∅, belongs to ω. The successor 1 := 0 + 1 =

0∪{0} = {∅} contains the only element 0. Furthermore, 2 := 1∪{1} = {0}∪{1} =
{0, 1} = {0, {0}}, 3 := 2 ∪ {2} = {0, {0}, {{0, {0}}}, etc. Thus,

ω := {0, {0}, {0, {0}}, . . .} = {0, 1, 2, . . .}.
The following notation is also used:

N := ω − {0} = {1, 2, . . .}.
Recall that it is a mathematical tradition of long standing to apply the term

“natural” only to the members of N. Historically, zero is “less” natural if not
“unnatural.”

The next theorem displays the basic properties of the naturals ω which are
known as Peano’s axioms.

1.4.7. Theorem. The following hold:
(1) Zero belongs to ω;
(2) The successor α + 1 of a natural α is a natural too;
(3) 0 �= α+ 1 for all α ∈ ω;
(4) If α and β in ω and α+ 1 = β + 1 then α = β;
(5) If a class X contains the empty set and the successor of each mem-

ber of X then ω ⊂ X .

1.4.8. Theorem (the principle of transfinite induction). Let X be a class
with the following properties:

(1) 0 ∈ X ;
(2) If α is an ordinal and α ∈ X then α+ 1 ∈ X ;
(3) If x is a set of ordinals contained in X then lim(x) ∈ X .

Then On ⊂ X .
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� Assume to the contrary that On �⊂ X . Then the nonempty subclass On−X
of the well ordered class On has the least element α ∈ On−X , which means that
α ∩ (On−X) = 0 or α ⊂ X and α �= 0 by (1). If α ∈ KI, i.e., α = β + 1 for some
β ∈ On; then β ∈ α ⊂ X → β ∈ X and, by (2), α = β + 1 ∈ X . In turn, if α ∈ KII

then from (3) we deduce α = lim(α) ∈ X . In both cases α ∈ X , which contradicts
the membership α ∈ On−X . �

1.4.9. Theorem (the principle of transfinite recursion). Let G be some class-
function. Then there is a unique function F satisfying

(1) dom(F ) = On;
(2) F (α) = G(F � α) for all α ∈ On, where F � α := F ∩ (α×U) is the

restriction of F to α.

� Define the class Y by the formula

f ∈ Y ↔ Fnc (f) ∧ dom(f) ∈ On∧(∀α ∈ dom(f)) (f(α) = G(f � α)).

If f , g ∈ Y then either f ⊂ g or g ⊂ f .
Indeed, if β := dom(f) and γ := dom(g) then either β ≤ γ or γ ≤ β. Assuming

for instance that γ < β, put z := {α ∈ On : α < γ ∧ f(α) �= g(α)}. If z �= 0 then z
contains the least element δ.

In this case for all α < δ we obtain f(α) = g(α); i.e., f � δ = g � δ. By the
definition of Y , we however have f(δ) = G(f � δ) and g(δ) = G(g � δ). Hence,
f(δ) = g(δ) and δ /∈ z.

This contradicts the choice of δ. So, z = 0; i.e., f(α) = g(α) for all α < γ,
which yields the required inclusion g ⊂ f . Put F :=

⋃
Y . Obviously, F is a function,

dom(F ) ⊂ On, and F (α) = G(F � α) for all α ∈ dom(F ).
If α ∈ dom(F ) then (α,G(F � α)) ∈ f for some f ∈ Y . Then α ∈ β :=

dom(f) ⊂ dom(F ). Since β is transitive, we obtain α ⊂ dom(F ). Therefore, the
class dom(F ) is transitive and, by 1.4.4 (1), either dom(F ) = On or dom(F ) ∈
On. However, the latter containment is impossible. Indeed, it follows from δ :=
dom(F ) ∈ On that the function f := F ∪ {(δ, G(F ))} belongs to Y . Hence, f ⊂ F ,
which leads to a contradiction as follows: f ⊂ F → dom(f) ⊂ dom(F ) → δ ∈
dom(F ) = δ. �

1.4.10. A binary relation R is well founded if the class R−1(x) is a set for
all x ∈ U and to each nonempty x ∈ U there is an element y ∈ x such that
x ∩R−1(y) = 0.

The last condition (on assuming the axiom of choice) amounts to the fact that
there is no infinite sequence (xn) with the property xn ∈ R(xn+1) for all n ∈ ω.
The membership ∈ provides an example of a well founded relation. It is often
more convenient to apply the principles of transfinite induction and recursion in
the following form:
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1.4.11. Theorem. Let R be a well founded relation. The following hold:
(1) (induction on R) If a class X is such that for all x ∈ U the formula

R−1(x) ⊂ X implies x ∈ X , then X = U;
(2) (recursion on R) To each function G : U → U there is a function F

such that dom(F ) = U and F (x) = G(F � R−1(x)) for all x ∈ U.

1.4.12. Two sets are equipollent, or equipotent, or of the same cardinality if
there is a bijection of one of them onto the other. An ordinal that is equipotent to
no preceding ordinal is a cardinal. Every natural is a cardinal.

A cardinal other than a natural is an infinite cardinal. Therefore, ω is the least
infinite cardinal.

Given an ordinal α, we denote by ωα an infinite cardinal such that the ordered
set of all infinite cardinals less than ωα is similar to α. If such a cardinal exists
then it is unique.

1.4.13. Theorem (the principle of cardinal comparability). The following
hold:

(1) Infinite cardinals form a well ordered proper class;
(2) To each ordinal α there is a cardinal ωα so that the mapping α �→ ωα

is a similarity between the class of ordinals and the class of infinite
cardinals;

(3) There is a mapping | · | from the universal class U onto the class
of all cardinals such that the sets x and |x| are equipollent for all
x ∈ U.

� The proof may be found for instance in [168]. �
The cardinal |x| is called the cardinality or the cardinal number of a set x.

Hence, any set is equipollent to a unique cardinal which is its cardinality.
A set x is countable provided that |x| = ω0 := ω, and x is at most countable

provided that |x| ≤ ω0.

1.4.14. Given an ordinal α, we denote by 2ωα the cardinality of P(ωα); i.e.,
2ωα := |P(ωα)|. This denotation is justified by the fact that 2x and P(X) are
equipollent for all x, with 2x standing for the class of all mappings from x to 2.

A theorem, proven by G. Cantor, states that |x| < |2x| for whatever set x. In
particular, ωα < 2ωα for each ordinal α. In this case, appealing to Theorem 1.4.13,
we obtain ωα+1 ≤ 2ωα .

The generalized problem of the continuum asks whether or not there are
intermediate cardinals between ωα+1 and 2ωα ; i.e., whether or not the equality
ωα+1 = 2ωα holds. For α = 0 this is the classical problem of the continuum.

The continuum hypothesis CH is the equality ω1 = 2ω. Similarly, the general-
ized continuum hypothesis GCH is the equality ωα+1 = 2ωα for all α ∈ On.
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1.4.15. Furnish the class On×On with some order that will be called canoni-
cal. To this end, take α1, α2, β1, β2 ∈ On. Agree to assume that (α1, α2) ≤ (β1, β2)
if one of the following conditions is fulfilled:

(1) α1 = β1 and α2 = β2;
(2) sup{α1, α2} < sup{β1, β2};
(3) sup{α1, α2} = sup{β1, β2} and α1 < β1;
(4) sup{α1, α2} = sup{β1, β2} and α1 = β1 and α2 < β2.

Therefore, the pairs (α, β) are compared by using sup{α, β}. Also, the set
of ordered pairs (α, β) with the same sup{α, β} has the lexicographic order. We
may easily prove that On×On with the canonical order is a well ordered class. By
analogy, we may define the canonical well-ordering on the class On×On×On and
so on.

1.4.16. Comments.

(1) The idea of transfinite ranks among the most profound and orig-
inal discoveries by G. Cantor. Using this idea, he created a powerful method for
qualitative analysis of infinity and penetrated deeply into its essence.

The notion of infinity can be traced in religious and philosophical doctrines
since the ancient times. The whole totality of the views of the infinite had howev-
er been a primarily humanitarian subject prior to G. Cantor who made the very
concept of infinity a topic of mathematical research.

Invoked and inspired by the Infinite, “Mathematics is the Science of Infini-
ty.” So reads one of the most popular definitions of the present-day mathematics,
witnessing the grandeur of the G. Cantor idea.

(2) The problem of the continuum stems from G. Cantor and is the first
in the epoch-making report by D. Hilbert at the turn of the twentieth century [20].
Remaining unsolved for decades, this problem gave rise to in-depth foundational
studies of set theory. In 1939 K. Gödel established consistency of the generalized
continuum hypothesis with ZFC [59]. In 1963 P. J. Cohen proved that the negation
of the generalized continuum hypothesis is also consistent with ZFC. Each of these
results has brought about new ideas, methods, and problems.

(3) By G. Cantor, an ordinal is the order type of some well ordered
set x; i.e., the class of all ordered sets similar to x. Each order type, with the
exception of the empty set, is a proper class however. This peculiarity prevents
us from developing the theory of order types within NGB since it is impossible
to consider the classes of order types. The definition of ordinal in 1.4.2 leans on
choosing a canonical representative in each order type. This definition belongs to
J. von Neumann.

(4) In this section we present only the basic facts on ordinals; details,
and further information may be found in [115, 168].
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1.5. Hierarchies of Sets

Recursive definitions, basing on Theorem 1.4.9 or its modifications, bring
about, in particular, decreasingly (or increasingly) nested transfinite sequences of
sets which are known as cumulative hierarchies. Of a profound interest for our tasks
are the hierarchies appearing in the models of set theory.

1.5.1. Consider a set x0 and two single-valued classes Q and R. Starting with
them, we construct a new single-valued class G. To begin with, put G(0) := x0.
Further, if x is a function and dom(x) = α + 1 for some α ∈ On then we let
G(x) := Q(x(α)). Whereas if dom(x) = α is a limit ordinal then, to obtain G(x),
we “collect” the values of x(β) for β < α and apply R to the whole collection;
i.e., G(x) := R(

⋃
im(x)). In every remaining case we assume that G(x) = 0. By

Theorem 1.4.9 of transfinite recursion, there exists a single-valued class F satisfying
the conditions:

F (0) = x0,

F (α+ 1) = Q(F (α)),

F (α) = R

( ⋃

β<α

F (β)
)

(α ∈ KII).

Each F (α) is a floor of F , while F itself is a cumulative hierarchy. The union of
the class im(F ), i.e. the class

⋃

α∈On

F (α) :=
⋃

im(F ),

is the limit of the cumulative hierarchy (F (α))α∈On.

1.5.2. In the sequel, we are interested only in the particular case in which
x0 is the empty set, R is the identity mapping of the universal class U, and Q
is a class-function with dom(Q) = U. In this case the cumulative hierarchies are
constructed inductively, starting with the empty set, by successively applying the
operation Q. Varying Q, we arrive at different cumulative hierarchies.

The least ordinal α for which x ∈ F (α+ 1) is called the (ordinal) rank of x in
the hierarchy (F (α))α∈On and is denoted by rank(x). This definition is justified by
Theorem 1.3.14 claiming that we may find a unique class rank obeying the condition

(∀x)(∀ y)((x, y) ∈ rank ↔ ϕ(x, y, F,On)),

with ϕ standing for the predicative formula

(∃α ∈ On)(y = α ∧ x ∈ F (α+ 1) ∧ (∀β ∈ On)(x ∈ F (β + 1) → α ≤ β)).
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In this event, Un (rank), dom(rank) =
⋃

imF , and im(rank) ⊂ On; i.e., rank is
a function from

⋃
im(F ) to On. We abstain from inserting F in the notation of

the rank of a set in F since the context always prompts us the hierarchy F in what
follows.

1.5.3. As the simplest example, consider the case in which x0 = 0, R = IU,
and Q := Ptr, with Ptr sending x ∈ U to the class Ptr(x) of all transitive subsets
of x. Since a transitive subset of an ordinal is an ordinal; therefore, Q(α) = α ∪
{α} = α+ 1 and F (α+ 1) = α+ 1 for every ordinal α. If α is a limit ordinal then

F (α) =
⋃

β<α

F (β) =
⋃

β+1<α

F (β + 1) =
⋃

β+1<α

β + 1 = α.

Therefore, the limit of our increasingly nested cumulative hierarchy is the class of
ordinals On.

1.5.4. Assigning the role of Q to the powerset operation P and taking x0 = 0
and R = IU, we come to the familiar cumulative hierarchy (cf. the Appendix):

V0 := 0,
Vα+1 := P(Vα) (α ∈ On),

Vα :=
⋃

β<α

Vβ (α ∈ KII).

The class V :=
⋃
α∈On Vα is the von Neumann universe. Note that the lower

floors of V are as follows: V1 = P(0) = {0} = 1, V2 = P(1) = {0, {0}} = 2,
V3 = P(V2) = {0, {0}, {{0}}, {0, {0}}} �= 3, etc.

1.5.5. The following hold:
(1) Vα is a transitive set for all α ∈ On;
(2) Vβ ∈ Vα and Vβ ⊂ Vα for all α, β ∈ On, β < α;

(3) If x ∈ y ∈ V then rank(x) < rank(y);
(4) The class of ordinals On is included in V;
(5) rank(α) = α for all α ∈ On;
(6) If x is a set and x ⊂ V then x ∈ V.

� (1) Proceed by transfinite induction. For α = 0, the class V0 = 0 is a transi-
tive set. Assume proven that Vα is a transitive set. Since Vα+1 = P(Vα), note that
Vα+1 is a set and, for all x and y, it follows from x ∈ y ∈ Vα+1 that y ⊂ Vα and
x ∈ Vα. By the induction hypothesis, either x ⊂ Vα or x ∈ Vα+1, and so y ⊂ Vα+1.
If α ∈ KII and Vβ is a transitive set for all β < α; then, for all x ∈ Vα, we have

(∃β < α)(x ∈ Vβ) → (∃β < α)(x ⊂ Vβ) → x ⊂ Vα.
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Moreover, Vα is a set as the union of a set of sets.
(2) Transitivity of Vα is shown in (1). We are thus left with demonstrating

that Vβ ∈ Vα (β < α). Proceed by transfinite induction on α.
In case α = 1, nothing is left to proof. Let α > 1 and Vβ ∈ Vα for all β < α.

The inequality β < α + 1 holds only if α = β or β < α. If α = β then

Vβ = Vα ∈ P(Vα) = Vα+1.

If β < α then, by the induction hypothesis, Vβ ∈ Vα and, by (1), Vα ⊂ Vα+1.
Hence, Vβ ∈ Vα+1. Given a limit ordinal α ∈ KII, it suffices to note that Vβ ∈ Vα
for β < α since

Vβ ∈ Vβ+1 ⊂
⋃

γ<α

Vγ = Vα.

(3) A moment’s thought shows that α = rank(x) if and only if x ∈ Vα+1 and
x /∈ Vα. Hence, if x ∈ y then y �⊂ Vα and so y /∈ Vα+1. By definition, rank(y) > α.

(4), (5) Proceed again by transfinite induction.
In case α = 0 note that 0 ∈ V0 ⊂ V and rank(0) = 0 since 0 /∈ V0.
Take α ∈ V with rank(α) ∈ α. Then α + 1 = α ∪ {α} ⊂ Vα+1, or α + 1 ∈

P(Vα+1) = Vα+2. On the other hand, if α+ 1 ∈ Vα+1 then α ∪ {α} ⊂ Vα, yielding
α ∈ Vα, which is a contradiction. Therefore, α+1 /∈ Vα+1 and so rank(α+1) = α+1.

Assume now that α ∈ KII and, for all β < α, it is established that β ∈ V and
rank(β) = β. In this event

α = {β ∈ On : β < α} ⊂
⋃

β<α

Vβ+1 ⊂ Vα,

whence α ∈ Vα+1. Moreover, the membership α ∈ Vα implies that α ∈ Vβ for
some β < α. Applying (3) and the induction hypothesis, we immediately arrive at
a contradiction: β = rank(β) < rank(α) < β.

(6) Put α := sup{rank(y) : y ∈ x}. Obviously, x ⊂ Vα+1 and x ∈ Vα+2 ⊂ V. �
1.5.6. Theorem. The axiom of regularity NGB14 amounts to the equality

U = V, i.e., to the coincidence of the universal class and the von Neumann universe.
� Suppose that U = V and take a nonempty class X . There is an element

x ∈ X with the least rank α; i.e., rank(x) = α and rank(x) ≤ rank(y) for all y ∈ X .
If u ∈ x ∩ X then, by 1.5.5 (3), rank(u) < α = rank(x), which contradicts the
definition of α. Hence, x ∩X = 0.

Demonstrate now that the supposition V �= U contradicts the axiom of regu-
larity. To this end, apply this axiom to the nonempty class U − V and find a set
y ∈ U − V satisfying y ∩ (U − V) = 0. The last equality yields y ⊂ V, whereas
from 1.5.5 (6) we deduce y ∈ V, which contradicts the choice of y. �
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1.5.7. Theorem. The following hold:
(1) induction on membership: If a class X has the property that x ⊂ X

implies x ∈ X for every set x, then X = V;
(2) recursion on membership: If G is a single-valued class then there is

a unique function F with domainV satisfying F (x) = G(im(F � x))
for x ∈ V;

(3) induction on rank: If a class X has the property that the inclusion
{y ∈ V : rank(y) < rank(x)} ⊂ X implies the membership x ∈ X
for every set x, then X = V.

� As shown in 1.5.6, the universe V coincides with the universal class U.
Therefore, all claims are immediate from 1.4.11 provided that the relations ∈:=
{(x, y) ∈ V2 : x ∈ y} and R := {(x, y) ∈ V2 : rank(x) ≤ rank(y)} are well founded.
For the membership relation ∈, this follows from the axiom of regularity (cf. 1.4.10).

As regards R, proceed by way of contradiction. Take a sequence (xn)n∈ω with
xn ∈ V such that xn+1 ∈ R(xn) for all n ∈ ω. Then the sequence of the ordinals
αn := rank(xn) would obey the condition αn+1 < αn (n ∈ ω) (cf. 1.5.5 (3)). This
would contradict the fact that On is well ordered. Hence, R is well founded. �

1.5.8. Let ∼ be an equivalence on a class W . The collection of all members
of W which are equivalent to some element of W is a proper class in general, which
is an obstacle to combining these equivalence classes into a unique factor class. We
may obviate the obstacle by using the ordinal rank.

Frege–Russel–Scott Theorem. There is a function F : W → V such that,
for all x, y ∈W , the following holds:

F (x) = F (y) ↔ x∼y.
� By Theorem 1.3.14, there is a class F such that, for all x, y ∈W , we have

(x, y) ∈ F ↔ ϕ(x, y,W,∼, rank),

where the predicative formula ϕ is as follows

(∀ z) (z ∈ y ↔ z ∈W ∧ x∼ z ∧ (∀u) (x∼u→ rank(z) ≤ rank(u))).

Therefore, F is a function, and F (x) stands for the class of sets z equivalent to x
and having the least possible rank.

If α = rank(x) then F (x) ⊂ W ∩ Vα+1. Hence, F (x) is a set. Moreover,
dom(F ) = W , and for all x, y ∈ W we have x∼y ↔ F (x) = F (y). Indeed, if
F (x) = F (y) then there is an element w in W satisfying x∼w and y∼w; i.e., x∼y.
The reverse implication is obvious. �

It follows from the axiom of domain NGB10 and 1.3.13 (1) that to F there
corresponds the class im(F ) := {F (x) : x ∈ W}. Call im(F ) the factor class of W
by ∼ and denote it by W/∼; i.e., W/∼ := im(F ). In this event we say that F is the
factor mapping or the canonical projection from W to W/∼.
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1.5.9. Let B be a set with at least two members. Put Q := P(B) : x �→ Bx

(x ∈ V), where Bx stands as usual for the set of all mappings from x to B. The
cumulative hierarchy arising in this case (cf. 1.5.1, with x0 = 0 and R = IV) is
denoted by (V (B)

α )α∈On. The resultant B-valued universe

V(B) :=
⋃

α∈On

V (B)
α

is a subclass of V consisting of B-valued functions given on the sets of B-valued
functions. The conventional interpretation for the membership sign ∈ in V(B) yields
nothing of interest, since the set-theoretic membership u ∈ v for B-valued functions
u and v holds only in trivial cases.

Happily, the hierarchies (Vα) and (V (B)
α ) differ significantly which circumstance

gives grounds for nonstandard interpretations of set theory in the universe V(B).
This is elaborated in Chapter 2.

1.5.10. For the sake of completeness, we mention one more cumulative hier-
archy.

The following operations over sets are theGödel operations (they are eight in to-
tal): pairing; (set-theoretic) difference; (Cartesian) product; the (2, 3, 1)-, (3, 2, 1)-,
and (1, 3, 2)-permutations (see 1.3.10); restricted membership x �→ x2∩ ∈; and
domain x �→ dom(x).

Given some set or a set of sets x, define the Gödel closure clG(x) of x as the least
set containing X and closed under the Gödel operations. Assign Q(x) := P(X) ∩
clG(x ∪ {x}). The resultant cumulative hierarchy (Lα)α∈On is the constructible
hierarchy. The constructible universe is the class L :=

⋃
α∈On Lα; the elements of

L are constructible sets (for details see [83, 172]).

1.5.11. Comments.

(1) It was J. von Neumann who first considered the cumulative hierar-
chy (Vα)α∈On now named after him. The relativization of the axiom of regularity
to the von Neumann universe V is provable in the theory NGB \NGB14, which
implies that NGB14 is consistent with the rest of the axioms of NGB. Another
technique shows that the negation ¬ NGB14 is consistent with the axioms of NGB;
i.e., NGB14 is an independent axiom.

(2) If B is a complete Heyting lattice (cf. 1.1.8 (3)) then the universe
V(B) may be transformed into a model of intuitionistic set theory by using the
structure of B and the hierarchy (V (B)

α ). In particular, if B is a complete Boolean
algebra then we arrive at a Boolean valued model of set theory (more details will
appear in 2.1.10 (3)).
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(3) If B := [0, 1] is the interval of the real axis then the class V(B) is
called the universe of Zadeh fuzzy sets or, briefly, fuzzy universe [157, 260–262].
This universe can provide a model for some set theory with an appropriate many-
valued logic, which may be of use for studying fuzzy sets.

(4) The constructible universe L is the least transitive model of ZFC
containing all ordinals which is called the Gödel model. This universe satisfies the
axiom of choice and the generalized continuum hypothesis. Therefore, AC and
GCH are consistent with ZF.

The axiom of constructibility reads: “every set is constructible”; in symbols,
V = L. The relativization of the formula V = L to L is provable in ZF. Hence,
V = L is consistent with ZF. All these results, as well as the definition of con-
structible set, belong to K. Gödel [59] (see also [83, 172]). The corresponding
assertions of consistency of the axiom of choice and GCH also hold for NGB (cf.
[30, 83, 168, 172]).

(5) It is proven in [234] that if B is a quantum logic (see 1.1.8 (5))
then the universe V(B) serves as a model for some quantum set theory in the sense
analogous to that of Section 2.4 to follow. Treating quantum theories as logical sys-
tems, constructing quantum set theory and developing the corresponding quantum
mathematics is an intriguing and actual field of research, slow progress wherein
notwithstanding. Apparently, the adequate mathematical means and opportuni-
ties, together with sound reference points, are traceable within the theory of von
Neumann algebras proliferating numerous “noncommutative” branches (noncom-
mutative probability theory, noncommutative integration, etc.).
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Boolean Valued Universes

It is the use of various rather unconventional models of set theory that uni-
fies the available nonstandard methods of analysis. In particular, the technique
of Boolean valued analysis bases on the properties of a certain cumulative hierar-
chy V(B) whose every successive floor comprises all functions with domain on the
preceding floors and range in a complete Boolean algebra B fixed in advance.

Our main topic in the present section is the construction and study of the
hierarchy, i.e., the Boolean valued universe V(B). The idea behind the construction
of V(B) is very simple. We first observe that the characteristic function of a set
is a good substitute for the set itself. Rising in the hierarchy whose limit is the
von Neumann universe and carrying out the successive substitutions, we arrive at
another representation of the von Neumann universe which consists only of two-
valued functions. Replacing 2 with an arbitrary Boolean algebra B and repeating
the above construction, we arrive at the desired V(B).

The subtlest aspects, deserving special attention, relate to elaboration of the
sense in which we may treat V(B) as a model of set theory. We set forth the basic
technique that lay grounds for Boolean valued analysis, i.e. the transfer, mixing,
and maximum principles.

Considerations of logical rigor and expositional independence have requested
an ample room for constructing a separated universe and interpreting NGB inside
V(B). The reader, interested only in solid applications to analysis, may just cast
a casual glance at these rather sophisticated fragments of exposition while getting
first acquaintance with the content of the present book.

2.1. The Universe over a Boolean Algebra

In this section we define a Boolean valued universe and the corresponding
Boolean truth values for set-theoretic formulas. We also present the simplest rele-
vant facts and details.
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2.1.1. We start with informal heuristic considerations facilitating acquain-
tance with some features of Boolean valued universes and truth values.

Recall that 2 := {0, 1} stands for the two-element Boolean algebra (as usual,
we refuse to distinguish between various representations of this simplest Boolean
algebra). Take an arbitrary set x, a member of the von Neumann universe V, and
associate with x a certain (characteristic) function χx ranging in 2 and determined
(nonuniquely, in general) by the conditions that x ⊂ dom(χx) and χx(t) = 1
whenever t ∈ x. Clearly, there are many sound reasons to identify x with any of
these functions χx.

To ensure that the members of the domain dom(χx) of a two-valued function
χx are also interpretable as two-valued functions, we surely have to substitute the
appropriate characteristic function for each element on the floor Vβ , β < rank(x),
which includes dom(χx). Intending to serve so to the whole world of sets, i.e., the
universe V, we must start from the zero floor which is ∅.

Formalizing these observations, we come to the notion of the 2-valued universe:

V(2) := {x : (∃α ∈ On) (x ∈ V (2)
α )},

where V (2)
0 := ∅, V (2)

1 := {∅}, V (2)
2 := {{∅}, ({∅}, 1)}, etc. In more detail, acting

by analogy with V and using recursion on membership, we define the cumulative
hierarchy

V (2)
α := {x : Fnc (x) ∧ im(x) ⊂ 2 ∧ (∃β < α)(dom(x) ∈ V

(2)
β )}.

Obviously, V(2) consists of two-valued functions, in which case we associate
with each element x ∈ V(2) the unique set x̄ := {y ∈ V(2) : x(y) = 1}. It worth
observing that distinct elements of V(2) may be assigned to the same set. For this
reason, we identify functions x and y ∈ V(2) such that x̄ = ȳ, neglecting formal
thorns and obstacles which are inevitable on this way.

Take arbitrary x, y ∈ V(2). By the identification agreement, the equality x = y
holds if and only if x̄ = ȳ. Furthermore, we naturally assume the formula x ∈ y
holding whenever x ∈ ȳ. Putting [[x = y]] := 1 and [[x ∈ y]] := 1 when x = y and
x ∈ y hold, we let [[x = y]] := 0 and [[x ∈ y]] := 0 otherwise. We then have the
following presentations:

[[x ∈ y]] =
∨

t∈dom(y)

y(t) ∧ [[t ∈ x]],

[[x = y]] =
∨

t∈dom(x)

x(t) ⇒ [[t ∈ y]] ∧
∨

t∈dom(y)

y(t) ⇒ [[t ∈ x]].
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It stands to reason to compare these formulas with the following propositions of set
theory:

u ∈ v ↔ (∃w)(w ∈ v ∧ w = u),
u = v ↔ (∀w)(w ∈ u→ w ∈ v) ∧ (w ∈ v → w ∈ u).

2.1.2. Fix a complete Boolean algebra B which is of course an element of the
von Neumann universe V. The Boolean valued universe V(B) over B arises as the
limit of the cumulative hierarchy, cf. (1.5.1), provided that x0 := 0 and R := IV,
while Q is determined from the formula

y ∈ Q(x) ↔ Fnc (y) ∧ dom(y) ⊂ x ∧ im(y) ⊂ B.

Therefore, the hierarchy (V (B)
α )α∈On has the form

V
(B)
0 := 0,

V
(B)
α+1 := {y : Fnc (y) ∧ dom(y) ⊂ V (B)

α ∧ im(y) ⊂ B},
V (B)
α :=

⋃
{V (B)

β : β < α} (α ∈ KII).

By definition, we assign
V(B) :=

⋃

α∈On

V (B)
α .

Since the empty set is the function whose domain is void, we easily see that
the first and the second floors of the Boolean valued universe are V (B)

1 = {0} and
V

(B)
2 = {0} ∪ {(0, b) : b ∈ B}. The ordinal rank of x ∈ V(B) is further denoted by
ρ(x).

2.1.3. Since the membership relation y ∈ dom(x) is well founded, the following
induction principle for V(B) ensues from 1.4.11 (1):

(∀x ∈ V(B))((∀ y ∈ dom(x))ϕ(y) → ϕ(x)) → (∀x ∈ V(B))ϕ(x),

with ϕ standing for an arbitrary formula of ZFC.

2.1.4. Our nearest aim is to ascribe some truth value to each formula of ZFC
whose free variables are replaced with elements of V(B). The Boolean truth value
as a “metafunction” must act to B in such a way that every theorem of ZFC holds
“true” inside V(B); i.e., it acquires the greatest Boolean truth value, the unity of
B denoted by 1.

To start, we define the Boolean truth value at the atomic formulas x ∈ y and
x = y. This is done with the two class functions, [[ · ∈ ·]] and [[ · = · ]], each acting
from V(B) ×V(B) to B.

Given x, y ∈ V(B), we put
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(1) [[x ∈ y]] :=
∨

z∈dom(y)

y(z) ∧ [[z = x]],

(2) [[x = y]] :=
∧

z∈dom(y)

y(z) ⇒ [[z ∈ x]] ∧ ∧
z∈dom(x)

x(z) ⇒ [[z ∈ y]].

Recursion on (ρ(x), ρ(y)) and the above formulas lead to the functions [[ · ∈ · ]] and
[[ · = · ]] on assuming that On×On is canonically well ordered (see 1.4.15). Indeed,
considering the zero floor with (ρ(x),ρ(y)) = (0, 0), obtain (cf. 1.1.1)

[[0 ∈ 0]] =
∨

∅ = 0B , [[0 = 0]] =
∧

∅ = 1B .

Now, given z ∈ dom(y) or z ∈ dom(x), observe that (ρ(x), ρ(z)) < (ρ(x),ρ(y)) or
(ρ(z),ρ(y)) < (ρ(x),ρ(y)), respectively.

It is also possible to choose another road and to proceed by transfinite recursion
1.4.9. Namely, granted the Boolean truth values of [[u ∈ v]] and [[u = v]] for all
u, v ∈ V

(B)
α , take x, y ∈ V

(B)
α+1 and put

[[x = y]] =
∧

u∈dom(x)

(
x(u) ⇒

∨

v∈dom(y)

y(v) ∧ [[u = v]]
)

∧
∧

v∈dom(y)

(
y(v) ⇒

∨

u∈dom(x)

x(u) ∧ [[u = v]]
)
,

since dom(x) ⊂ V
(B)
α and dom(y) ⊂ V

(B)
α . Now the Boolean truth value [[x = z]] is

available for every z ∈ dom(y) and so we may calculate

[[x ∈ y]] =
∨

z∈dom(y)

y(z) ∧ [[z = x]].

The case in which α is a limit ordinal causes no problem.

2.1.5. To elaborate the above recursive definition 2.1.4, we now inspect it in
more detail.

Choosing k := 1, 2, 3, 4, put

πkx(u, v)

:=
∨

{b ∈ B : (∃ c1, c2, c3, c4 ∈ B)((u, v, c1, c2, c3, c4) ∈ x ∧ ck = b)}.

Denote by π1 and π2 the functions that send each ordered 6-tuple (alternatively,
hexad) (u, v, c1, c2, c3, c4) to the first and second components, i.e., to u and v. With
this notation, we describe some single-valued class Q. Given an arbitrary x ∈ V,
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let the set Q(x) consist of all 6-tuples (u, v, c1, c2, c3, c4) satisfying the following
conditions:

Fnc (u), Fnc (v), im(u) ∪ im(v) ⊂ B,

dom(u) ⊂ π“1 x, dom(v) ⊂ π“2 x;

b1 =
∨

z∈dom(v)

v(z) ∧ π3
x(u, z),

b2 =
∨

z∈dom(u)

u(z) ∧ π4
x(v, z),

b3 = b4 =
∧

z∈dom(u)

u(z) ⇒ π1
x(z, v) ∧

∧

z∈dom(v)

v(z) ⇒ π2
x(u, z).

By 1.5.1, we may find the cumulative hierarchy (F (α))α∈On satisfying

F (0) = (0, 0, 0B, 0B , 1B, 1B),
F (α+ 1) = Q(F (α)) (α ∈ On),

F (α) =
⋃

β<α

F (β) (α ∈ KII).

The class X := im(F ) is obviously a function with im(X) ⊂ B4 and dom(X) =
V(B) × V(B).

If Pk : B4 → B is the kth projection then we define

[[ · ∈ · ]] := P1 ◦X, [[ · = · ]] := P3 ◦X.

2.1.6. We now describe the way of treating every formula of set theory as
a proposition concerning the elements of a Boolean valued universe. In other words,
granted B, we intend to interpret the classical set theory in V(B) by using the
functions [[ · ∈ · ]] and [[ · = · ]] of 2.1.4.

To this end, we first define the interpretation class I to be the class of all
mappings from the set of the symbols of variables in the language of set theory to
the universe V(B).

By the interpretation of a variable x we mean the valuation that assigns to
each ν ∈ I the element x̄(ν) := ν(x).

As interpretations of the formulas x ∈ y and x = y we choose the following
functions:

ν �→ [[x̄(ν) ∈ ȳ(ν)]], ν �→ [[x̄(ν) = ȳ(ν)]] (ν ∈ I).
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Given a formula ϕ(x1, . . . , xn) with n free variables, we now define the interpretation
ν �→ [[ϕ(x̄1(ν), . . . , x̄n(ν))]] by inducting on the length of ϕ in accord with the
following rules

[[ϕ(x) ∧ ψ(y)]] : ν �→ [[ϕ(x̄(ν))]] ∧ [[ψ(ȳ(ν))]],
[[ϕ(x) ∨ ψ(y)]] : ν �→ [[ϕ(x̄(ν))]] ∨ [[ψ(ȳ(ν))]],

[[¬ϕ(x)]] : ν �→ [[ϕ(x̄(ν))]]∗,
[[ϕ(x) → ψ(y)]] : ν �→ [[ϕ(x̄(ν))]] ⇒ [[ψ(ȳ(ν))]],

[[(∀ t)ϕ(t, x)]] : ν �→
∧

{[[ϕ(t̄(ν′), x̄(ν′))]] : ν′ ∈ Iν(x)},
[[(∃ t)ϕ(t, x)]] : ν �→

∨
{[[ϕ(t̄(ν′), x̄(ν′))]] : ν′ ∈ Iν(x)},

where x := (x1, . . . , xn), y := (y1, . . . , ym), x̄(ν) := (x̄1(ν), . . . , x̄n(ν)), ȳ(ν) :=
(ȳ1(ν), . . . , ȳm(ν)), Iν(x) := {ν′ ∈ I : ν(x) = ν′(x)}, and all free variables of
the formulas ϕ and ψ are listed within t, x1, . . . , xn and t, y1, . . . , ym, respectively.

Note that [[ϕ(x̄(ν))]] depends only on x̄k(ν) = ν(xk) (k := 1, . . . , n). Therefore,
we write [[ϕ(u1, . . . , un)]] rather than [[ϕ(x̄(ν))]] = [[ϕ(x̄1(ν), . . . , x̄n(ν))]] provided
that uk := x̄k(ν) ∈ V(B) (k :=1, . . . , n).

Given a formula ϕ(x1, . . . , xn) of ZFC and members u1, . . . , un of V(B), we
call [[ϕ(u1, . . . un)]] the Boolean truth value of ϕ(u1, . . . , un). We also agree that
the record V(B) |= ϕ(u1, . . . , un) stands for the equality [[ϕ(u1, . . . , un)]] = 1B . In
this event we say that ϕ is satisfied inside V(B) by the assignment of u1, . . . , un
to x1, . . . , xn or simply that ϕ(u1, . . . , un) holds inside V(B). Sometimes, we use
a formula ϕ that is expressed in the natural language; to mark this, we apply the
quotes: V(B) |= “ϕ.”

Observe also that the satisfaction sign |= occasionally inspires the use of
model-theoretic expressions like “V(B) is a Boolean valued model for ϕ” instead
of V(B) |= ϕ, etc.

2.1.7. The above concept of interpretation makes it possible to judge the ele-
ments of V(B). More convenient for this purpose appears however to be a somewhat
richer language than the original language of set theory.

Namely, the alphabet of the new language, the B-language for short, con-
tains an extra constant for each member of V(B). As usual, the elements of V(B)

are identified with the corresponding symbols of constants. We call the formu-
las and sentences of the B-language B-formulas and B-sentences. In this event
each B-formula (B-sentence) results from inserting values of V(B) in place of some
(respectively, all) free variables in a formula of set theory.

We now inspect the simplifications due to the B-language in the definitions
of Boolean truth values in 2.1.6. Namely, the Boolean truth value of a B-sentence
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may be obtained by putting

[[σ ∧ τ ]] := [[σ]] ∧ [[τ ]],
[[σ ∨ τ ]] := [[σ]] ∨ [[τ ]],

[[¬σ]] := [[σ]]∗,
[[σ → τ ]] := [[σ]] ⇒ [[τ ]],

[[(∀x)ϕ(x)]] :=
∧

{[[ϕ(u)]] : u ∈ V(B)},
[[(∃x)ϕ(x)]] :=

∨
{[[ϕ(u)]] : u ∈ V(B)},

where σ and τ are arbitrary B-sentences, while ϕ is a B-formula with a single free
variable x.

A B-sentence σ is true inside V(B) if [[σ]] = 1B , and we write V(B) |= σ.
Without further specification, we apply both linguistic meanings of verity in V(B),
i.e., those given in 2.1.6 and 2.1.7. We also use the same letters for denoting the
variables of B-language and the members of V(B).

If several Boolean algebras, B,C, . . . , are considered simultaneously and there
is a necessity to distinguish between their details then, alongside with [[ϕ]], we write
[[ϕ]]B, [[ϕ]]C , etc.

2.1.8. Theorem. If a ϕ(u1, . . . , un) is provable in predicate calculus then
V(B) |= ϕ(x1, . . . , xn) for all x1, . . . , xn ∈ V(B). In particular, for x, y, z ∈ V(B),
the following hold:

(1) [[x = x]] = 1;
(2) x(y) ≤ [[y ∈ x]] for all y ∈ dom(x);
(3) [[x = y]] = [[y = x]];
(4) [[x = y]] ∧ [[y = z]] ≤ [[x = z]];
(5) [[x ∈ y]] ∧ [[x = z]] ≤ [[z ∈ y]];
(6) [[y ∈ x]] ∧ [[x = z]] ≤ [[y ∈ z]];
(7) [[x = y]] ∧ [[ϕ(x)]] ≤ [[ϕ(y)]] for every B-formula ϕ.

� It is an easy matter to show that the axioms of predicate calculus hold inside
V(B) and the rules of inference preserve satisfaction. Strictly speaking, if some
formulas ϕ1, . . . , ϕn imply ϕ in predicate calculus then [[ϕ1]] ∧ . . . ∧ [[ϕn]] ≤ [[ϕ]].

We now prove (1)–(7).
(1) This is established by induction on the well founded relation y ∈ dom(x).
By way of induction, assume that [[y = y]] = 1 for all y ∈ dom(x). Using

2.1.4 (1), obtain

[[y ∈ x]] =
∨

t∈dom(x)

x(t) ∧ [[t = y]] ≥ x(y) ∧ [[y = y]] ≥ x(y),
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and so, by 1.1.4 (4),

[[x = x]] =
∧

y∈dom(x)

x(y) ⇒ [[y ∈ x]] = 1.

(2) Considering 2.1.4 (1) and (1), for y ∈ dom(x) we find

[[y ∈ x]] ≥ x(y) ∧ [[y = y]] = x(y).

(3) This is immediate from the definitions because of the symmetry of the
formula 2.1.4 (2) defining the Boolean truth value of equality.

Items (4)–(6) are demonstrated by simultaneous induction.
Denote by ρ(x, y, z) := (α, β, γ) ∈ On3 the permutation of the 3-tuple of ordi-

nals ρ(x), ρ(y), and ρ(z) such that α ≥ β ≥ γ. (The class On3 is furnished with
the canonical well-ordering of 1.4.15.)

Take x, y, z ∈ V(B) and assume that inequalities (4)–(6) are true for all u, v, w ∈
V(B) if ρ(u, v, w) < ρ(x, y, z).

We justify the induction step by cases.
(4) Consider t ∈ dom(x). Since [[x = y]] ≤ x(t) ⇒ [[t ∈ y]], from 1.1.4 (3) it

follows that

x(t) ∧ [[x = y]] ≤ [[t ∈ y]],
x(t) ∧ [[x = y]] ∧ [[y = z]] ≤ [[t ∈ y]] ∧ [[y = z]].

On observing that ρ(t, y, z) < ρ(x, y, z) and applying the induction hypothesis for
(6), find

[[t ∈ y]] ∧ [[y = z]] ≤ [[t ∈ z]],
x(t) ∧ [[y = x]] ∧ [[y = z]] ≤ [[t ∈ z]].

Again use 1.1.4 (3) to obtain

[[x = y]] ∧ [[y = z]] ≤ x(t) ⇒ [[t ∈ z]],

implying
[[x = y]] ∧ [[y = z]] ≤

∧

t∈dom(x)

x(t) ⇒ [[t ∈ z]].

Analogously,
[[x = y]] ∧ [[y = z]] ≤

∧

t∈dom(z)

z(t) ⇒ [[t ∈ x]].
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By 2.1.4 (2), conclude that [[x = y]] ∧ [[y = z]] ≤ [[x = z]].
(5) Take t ∈ dom(y). Clearly, ρ(t, x, z) < ρ(x, y, z) and so, by the induction

hypothesis for (4), infer

y(t) ∧ [[t = x]] ∧ [[x = z]] ≤ y(t) ∧ [[t = z]] ≤ [[z ∈ y]].

By 1.1.5 (2), this gives

[[x = z]] ∧
∨

t∈dom(y)

y(t) ∧ [[t = x]] ≤ [[z ∈ y]],

or [[x = z]] ∧ [[x ∈ y]] ≤ [[z ∈ y]].
(6) Take t ∈ dom(x) again to obtain

x(t) ∧ [[x = z]] ≤ [[t ∈ z]],
[[t = y]] ∧ x(t) ∧ [[x = z]] ≤ [[t = y]] ∧ [[t ∈ z]].

Since ρ(t, y, z) < ρ(x, y, z), we may use the induction hypothesis for (5) and 1.1.5 (2)
to derive

x(t) ∧ [[x = z]] ∧ [[t = y]] ≤ [[y ∈ z]],

[[x = z]] ∧
∨

t∈dom(x)

x(t) ∧ [[t = y]] ≤ [[y ∈ z]].

Therefore, by 2.1.4 (1), [[x = z]] ∧ [[y ∈ x]] ≤ [[y ∈ z]].
(7) This is proved by induction on the length of a formula on using the already-

established properties. �
As a corollary to Theorem 2.1.8 appear the following rules for calculating the

Boolean truth values of bounded formulas.

2.1.9. For every B-formula ϕ with a single free variable x and for every u ∈
V(B) the following hold:

[[(∃x ∈ u)ϕ(x)]] =
∨

v∈dom(u)

u(v) ∧ [[ϕ(v)]],

[[(∀x ∈ u)ϕ(x)]] =
∧

v∈dom(u)

u(v) ⇒ [[ϕ(v)]].

� These claims are mutually dual. In other words, replacing ϕ with ¬ϕ and
applying the De Morgan laws, we transform one of the sought formula into the
other. So, it suffices to prove either of the claims, say, the first.
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By 2.1.8 (2),

[[(∃x ∈ u)ϕ(x)]] ≥
∨

v∈dom(u)

u(v) ∧ [[ϕ(v)]].

On the other hand, by 2.1.4 (1) and 2.1.8 (7),

[[(∃x ∈ u)ϕ(x)]] =
∨

t∈V(B)

∨

v∈dom(u)

u(v) ∧ [[t = v]] ∧ [[ϕ(t)]]

≤
∨

v∈dom(u)

u(v) ∧ [[ϕ(v)]],

which completes the proof. �
2.1.10. Comments.

(1) Given a particular formula ϕ of set theory, u1, . . . , un ∈ V(B), and
b ∈ B, we see that the expression [[ϕ(u1, . . . , un)]] = b is again a formula of set
theory.

In ZFC, however, the mapping ϕ �→ [[ϕ]] is not a definable class, admitting only
a metalinguistic definition. That is why we call it a “metafunction.”

(2) Boolean valued universes are used in proving relative consistency
of set-theoretic propositions as follows.

Suppose that some theories T and T ′ are extensions of ZF such that con-
sistency of ZF implies that of T ′. Assume further that we may define a Boolean
algebra B so that T ′ |= “B is a complete Boolean algebra” and T ′ |= [[ϕ]]B = 1
for every axiom ϕ of the theory T . In this case the consistency of ZF implies that
of T (see [11, 84, 209, 241]).

(3) Let Ω be a complete Heyting lattice (see 1.1.8 (3)). Define the
pseudocomplement b∗ of an element b ∈ Ω by the formula x∗ := x ⇒ 0, with
⇒ standing for the relative pseudocomplementation of Ω. Slightly changing the
formulas of 2.1.4, define the truth values [[ · ∈ · ]]Ω and [[ · = · ]]Ω which act from
V(Ω) ×V(Ω) to Ω. Understanding verity in V(Ω) in the same manner as in 2.1.6, it
is possible to show that in this event all theorems of intuitionistic predicate calculus
hold inside V(Ω) (cf. [54, 70, 238, 239]).

2.2. Transformations of a Boolean Valued Universe

Each homomorphism of a Boolean algebra B induces a transformation of the
Boolean valued universe V(B). The topic to be discussed in this section is the
behavior of these transformations and, in particular, the manner in which they
change the Boolean truth value of a formula.
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2.2.1. Assume that π is a homomorphism of B to a complete Boolean alge-
bra C. By recursion on a well founded relation y ∈ dom(x), we define the mapping
π∗ : V(B) → V(C) using the formulas dom(π∗x) := {π∗y : y ∈ dom(x)} and

π∗x : v �→
∨

{π(x(z)) : z ∈ dom(x), π∗z = v}.

If π is injective then π∗ is also injective. Moreover,

π∗x : π∗y �→ π(x(y)) (y ∈ dom(x)).

� It is fully enough to establish that the restriction of π∗ to V (B)
α is injective

for an arbitrary ordinal α. To this end, assume that the claim holds for all β < α.
Let x, y ∈ V

(B)
α be such that π∗x = π∗y. In this event π∗x : π∗z �→ π(x(z))

(z ∈ dom(x)) and π∗y : π∗z �→ π(y(z)) (z ∈ dom(y)). Therefore, we come to the
equality

{(π∗z, π(x(z))) : z ∈ dom(x)} = {(π∗u, π(y(u))) : u ∈ dom(y)}.

Since the sets dom(x) and dom(y) lie in V
(B)
β for some β < α; therefore, π∗ is

injective on each of these sets. Since π is injective, obtain

{(z, x(z)) : z ∈ dom(x)} = {(u, y(u)) : u ∈ dom(y)},

or, which is the same, x = y. �
A homomorphism π : B → C is complete if π (

∨
M) =

∨
π(M) for every set

M ⊂ B.
Throughout this section π is a complete homomorphism from B to a complete

Boolean algebra C.

2.2.2. Theorem. The following hold:
(1) If ρ is a complete homomorphism of C to a complete Boolean alge-

bra D then (ρ ◦ π)∗ = ρ∗ ◦ π∗;
(2) If a homomorphism π is injective (surjective) then the mapping π∗

is injective (respectively, surjective);
(3) [[π∗x = π∗y]]C = π([[x = y]]B) and [[π∗x ∈ π∗y]]C = π([[x ∈ y]]B) for

all x and y ∈ V(B);
(4) [[t ∈ π∗x]]C =

∨
u∈V(B) π([[u = x]]B) ∧ [[t ∈ π∗u]]C for all x ∈ V(B)

and t ∈ V(C).

� (1) Assume that (ρ ◦ π)∗y = (ρ∗ ◦ π∗)y for all y ∈ dom(x). Then, for
u := (ρ ◦ π)∗y with y ∈ dom(x), deduce (cf. 1.1.5 (9)):
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((ρ ◦ π)∗x)u

=
∨

{(ρ ◦ π)(x(z)) : z ∈ dom(x) ∧ (ρ∗ ◦ π∗)z = (ρ∗ ◦ π∗)y}
=

∨{
ρ
(∨

{π(x(z)) : z ∈ dom(x), π∗z = v
})

: v ∈ dom(π∗x), ρ∗v = (ρ∗ ◦ π∗)y
}

=
∨

{ρ((π∗x)(v)) : v ∈ dom(π∗x), ρ∗v = ρ∗(π∗y)}
= (ρ∗(π∗x))(ρ∗(π∗y)) = ((ρ∗ ◦ π∗)x)u.

Therefore, (ρ ◦ π)∗x = ρ∗(π∗x), and the sought result follows from 2.1.3.
(2) The case of an injective π was settled in 2.2.1. Assume now that π is

a surjective mapping. In this case there are a principal ideal B0 of a Boolean
algebra B and a surjection ρ : C → B0 such that ρ−1 coincides with the restriction
π0 of π to B0. If x ∈ V(C) then, by (1), x = I∗Cx = (π0 ◦ ρ)∗x = π∗

0(ρ∗x) ∈ im(π∗
0).

Hence, π∗
0 sends V(B0) onto V(C). Note also that V(B0) ⊂ V(B) and the restriction

of π∗ to V(B0) coincides with π∗
0 .

(3) Proceed by induction on (ρ(x), ρ(y)), assuming that the class On×On is
canonically well ordered (cf. 1.4.15).

Suppose that the formulas in question are fulfilled for all u, v ∈ V(B) provided
that (ρ(u), ρ(v)) < (ρ(x), ρ(y)).

Obviously, max{(ρ(z), ρ(x)), (ρ(z), ρ(y))} < (ρ(x), ρ(y)) if z ∈ dom(x) or z ∈
dom(y). Hence, the following hold (cf. 1.1.5 (2, 9)):

[[π∗x ∈ π∗y]]

=
∨

t∈dom(π∗y)

(π∗y)(t) ∧ [[t = π∗x]] =
∨

z∈dom(y)

(π∗y)(π∗z) ∧ [[π∗z = π∗x]]

=
∨

z∈dom(y)

(∨
{π(y(u)) : u ∈ dom(y), π∗u = π∗z}

)
∧ [[π∗z = π∗x]]

=
∨

z∈dom(y)

∨
{π(y(u)) ∧ [[π∗z = π∗x]] : u ∈ dom(y), π∗u = π∗z}

=
∨

u∈dom(y)

π(y(u)) ∧ π([[u = x]]) = π

( ∨

u∈dom(y)

y(u) ∧ [[u = x]]
)

= π([[x ∈ y]]).

Note that analogous calculations come through in the case of the Boolean truth
value of equality (on successively applying 2.1.4 (1), 2.2.1, 1.1.5 (10), and 2.1.4 (2)):

[[π∗x = π∗y]]



Boolean Valued Universes 53

=
∧

t∈dom(π∗y)

(π∗y)(t) ⇒ [[t ∈ π∗x]] ∧
∧

t∈dom(π∗x)

(π∗x)(t) ⇒ [[t ∈ π∗y]]

=
∧

z∈dom(y)

(π∗y)(π∗z) ⇒ [[π∗z ∈ π∗x]]

∧
∧

z∈dom(x)

(π∗x)(π∗z) ⇒ [[π∗z ∈ π∗y]]

=
∧

z∈dom(y)

∧
{π(y(u)) ⇒ π([[u ∈ x]]) : u ∈ dom(y), π∗u = π∗z}

∧
∧

z∈dom(x)

∧
{π(x(u)) ⇒ π([[u ∈ y]]) : u ∈ dom(x), π∗u = π∗z}

=
∧

u∈dom(x)

π(x(u) ⇒ [[u ∈ y]]) ∧
∧

u∈dom(y)

π(y(u) ⇒ [[u ∈ x]]) = π([[x = y]]).

(4) By (3) and 2.1.8 (4), the following estimates hold for x ∈ V(B) and t ∈ V(C):

[[t ∈ π∗x]]

=
∨

s∈dom(π∗x)

(π∗x)(s) ∧ [[s = t]] =
∨

u∈dom(x)

(π∗x)(π∗u) ∧ [[π∗u = t]]

≤
∨

u∈V(B)

π([[u = x]]) ∧ [[π∗u = t]]

=
∨

u∈V(B)

[[π∗u = π∗x]] ∧ [[π∗u = t]] ≤ [[t ∈ π∗x]],

which completes the proof. �

2.2.3. Theorem. Let ϕ(x1, . . . , xn) be a formula of ZFC, u1, . . . , un ∈ V(B),
and π be a complete homomorphism from B to C. Then the following hold:

(1) If ϕ is a formula of class Σ1 and π is arbitrary then

π([[ϕ(u1, . . . , un)]]B) ≤ [[ϕ(π∗u1, . . . , π
∗un]]C ;

(2) If ϕ is a bounded formula and π is arbitrary, or π is an epimorphism
and ϕ is arbitrary; then

π([[ϕ(u1, . . . , un)]]B) = [[ϕ(π∗u1, . . . , π
∗un)]]C .

� The claim for atomic formulas ensues from 2.2.2.
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We settle the general case by induction on the length of ϕ. A nontrivial step
occurs only when ϕ has the form (∃x)ϕ0 or (∀x)ϕ0. It is in this case that we need
the additional hypotheses about ϕ and π.

(1) Assume that we encounter a bounded universal quantifier in the induction
step; i.e., if ϕ has the form (∀x∈u)ϕ0(x, u1, . . . , un). Then, recalling 1.1.5 (3, 10),
proceed with the following chain of equalities:

[[ϕ(π∗u, π∗u1, . . . , π
∗un)]]

=
∧

x∈dom(π∗u)

(π∗u)(x) ⇒ [[ϕ0(x, π∗u1, . . . , π
∗un)]]

=
∧

x∈dom(u)

(π∗u)(π∗x) ⇒ [[ϕ0(π∗x, π∗u1, . . . , π
∗un)]]

=
∧

x∈dom(u)

∧
{π(u(z))⇒ [[ϕ0(π∗x, π∗u1, . . . , π

∗un)]] : z ∈ dom(u), π∗z = π∗x}

=
∧

x∈dom(u)

π(u(x) ⇒ [[ϕ0(x, u1, . . . , un)]])

= π[[(∀x ∈ u)ϕ0(x, u1, . . . , un)]] = π[[ϕ(u, u1, . . . , un)]].

Furthermore, in the case of an unbounded existential quantifier we immediately
deduce from definitions that

[[(∃x)ϕ0(x, π∗u1, . . . , π
∗un)]]

≥
∨

{[[ϕ0(x, π∗u1, . . . , π
∗un)]] : x ∈ im(π∗)}

=
∨

{[[ϕ0(π∗u, π∗u1, . . . , π
∗un)]] : u ∈ V(B)}

=
∨

{π([[ϕ0(u, u1, . . . , un)]]) : u ∈ V(B)} = π([[(∃x)ϕ0(x, u1, . . . , un)]]).

(2) Note first of all that if π is a surjection then π∗ is a surjection too; i.e.,
im(π∗) = V(C) (cf. 2.2.2 (2)). Therefore, considering the formula ϕ := (∃x)ϕ0,
obtain

[[ϕ(π∗u1, . . . , π
∗un)]]

= ∨{[[ϕ0(x, π∗u1, . . . , π
∗un)]] : x ∈ V(C) = im(π∗)}

= ∨{[[ϕ0(π∗u, π∗u1, . . . , π
∗un)]] : u ∈ V(B)}

= ∨{π([[ϕ0(u, u1, . . . , un)]]) : u ∈ V(B)} = π([[ϕ(u1, . . . , un)]]).

The same arguments apply to each formula ϕ of type (∀x)ϕ0(x, u1, . . . , un).
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If the existential quantifier under study is bounded, i.e., if ϕ(u1, . . . , un) has the
form (∃x ∈ u)ϕ0(x, u1, . . . , un) with u, u1, . . . , un ∈ V(B); then (see the definitions
and 1.1.5 (2, 9)) we may proceed as follows:

[[ϕ(π∗u, π∗u1, . . . , π
∗un)]]

=
∨

x∈dom(π∗u)

(π∗u)(x) ∧ [[ϕ0(x, π∗u1, . . . , π
∗un)]]

=
∨

x∈dom(u)

(π∗u)(π∗x) ∧ [[ϕ0(π∗x, π∗u1, . . . , π
∗un)]]

=
∨

x∈dom(u)

∨{
π(u(z)) ∧ [[ϕ0(π∗x, π∗u1, . . . , π

∗un)]] : z ∈ dom(u), π∗z = π∗x
}

=
∨

z∈dom(u)

π (u(z) ∧ [[ϕ0(z, u1, . . . , un)]]) = π([[ϕ(u, u1, . . . , un)]]).

The case of a bounded universal quantifier was settled earlier. �
2.2.4. Corollary. Assume that π, ϕ, and u1, . . . , un are the same as in 2.2.3.

Assume further that one of the following conditions is fulfilled:
(1) ϕ(x1, . . . , xn) is a formula of class Σ1 and π is arbitrary;
(2) π is an epimorphism and ϕ(x1, . . . , xn) is arbitrary.

Then
V(B) |= ϕ(u1, . . . , un) → V(C) |= ϕ(π∗u1, . . . , π

∗un).

2.2.5. Corollary. Assume that π, ϕ, and u1, . . . , un are the same as in 2.2.3.
Assume further that one of the following conditions is fulfilled:

(1) ϕ is bounded and π is a monomorphism;

(2) π is an isomorphism and ϕ is arbitrary.
Then

V(B) |= ϕ(u1, . . . , un) ↔ V(C) |= ϕ(π∗u1, . . . , π
∗un).

2.2.6. We now consider an important particular case of the situation under
study.

Let B0 be a regular subalgebra of a complete Boolean algebra B. This implies
that B0 is a complete subalgebra, and the supremum and infimum of every subset of
B0 are the same irrespectively of whether they are calculated in B0 or B. In these
circumstances V(B0) ⊂ V(B). Moreover, denoting by ı the identical embedding of
B0 in B, we then see that ı∗ is an embedding of V(B0) to V(B).

If ϕ(x1, . . . , xn) is a bounded formula and u1, . . . , un ∈ V(B0) then it follows
from 2.2.5 (1) that

V(B0) |= ϕ(u1, . . . , un) ↔ V(B) |= ϕ(u1, . . . , un).
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Since the two-valued algebra 2 := {0, 1} may be viewed as a regular subalgebra
of the Boolean algebra B; therefore, the above applies to the universe V(2).

We shall see in the sequel that V(2) is naturally isomorphic to the von Neumann
universe V.

2.2.7. Given an arbitrary x ∈ V, define the element x∧ ∈ V(2) ⊂ V(B) by
recursion on the well founded relation y ∈ x. To this end, put

dom(x∧) := {y∧ : y ∈ x}, im(x∧) := {1B}.
From 2.2.2 (3) it follows for x, y ∈ V that

[[x∧ ∈ y∧]]B ∈ 2, [[x∧ = y∧]]B ∈ 2.

The mapping x �→ x∧ (x ∈ V) is the canonical embedding of V into the Boolean
valued universe V(B). The elements of V(B) of the form x∧ with x ∈ V are standard.
Sometimes we call x∧ the standard name of x in V(B).

2.2.8. Theorem. The following hold:
(1) If x ∈ V and y ∈ V(B) then

[[y ∈ x∧]] =
∨

{[[y = u∧]] : u ∈ x};

(2) If x, y ∈ V then

x ∈ y ↔ V(B) |= x∧ ∈ y∧, x = y ↔ V(B) |= x∧ = y∧;

(3) The mapping x �→ x∧ is injective;
(4) To each y ∈ V(2) there is a unique element x ∈ V such that

V(B) |= x∧ = y;

(5) If π is a complete homomorphism from B to C then π∗x∧ = x
∧
∧,

where x ∈ V and ( · )∧
∧ is the canonical embedding of V to V(C).

� (1) Straightforward calculation, together with the definitions of 2.1.4 and
2.2.7, gives

[[y ∈ x∧]] =
∨

t∈dom(x∧)

x∧(t) ∧ [[t = y]]

=
∨

t∈x
x∧(t∧) ∧ [[t∧ = y]] =

∨

t∈x
[[t∧ = y]].

(2) Assume that, for all z ∈ V with rank(z) < rank(y), the following hold:
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(∀x)(x ∈ z ↔ [[x∧ ∈ z∧]] = 1),
(∀x)(x = z ↔ [[x∧ = z∧]] = 1),
(∀x)(z ∈ x↔ [[z∧ ∈ x∧]] = 1).

By (1), [[x∧ ∈ y∧]] =
∨{[[t∧ = x∧]] : t ∈ y}. Since rank(t) < rank(y) for t ∈ y, by the

induction hypothesis we conclude that [[x∧ ∈ y∧]] = 1 if and only if [[t∧ = x∧]] = 1
or t = x for some t ∈ y.

By definition, we then have

[[x∧ = y∧]] =
∧

t∈x
[[t∧ ∈ y∧]] ∧

∧

s∈y
[[s∧ ∈ x∧]]

and rank(s) < rank(y) for s ∈ y. Therefore, from the above and the induction
hypothesis, deduce that the right-hand side of the last equality is equal to unity if
and only if t ∈ y for all t ∈ x and s ∈ x for all s ∈ y; i.e., if x = y. Appealing to (1)
again, obtain

[[y∧ ∈ x∧]] =
∨

{[[y∧ = t∧]] : t ∈ x}.
Hence, [[y∧ ∈ x∧]] = 1 holds only if [[y∧ = t∧]] = 1 for some t ∈ x. The last
proposition amounts, by virtue of the above, to the proposition (∃ t ∈ x)(t = y)
stating the membership y ∈ x.

(3) This ensues from (2).
(4) Assume that y ∈ V(2) and to each t ∈ dom(y) there is an element u in V

such that [[t = u∧]] = 1. Define x ∈ V by the equality

x := {u ∈ V : (∃ t ∈ dom(y))(y(t) = 1 ∧ [[u∧ = t]] = 1)}.

Granted u ∈ x, obtain

[[u∧ ∈ y]] =
∨

t∈dom(y)

y(t) ∧ [[t = u∧]] = 1.

Moreover, using the induction hypothesis, deduce for t ∈ dom(y) that

y(t) ≤ [[t ∈ x∧]] =
∨

u∈x
[[t = u∧]].

Summarizing the above, conclude

[[x∧ = y]] =
∧

t∈dom(y)

y(t) ⇒ [[t ∈ x∧]] ∧
∧

u∈x
[[u∧ ∈ y]] = 1.
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(5) Proceed by induction on the well founded relation y ∈ x.

Assume that (∀ y ∈ x)(π∗y∧ = y
∧
∧). Then

dom(π∗x∧) = {y
∧
∧ : y ∈ x} = dom(x

∧
∧).

Therefore, granted y ∈ x, observe

(π∗x∧)(y
∧
∧) = (π∗x∧)(π∗y∧)

=
∨

{π(x∧(y∧)) : z ∈ dom(x∧) ∧ π∗z = π∗y∧}

≥ π(x∧(y∧)) = 1B = x
∧
∧(y

∧
∧).

Finally, π∗x∧ = x
∧
∧, which justifies the induction step. �

2.2.9. Suppose that u1, . . . , un ∈ V, and ϕ(x1, . . . , xn) is a formula of ZFC.
Then

(1) ϕ(u1, . . . , un) ↔ V(2) |= ϕ(u∧
1 , . . . , u

∧
n);

(2) If ϕ is a bounded formula then

ϕ(u1, . . . , un) ↔ V(B) |= ϕ(u∧
1 , . . . , u

∧
n);

(3) If ϕ is a formula of class Σ1 then

ϕ(u1, . . . , un) → V(B) |= ϕ(u∧
1 , . . . , u

∧
n).

� Note that only (1) has to be proven, since both (2) and (3) ensue from (1),
2.2.4 (1) and 2.2.5 (1).

Considering atomic formulas, find that (1) is a consequence of 2.2.8 (2). In-
duction on the length of ϕ is nontrivial only when we encounter a new existen-
tial quantifier. We thus assume that ϕ has the form (∃x)ψ(x, u1, . . . , un) and
[[ϕ(u∧

1 , . . . , u
∧
n)]] = 1, with (1) holding for ψ. Then

1 =
∨

{[[ψ(u, u∧
1 , . . . , u

∧
n)]]2 : u ∈ V(2)}.

Therefore, [[ψ(v, u∧
1 , . . . , u

∧
n)]] = 1 for some v ∈ V(2). By 2.2.8 (4), there is an

element u0 in V such that [[u∧
0 = u]] = 1. Hence, from 2.1.8 (7) we obtain

1 = [[ψ(v, u∧
1 , . . . , u

∧
n)]] ∧ [[v = u∧

0 ]] ≤ [[ψ(u∧
0 , . . . , u

∧
n)]].

By the induction hypothesis, ψ(u0, . . . , un). Consequently, ϕ(u1, . . . , un) holds too.
Conversely, if ϕ(u1, . . . , un) then ψ(u0, u1, . . . , un) for some u0 ∈ V. By the in-

duction hypothesis, [[ψ(u∧
0 , u

∧
1 , . . . , u

∧
n)]] = 1. Since [[(∃x)ψ(x, u∧

1 , . . . , u
∧
n)]] ≥ [[ψ(u∧

0 ,
u∧

1 , . . . , u
∧
n)]] by definition; therefore, [[ψ(u∧

1 , . . . , u
∧
n)]] = 1. �
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2.2.10. Comments.

(1) Let U be an ultrafilter in a Boolean algebra B. Denote by U′ the
ideal dual of U; i.e., U′ := {b∗ : b ∈ U}. Then the factor algebra B/U′ has two
elements and we may identify it with the Boolean algebra 2 := {0, 1}.

The factor homomorphism π : B → 2 is not complete in general, and so
we cannot use 2.2.4 and 2.2.5 for revealing relationship between the truth values in
V(B) and V(2). If, however, π is complete (i.e., U is a principal ultrafilter) then from
2.2.5 it is evident that for every formula ϕ(x1, . . . , xn) and all u1, . . . , un ∈ V(B)

we have
V(2) |= ϕ(π∗u1, . . . , π

∗un) ↔ [[ϕ(u1, . . . , un)]] ∈ U,

since for b ∈ B the equality π(b) = 1 and the membership b ∈ U are equivalent.
(2) Using factorization, we may arrange a model other than V(2) given

the universe V(B) and an ultrafilter U. Indeed, equip V(B) with the relation ∼U by
the formula

∼U := {(x, y) ∈ V(B) ×V(B) : [[x = y]] ∈ U}.
Obviously, ∼U is an equivalence on V(B). Let V(B)/U stand for the factor class
(see 1.5.8) of V(B) by ∼U. We also endow V(B)/U with the binary relation

∈U := {(x̃, ỹ) : x, y ∈ V(B) ∧ [[x ∈ y]] ∈ U},

where x �→ x̃ is the factor mapping from V(B) to V(B)/U. It is possible to demon-
strate that

V(B)/U |= ϕ(x̃1, . . . , x̃n) ↔ [[ϕ(x1, . . . , xn)]] ∈ U

for all x2, . . . , xn ∈ V(B) and every formula ϕ.
The reader familiar with the theory of ultraproducts will recognize in (2) the

celebrated �Loš Theorem (cf. [10, 27, 48, 83]). Other in-depth ties with the classical
model-theoretic constructions may also be revealed.

In (3) and (4) we arrange ultraproducts by factorizing an appropriate Boolean
valued universe.

(3) Let T be a nonempty set consisting of some (not necessarily all)
principal ultrafilters on a Boolean algebra B. As usual, denote by VT the class of
all mappings from T to V. By 2.2.8 (4), to each x ∈ V(2) there is a unique element
x∨ ∈ V such that [[(x∨)∧ = x]] = 1. We now define a mapping h : V(B) → VT by
putting

h(x) := {(t, π∗
t x) : t ∈ T} (x ∈ V(B)),

where πt is the complete homomorphism from B to 2 determined by the ultrafilter t;
i.e., πt(b) = 1 if b ∈ t and πt(b) = 0 if b ∈ t′. It is possible to demonstrate that h is
a surjective mapping. On the other hand, h is injective if and only if each element
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b ∈ B belongs to some ultrafilter t ∈ T ; i.e., (∀ b ∈ B)(∃ t ∈ T )(b ∈ t) (which means
that T defines a dense subset of the Stone space of the algebra B, or that B is
atomic, or that B is isomorphic to the boolean P(T ) of T ).

The claim of injection is in fact the above mentioned �Loš Theorem. In this
case for all u1, . . . , un ∈ V(B) and every formula ϕ(x1, . . . , xn) we have

[[ϕ(u1, . . . , un)]] ≤ b↔ (∀ t ∈ T )([[ϕ(π∗
t u1, . . . , π

∗
t un)]] = 1 → b ∈ t).

(4) Assume that T is a set and U is an ultrafilter on the boolean P(T )
of T . Let V(B)/U be the conventional ultrapower of the class V over U with the
factor mapping g : VT → VT/U (cf. 1.5.7). Put λ(x̃) := g ◦ h(x), with h as
in (3) and x �→ x̃ the same as in (3). We have so defined some bijection λ between
V(P(T ))/U and VT/U. In this event, given a formula ϕ(x1, . . . , xn) and functions
u1, . . . , un ∈ VT , note

VT/U |= ϕ(ũ1, . . . , ũn) ↔ {t ∈ T : ϕ(u1(t), . . . , un(t))} ∈ U.

(5) It is worthwhile to compare 2.2.4 and 2.2.5 with the following propo-
sition.

Let M be a transitive model of ZFC; i.e., M is a transitive class that is a model
of ZFC. Assume further that ϕ(x1, . . . , xn) is a bounded formula, ψ(x1, . . . , xn) is
a formula of class Σ1, and u1, . . . , un ∈M . Then

(M |= ϕ(u1, . . . , un)) ↔ ϕ(u1, . . . , un),
(M |= ψ(u1, . . . , un)) → ψ(u1, . . . , un).

2.3. Mixing and the Maximum Principle

Consider a family of functions (fξ)ξ∈Ξ with domain A. If (Aξ)ξ∈Ξ is a disjoint
family of subsets of A then we may define on A the function f whose restriction to
Aξ coincides with the restriction of fξ to Aξ for all ξ ∈ Ξ. This function is naturally
called the disjoint mixing of (fξ)ξ∈Ξ by (Aξ)ξ∈Ξ.

Every Boolean valued universe is complete in the sense that it contains all
disjoint mixings of families of its elements. This peculiarity allows us to construct
various special elements inside V(B). We will now elaborate details.

2.3.1. A disjoint subset of a Boolean algebra is an antichain. In other words,
a subset A of B is an antichain provided that a1∧a2 = 0 for all distinct a1, a2 ∈ A.
Accordingly, a family (aξ)ξ∈Ξ is called an antichain if aξ ∧ aη = 0 whenever ξ �= η
for ξ, η ∈ Ξ.

An antichain A in B is a partition of an element b ∈ B (and so a partition of
unity when b is the unity of B) provided that b =

∨
A.
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Take an antichain (bξ)ξ∈Ξ in a Boolean algebra B and a family (xξ)ξ∈Ξ in the
universe V(B). The disjoint mixing or simply the mixing of (xξ) by (bξ) (or with
respect to (bξ) or even with probabilities (bξ)) is an element x in V(B) meeting the
conditions

dom(x) :=
⋃

{dom(xξ) : ξ ∈ Ξ},
x(t) :=

∨
{bξ ∧ xξ(t) : ξ ∈ Ξ} (t ∈ dom(x)).

The last equality implies that xξ(t) = 0 for t ∈ dom(x) − dom(xξ). Since α :=
supξ∈Ξ ρ(xξ) ∈ On; therefore, dom(x) ⊂ V(B)

α+1. Hence, the above formula indeed
determines a certain element x ∈ V(B). The following symbolic notation is common:
mixξ∈Ξ(bξxξ) := mix{bξxξ : ξ ∈ Ξ} := x.

In order to study the basic properties of mixing, we start with proving an aux-
iliary fact.

2.3.2. Take x ∈ V(B) and b ∈ B. Define the function bx by the rules:

dom(bx) := dom(x), bx : t �→ b ∧ x(t) (t ∈ dom(x)).

Then bx ∈ V(B); and, for all x, y ∈ V(B), the following hold:

[[x ∈ by]] = b ∧ [[x ∈ y]], [[bx = by]] = b⇒ [[x = y]].

� The first equality follows from straightforward calculation of Boolean truth
values on using the infinite distributive law 1.1.5 (2).

Indeed,

[[x ∈ by]] =
∨

t∈dom(by)

(by)(t) ∧ [[t = x]]

= b ∧
∨

t∈dom(y)

y(t) ∧ [[t = x]] = b ∧ [[x ∈ y]].

Use the preceding equality and successively apply 1.1.4 (2), 1.1.5 (6), 1.1.4 (4),
1.1.4 (2), and 1.1.5 (6) to derive the next chain of equalities

[[bx = by]]

=
∧

t∈dom(by)

(by)(t) ⇒ [[t ∈ bx]] ∧
∧

t∈dom(bx)

(bx)(t) ⇒ [[t ∈ by]]
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=
∧

t∈dom(y)

(b ∧ y(t))⇒(b ∧ [[t ∈ x]])

∧
∧

t∈dom(x)

(b ∧ x(t))⇒(b ∧ [[t ∈ y]])

=
∧

t∈dom(y)

((b ∧ y(t)) ⇒ b) ∧ (b ∧ y(t)) ⇒ [[t ∈ x]])

∧
∧

t∈dom(x)

((b ∧ x(t)) ⇒ b) ∧ ((b ∧ x(t)) ⇒ [[t ∈ y]])

=
∧

t∈dom(y)

b⇒ (y(t) ⇒ [[t ∈ x]]) ∧
∧

t∈dom(x)

b⇒ (x(t) ⇒ [[t ∈ y]])

= b⇒ [[x = y]],

which completes the proof. �
2.3.3. Theorem (the mixing principle). Assume that (bξ)ξ∈Ξ is an antichain

in B and (xξ)ξ∈Ξ is a family in V(B). Put x := mixξ∈Ξ(bξxξ). Then

[[x = xξ]] ≥ bξ (ξ ∈ Ξ).

Moreover, if (bξ)ξ∈Ξ is a partition of unity and an element y ∈ V(B) obeys the
condition [[y = xξ]] ≥ bξ for all ξ ∈ Ξ then [[x = y]] = 1.

� By the definition of mixing, bξx = bξxξ for all ξ ∈ Ξ. Applying 2.3.2, deduce

1 = [[bξx = bξxξ]] = bξ ⇒ [[xξ = x]].

Therefore, [[x = xξ]] ≥ bξ for all ξ ∈ Ξ by 1.1.4 (4).
Assume now that (bξ) is a partition of unity and [[y = xξ]] ≥ bξ (ξ ∈ Ξ). By

2.1.8 (4), note then that

bξ ≤ [[x = xξ]] ∧ [[xξ = y]] ≤ [[x = y]] (ξ ∈ Ξ).

Hence, observe
1 =

∨
{bξ : ξ ∈ Ξ} ≤ [[x = y]] ≤ 1,

so completing the proof. �
2.3.4. Let x ∈ V(B). Define x̄ ∈ V(B) by the rule

dom(x̄) := dom(x), x̄(t) := [[t ∈ x]] (t ∈ dom(x)).

Then V(B) |= x = x̄.
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� The aim can be achieved by performing the following simple calculations
which use the definitions of 2.1.4 as well as 1.1.4 (4) and 2.1.8 (2):

[[x = x̄]]

=
∧

t∈dom(x)

x(t) ⇒ [[t ∈ x̄]] ∧
∧

t∈dom(x̄)

[[t ∈ x]] ⇒ [[t ∈ x]]

=
∧

t∈dom(x)

x(t) ⇒
( ∨

u∈dom(x̄)

x̄(u) ∧ [[u = t]]
)

≥
∧

t∈dom(x)

x(t) ⇒ [[t ∈ x]] = 1.

This ends the proof. �
2.3.5. Assume given a partition of unity (bξ)ξ∈Ξ ⊂ B and a family (xξ)ξ∈Ξ ⊂

V(B). Put x := mixξ∈Ξ(bξxξ). Then the following hold:
(1) If (x′ξ)ξ∈Ξ ⊂ V(B) and V(B) |= xξ = x′ξ (ξ ∈ Ξ) then

V(B) |= x = mix
ξ∈Ξ

(bξx′ξ);

(2) If an element y ∈ V(B) is such that dom(y) = dom(x) and

y(t) :=
∨

ξ∈Ξ

bξ ∧ [[t ∈ xξ]] (t ∈ dom(y)),

then V(B) |= x = y.

� Put x′ := mixξ∈Ξ(bξx′ξ). By hypothesis,

bξ ≤ [[xξ = x′ξ]] ∧ [[xξ = x]] ∧ [[x′ξ = x′]] ≤ [[x = x′]],

and so [[x = x′]] = 1. Claim (2) follows from (1) and 2.3.4. �
2.3.6. If b ∈ B and x ∈ V(B) then

[[bx = x]] = b ∨ [[x = ∅]], [[bx = ∅]] = b∗ ∨ [[x = ∅]].

In particular,
V(B) |= bx = mix{bx, b∗∅}.

� Note that [[t ∈ bx → t ∈ x]] = 1 since, by virtue of 2.3.2, [[t ∈ bx]] = b ∧ [[t ∈
x]] ≤ [[t ∈ x]]. Therefore, [[bx = x↔ (∀ t)(t ∈ x→ t ∈ bx)]] = 1. Using this equality,
proceed with the calculation
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[[bx = x]] =
∧

t∈V(B)

[[t ∈ x]] ⇒ [[t ∈ bx]]

=
∧

t∈V(B)

[[t ∈ x]]∗ ∨ (b ∧ [[t ∈ x]])

=
∧

t∈V(B)

(b ∨ [[t ∈ x]]∗) ∧ ([[t ∈ x]]∗ ∨ [[t ∈ x]])

=
∧

t∈V(B)

b ∨ [[t ∈ x]]∗ = b ∨
∧

t∈V(B)

[[t ∈ x]]∗

= b ∨ [[(∀ t)(t /∈ x)]] = b ∨ [[x = ∅]].

On the other hand, appealing to 2.3.2 again and using the equality b∅ = ∅, conclude
that

b∗ ∨ [[x = ∅]] = b⇒ [[x = ∅]] = [[bx = b∅]] = [[bx = ∅]]. �
2.3.7. Assume that (bξ) is a partition of unity in B and let a family (xξ) ⊂

V(B) be such that V(B) |= xξ �= xη for all ξ �= η. Then there is an element x in
V(B) satisfying [[x = xξ]] = bξ for all ξ.

� Put x := mix(bξxξ) and aξ := [[x = xξ]]. By hypothesis,

aξ ∧ aη = [[x = xξ]] ∧ [[xη = x]] ≤ [[xξ �= xη]]∗ = 0

for ξ �= η. Moreover, by the properties of mixing, bξ ≤ aξ for all ξ. Hence, (aξ) is
also a partition of unity in B.

On the other hand,

b∗ξ =
∨

η �=ξ
bη ≤

∨

η �=ξ
aη = a∗ξ ,

and so b∗ξ ≤ a∗ξ → bξ ≥ aξ. Therefore, the partitions of unity (bξ) and (aξ)
coincide. �

The following fact whose proof rests on mixing a two-element set often makes
it possible to diminish bulky calculations.

2.3.8. Consider B-formulas ϕ(x) and ψ(x). Assume that [[ϕ(u0)]] = 1 for some
u0 ∈ V(B). Then

[[(∀x)(ϕ(x) → ψ(x))]] =
∧

{[[ψ(u)]] : u ∈ V(B), [[ϕ(u)]] = 1},
[[(∃x)(ϕ(x) ∧ ψ(x))]] =

∧
{[[ψ(u)]] : u ∈ V(B), [[ϕ(u)]] = 1}.

� Prove the first equality.
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To begin with, it is evident (cf. 2.1.7) that

c := [[(∀x)(ϕ(x) → ψ(x))]] =
∧

t∈V(B)

[[ϕ(t)]] ⇒ [[ψ(t)]]

≤
∧

t∈V(B), [[ϕ(t)]]=1

[[ϕ(t)]]∗ ∨ [[ψ(t)]] =
∨

t∈V(B), [[ϕ(t)]]=1

[[ψ(t)]] =: d.

To show the reverse inequality d ≤ c, choose an arbitrary element t ∈ V(B) and
put u := mix{bt, b∗u0}, where b := [[ϕ(t)]]. Using 2.1.8 (7) and 2.3.3, proceed with
estimation

b ≤ [[ϕ(t)]] ∧ [[t = u]] ≤ [[ϕ(u)]],
b∗ ≤ [[ϕ(u0)]] ∧ [[u = u0]] ≤ [[ϕ(u)]].

Therefore, [[ϕ(u)]] = 1.
Furthermore, by the same considerations,

b ∧ [[ψ(u)]] ≤ [[u = t]] ∧ [[ψ(u)]] ≤ [[ψ(t)]].

Hence, the following estimates hold:

[[ψ(u)]] ≤ b∗ ∨ (b ∧ [[ψ(u)]]) ≤ b∗ ∨ [[ψ(t)]]
= b⇒ [[ψ(t)]] = [[ϕ(t)]] ⇒ [[ψ(t)]].

Since d ≤ [[ψ(u)]]; therefore, d ≤ [[ϕ(t)]] ⇒ [[ψ(t)]] (t ∈ V(B)).
Passing to the infimum over t on the right-hand side of the last inequality, find

d ≤ c.
The second equality under proof is dual to the first and so it is easy to check

on applying the De Morgan laws (cf. 1.1.2). �
2.3.9. We intend now to establish the key result of the present section, the

maximum principle, which asserts that the least upper bound is attained at some
u0 ∈ V(B) in the formula

[[(∃x)ϕ(x)]] =
∨

{[[ϕ(u)]] : u ∈ V(B)}.

To begin with, recall a certain fundamental property of complete Boolean al-
gebras.

Let B be a complete Boolean algebra. A subset E of B minorizes a subset B0

of B or is a minorant for B0 if to each 0 < b ∈ B0 there is some x in E such that
0 < x ≤ b. It is also in common parlance to call E a minorizing, or minorant, or
coinitial set to B0.
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(1) Theorem (the exhaustion principle). LetM be a nonempty subset
of a complete Boolean algebra B. Assume given a subset E of B that minorizes
the band B0 of B generated by M . Then some antichain E0 in E exists such that∨
E0 =

∨
M and to each x ∈ E0 there is an element y in M satisfying x ≤ y.

� Consider the set A of all antichains A obeying the following conditions: (a)
A ⊂ E; (b) to each x ∈ A there is some y ∈M satisfying x ≤ y.

If 0 �= y ∈M then, by hypothesis, y ≥ x for some 0 �= x ∈ E. Hence, {x} ∈ A
and A is nonempty. The inclusion ordered set A clearly obeys the hypotheses of
the Kuratowski–Zorn Lemma. Therefore, there is a maximal element E0 ∈ A.

Show that the elements b0 :=
∨
E0 and b :=

∨
M coincide. It follows from the

definition of A that b0 ≤ b. If b0 �= b, then there are elements 0 �= x0 ∈ B and
x ∈M such that x0∧b0 = 0 and x0 ≤ x. By hypothesis, 0 < y ≤ x for some y ∈ E.

The set E0∪{y} belongs to A and has essentially more elements than E0. This
contradicts the fact that E0 is minimal, and so b0 = b. �

(2) Corollary. To each nonempty set M ⊂ B, there is an antichain
A ⊂ B with the following properties:

∨
A =

∨
M and, given x ∈ A, we may find y

in M such that x ≤ y.

� Choose E :=
⋃
y∈M [0, y] as a minorant for M and appeal to (1). �

2.3.10. Theorem (the maximum principle). Assume given u1, . . . , un ∈ V(B)

and a formula ϕ(x, x1, . . . , xn) of ZFC. Then there is an element u0 ∈ V(B) such
that

[[(∃x)ϕ(x, u1, . . . , un)]] = [[ϕ(u0, u1, . . . , un)]].

In particular, if V(B) |= (∃x)ϕ(x, u1, . . . , un) then V(B) |= ϕ(u0, u1, . . . , un) for
some u0 ∈ V(B).

� By definition,

b := [[(∃x)ϕ(x, u1, . . . , un)]] =
∨

u∈V(B)

[[ϕ(u, u1, . . . , un)]].

The class A := {[[ϕ(u, u1, . . . , un)]] : u ∈ V(B)} is a subset of the Boolean algebra B.
By 2.3.9 (2), there are a partition (bξ)ξ∈Ξ of b and a family (uξ)ξ∈Ξ in V(B) obeying
the following conditions:

bξ ≤ [[ϕ(uξ, u1, . . . , un)]] (ξ ∈ Ξ), b =
∨

{[[ϕ(uξ, u1, . . . , un)]] : ξ ∈ Ξ}.

Put u0 := mixξ∈Ξ(bξuξ) and recall that bξ ≤ [[u0 = uξ]] for all ξ ∈ Ξ by 2.3.3.
Obviously,

[[ϕ(u0, u1, . . . , un)]] ≤ b.
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On the other hand, applying 2.1.8 (7), obtain

bξ ≤ [[u0 = uξ]] ∧ [[ϕ(uξ, u1, . . . , un)]] ≤ [[ϕ(u0, . . . , un)]].

Therefore,
[[ϕ(u0, . . . , un)]] ≥

∨

ξ∈Ξ

bξ = b.

The second claim of the theorem is an immediate consequence of the first. �

2.4. The Transfer Principle

In this section we show that the universe V(B) over a complete Boolean al-
gebra B, together with the Boolean truth values [[ · ∈ · ]] and [[ · = · ]], serves as
a Boolean valued model of ZFC. In other words, we prove the following theorem.

2.4.1. Theorem (the transfer principle). Every theorem of ZFC holds inside
V(B); in symbols, V(B) |= ZFC.

The demonstration of this theorem consists in proving the formulas V(B) |=
ZFk for k := 1, 2, . . . , 6 and, finally, V(B) |= AC. Most effort is put into the routine
calculation of Boolean truth values which we give in full detail for the sake of rigor
and completeness.

2.4.2. The axiom of extensionality ZF1 holds inside V(B):

V(B) |= (∀x)(∀ y)(x = y ↔ (∀ z)(z ∈ x↔ z ∈ y)).

� The proof is immediate from 2.1.9 and the definition of the Boolean truth
value of equality 2.1.4 (2).

Indeed, given x and y in V(B), put

c := c(x, y) := [[(∀ z ∈ x)(z ∈ y)]] =
∧

z∈dom(x)

x(z) ⇒ [[z ∈ y]].

Obviously, c(x, y) ∧ c(y, x) = [[x = y]]. On the other hand,

c(x, y) ∧ c(y, x) = [[(∀ z)(z ∈ x↔ z ∈ y)]].

Hence, by 1.1.4 (5),

[[x = y ↔ (∀ z)(z ∈ x↔ z ∈ y)]] = 1 (x, y ∈ V(B)).

Taking infima over x and y, complete the proof. �
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2.4.3. The axiom of union ZF2 holds inside V(B):

V(B) |= (∀x)(∃ y)(∀ z)(z ∈ y ↔ (∃u ∈ x)(z ∈ u)).

� Given x ∈ V(B), define y ∈ V(B) by the formulas

dom(y) :=
⋃

{dom(u) : u ∈ dom(x)},
y(t) := [[(∃u ∈ x)(t ∈ u)]] (t ∈ dom(y)).

It suffices to show that [[y =
⋃
x]] = 1. By 2.1.9,

[[y ⊂
⋃
x]] = [[(∀ t ∈ y)(∃u ∈ x)(t ∈ u)]]

=
∧

t∈dom(y)

[[(∃u ∈ x)(t ∈ u)]] ⇒ [[(∃u ∈ x)(t ∈ u)]] = 1.

Granted u ∈ dom(x) and z ∈ dom(u) and recalling 2.1.8 (2) and 2.1.9, observe that

x(u) ∧ u(z) ≤ x(u) ∧ [[z ∈ u]] ≤
∨

u∈dom(x)

x(u) ∧ [[z ∈ u]]

= [[(∃u ∈ x)(z ∈ u)]] = y(z) ≤ [[z ∈ y]].

The above formula yields x(u) ⇒ (u(z) ⇒ [[z ∈ y]]) = 1 (cf. 1.1.4 (2–4)). Using this
equality together with 1.1.5 (6) and 2.1.9, proceed with the calculation

[[
⋃
x ⊂ y]] = [[(∀u ∈ x)(∀ z ∈ u)(z ∈ y)]]

=
∧

u∈dom(x)

x(u) ⇒
( ∧

z∈dom(u)

u(z) ⇒ [[z ∈ y]]
)

=
∧

u∈dom(x)

∧

z∈dom(u)

x(u) ⇒ (u(z) ⇒ [[z ∈ y]]) = 1.

Therefore, [[y =
⋃
x]] = 1, and so

[[(∃u)(u =
⋃
x)]] =

∨

u∈V(B)

[[u =
⋃
x]] ≥ [[y =

⋃
x]] = 1.

Passing to the infimum over x ∈ V(B), find the desired result:

[[(∀x)(∃ y)(y =
⋃
x)]] =

∧

x∈V(B)

[[(∃ y)(y =
⋃
x)]] = 1. �



Boolean Valued Universes 69

2.4.4. The axiom of powerset ZF3 holds inside V(B):

V(B) |= (∀x)(∃ y)(∀ z)(z ∈ y ↔ z ⊂ x).

� Given x ∈ V(B), define y ∈ V(B) as follows:

dom(y) := Bdom(x),

y(z) := [[z ⊂ x]] (z ∈ dom(y)).

It suffices to show that [[z ∈ y ↔ z ⊂ x]] = 1 for every z ∈ V(B).
Clearly,

[[z ∈ y]] =
∨

t∈dom(y)

y(t) ∧ [[t = z]] =
∨

t∈dom(y)

[[t ⊂ x]] ∧ [[t = z]] ≤ [[z ⊂ x]].

Hence, [[z ∈ y → z ⊂ x]] = 1 by 1.1.4 (4).
We now must justify the equality [[z ⊂ x→ z ∈ y]] = 1. To this end, modify z

slightly; i.e., consider the element z′ ∈ dom(y) defined as follows: dom(z′) :=
dom(x) and z′(t) := [[t ∈ z]] (t ∈ dom(z′)).

Granted t ∈ V(B), obtain

[[t ∈ z′]] =
∨

u∈dom(z′)

z′(u) ∧ [[t = u]]
∨

u∈dom(z′)

[[u ∈ z]] ∧ [[u = t]] ≤ [[t ∈ z]].

Consequently, [[z′ ⊂ z]] = 1.
On the other hand, from 2.1.8 (5) and 2.1.9 deduce

[[t ∈ z ∩ x]] =
∨

u∈dom(x)

x(u) ∧ [[t = u]] ∧ [[t ∈ z]] ≤
∨

u∈dom(x)

z′(u) ∧ [[t = u]] = [[t ∈ z′]].

Hence, [[z ∩ x ⊂ z′]] = 1 on appealing to 1.1.4 (4) once again.
Moreover,

[[z ⊂ x]] =
∧

t∈V(B)

[[t ∈ z]] ⇒ [[t ∈ x]] ≤
∧

t∈dom(z′)

z′(t) ⇒ [[t ∈ x]]

= [[(∀ t ∈ z′)(t ∈ x)]] = [[z′ ⊂ x]] = y(z′) ≤ [[z′ ∈ y]].

Summarizing all that was said about z and z′, infer

[[z ⊂ x]] ≤ [[x ∩ z ⊂ z′]] ∧ [[z′ ⊂ z]] ∧ [[z ⊂ x]] ≤ [[z = z′]],
[[z ⊂ x]] ≤ [[z′ ∈ y]].

The last two formulas immediately yield

[[z ⊂ x]] = [[z ⊂ x]] ∧ [[z = z′]] ≤ [[z′ ∈ y]] ∧ [[z = z′]] ≤ [[z ∈ y]];

i.e., [[z ⊂ x]] ≤ [[z ∈ y]], which amounts to the sought result by 1.1.4 (4). �
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2.4.5. The axiom of replacement ZFϕ4 holds inside V(B):

V(B) |= (∀u)(∀ v1)(∀ v2) (ϕ(u, v1) ∧ ϕ(u, v2) → v1 = v2)
→ ((∀x)(∃ y)(∀ t)(∀ s ∈ x)(ϕ(s, t) ↔ t ∈ y)).

� The axiom of replacement is deducible from the axiom of separation (cf.
A.2.5) and the formula

Φ:= (∀x)((∀ t ∈ x)(∃u)ϕ(t, u) → (∃ y)(∀ t ∈ x)(∃u ∈ y)ϕ(t, u))

(y is not a free variable in ϕ); i.e., Φ∧Ψ → ZFϕ4 , where Ψ is the axiom of separation.
Therefore, it suffices to show that V(B) |= Φ and V(B) |= Ψ.

(1) V(B) |= Ψ:= (∀x)(∃ y)(∀ t)(t ∈ y ↔ t ∈ x ∧ ψ(t)).
Take x ∈ V(B) and consider the function y ∈ V(B) defined the formulas

dom(y) := dom(x),
y(t) := x(t) ∧ [[ψ(t)]] (t ∈ dom(y)).

Then [[(∀ t)(t ∈ y ↔ t ∈ x ∧ ψ(t))]] = a ∧ b where

a := [[(∀ t ∈ y)(t ∈ x ∧ ψ(t))]], b := [[(∀ t ∈ x)(ψ(t) → t ∈ y)]].

From 2.1.8 (2) and 2.1.9, it is however immediate that a = b = 1. Indeed,

a =
∧

t∈dom(y)

y(t) ⇒ [[t ∈ x ∧ ψ(t)]]

=
∧

t∈dom(y)

x(t) ∧ [[ψ(t)]] ⇒ [[t ∈ x]] ∧ [[ψ(t)]] = 1.

By analogy,

b =
∧

t∈dom(x)

x(t) ⇒ ([[ψ(t)]] ⇒ [[t ∈ y]])

=
∧

t∈dom(x)

x(t) ∧ [[ψ(t)]] ⇒ [[t ∈ x]] ∧ [[ψ(t)]] = 1.

(2) V(B) |= Φ.
Let x be an arbitrary element of V(B). Since B is a set; therefore, for every fixed
t ∈ dom(x), so is the class

K := {[[ϕ(t, u)]] : u ∈ V(B)} ⊂ B.
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The axiom of replacement for sets (i.e., in V) implies that there is an ordinal
α(t) such that

{[[ϕ(t, u)]] : u ∈ V
(B)
α(t)} = K.

Put α := sup{α(t) : t ∈ dom(x)} and define y ∈ V(B) by the formulas

dom(y) := V(B)
α , im(y) = {1}.

Note now that y is a sought element, as follows from the easy calculations:

[[(∀ t ∈ x)(∃u)ϕ(t, u)]] =
∧

t∈dom(x)

x(t) ⇒
( ∨

u∈V(B)

[[ϕ(t, u)]]
)

=
∧

t∈dom(x)

x(t) ⇒
( ∨

u∈V
(B)
α(t)

[[ϕ(t, u)]]
)

≤
∧

t∈dom(x)

x(t)⇒
( ∨

u∈V
(B)
α

[[ϕ(t, u)]]
)

=
∧

t∈dom(x)

x(t) ⇒ [[(∃u ∈ y)ϕ(t, u)]] = [[(∀ t ∈ x)(∃u ∈ y)ϕ(t, u)]].

The proof is complete. �
2.4.6. The axiom of infinity ZF5 holds inside V(B):

V(B) |= (∃x)(0 ∈ x ∧ (∀ t)(t ∈ x→ t ∪ {t} ∈ x)).

� To satisfy this axiom, assign x := ω∧ (cf. 2.2.7).
To demonstrate, note at first that [[0∧ ∈ ω∧]] = 1 since 0∧ ∈ dom(ω∧).
Granted t ∈ V and u := t∪{t}, observe now that [[u∧ = t∧∪{t∧}]] = 1. Indeed,

by 2.2.8 (1),

[[v ∈ u∧]] =
∨

s∈u
[[s∧ = v]] = [[t∧ = v]] ∨

∨

s∈t
[[s∧ = v]]

= [[t∧ = v]] ∨ [[v ∈ t∧]] = [[t∧ = v ∨ v ∈ t∧]] = [[v ∈ t∧ ∪ {t∧}]].

Using this together with 2.1.9 and 2.2.8 (2), proceed with easy calculation of the
Boolean truth values

[[(∀ t ∈ ω∧)(t ∪ {t}) ∈ ω∧]] =
∧

t∈ω
[[t∧ ∪ {t∧} ∈ ω∧]]

=
∧

t∈ω
[[(t ∪ {t})∧ ∈ ω∧]] = 1,

so completing the proof. �
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2.4.7. The axiom of regularity ZF6 holds in V(B):

V(B) |= (∀x)(∃ y)(x = 0 ∨ (y ∈ x ∧ y ∩ x = 0)).

� Take x ∈ V(B). Show that

b := [[x �= 0 ∧ (∀ y ∈ x)(y ∩ x �= 0)]] = 0B.

Assume to the contrary that b �= 0B . Since b ≤ [[(∃u)(u ∈ x)]], there is an
element y0 in V(B) such that [[y0 ∈ x]] ∧ b �= 0 and ρ(y0) ≤ ρ(y) for [[y ∈ x]] ∧ b �= 0
(y ∈ V(B)).

Furthermore, given y ∈ V(B), note the estimate

[[y ∈ x]] ∧ b ≤ [[y ∩ x �= 0]] =
∨

z∈dom(y)

y(z) ∧ [[z ∈ x]].

Hence, [[z ∈ x]] ∧ [[y0 ∈ x]] ∧ b �= 0 for some z ∈ dom(y0). However, ρ(z) < ρ(y0),
which contradicts the choice of y0.

Therefore, b = 0B implying that

1B = b∗ = [[¬(x �= 0 ∧ (∀ y ∈ x)(y ∩ x �= 0))]]
= [[(∃ y)(x = 0 ∨ (y ∈ x ∧ y ∩ x = 0))]].

The proof is completed by passing to the infimum over x ∈ V(B). �
2.4.8. We are left with checking the axiom of choice inside V(B). To this end,

we need a few auxiliary constructions more.
Take x, y ∈ V(B) arbitrarily. Define the singleton {x}B, the pair or unordered

pair {x, y}B, and the ordered pair (x, y)B inside V(B) by the formulas

dom({x}B) := {x}, im({x}B) := {1};
dom({x, y}B) := {x, y}, im({x, y}B) := {1};

(x, y)B := {{x}B, {x, y}B}B.

The elements {x}B, {x, y}B, and (x, y) ∈ V(B) answer to their names:

Theorem. The following hold:

V(B) |= (∀ t)(t ∈ {x}B ↔ t = x),

V(B) |= (∀ t)(t ∈ {x, y}B ↔ t = x ∨ t = y),
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V(B) |= “(x, y)B is the ordered pair of x and y,”

or, in brief,

[[{x}B = {x}]] = [[{x, y}B = {x, y}]] = [[(x, y)B = (x, y)]] = 1.

� By way of example, check the claim about an unordered pair.
Given t ∈ V(B), note

[[t ∈ {x, y}B]] =
∨

{[[t = s]] : s ∈ dom({x, y}B)}
= [[t = x]] ∨ [[t = y]] = [[t = x ∨ t = y]].

Hence,
[[(∀ t)(t ∈ {x, y}B ↔ t = x ∨ t = y)]] = 1. �

2.4.9. The notions of the preceding subsection about pairs may be easily ab-
stracted to n-tuples for n > 2.

Take x : n → V(B). By definition, s := (x(0), . . . , x(n− 1))B ∈ V(B) provided
that there is a mapping y : n �→ V(B) satisfying

y(0) = x(0), y(n− 1) = s,

y(k) = (y(k − 1), x(k))B (0 < k ≤ n− 1).

Obviously, this defines a function from (V(B))n to V(B) as follows:

(x0, . . . , xn−1) �→ (x0, . . . , xn−1)B (x0, . . . , xn−1 ∈ V(B)).

We note an important property of this function, confining exposition to the case of
n = 2 for simplicity.

Recall that for all x, y, x′, y′ ∈ V the equivalence holds:

(x, y) = (x′, y′) ↔ x = x′ ∧ y = y′.

This proposition is a theorem of ZF and so it remains true in V(B) (by 2.4.2–2.4.7).
In consequence, given x, y, x′, y′ ∈ V(B), infer

[[(x, y) = (x′, y′)]] = [[x = x′]] ∧ [[y = y′]].

Since (x, y)B is an ordered pair inside V(B); therefore,

[[(x, y)B = (x′, y′)B]] = [[x = x′]] ∧ [[y = y′]].

In particular,

V(B) |= (x, y)B = (x′, y′)B ↔ V(B) |= x = x′ ∧ y = y′;

i.e., “( · , · )B is an injective function in the internal sense.” It goes without saying
that this function is also injective in the sense of V; i.e., if (x, y)B and (x′, y′)B

coincide as elements of V then x = x′ and y = y′. But still these two are different
properties.
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2.4.10. Recall that by Theorem 1.4.3 an ordinal may be defined as a transitive
set totally ordered by the membership relation. In symbols,

Ord (x) ↔ ((∀u ∈ x)(∀ v ∈ u)(v ∈ x)
∧(∀u ∈ x)(∀ v ∈ x)(u ∈ v ∨ u = v ∨ v ∈ u)).

Thus, Ord (x) is a bounded formula, and so

α ∈ On ↔ V(B) |= Ord (α∧)

by 2.2.9 (2).
Moreover, as established in 2.2.8 (2),

[[α∧ = β∧]] = 1 ↔ α = β (α, β ∈ On).

2.4.11. The axiom of choice AC holds inside V(B):

V(B) |= (∀x)(∃ y)(y is a choice function on x).

� We may prove in ZF that there is a choice function for a set x whenever we
may find an ordinal α and a function f such that α = dom(f) and im(f) ⊃ u :=

⋃
x.

Indeed, we may define a choice function y by the formula

(t, s) ∈ y ↔ s ∈ t ∧ t ∈ x ∧ (∃α0 ∈ α)(f(α0) = s)
∧(∀β ∈ α)(f(β) ∈ t→ α0 ≤ β).

Thus, y(t) = f(α0), where α0 is the least element of the set of ordinals {β ∈ α :
f(β) ∈ t}.

By 2.4.2–2.4.7, the same proposition holds inside V(B), and so it suffices to
show that

V(B) |= (∀u)(∃α)(∃ f)(Ord (α) ∧ Fnc (f) ∧ dom(f) = α ∧ im(f) ⊃ u).

Take u ∈ V(B) and, using the axiom of choice for sets, find an ordinal α and
a function g so that dom(g) = α and dom(u) ⊂ im(g) ⊂ V(B).

Define f ∈ V(B) by the formula

f := {(β∧, g(β))B : β < α} × {1B}.

Show that f obeys all conditions we require:
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(1) V(B) |= “f is a binary relation.”
Indeed, granted an arbitrary f ∈ V(B), observe

[[t ∈ f ]] =
∨

β<α

[[t = (β∧, g(β))B]]

≤
∨

{[[t = (x, y)B]] : x, y ∈ V(B)} = [[(∃x)(∃ y)(t = (x, y))]].

(2) V(B) |= Fnc (f).
In view of (1), we have only to show that f is single-valued inside V(B). To this end,
take arbitrary t, s1, s2 ∈ V(B) and proceed with applying 2.1.4 (1), 2.4.9, 2.1.8 (4),
and 2.2.8 (2) successively to obtain:

[[(t, s1) ∈ f ∧ (t, s2) ∈ f ]] = [[(t, s1)B ∈ f ]] ∧ [[(t, s2)B ∈ f ]]

=
∨

β<α

∨

γ<α

[[(t, s1)B = (β∧, g(β))B]] ∧ [[(t, s2)B = (γ∧, g(γ))B]]

=
∨

β<α

∨

γ<α

[[t = β∧]] ∧ [[t = γ∧]] ∧ [[s1 = g(β)]] ∧ [[s2 = g(γ)]]

≤
∨

β<α

∨

γ<α

[[β∧ = γ∧]] ∧ [[s1 = g(β)]] ∧ [[s2 = g(γ)]]

=
∧

β<α

[[s1 = g(β)]] ∧ [[s2 = g(β)]] ≤ [[s1 = s2]].

(3) V(B) |= Ord (α∧) ∧ dom(f) = α∧.
The formula V(B) |= Ord (α∧) was discussed in 2.4.10. Furthermore, given t ∈
V(B), infer

[[t ∈ dom(f)]] = [[(∃ s)(t, s) ∈ f ]] =
∨

s∈V(B)

[[(t, s) ∈ f ]]

=
∨

s∈V(B)

∨

β<α

[[(t, s) = (β∧, g(β))]]

=
∨

β<α

∧

s∈V(B)

[[t = β∧]] ∧ [[s = g(β)]]

=
∨

β<α

[[t = β∧]] =
∨

β∈dom(α∧)

[[t = β]] = [[t ∈ α∧]].

(4) V(B) |= im(f) ⊃ u.
Take s ∈ V(B) and carry out the following calculations:
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[[s ∈ u]] =
∨

v∈dom(u)

u(v) ∧ [[s = v]] ≤
∨

β≤α
[[s = g(β)]]

=
∨

β<α

(
[[s = g(β)]] ∧

∨

t∈V(B)

[[β∧ = t]]
)

=
∨

β<α

∨

t∈V(B)

[[(t, s) = (β∧, g(β))]]

=
∨

t∈V(B)

[[(t, s) ∈ f ]] = [[(∃ t)(t, s) ∈ f ]] = [[s ∈ im(f)]].

The proof of Theorem 2.4.1 is complete. �
2.4.12. Comments.

(1) Substituting the laws of intuitionistic logic (see 2.1.10 (3)) for the
logical part of the language of ZF, we come to intuitionistic set theory ZFI. The
models of ZFI may also be constructed as above. Namely, if Ω is a complete Heyting
lattice then the universe V(Ω) becomes a Heyting valued model of ZFI provided that
the corresponding truth values [[ · ∈ · ]] and [[ · = · ]], acting from V(Ω) × V(Ω) to
V(Ω), are defined. For details, consult [54, 70, 238].

(2) Let B be a quantum logic (see 1.5.11 (5)). If the truth values [[ · ∈ · ]]
and [[ · = · ]] are defined as in 2.1.4 and the truth values of formulas are given as
in 2.1.7; then the axioms ZF2–ZF6 and AC hold inside the universe V(B). There-
fore, we may develop the corresponding set theory inside V(B). In particular, the
reals inside V(B) will correspond to the observables in the mathematical model of
a quantum-mechanical system (cf. [234]).

2.5. Separated Boolean Valued Universes

In this section, we construct a separated Boolean valued universe and interpret
NGB therein (cf. [155]).

2.5.1. Given elements x and y of the universe V(B) which satisfy the condition
V(B) |= x = y, we cannot assert in general that x and y are equal as sets, i.e., as
elements of V. Indeed, take an ordinal α and define xα ∈ V(B) by the formulas
dom(xα) = V

(B)
α and im(xα) := {0}. Then, it is evident that [[xα = 0]] = 1 for

all α. Therefore, every element of the class {xα : α ∈ On} depicts the empty set
inside V(B).

It can be shown that to each x ∈ V(B) there corresponds the proper class of
all y ∈ V(B) satisfying [[x = y]] = 1. This peculiarity causes considerable technical
inconveniences and, in particular, hampers translations from the language of V(B),
i.e. the B-language, into the language of V, i.e. the conventional language of ZFC.
This deficiency of V(B) is eliminated by a proper factorization (cf. 1.5.8).
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2.5.2. Furnish the universe V(B) over a Boolean algebra B with the equiva-
lence

∼ := {(x, y) ∈ V(B) × V(B) : [[x = y]] = 1B}.
Consider the factor class Ṽ(B) := V(B)/∼ and let π : V(B) → Ṽ(B) stand for the
factor mapping.

The class Ṽ(B) is the separated Boolean valued universe over B. Define the
Boolean truth values for the equality [[ · = · ]]s and the membership [[ · ∈ · ]]s in
Ṽ(B) on using the quotients of the corresponding Boolean truth values [[ · = · ]] and
[[ · ∈ · ]] by ∼:

[[ · = · ]]s := [[ · = · ]] ◦ (π−1 × π−1),
[[ · ∈ · ]]s := [[ · ∈ · ]] ◦ (π−1 × π−1).

Given a formula ϕ(u1, . . . , un) and x̃, . . . , x̃n ∈ Ṽ(B), define [[ϕ(x̃1, . . . , x̃n)]] ∈ B in
exactly the same way as in 2.1.7 to obtain

[[ϕ(x1, . . . , xn)]] = [[ϕ(πx1, . . . , πxn)]]s (x1, . . . , xn ∈ V(B)).

Define the truth of formulas in Ṽ(B) as in 2.1.6:

Ṽ(B) |= ϕ(x̃1, . . . , x̃n) ↔ [[ϕ(x̃1, . . . , x̃n)]]s = 1B .

The soundness of the above definitions is obvious since, by 2.1.8 (7),

1 = [[x = y]] → [[ϕ(x)]] = [[ϕ(y)]] (x, y ∈ V(B))

for every formula ϕ of ZFC. Therefore, calculating Boolean truth values in a sepa-
rated Boolean valued universe, we may take arbitrary representatives of the equiv-
alence classes under study. From this observation it is obvious in particular that
Theorem 2.1.8 remains true with Ṽ(B) in place of V(B) and the Boolean truth
values decorated with the index s.

As a somewhat unexpected example, consider the following definition: Given
x̃ ∈ Ṽ(B), denote by ∨x̃ the level of x̃, i.e., the element of B defined as follows:

∨x̃ :=
∨

t∈dom(x)

x(t),

where x ∈ V(B) is the equivalence class of x̃ ∈ V(B).
At first sight, this definition seems illegitimate since the domains of elements

equal inside V(B) may differ. However,
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[[(∃ y ∈ x̃)]]s = [[(∃ y ∈ x̃)y = y]]s

=
∨

t∈dom(x)

x(t) ∧ [[t = t]] =
∨

t∈dom(x)

x(t) = ∨x̃.

Obviously, ∨x̃ = [[x �= ∅]]s, and so the definition of level is sound.
By analogy, given x̃ in Ṽ(B) and b in B, we may correctly define the element

b̃x : t �→ b ∧ x(t) (t ∈ dom(x)). Indeed, if [[x1 = x2]] = 1 then, by 2.3.2, [[bx1 =
bx2]] = b⇒ [[x1 = x2]] = 1.

In view of this it is customary to use the designation 0 = ∅, which implies in
particular that 0∅ = ∅ = 0x̃ for every x ∈ Ṽ(B).

2.5.3. Note that the facts of 2.2–2.4 hold true in Ṽ(B) on assuming obvious
specification and clarification.

For instance, Ṽ(B) is a model of ZFC in the sense of 2.4. Similarly, if ρ is a com-
plete homomorphism of Boolean algebras then ρ∗ keeps invariant every equivalence
class. Hence, ρ∗ induces a unique mapping of the corresponding separated universes
which is also denoted by ρ∗, proving that an analog of 2.2.2 holds, etc.

Assume that (xξ) ⊂ V(B) and (bξ) is a disjoint family in B. Put x = mix(bξxξ).
We will continue to use the name “mixing” for calling the element x̃ := πx and
preserve the notation x̃ = mix(bξx̃ξ) (x̃ξ = πxξ). This definition of mixing in Ṽ(B)

is clearly correct (cf. 2.3.5 (1)). Therefore, if x̃ ∈ Ṽ(B) and (x̃ξ) ⊂ Ṽ(B) then the
record x̃ = mix(bξx̃ξ) means that

bξ ≤ [[x̃ = x̃ξ]]s (ξ ∈ Ξ).

Note that if (bξ) is a partition of unity then the mixing mix(bξxξ) is unique due to
separation (cf. 2.3.3).

The equality (cf. 2.4.9)

[[(x, y)B = (x′, y′)B]] = [[x = x′]] ∧ [[y = y′]]

shows that the mapping ( · , · )B to be stable under the equivalence relation of 2.5.2.
Hence, there is an injective embedding Ṽ(B) × Ṽ(B) → Ṽ(B) denoted by the same
symbol ( · , · )B and satisfying (πx, πy)B = π((x, y)B). In this event

[[(x̃, ỹ)B = (x̃, ỹ)]]s = 1 (x̃, ỹ ∈ V(B)).

The maximum principle is still true and admits the following clarification.

2.5.4. Assume that ϕ(u, u1, . . . , un) is a formula, x̃1, . . . , x̃n ∈ Ṽ(B), and

Ṽ(B) |= (∃!u)ϕ(u, x̃1, . . . , x̃n). Then there is a unique element x̃0 ∈ Ṽ(B) such

that Ṽ(B) |= ϕ(x̃0, x̃1, . . . , x̃n).
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� Put x̃k := π(xk), where xk ∈ V(B) (k := 1, . . . , n). Note then that V(B) |=
(∃!u)ϕ(u, x1, . . . , xn). By the transfer principle, there is an element x0 ∈ V(B),
such that V(B) |= ϕ(x0, x1, . . . , xn). Assign x̃0 := π(x0). Obviously, Ṽ(B) |=
ϕ(x̃0, x̃1, . . . , x̃n). If Ṽ(B) |= ϕ(z, x̃1, . . . , x̃n) holds for z ∈ Ṽ(B) then Ṽ(B) |=
ϕ(x̃0, . . . , x̃n) ∧ ϕ(z, x̃1, . . . , x̃n). By hypothesis, Ṽ(B) |= z = x̃0, which implies
z = x̃0 since Ṽ(B) is separated. �

2.5.5. Given b and c ∈ B, put (cf. 1.1.4)

[[b = c]] := b⇔ c := (b � c)∗ = (b ∧ c) ∨ (b∗ ∧ c∗).

Note that, by 1.1.4 (3), a ≤ [[b = c]] if and only if a ∧ b = a ∧ c.
Consider a function f : dom(f) → B whose domain dom(f) is contained in

Ṽ(B). Say that f is extensional

[[x = y]]s ≤ [[f(x) = f(y)]] (x, y ∈ dom(f)).

The extensionality of f amounts clearly to the formula

f(x) ∧ [[x = y]]s ≤ f(y) (x, y ∈ dom(f)).

If u : dom(u) → B is an arbitrary function and dom(u) ⊂ Ṽ(B) then we may related
to u the extensional function ū : Ṽ(B) → B by the formula

ū : x �→
∨

t∈dom(u)

u(t) ∧ [[t = x]]s (x ∈ Ṽ(B)).

Another class of extensional functions arises as follows. Let ϕ be a B-formula.
Then the following function is extensional

ϕ̄ : x �→ [[ϕ(x)]]s (x ∈ Ṽ(B)).

2.5.6. Theorem. If u : dom(u) → B is a function with dom(u) ⊂ Ṽ(B) and

dom(u) ∈ V then there is a unique x ∈ Ṽ(B) such that ū(t) = [[t ∈ x]]s for all
t ∈ Ṽ(B).
Conversely, if x ∈ Ṽ(B) then there is a function u : dom(u) → B such that

dom(u) ⊂ Ṽ(B), dom(u) ∈ V, and ū(t) = [[t ∈ x]]s (t ∈ Ṽ(B)).
� Denote by D the subset of the unseparated Boolean valued universe V(B)

whose image under the factor mapping π is dom(u). Define an element x′ ∈ V(B)

by the formula
dom(x′) := D, x′(t) := u(πt) (t ∈ D).
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Finally, put x := π(x′).
Given t ∈ Ṽ(B), find then that

[[t ∈ x]]s =
∨

y∈D
x′(y) ∧ [[t = πy]]s =

∨

y∈dom(u)

x(y) ∧ [[y = t]] = ū(t).

If another element z ∈ Ṽ(B) has the same properties then [[t ∈ x]]s = [[t ∈ z]]s for
all t ∈ Ṽ(B). Hence,

Ṽ(B) |= (∀ t) (t ∈ x↔ t ∈ z).

By the axiom of extensionality, arguing inside Ṽ(B), note that [[x = z]]s = 1. As
Ṽ(B) is separated, x = z.

Conversely, take x ∈ Ṽ(B), and let x′ be an element of the separated universe
such that x = π(x′). Put dom(u) := π“(dom(x′)) and define u : dom(u) → B so
that u(πt) = x′(t) (t ∈ dom(x′)). In this event, granted t ∈ Ṽ(B), observe

[[t ∈ x]]s =
∨

y∈dom(x′)

x′(y) ∧ [[t = πy]]s

=
∨

y∈dom(u)

u(y) ∧ [[y = t]]s = ū(t),

so completing the proof. �
2.5.7. Throughout the sequel we as a rule deal with a separated Boolean

valued universe Ṽ(B). Moreover, calculating Boolean truth values, we often replace
elements of Ṽ(B) with their representatives in V(B) without further specification
(recall a similar practice of analysis of handling the spaces of cosets of measurable
functions).

Furthermore, starting with the sentence to follow, we will omit the sign ∼ and
index s and simply write V(B), [[ · = · ]], and [[ · ∈ · ]] instead of Ṽ(B), [[ · = · ]]s,
and [[ · ∈ · ]]s. We also carry out all analogous simplifications since this leads to no
confusion.

As seen from 2.5.6, each member of V(B) defines some extensional mapping
from V(B) to B. However, only part of extensional mappings from V(B) in B are
determined by elements in V(B). This peculiarity motivates the following definition:

2.5.8. A class inside V(B) or the V(B)-class is an extensional mapping X :
V(B) → B that is a class in the conventional set-theoretic sense; i.e., in the sense
of V.

To each element x ∈ V(B) we assign the V(B)-class

〈x〉 := [[ · ∈ x]] : t �→ [[t ∈ x]] (t ∈ V(B)).
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This correspondence is obviously injective.
Given V(B)-classes X and Y and an element z ∈ V(B), we now introduce

Boolean truth values by putting

[[〈z〉 ∈ X ]] := X(z),

[[X = Y ]] :=
∧

u∈V(B)

[[〈u〉 ∈ X ]] ⇔ [[〈u〉 ∈ Y ]],

[[X ∈ Y ]] :=
∨

u∈V(B)

[[〈u〉 = X ]] ∧ [[〈u〉 ∈ Y ]].

The first and third formulas are consistent, since the fact that X is extensional
implies

[[〈z〉 ∈ X ]] =
∨

u∈V(B)

X(u) ∧ [[u = z]];

and, moreover, [[〈z〉 = 〈u〉]] = [[z = u]] for all u, z ∈ V(B). It follows from the
definitions that [[X = Y ]] = 1 implies X = Y .

The function UB : x �→ 1B (x ∈ V(B)) is the universal class inside V(B). The
empty V(B)-class is the identically zero function over V(B).

2.5.9. Recall that a (set-theoretic) formula ϕ is predicative if each bound vari-
able of ϕ ranges over sets (cf. 1.3.1 and 1.3.14).

(1) We define the Boolean truth value for a predicative formula by
induction on length (cf. 2.1.6).

Dealing with propositional connectives, we proceed in much the same way as in
2.1.7. We are thus left with elaborating the case of quantifiers by variables ranging
over sets. Moreover, we may consider only the formulas having no subformulas of
the type X1 ∈ X2, since the latter formula is equivalent to the formula (∃x)(x =
X1 ∧ x ∈ X2).

So, assume that ϕ is a predicative formula with free variables X,X1, . . . , Xn

and Y1, . . . , Yn are some V(B)-classes.
By definition, put

[[(∀x)ϕ(x, Y1, . . . , Yn)]] =
∧

y∈V(B)

[[ϕ(y, Y1, . . . , Yn)]],

[[(∃x)ϕ(x, Y1, . . . , Yn)]] =
∨

y∈V(B)

[[ϕ(y, Y1, . . . , Yn)]].

We say that a predicative formula ϕ(X1, . . . , Xn) holds or is satisfied inside V(B)

by the assignment of Y1, . . . , Yn to the variables X1, . . . , Xn if [[ϕ(Y1, . . . , Yn)]] = 1.
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As in 2.1.6, in this event we write

V (B) |= ϕ(Y1, . . . , Yn) ↔ [[ϕ(Y1, . . . , Yn)]] = 1.

(2) The notion of satisfaction in V(B) extends to nonpredicative for-
mulas as follows:

If ϕ(X,X1, . . . , Xn) is a nonpredicative formula, then we put

V(B) |= (∀X)ϕ(X, Y1, . . . , Yn) (V(B) |= (∃X)ϕ(X, Y1, . . . , Yn))

if and only if [[ϕ(Y, Y1, . . . , Yn)]] = 1 for every V(B)-class Y (respectively, there is
some V(B)-class Y such that [[ϕ(Y, Y1, . . . , Yn)]] = 1).

A V(B)-class Y is a V(B)-set provided that V(B) |= M(Y ), where M(X) :=
(∃Z)(X ∈ Z) (cf. 1.3.1).

It would simpler to use the term “B-set” instead of “V(B)-set.” However, the
former is reserved for another special mission (cf. 3.4).

2.5.10. For every x ∈ V(B), the V(B)-class 〈x〉 is a V(B)-set. Conversely, if
a V(B)-class X is a V(B)-set then X = 〈x〉 for some x ∈ V(B).

� Granted an arbitrary element x ∈ V(B), observe

[[〈x〉 ∈ 〈{x}B〉]] = [[x ∈ {x}B]] = 1,

and so V(B) |= M(〈x〉). Assume that V(B) |= M(X) for a V(B)-class X . Then, by
definition (cf. 2.5.9 (2)), there is a V(B)-class Z such that

∨

t∈V(B)

Z(t) ∧ [[〈t〉 = X ]] = 1.

Hence, using the exhaustion principle, we may choose a partition of unity (bξ)ξ∈Ξ

and a family (xξ)ξ∈Ξ ⊂ V(B) such that

[[〈xξ〉 = X ]] ≥ bξ (ξ ∈ Ξ).

If x := mix(bξxξ) then

[[〈x〉 = X ]] ≥ [[〈x〉 = 〈xξ〉]] ∧ [[〈xξ〉 = X ]] ≥ bξ,

and so [[〈x〉 = X ]] = 1 or 〈x〉 = X . �
This fact enables us to identify an element x∈V(B) and the respective V(B)-set

〈x〉 in the sequel.
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2.5.11. Assume that C is another complete Boolean algebra and π : B → C
is a complete homomorphism of B to C. Consider a V(B)-class X and define

(x, b) ∈ π∗X ↔ b =
∨

t∈V(B)

(π ◦X)(t) ∧ [[x = π∗t]]C .

Then π∗X is a class inside V(B).
Indeed, π∗X is a subclass of V by Theorem 1.3.14, since

π∗X = {(x, b) : ϕ(x, b, B, C,X, π∗, [[ · = · ]],V(B))}

for the predicative formula

ϕ(Y, Z,B, . . .) : Z =
∨

t∈V(B)

(π ◦X)(t) ∧ [[Y = π∗t]].

In addition, π∗X is an extensional function:

(π∗X)(x) ∧ [[x = y]] =
∨

t∈V(B)

(π ◦X)(t) ∧ [[x = π∗t]]

∧[[x = y]] ≤
∨

t∈V(B)

(π ◦X)(t) ∧ [[y = π∗t]] = (π∗X)(y).

It is easy that 2.2.2 (1) holds for classes; i.e., if ρ is a complete homomorphism then

(ρ ◦ π)∗X = (ρ∗ ◦ π∗)X.

Furthermore, if V(B) |= M(X) then V(C) |= M(π∗X). Indeed, if X = 〈x〉,
x ∈ V(B) then, by 2.2.2 (4),

(π∗x)(t) =
∨

u∈V(B)

π([[u = x]]) ∧ [[t = π∗u]]

=
∨

u∈V(B)

(π ◦ 〈x〉)(u) ∧ [[t = π∗u]] = (π∗〈x〉)(t).

Therefore, 〈π∗x〉 = π∗〈x〉 = π∗X .
The converse proposition is also true provided that π is injective.
Note finally that the definition above agrees with 2.2.1 because of 2.2.2 (4).
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2.5.12. For every V(B)-class X and every predicative B-formula ϕ with a sin-
gle free variable, the following hold:

[[(∀x ∈ π∗X)ϕ(x)]]C =
∧

t∈V(B)

π ◦X(t) ⇒ [[ϕ(π∗t)]]C ,

[[(∃x ∈ π∗X)ϕ(x)]]C =
∨

t∈V(B)

π ◦X(t) ∧ [[ϕ(π∗t)]]C .

� It suffices to prove either of the these formulas, say, the first. The needed
calculations follow (on using 1.1.5 (3), 2.1.8 (7), and (a∧b) ⇒ (c∧b) = (a∧b) ⇒ c):

[[(∀x ∈ π∗X)ϕ(x)]] =
∧

x∈V(C)

[[x ∈ π∗X ]] ⇒ [[ϕ(x)]]

=
∧

x∈V(C)

( ∨

t∈V(B)

π ◦X(t) ∧ [[x = π∗t]]
)
⇒ [[ϕ(x)]]

=
∧

t∈V(B)

∧

x∈V(C)

(π ◦X(t) ∧ [[x = π∗t]]) ⇒ [[ϕ(x)]]

≤
∧

t∈V(B)

π ◦X(t) ⇒ [[ϕ(π∗t)]]

=
∧

t∈V(B)

( ∧

x∈V(C)

(π ◦X(t))∗ ∨ [[x = π∗t]]∗ ∨ [[ϕ(π∗t)]]
)

=
∧

t∈V(B)

∧

x∈V(C)

(π ◦X(t) ∧ [[x = π∗t]]) ⇒ ([[ϕ(π∗t)]] ∧ [[x = π∗t]])

≤
∧

t∈V(B)

∧

x∈V(C)

(π ◦X(t) ∧ [[x = π∗t]]) ⇒ [[ϕ(x)]]

=
∧

x∈V(C)

( ∨

t∈V(B)

π ◦X(t) ∧ [[x = π∗t]]
)
⇒ [[ϕ(x)]]

=
∧

x∈V(C)

[[x ∈ π∗X ]] ⇒ [[ϕ(x)]] = [[(∀x ∈ π∗X)ϕ(x)]].

The proof is complete. �

2.5.13. For all V(B)-classes X and Y , the following hold:

[[π∗X = π∗Y ]]C = π[[X = Y ]]B , [[π∗X ∈ π∗Y ]]C = π[[X ∈ Y ]]B.
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� Note first that π ◦ Y (t) = (π∗Y )(π∗t) or π[[t ∈ Y ]]B = [[π∗t ∈ π∗Y ]]C for
t ∈ V(B) (this follows from 2.5.8 and 2.5.11 by 2.2.2 (3)). Then, using the first
formula of 2.5.12, deduce

[[π∗X ⊂ π∗Y ]]C = [[(∀x ∈ π∗X)(x ∈ π∗Y )]]C

=
∧

t∈V(B)

π ◦X(t) ⇒ [[π∗t ∈ π∗Y ]]C

=
∧

t∈V(B)

π([[t ∈ X ]]B ⇒ [[t ∈ Y ]]B) = π[[X ⊂ Y ]]B .

Whence

[[π∗X = π∗Y ]]C = [[π∗X ⊂ π∗Y ]]C ∧ [[π∗Y ⊂ π∗X ]]C = π[[X = Y ]]B .

Finally, using the above and the second formula of 2.5.12, obtain

[[π∗X ∈ π∗Y ]]C = [[(∃ t ∈ π∗Y ) (t = π∗X)]]C

=
∨

t∈V(B)

π ◦ Y (t) ∧ [[π∗t = π∗X ]]C

=
∨

t∈V(B)

π

(
Y (t) ∧ [[t = X ]]B

)
= π[[X ∈ Y ]]B,

which completes the proof. �
2.5.14. The above facts allow us to translate some results of Section 2.2 to

a new environment. We list only a few:
(1) If ϕ(Y1, . . . , Yn) is a bounded predicative formula then

π[[ϕ(X1, . . . , Xn)]]B = [[ϕ(π∗X1, . . . , π
∗Xn)]]C

for all V(B)-classes X1, . . . , Xn. In particular, if π is a monomorphism then

V(B) |= ϕ(X1, . . . , Xn) ↔ V(C) |= ϕ(π∗X1, . . . , π
∗Xn).

(2) If ϕ is a predicative formula of class Σ1 then

π[[ϕ(X1, . . . , Xn)]]B ≤ [[ϕ(π∗X1, . . . , π
∗Xn)]]C ,

with X1, . . . , Xn the same as before. In particular, the following implication holds:

V(B) |= ϕ(X1, . . . , Xn) → V(C) |= ϕ(π∗X1, . . . , π
∗Xn).
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� The proof is carried out along the lines of 2.2.3. By way of example, consider
the case of a bounded universal quantifier: ϕ := (∀x ∈ Y )ψ.

By 2.5.12 and 2.5.13, granted V(B)-classes Y,X1, . . . , Xn, observe

[[ϕ(π∗Y, π∗X1, . . . , π
∗Xn)]]

=
∧

x∈V(B)

[[π∗x ∈ π∗Y ]] ⇒ [[ψ(π∗x, π∗X1, . . . , π
∗Xn)]]

=
∧

x∈V(B)

π[[x ∈ Y ]] ⇒ π[[ψ(x,X1, . . . , Xn)]]

= π

( ∧

x∈V(B)

[[x ∈ Y ]] ⇒ [[ψ(x,X1, . . . , Xn)]]
)

= π[[(∀x ∈ Y )ψ(x,X1, . . . , Xn)]] = π[[(ϕ(Y,X1, . . . , Xn)]],

so completing the proof. �
2.5.15. Using the canonical embedding ( · )∧ : V → V(B), to each class X ⊂ V

we assign the V2-class X ′ by the formula:

X ′(t) :=
{

12, if (∃x ∈ X)(t = x∧),
02, otherwise.

It is trivial from 2.1.8 (4) that X ′ is extensional.
We further put X∧ := ı∗“X ′, where ı is the identical embedding of 2 into B.

Hence, X∧ is a V(B)-class such that

X∧(t) =
∨

{[[t = x∧]] : x ∈ X} (t ∈ V(B)).

Observe that since Ord (X) is a bounded predicative formula; therefore, by
2.2.8 (4), 2.2.9 (1), and 2.5.14, On∧ is an ordinal class inside V(B); i.e., V(B) |=
Ord (On∧). Also, the formulas of 2.5.12 are simplified:

[[(∀x ∈ Y ∧)ϕ(x)]] =
∧

{[[ϕ(x∧)]] : x ∈ Y },
[[(∃x ∈ Y ∧)ϕ(x)]] =

∨
{[[ϕ(x∧)]] : x ∈ Y }.

2.5.16. Let ϕ and ψ be predicative formulas with free variablesX,X1, . . . , Xn.
Given some V(B)-classes Y1, . . . , Yn, assume that [[ϕ(x0, Y1, . . . , Yn)]] = 1 for some
x0 ∈ V(B). Then
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[[(∃x)(ϕ(x, Y1, . . . , Yn) → ψ(x, Y1, . . . , Yn))]]

=
∨

{[[ψ(x, Y1, . . . , Yn)]] : x ∈ V(B) ∧ [[ϕ(x, Y1, . . . , Yn)]] = 1},
[[(∀x)(ϕ(x, Y1, . . . , Yn) → ψ(x, Y1, . . . , Yn))]]

=
∧

{[[ψ(x, Y1, . . . , Yn)]] : x ∈ V(B) ∧ [[ϕ(x, Y1, . . . , Yn)]] = 1}.

� The proof proceeds along the lines of 2.3.8. �
2.5.17. Theorem (the maximum principle). Let ϕ(x) be a predicative B-

formula with a single free variable (which implies that ϕ may contain constants
that are V(B)-classes or V(B)-sets). Then the following hold:

(1) There is an element x0 in V(B) such that [[(∃x)ϕ(x)]] = [[ϕ(x0)]];
(2) If V(B) |= (∃x)ϕ(x) then there is an element x0 in V(B) such that

V(B) |= ϕ(x0);
(3) If V(B) |= (∃!x)ϕ(x) then there is a unique element x0 inV(B) such

that V(B) |= ϕ(x0).
� The proof, basing on the mixing principle (cf. 2.5.3), does not differ from

the arguments of 2.3.10 and 2.5.4. �
2.5.18. Theorem (the transfer principle). Every theorem of NGB holds in

V(B).

� It suffices to show that the axioms of NGB are satisfied inside V(B).
(1) The axiom of extensionality for classes inside V(B) holds, which is

immediate from the definitions of 2.5.8 and 2.5.9. NGB2, . . . ,NGB5 are true inside
V(B) as shown in Section 2.4.

(2) V(B) |= NGB6. The proof proceeds as in 2.4.5. We only need
substitute (t, u) ∈ X for ϕ(t, u) throughout (cf. 2.4.5 and 1.3.4).

(3) V(B) |= ∧13
k=7 NGBk. It suffices to establish that Theorem 1.3.14

holds inside V(B) since NGB7–NGB13 are particular cases of 1.3.14.
Assume that a formula ϕ(X1, . . . , Xn, Y1, . . . , Ym) obeys all hypotheses of

1.3.14. Consider arbitrary V(B)-classes Y1, . . . , Ym and define the V(B)-class Z
by the formula

Z(t) := [[(∃x1, . . . , xn)(t = (x1, . . . , xn) ∧ ϕ(x1, . . . , xn, Y1, . . . , Ym))]].

It is easy to show that in this case

V(B) |= (∀x1, . . . , xn)(∃ t)((t = (x1, . . . , xn) ∧ t ∈ Z ↔ ϕ(x1, . . . , xn, Y1, . . . , YN ))).

(4) V(B) |= NGB14. Substituting the upper case X for the lower case
Latin letter x, obtain the desired.
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(5) V(B) |= NGB15. Let G be a function from On onto V(B). Put

F (t) :=
∨

{[[t = (α∧, G(α))B]] : α ∈ On}.

Then F is a V(B)-class and by analogy with 2.4.10, we may proceed with the
successive calculations: [[Fnc (F )]] = 1, [[Ord (On∧) ∧ dom(F ) = On∧]] = 1, and
[[im(F ) ⊃ UB]] = 1.

Therefore, the universal class UB may be well ordered inside V(B). Hence,
V(B) |= “there exists a choice function of the class U(B).” �

2.5.19. Theorem 2.5.18 opens an opportunity to deal with classes inside V(B).
As an example, we consider the definition of category inside V(B).

A category K inside V(B) consists of some classes Ob K, Mor K, and Com inside
V(B) which are called the class of objects of K, the class of morphisms of K, and the
composition of K, respectively and which satisfy the condition V(B) |= (K1)–(K3)
where

(K1) There are mappings D and R from Mor K to Ob K such that, for
all objects a and b, the class K(a, b) := HK(a, b) := {α ∈ Mor K :
D(α) = a,R(α) = b} is a set (called the set of morphisms from a
to b);

(K2) Com is an associative partial binary operation on Mor K and

dom(Com):= {(α, β) ∈ (Mor K)2 : D(β) = R(α)};

(K3) To every object a ∈ Ob K there is a morphism 1a called the identity
morphism of a such that D(1a) = R(1a) = a, Com(1a, α) = α for
R(α) = a, and Com(β, 1a) = β for D(β) = a.

We usually write βα or β ◦ α instead of Com(α, β).

2.5.20. Comments.

(1) The Boolean valued model V(B) over B may be characterized ax-
iomatically. Namely, there is a class V(B) unique up to a bijection preserving
all Boolean truth values and obeying the following conditions: (a) there are two
mappings [[ · ∈ · ]], [[ · = · ]] : V(B) × V(B) → B such that the conventional ax-
ioms of equality hold inside V(B) (cf. 2.1.7 and 2.1.8); (b) V(B) is separated; i.e.,
[[x = y]] = 1B implies that x = y for x, y ∈ V(B); (c) the axioms of extensionality
and regularity hold inside V(B); and (d) Proposition 2.5.6 holds for V(B).

(2) Let π be a complete homomorphism from a complete Boolean alge-
bra B to another complete Boolean algebra C. Then π∗ is a unique mapping from
V(B) to V(C) such that (a) [[π∗x = π∗y]]C = π[[x = y]]B (x, y ∈ V(B)), and (b)
[[z ∈ π∗y]]C ≤ ∨

x∈V(B) [[z = π∗x]] for y ∈ V(B) and z ∈ V(C).
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Functors of Boolean Valued Analysis

The transfer and maximum principles enable us to carry out various construc-
tions of the conventional mathematical practice inside every Boolean valued uni-
verse. Therein we encounter the fields of real and complex numbers, Banach spaces,
differential operators, etc. The objects, representing them, may be perceived to
some extend as nonstandard representations of the original mathematical entities.

Therefore, viewing V(B) as a nonstandard presentation of the mathematical
universe of discourse and recalling that V(B) is constructed within the von Neumann
universe, we may peek in the Boolean valued world, discovering standard objects
in a nonstandard disguise. Skipping from one B to another, a keen researcher sees
many hypostaces of a sole mathematical idea embodied in a set-theoretic formula.
Comparing observations is a method for studying an intrinsic meaning of the formu-
la. The method shows often that essentially different analytical objects are in fact
just distinctive appearances of the same concept. This reveals the esoteric reasons
for many vague analogies and dim parallelism as well as opens new opportunities
to study familiar objects.

The overall picture reminds us of the celebrated cave of Plato. If a casual
escapee decided to inform his fellow detainees on what he saw at large, he might
build a few bonfires in the night. Then each entity will cast several shadows on the
wall of the cave (rather than a single shadow suggested by Plato). Now the detainees
acquired a possibility of finding the essence of unknown things from analyzing the
collection of shadows bearing more information than a sole shadow of an entity.

Comparative analysis, using Boolean valued models, proceeds usually in two
stages which we may agree to call syntactic and semantic.

At the syntactic stage, the mathematical statement under investigation (a def-
inition, a construction, a property, etc.) is transformed into a formal text of the
symbolic language of set theory or, to be more precise, into a text in a suitable jar-
gon. In this stage we often have to analyze the complexity of the text; in particular,
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it matters whether the text or some of its fragments is a bounded formula.
The semantic stage consists in interpreting a formal text inside a Boolean

valued universe. In this stage we use the terms of the conventional set theory, i.e.
the von Neumann universe V, to interpret (decode or translate) some meaningful
texts that contain truth about the objects of the Boolean valued universe V(B).
This is done by using especial operations on the elements and subsets of the von
Neumann universe.

In the present chapter we consider the basic operations of Boolean valued anal-
ysis, i.e., the canonical embedding, descent, ascent, and immersion. The most im-
portant properties of these operations are conveniently expressed using the notions
of category and functor. The reader may resume acquaintance with the preliminar-
ies to category theory by consulting the Appendix.

3.1. The Canonical Embedding

3.1.1. This section is devoted to the way of the embedding class of sets into
a Boolean valued universe.

Theorem. The following statements hold:
(1) If a class X ⊂ V and an element z ∈ V(B) are such that V(B) |=

z ∈ X∧ then z = mixx∈X(bxx∧) for some partition of unity (bx)x∈X
in B;

(2) To a V2-class Y there is a unique class X ⊂ V such that V2 |=
X∧ = Y ;

(3) For X ⊂ V and Y ⊂ V,

X ∈ Y ↔ V(B) |= X∧ ∈ Y ∧, X = Y ↔ V(B) |= X∧ = Y ∧;

(4) If π : B → C is a complete homomorphism then π∗X∧ = X
∧
∧ for

every class X ⊂ V where X
∧
∧ is the standard name of X in V(C).

� (1) Given x ∈ X , put bx := [[x∧ = z]]. Then, by 2.2.8 (2),

bx ∧ by ≤ [[x∧ = y∧]] = 0

for x, y ∈ X , x �= y.
On the other hand,

∨
{bx : x ∈ X} = X∧(z) = [[z ∈ X∧]] = 1,

so that (bx)x∈X is a partition of unity and z = mixx∈X(bxx∧).
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(2) The claim follows from 2.2.8. Indeed, if X ′ := {y ∈ V(2) : [[y ∈ Y ]] = 12}
and X :={x∈V :x∧∈X ′} then, by 2.2.8 (3, 4), for t ∈ V(2) obtain

X∧(t) =
∨

{[[t = x∧]]2 : x ∈ X} =
∨

{[[t = x∧]]2 : Y (x) = 12}
=

∨
{Y (x) ∧ [[t = x∧]]2 : x ∈ V(2)} = Y (t).

Uniqueness ensues from 2.2.8 (4) and 2.5.15.
(3) To prove, compare 2.5.15 and (2).
(4) If ı1 and ı2 are embeddings of the two-element algebra 2 into B and C then

π ◦ ı1 = ı2; and, by 2.5.11,

π∗X∧ = π∗ ◦ ı∗1(X∧) = ı∗2X
∧ = X

∧
∧. �

3.1.2. If x and y are sets then

{x}∧ = {x∧}B, {x, y}∧ = {x∧, y∧}B, (x, y)∧ = (x∧, y∧)B .

� All these formulas are bounded. Using 2.2.9, deduce

V(B) |= {x}∧ = {x∧} ∧ {x, y}∧ = {x∧, y∧} ∧ (x, y)∧ = (x∧, y∧).

It suffices now to recall the appropriate formulas of 2.4.8. �
3.1.3. Assume that a formula ϕ of class Σ1 obeys all hypotheses of Theorem

1.3.14. Take some classes Z1, . . . , Zn, Y1, . . . , Ym, and define the class Y by the
formula

Y := {(x1, . . . , xn) :
x1 ∈ Z1 ∧ . . . ∧ xn ∈ Zn ∧ ϕ(x1, . . . , xn, Y1, . . . , Ym)}.

Then the following holds inside V(B):

Y ∧ = {(x1, . . . , xn) :
x1 ∈ Z∧

1 ∧ . . . ∧ xn ∈ Z∧
n ∧ ϕ(x1, . . . , xn, Y

∧
1 , . . . , Y

∧
m)}.

� By Theorem 1.3.14, Y is the only class obeying the conditions Φ(Z1, . . . , Zn,
Y1, . . . , Ym) and Ψ(Z1, . . . , Zn, Y1, . . . , Ym), where Φ and Ψ are as follows

Φ:=(∀u ∈ Y )(∃x1 ∈ Z1) . . . (∃xn ∈ Zn)(u = (x1, . . . , xn) ∧ ϕ(x1, . . . , Ym)),
Ψ:= (∀x1 ∈ Z1) . . . (∀xn ∈ Zn)(∃u)

(u = (x1, . . . , xn) ∧ ϕ(x1, . . . , Ym) → u ∈ Y ).

Obviously, Φ and Ψ are formulas of class Σ1. Hence, from 2.5.14 we infer

V(B) |= Φ(Z∧
1 , . . . , Y

∧
m) ∧ Ψ(Z∧

1 , . . . , Y
∧
m).

This amounts to the claim. �
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3.1.4. For X ⊂ V and Y ⊂ V the following hold:

(1) V(B) |= (X ∪ Y )∧ = X∧ ∪ Y ∧;

(2) V(B) |= (X × Y )∧ = X∧ × Y ∧;

(3) V(B) |= (
⋃
X)∧ =

⋃
(X∧);

(4) Rel (X) → V(B) |= Rel (X∧);

(5) (F : X → Y ) → V(B) |= F∧ : X∧ → Y ∧;

(6) Rel (X) → V(B) |= (X“Y )∧ = (X∧)“(Y ∧);

(7) Rel (X) → V(B) |= dom(X∧) = dom(X)∧ ∧ im(X∧) = im(X)∧.

� The claims of (1)–(5) follow from 3.1.3 (cf. A.1.11 and A.1.12). Unfortu-
nately, (6) and (7) fall beyond the scope of applicability of 3.1.3 and so we deduce
them by direct calculations, appealing to 2.4.9, 3.1.1, and 3.1.2.

Start with (6):

[[t ∈ (X∧)“(Y ∧)]] = [[(∃u ∈ X∧)(∃ v ∈ Y ∧)(u = (v, t))]]

=
∨

u∈X

∨

v∈Y
[[u∧ = (v∧, t)]] =

∨

v∈Y

∨

(z,w)∈X
[[z∧ = v∧]] ∧ [[w∧ = t]]

=
∨

{[[w∧ = t]] : v ∈ Y, (v, w) ∈ X}
= [[(∃w ∈ (X∧)“(Y ∧)) (t = w)]] = [[t ∈ (X“Y )∧]].

Proceed with checking (7):

[[t ∈ dom(X∧)]] = [[(∃u ∈ X∧)(∃ v)(u = (t, v))]]

=
∨

(z,w)∈X

∨

v∈V(B)

[[z∧ = t]] ∧ [[w∧ = v]]

=
∨

{[[z∧ = t]] : z ∈ dom(X)} = [[t ∈ dom(X)∧]].

The proof is complete. �

3.1.5. Theorem. Let X and Y be nonempty sets and F ⊂ X × Y . Consider
the correspondence Φ := (F,X, Y ). Then the element Φ∧ of V(B) satisfies the
following conditions:

(1) V(B) |= Φ∧ is a correspondence from X∧ to Y ∧, and Gr(Φ∧) = F∧;
(2) V(B) |= Φ∧(A∧) = Φ(A)∧ for all A ∈ P(X);
(3) V(B) |= (Ψ ◦ Φ)∧ = Ψ∧ ◦ Φ∧ for every correspondence Ψ;
(4) V(B) |= (IX)∧ = IX∧ .



Functors of Boolean Valued Analysis 93

� (1) Let the formula ϕ(X, Y, F,Φ) state that Φ is a correspondence from X
to Y and F = Gr(Φ). Then ϕ is a bounded formula and the claim ensues from
2.2.9.

(2) This follows from 3.1.4 (6).
(3), (4) Here we again deal with bounded formulas. Hence, it suffices to refer

to 2.2.9. �

3.1.6. Corollary. Let f : X → Y be a mapping. Then f∧ satisfies the
conditions:

(1) V(B) |= f∧ : X∧ → Y ∧;

(2) V(B) |= f∧(x∧) = f(x)∧ for all x ∈ X ;

(3) V(B) |= (g ◦ f)∧ = g∧ ◦ f∧ for all g : Y → Z.

3.1.7. We now define the categories V∗ and V
(B)
∗ that are associated with

the universes V and V(B). Note that, without further specification, we agree to
presume that the classes of objects and morphisms of any category do not intersect
(this can be achieved by using extra indices, cf. A.3.2).

Let V∗ be the category of nonempty sets and correspondences, so that Ob V∗ :=
V \ {∅} and V∗(x, y) is the set of all nonempty correspondences from x to y, with
the composition law the conventional composition of correspondences.

The class of objects of the category V
(B)
∗ consists of nonempty V(B)-sets:

Ob V
(B)
∗ := {x ∈ V(B) : [[x �= ∅]] = 1}.

The set of morphisms from an object x ∈ Ob V (B)
∗ into an object y ∈ Ob V (B)

∗ is
defined by the formula

V
(B)
∗ (x, y)

:= {α ∈ V(B) : [[α is a correspondence from x to y and Gr(α) �= ∅]] = 1}.

If α and β are morphisms of the category V
(B)
∗ such that [[D(β) = R(α)]] = 1

then, by the maximum principle, there is a unique element γ ∈ V(B) satisfying
[[γ = β ◦ α]] = 1. We appoint this element γ as the composition of α and β in the
category V(B).

The subcategories of V∗ and V (B)
∗ , each preserving the original class of objects

but with mappings as morphisms, are denoted by V and V (B). Assign to a set
x ∈ V \ {0} and a correspondence α the elements x∧ ∈ V(B) and α∧ ∈ V(B).
Denote the resultant mapping by F∧. The following theorem is straightforward
from 3.1.5 and 3.1.6.



94 Chapter 3

3.1.8. Theorem. The so-defined (pair of mappings) F∧ is a covariant functor

from the category V∗ to the category V
(B)
∗ (as well as from the category V to the

category V (B)).

The functor F∧ (as well as its restriction to the subcategory V ) is the canonical
embedding functor or the standard name functor.

3.1.9. We now inspect the properties of ordinals inside V(B).
(1) Recall (cf. 2.4.10) that Ord (X) is a bounded formula. By defini-

tion, lim(α) ≤ α for every ordinal α. Therefore, the formula Ord (x) ∧ x = lim(x)
may be rewritten as

Ord (x) ∧ (∀ t ∈ x)(∃ s ∈ x)(t ∈ s),

and so it is bounded too. Finally, the record

Ord (x) ∧ x = lim(x) ∧ (∀ t ∈ x)(t = lim(t) → t = 0)

shows that the concept of “least limit ordinal” is expressed by a bounded formula.
Thus, by 2.2.9, α is the least limit ordinal if and only if V(B) |= “α∧ is the least
limit ordinal.” Since ω is the least limit ordinal (cf. 1.4.6); therefore, V(B) |= “ω∧

is the least limit ordinal.”
(2) It follows from 1.4.5 (2), 2.5.15, and 2.5.16 that V(B) |= “On∧ is the

only ordinal class failing to be an ordinal.” Hence, for every x ∈ V(B) the following
holds:

[[Ord (x)]] =
∨

{[[x = α∧]] : α ∈ On}.
(3) For x ∈ V(B), the formula V(B) |= Ord (x) holds if and only if

there are an ordinal β ∈ On and a partition of unity (bα)α∈β ⊂ B such that
x = mixα∈β(bαα∧). In other words, each ordinal inside V(B) is a mixing of some
set of standard ordinals.

� The claim follows from (2) and 3.1.1 (1). �
(4) Using 2.5.16, we come to the rules for quantifying over ordinals:

[[(∀x)(Ord (x) → ψ(x))]] =
∧

α∈On

[[ψ(α∧)]],

[[(∃x)(Ord (x) ∧ ψ(x))]] =
∨

α∈On

[[ψ(α∧)]].

3.1.10. A class X is finite if X coincides with the image of a function on
a finite ordinal. In symbols, this is expressed as Fin(X). Namely,

Fin(X) := (∃n)(∃ f)(n ∈ ω ∧ Fnc (f) ∧ dom(f) = n ∧ im(f) = X).
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Obviously, the above formula is not bounded. By the axiom of replacement NGB6,
it is clear that Fin(X) →M(X), and so we shall speak about finite sets instead of
finite classes. Denote by Pfin(X) the class of all finite subsets of X :

Pfin(X) := {Y ∈ P(X) : Fin(Y )}.

We now check what happens with finite sets under the canonical embedding of V
in V(B), thus grasping the class Pfin(X)∧. To this end, we first show that

V(B) |= Pfin(X)∧ ⊂ Pfin(X∧).

� Note that if f is a mapping of n ∈ ω to X then [[im(f∧) ∈ Pfin(X∧)]] = 1.
Indeed, by 3.1.6, [[f∧ : n∧ → X∧]] = [[n∧ ∈ ω∧]] = 1, and so

[[im(f∧) ∈ P(X∧) ∧ Fin(im(f∧))]] = 1.

Given t ∈ V(B), proceed with easy calculations (cf. 2.2.8 (1), 3.1.4 (7), 3.1.6):

[[t ∈ Pfin(X)∧]]

=
∨

u∈Pfin(X)

[[t = u∧]] =
∨

n∈ω

∨

f :n→X

[[t = im(f)∧]]

=
∨

n∈ω

∨

f :n→X

[[t = im(f∧)]] ∧ [[n∧ ∈ ω∧]] ∧ [[f∧ : n∧ → X∧]]

≤ [[t ∈ Pfin(X∧)]],

so completing the proof. �

3.1.11. The following holds

V(B) |= Pfin(X)∧ = Pfin(X∧)

for an arbitrary class X .

� Assume that for t ∈ V(B) the following holds:

[[t ∈ Pfin(X∧)]] = [[(∃n ∈ ω∧)(∃f)(f : n↔ X∧ ∧ t = im(f)]] = 1.

Then there is a countable partition of unity (b(n))n∈ω ⊂ B such that

[[(∃ f)(f : n∧ → X∧ ∧ t = im(f)]] ≥ b(n) (n ∈ ω).
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Given n ∈ ω and using the maximum principle, find f ′
n ∈ V(B) obeying the in-

equality
[[f ′
n : n∧ → X∧]] ∧ [[t = im(f ′

n)]] ≥ b(n).

By 3.1.6, choose f ′′
n ∈ V(B) so that [[f ′′

n : n∧ → X∧]] ≥ (b(n))∗, and assign fn :=
mix{b(n)f ′

n, (b(n))∗f ′′
n}. Then [[fn : n∧ → X∧]] = 1 and [[t = im(fn)]] ≥ b(n).

Further, considering k ∈ n, note that [[fn(k∧) ∈ X∧]] = 1. Hence, fn(k) =
mix(b(k)x x∧) for some partition of unity (b(k)x )x∈X (cf. 3.1.1 (1)). Therefore,

[[fn(k∧) = x∧]] ≥ b(k)x (x ∈ X, k ∈ n).

Let Xn stand as usual for the class of all mappings from n to X . Given g ∈ Xn

and k ∈ n, note that

[[fn(k∧) = g∧(k∧)]] = [[fn(k∧) = g(k)∧]] ≥ b
(k)
g(k).

Hence, [[fn = g∧]] ≥ bg,n, where bg,n :=
∧{b(k)g(k) : k ∈ n}. In this event however we

also see that
[[im(f) = im(g∧)]] ≥ bg,n (g ∈ Xn).

By definition, im(g) ∈ Pfin(X), while by 3.1.4 (7),

[[im(g∧) ∈ Pfin(X)∧]] = 1.

We thus obtain

[[t ∈ Pfin(X)∧]] ≥ [[t = im(fn)]]

∧[[im(fn) = im(g∧)]] ∧ [[im(g∧) ∈ Pfin(X)∧]] ≥ b(n) ∧ bg,n.

Using the definition of bg,n and the distributive laws 1.1.5 (1, 2), calculate

∨
{b(n) ∧ bg,n : n ∈ ω, g ∈ Xn} =

∨

n∈ω
b(n)∧

( ∨

g∈Xn

∧

k∈n
b
(k)
g(k)

)

=
∨

n∈ω
b(n)∧

( ∧

k∈n

∨

g∈Xn
b
(k)
g(k)

)
=

∨

n∈ω
b(n) ∧

( ∧

k∈n

∨

x∈X
b(k)x

)
=

∨

n∈ω
b(n) = 1.

Clearly, [[t ∈ Pfin(X)∧]] = 1. So, applying 2.5.16, deduce [[Pfin(X∧) ⊂
Pfin(X)∧]] = 1. The reverse inclusion is established in 3.1.10. �
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3.1.12. For a class X and n ∈ ω, the following hold:

(1) V(B) |= (Xn)∧ = (X∧)n
∧
;

(2) V(B) |= P(X)∧ ⊂ P(X∧).
� (1) Given t ∈ V(B), by 3.1.6 we may write

[[t ∈ (Xn)∧]] =
∨

{[[t = u∧]] : u ∈ Xn}
=

∨
{[[t = u∧]] ∧ [[u∧ : n∧ → X∧]] : u ∈ Xn}

≤
∨

{[[t = u]] ∧ [[u : n∧ → X∧]] : u ∈ V(B)}
= [[(∃u)(u : n∧ → X∧ ∧ t = u)]] = [[t ∈ (X∧)n

∧
]].

Therefore, we have established

[[(Xn)∧ ⊂ (X∧)n
∧

]] = 1.

To prove the reverse inclusion, consider u ∈ V(B) satisfying [[u : n∧ → X∧]] = 1. In
this event [[u(k∧) ∈ X∧]] = 1 (k ∈ n), and so [[u(k∧) = mix(b(k)x x∧)]] = 1 for some
partition of unity (b(k)x )x∈X (cf. 3.1.1 (1)).

By refining partitions, we may, if need be, choose a partition of unity (bξ) and
families (xk,ξ) ⊂ X (k ∈ n) such that [[u(k∧) = mix(bξx∧

k,ξ)]] = 1 for all k ∈ n.
Define the functions uξ : n → X as follows uξ(k) := xk,ξ. Then [[u = u∧

ξ ]] ≥ bξ

and [[u∧
ξ ∈ (Xn)∧]] = 1. Hence, [[u ∈ (Xn)∧]] = 1. By 2.5.16, conclude [[(X∧)n

∧ ⊂
(Xn)∧]] = 1.

(2) This follows from straightforward calculation. �
3.1.13. Comments.

(1) Cardinals inside V(B) are a greater problem than ordinals (cf.
3.1.9). It is easy to note that ¬ Card(x) is a Σ1-formula and so [[Card(α∧)]] = 1 →
Card(α). The formula Card(x) is not however of class Σ1. Therefore, the opposite
implication might fail and an ordinal might lose the property of being a cardinal
under the canonical embedding in V(B). In fact, given infinite cardinals λ < κ, it is
possible to choose a complete Boolean algebra B so that V(B) |= |λ∧| = |κ∧|. This
effect is called the cardinal shift or cardinal displacement. We may even choose B
so that V(B) |= 2ωα = ωβ+1 for some α < β. That is how the consistency of ¬ GCH
and ZFC is established [11, 83, 241].

(2) In spite of what has been said in (1), cardinals inside V(B) behave
themselves provided that B satisfies the countable chain condition; i.e., if every
disjoint subset of B is at most countable (in this event B is said to has countable
type in the literature of Russian provenance). Granted B, observe
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V(B) |= Card(α∧) ↔ Card(α),

V(B) |= (ωα)∧ = ωα∧ .

(3) The properties of constructible sets (see 1.5.10) inside V(B) resem-
ble those of cardinals. Namely, if L(x) is the formula stating that x is a constructible
set then

[[L(u)]] =
∨

{[[u = v]] : v ∈ L} (u ∈ V(B))

and 3.1.9 (2)–(4) remain true on substituting L for Ord (cf. [11, 83, 241]).
(4) In view of 3.1.11, it might seem that we have equality holding in

3.1.12 (2), i.e., [[P(X∧) = P(X)∧]] = 1. However, this is not so. Indeed, let B be
the algebra of regular closed subsets of the Cantor set (which is the ω-discontinuum,
i.e., the product of countably many discrete two-element Boolean algebras. Then
[[P(ω∧) �= P(ω)∧]] = 1.

3.2. The Descent Functor

In this section we set forth the basic technique of translating propositions about
the members of a Boolean valued universe V(B) into statements about ordinary sets.
The role of the translator is performed by descent. We use the word “descent” both
for the result and the method of presenting the elements ofV(B) in the von Neumann
universe V. Paraphrasing this informally, we may say that the descent acts from
V(B) to V.

3.2.1. Take an arbitrary class X inside V(B), i.e., an extensional mapping
from V(B) to B, and put

X↓ := {x ∈ V(B) : [[x ∈ X ]] = 1B}.

This equality defines a certain subclass X↓ of the von Neumann universe V which
is called the descent of X . Let Xϕ := ϕ̄ be the class inside V(B) definable by some
B-formula ϕ (see 2.5.5). Then the descent of Xϕ has the form

Xϕ↓ = {x ∈ V(B) : [[ϕ(x)]] = 1}.

In this case the formula x ∈ Xϕ↓ reads: “x satisfies ϕ inside V(B).” Thus, for
instance, if f ∈ V(B) and [[Fnc (f)]] = 1 then we say that f is a function inside
V(B). It is obvious that the descent of the universal V(B)-class UB coincides with
V(B). Also, observe two useful formulas that are immediate from 2.5.16:

[[Xϕ ⊂ Xψ]] =
∧

{[[ψ(x)]] : x ∈ Xϕ↓},



Functors of Boolean Valued Analysis 99

[[Xϕ ∩Xψ �= ∅]] =
∨

{[[ψ(x)]] : x ∈ Xϕ↓},

where ϕ and ψ are arbitrary B-formulas.
In what follows we systematically use the following technique of abbreviations.

Let a symbol f be a (conventional) notation for some n-ary function; for instance,
{ · , · }, ( · , · ), Φ( · ), πΦ( · ), etc. Then to all x1, . . . , xn ∈ V(B) there exists a unique
element xf ∈ V(B) such that

[[xf = f(x1, . . . , xn)]] = [[(∃x)(x1, . . . , xn, x) ∈ f ]].

In this event we simply write f(x1, . . . , xn)↓ instead of xf↓. For instance, Φ(A)↓ is
the class determined by the rule

y ∈ Φ(A) ↔ ([[(∃x ∈ A)(y ∈ Φ(x))]] = 1).

3.2.2. Let X be a subclass of V(B), i.e., X ⊂ V(B) in the sense of V. Say
that X is cyclic or universally complete and write Cyc(X) provided that X is closed
under mixing, i.e., if X contains the mixing of its every family by an arbitrary
partition of unity. In other words, X is a cyclic class whenever, given a partition of
unity (bξ)ξ∈Ξ ⊂ B and a family (xξ)ξ∈Ξ ⊂ X , we observe that mixξ∈Ξ(bξxξ) ∈ X .
The intersection of an arbitrary collection of cyclic sets is a cyclic set itself. The
least cyclic set, containing a set M ⊂ V(B), is the cyclic hull or cyclic completion or
universal completion of M . Let cyc(M) stand for the cyclic hull of M . Obviously,
a subset M of V(B) is cyclic if and only if M = cyc(M).

3.2.3. Let X and Y be classes inside V(B). Then the following hold:

(1) [[X �= ∅]] = 1 → X↓�= ∅ ∧ Cyc(X↓);

(2) X ∈ V(B) → X↓∈ V;

(3) X = Y ↔ X↓= Y ↓.
� (1) By the maximum principle, the class X↓ is nonempty. If (xξ)ξ∈Ξ ⊂ X↓

and (bξ)ξ∈Ξ is a partition of unity then, assigning x := mixξ∈Ξ(bξxξ), note that

[[x ∈ X ]] ≥ [[x = xξ]] ∧ [[xξ ∈ X ]] ≥ bξ (ξ ∈ Ξ).

Therefore, [[x ∈ X ]] ≥ ∨
ξ∈Ξ bξ = 1 and x ∈ X↓.

(2) Assume that X ∈ V(B) and x ∈ X↓. Let u : dom(u) → B be a function
such that dom(u) ⊂ V(B), dom(u) ∈ V, and ū( · ) = [[ · ∈ X ]] (cf. 2.5.6). Then

∨
{u(t) ∧ [[t = x]] : t ∈ dom(u)} = 1.
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Using the exhaustion principle 2.3.9, find a partition of unity (bξ) ⊂ B and a family
(tξ) ⊂ dom(u) satisfying u(tξ) ∧ [[x = tξ]] ≥ bξ, which implies the equality x =
mix(bξtξ). Denote by Part(B) the set of all partitions of unity in B and put

Y :=
⋃

{(dom(u))θ : θ ∈ Part(B)}.

Consider the function F assigning to each x the set of those ordered pairs (θ, v)
for which θ ∈ Part(B); v : θ → dom(u); and if θ := (bξ) then x = mix(bξxξ),
with xξ := v(bξ). Obviously, dom(F ) ⊃ X↓, im(F ) ⊂ P(Part(B) × Y ), and
F (x) ∩ F (y) = ∅ for x �= y. Therefore, |X↓| ≤ |P(Part(B) × Y )| and X↓ ∈ V.

(3) If X↓ = Y ↓ then, by 2.5.16,

[[X ⊂ Y ]] =
∧

t∈X↓
[[t ∈ Y ]] =

∧

t∈Y ↓
[[t ∈ Y ]] = 1.

Analogously, [[Y ⊂ X ]] = 1 and, hence, [[X = Y ]] = 1. �
3.2.4. Let X and Y be two V(B)-classes. Denote by X ×B Y their Cartesian

product inside V(B), which exists by virtue of 1.3.13 (2) and 2.5.18.

The mapping

( · , · )B : (x, y) �→ (x, y)B (x ∈ X↓, y ∈ Y ↓)

is a bijection of the class X↓ × Y ↓ onto the class (X ×B Y )↓. Moreover,

[[PrX↓(x, y) = PrX(x, y)]] = [[PrY ↓(x, y) = PrY (x, y)]] = 1

(x ∈ X↓, y ∈ Y ↓),

where PrX↓ and PrY ↓ are the coordinate projections to the factors X↓ and Y ↓,
while PrX and PrY stand for the coordinate projections inside V(B) to X and Y .

(Recall that PrX and PrY are classes inside V(B), whereas PrX↓ and PrY ↓ are
classes in the sense of V.)

� As was mentioned earlier (cf. 2.4.9 and 2.5.3), the function ( · , · )B is an
injective embedding of V(B) × V(B) into V(B). Hence, it suffices to establish that
( · , · )B sends X↓×Y ↓ ⊂ V(B) ×V(B) to (X ×B Y )↓. Granted x ∈ X↓ and y ∈ Y ↓,
observe

[[(x, y)B ∈ X × Y ]]
= [[(∃u)(∃ v)(u ∈ X ∧ v ∈ Y ∧ (u, v) = (x, y)B)]]
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=
∨

u∈V(B)

∨

v∈V(B)

[[u ∈ X ]] ∧ [[v ∈ Y ]] ∧ [[(u, v) = (x, y)B]]

≥ [[x ∈ X ]] ∧ [[y ∈ Y ]] ∧ [[(x, y) = (x, y)B]] = 1.

Therefore, (x, y)B ∈ (X×BY )↓. Now, consider an arbitrary element z ∈ (X×BY )↓
and note that, by the maximum principle, there are elements x and y of V(B)

satisfying

1 = [[z ∈ X × Y ]] = [[(∃u ∈ X)(∃ v ∈ Y )(z = (u, v))]]
= [[x ∈ X ]] ∧ [[y ∈ Y ]] ∧ [[z = (x, y)]].

Hence, x ∈ X ↓, y ∈ Y ↓, and z = (x, y)B. Finally, given x ∈ X↓, y ∈ Y ↓, and
z ∈ V(B), infer

[[z = PrX(x, y)]] = [[((x, y), z) ∈ PrX ]] = [[z = x]] = [[z = PrX↓(x, y)]],

which ensures validity of the claimed identity for the projection to X . The situation
is analogous with the projection to the second factor. �

3.2.5. Consider a (binary) relation X inside V(B). This implies that X is
a class inside V(B) and [[X is a relation ]] = 1. By 3.2.4 and the axiom of domain
NGB10, there is a class Y satisfying

(x, y) ∈ Y ↔ (x, y)B ∈ X↓.

Indeed, we may put

Y := dom(( · , · )B ∩ (V(B) × V(B) ×X↓)).

It is obvious that Y is a relation and that ( · , · )B carries out a bijection between
Y and X↓. The class Y is the descent of X . We preserve the symbol X↓ for Y . In
much the same way, we define the descent of an n∧-ary relation X ; namely:

X↓ := {(x1, . . . , xn) ∈ (V(B))n : (x1, . . . , xn)B ∈ X↓}.

Observe that the descent of a class X and the descent of a binary relation X
are not the same. Therefore, the common notation X↓ is just a minor liberty we
took for convenience. This particularity is worth remembering to avoid confusion.
For instance, the equality (X×BY )↓ = X↓ × Y ↓ is simply another record of the
first part of 3.2.4. The same remark applies to the descents of correspondences,
categories, and their next of kin to appear below.
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3.2.6. Theorem. If X and Y are classes inside V(B) then the following hold:
(1) dom(X)↓= dom(X↓), im(X)↓= im(X↓);
(2) (X ∩ Y )↓= X↓ ∩Y ↓;
(3) (X � Y )↓= (X↓) � (Y ↓);
(4) (X−1)↓= (X↓)−1;
(5) (X ◦ Y )↓= (X↓) ◦ (Y ↓);
(6) (X“Y )↓= (X↓)“(Y ↓);
(7) (V(B) |= Fnc (X)) ↔ Fnc (X↓);
(8) (V(B) |= X ⊂ Y ) ↔ X↓⊂ Y ↓;
(9) [[x = y]] ≤ [[X(x) = X(y)]] (x, y ∈ V(B));

(10) (X↓)n = (Xn∧
)↓ (n ∈ ω).

� (1) By the maximum principle, granted x ∈ V(B), note that there is some y
in V(B) satisfying

[[x ∈ dom(X)]] = [[(∃u)((x, u) ∈ X)]] = [[(x, y)B ∈ X ]].

Therefore, from x ∈ dom(X)↓ it follows that x ∈ dom(X ↓). Conversely, if x ∈
dom(X↓) then [[(x, y) ∈ X ]] = 1 for some y ∈ V(B). Hence,

[[x ∈ dom(X)]] =
∨

{[[(x, u) ∈ X ]] : u ∈ V(B)} ≥ [[(x, y) ∈ X ]],

and so x∈dom(X)↓. The second formula is proven by analogy.
(2) By definition, given x ∈ V(B), note that

[[x ∈ X ∩ Y ]] = [[x ∈ X ∧ x ∈ Y ]] = [[x ∈ X ]] ∧ [[x ∈ Y ]].

Therefore, x ∈ (X ∩ Y )↓ if and only if x ∈ X↓ and x ∈ Y ↓ simultaneously.
(3) Applying (2), 3.2.4, and the definition of X � Y , deduce

(X � Y )↓= (X ∩ (Y × UB))↓= X↓ ∩ (Y ↓ ×V(B)) = (X↓) � (Y ↓).

(4) This ensues from the definition of X−1.
(5) Considering a class Z, denote by σZ the σ-permutation of Z, with σ :=

(ı1, ı2, ı3) a permutation of {1, 2, 3} (cf. 1.3.10). It is easy to check that (σZ)↓=
σ(Z↓). If Z ∈ V(B) is such that V(B) |= Z = (Y ×UB)∩(UB×X) and σ := {1, 3, 2}
then

V(B) |= X ◦ Y = dom(σZ).

Now, using (1), (2), and 3.2.4, proceed with the following chain of equalities

(X ◦ Y )↓= dom(σZ)↓= dom(σ(Z↓))
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= dom(σ((Y ↓ × V(B)) ∩ (V(B) ×X↓))) = (X↓) ◦ (Y ↓).

(6) Successively applying (1) and (3), obtain

(X“Y )↓= (im(X � Y ))↓= im((X � Y )↓)
= im((X↓) � (Y ↓)) = (X↓)“(Y ↓).

(7) Assume that [[Fnc (X)]] = 1. Then X↓ is a binary relation and, moreover,

[[(x, y) ∈ X ]] ∧ [[(x, z) ∈ X ]] ≤ [[y = z]]

for all x, y, z ∈ V(B). Hence, granted (x, y) ∈ X↓ and (x, z) ∈ X↓, infer [[y = z]] = 1,
i.e., y = z. In other words, Fnc (X↓) is fulfilled. In turn, if X↓ is a single-valued
binary relation then, using 2.5.16, deduce

[[Fnc (X)]] =
∧

x∈V(B)

∧
{[[y = z]] : (x, y) ∈ X↓, (x, z) ∈ X↓} = 1.

(8) Applying (2) and 3.2.3 (3), write

1 = [[X ⊂ Y ]] ↔ 1 = [[X ∩ Y = X ]] ↔ X↓ ∩ Y ↓ = X↓ ↔ X↓ ⊂ Y ↓.
(9) The formula (∀x)(∀ y)(x = y → X“{x} = X“{y}) is a theorem of ZF, and

so its Boolean truth value is unity. Expanding the Boolean truth value by the rules
for quantification and implication, come to the claim.

(10) If [[t : n∧ → X ]] = 1 then to every k ∈ n there is a unique element
x ∈ X↓ for which [[t(k∧) = x]] = 1. Letting s(k) := x for k ∈ n, obtain the mapping
s : n→ X↓ which is also denoted by t↓. Hence,

[[t↓(k) = t(k∧)]] = 1 (k ∈ n).

Conversely, if s : n→ X↓ then define t ∈ V(B) by the rule

t := {(k∧, s(k))B : k ∈ n} × 1B .

In this event [[t : n∧ → X ]] = 1, [[t(k∧) = s(k)]] = 1 for k ∈ n and t↓ = s.
Summarizing, conclude that the mapping t �→ t↓ is a bijection between {x ∈ V(B) :
[[x ∈ Xn∧

]] = 1} and (X↓)n.
Proceed with recalling the definition of s := (x(0), . . . , x(n − 1))B (cf. 2.4.9).

Let x : n→ X↓ and y : n→ X↓ be such that y(0) = x(0), y(k) = (y(k− 1), x(k))B

for 0 �= k ∈ n and y(n − 1) = s. By the above, there are p, q ∈ V(B) satisfying
[[p, q : n∧ → X ]] = 1, in which case p↓ = x and q↓ = y. It is now easy to check that

[[p(0) = q(0) ∧ (∀ k ∈ n∧)(k �= 0 → q(k) = (q(k − 1), p(k)))]] = 1.

Therefore, [[q(n∧ − 1) = (p(0∧), . . . , p(n∧ − 1)) ∈ Xn∧
]] = 1. On the other hand,

[[s = q(n∧ − 1)]] = 1, and so s ∈ (Xn∧
)↓. Thus, the mapping

(x(0), . . . , x(n− 1)) �→ (x(0), . . . , x(n− 1))B

is an injection of (X↓)n to (Xn∧
)↓.

Analogous arguments show that the image of (X↓)n is the whole of (Xn∧
)↓. �
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3.2.7. The matter with the descents of the complement of a class and the
union of a family of classes differs in some respects from the cases settled in 3.2.6.

Consider an arbitrary class Y ⊂ V(B). Since the formula x ∈ V(B) ∧ (∀ y ∈ Y )
([[x = y]] = 0) is predicative, there is a class Y c determined from the relation

x ∈ Y c ↔ x ∈ V(B) ∧ (∀ y ∈ Y )([[x = y]] = 0).
Now, take a class X inside V(B). Denote by Xc the V(B)-class that is the

complement of X inside V(B); i.e.,
V(B) |= (∀x)(x ∈ Xc ↔ x /∈ X).

The existence of Xc follows from 2.5.18.
Consider the formula

ϕ(y, B, Y,V(B), [[ · = · ]])
:= (∀ a)(∀ b)(∀x)(b : a→ Y ∧ “b is a partition of unity”

∧x : a→ Y ∧ y = mix
α∈a(b(α)x(α))),

stating that y is a mixing of a certain family of elements of the class Y . It is easy
to see that this formula is predicative, and so there is a class mix(Y ) such that

(∀ y)(y ∈ mix(Y ) ↔ ϕ(y, B, Y,V(B), [[ · = · ]])).
By way of example, granted an arbitrary class X ⊂ V, observe that X∧↓ =

mix(X1) where X1 := {x∧ : x ∈ X} and the canonical embedding (cf. 3.1.1 (1))
carries out the injection of X to mix(X1).

3.2.8. If a class Y is a set then

mix(Y ) = cyc(Y ).
� We only have to demonstrate that the set mix(Y ) of all possible mixings

mixy∈Y (byy) of families of Y is cyclic. To this end, consider a partition of unity
(bξ)ξ∈Ξ and the elements

yξ := mix
y∈Y

(bξ,yy) (ξ ∈ Ξ)

in mix(Y ). Put y0 := mixξ∈Ξ(bξyξ) and b(ξ,y) := bξ ∧ bξ,y for ξ ∈ Ξ and y ∈ Y . If
(ξ, y) �= (η, z) then

b(ξ,y) ∧ b(η,z) = bξ ∧ bη ∧ bξ,y ∧ bη,z = 0.

Moreover, straightforward calculation gives (cf. 1.1.5 (2))
∨

(ξ,y)∈Ξ×Y
b(ξ,y) =

∨

ξ∈Ξ

(
bξ ∧

∨

y∈Y
bξ,y

)
= 1.

Therefore, (b(ξ,y)) is a partition of unity. Given y ∈ Y , note that
[[y0 = y]] ≥ [[y0 = yξ]] ∧ [[yξ = y]] ≥ bξ ∧ bξ,y.

Whence, y0 = mix(b(ξ,y)y), and so y0 ∈ mix(Y ); i.e., mix(Y ) is a cyclic set. �
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3.2.9. For nonempty classes X and Y inside V(B), the following hold:

(1) Xc↓= X↓c;

(2) (X ∪ Y )↓= mix(X↓ ∪Y ↓).
� (1) Using definitions and 2.5.16, derive the following equivalences:

x ∈ Xc↓↔ [[x ∈ Xc]] = 1

↔ [[x /∈ X ]] = 1 ↔ [[x ∈ X ]] = 0 ↔
∨

{[[x = s]] : s ∈ X↓} = 0

↔ (∀ s ∈ X↓)([[s = x]] = 0) ↔ x ∈ (X↓)c.

(2) It is seen from 3.2.6 (8) that X↓∪Y ↓ ⊂ (X∪Y )↓. Conversely, if z ∈ (X∪Y )↓
then

(∃x ∈ X)(∃ y ∈ Y )(x = z ∨ y = z).

Using the maximum principle, choose x0, y0 ∈ V(B) so that b ∨ c = 1 where b :=
[[x0 ∈ X ]] ∧ [[x0 = z]] and c := [[y0 ∈ Y ]] ∧ [[y0 = z]]. Choosing x1 ∈ X↓ and y1 ∈ Y ↓
arbitrarily, put x = mix{bx0, b

∗x1} and y := mix{cy0, c∗y1}. Then x ∈ X↓, because

b ≤ [[x = x0]] ∧ [[x0 ∈ X ]] ≤ [[x ∈ X ]],
b∗ ≤ [[x1 = x]] ∧ [[x1 ∈ X ]] ≤ [[x ∈ X ]].

By an analogous reason, y ∈ Y ↓. Moreover,

b ≤ [[x = x0]] ∧ [[x0 = z]] ≤ [[x = z]],
b∗ ≤ c ≤ [[y = y0]] ∧ [[y0 = z]] ≤ [[y = z]];

i.e., z = mix{bx, b∗y} and z ∈ mix(X↓ ∪ Y ↓). �
It is worth observing in addition that we factually have

(3) (X ∪ Y )↓ =
⋃
b∈B bX↓ ⊕ b∗Y ↓, where bX↓ ⊕ b∗Y ↓ is the set of

elements of the type mix{bx, b∗y} (x ∈ X↓, y ∈ Y ↓).

3.2.10. Sometimes we are to repeat descending. We now clarify the way this
happens.

Let X be a class. Arrange the class-function Y by the formula

Y := {(x, y) : x ∈ V(B), y = x↓}.
The double or repeated descent of X is the class

⋃
im(Y �(X↓)) denoted by X�.

Therefore,
X� =

⋃
{x↓ : x ∈ X↓}.

Evidently, if X ∈ V(B) then X� ∈ V (cf. 3.2.3 (2)).
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3.2.11. For each nonempty V(B)-class X the following hold:

(1) (
⋃
X)↓ =

⋃
(X�);

(2) (
⋂
Y )↓ =

⋂
(X�);

(3) P(X)� ⊂ P(X↓).
� The proof leans on 2.5.16. The due calculations are as follows:
(1) u ∈ ⋃

(X�) ↔ (∃ v ∈ X�)(u ∈ v) ↔ (∃ z ∈ X↓)(u ∈ z↓)
↔ (∃ z ∈ X↓)([[u ∈ z]] = 1) ↔ [[(∃ z ∈ X)(u ∈ z)]] = 1 ↔ [[u ∈ ⋃

X ]] = 1
↔ u ∈ (

⋃
X)↓.

(2) u ∈ ⋂
(X�) ↔ (∀ v ∈ X�)(u ∈ v) ↔ (∀ z ∈ X↓)(u ∈ z↓)

↔ (∀ z ∈ X↓)([[u ∈ z]] = 1) ↔ [[(∀ z ∈ X)(u ∈ z)]] = 1
↔ [[u ∈ ⋂

X ]] = 1 ↔ u ∈ (
⋂
X)↓.

(3) u ∈ P(X)� ↔ (∃ z ∈ P(X)↓)(u = z↓) ↔ (∃ z)([[z ⊂ X ]] = 1 ∧ u = z↓)
↔ (∃ z)(z↓ ⊂ X↓ ∧ u = z↓) → u ⊂ X↓ ↔ u ∈ P(X↓). �

3.2.12. Theorem. Let X , Y , and f ∈ V(B) be such that [[X �= ∅]] = [[Y �=
∅]] = [[f : X → Y ]] = 1. Then there is a unique mapping f↓ : X↓ → Y ↓, the descent
of f , such that

[[f(x) = f↓(x)]] = 1 (x ∈ X↓).

The descent f↓ of a mapping f inside V(B) has the following properties:
(1) f↓ is an extensional mapping, i.e.,

[[x = x′]] ≤ [[f↓(x) = f↓(x′)]] (x, x′ ∈ X↓);

(2) If Z and g ∈ V(B) are such that [[Z �= ∅]] = [[g : Y → Z]] = 1 then

(g ◦ f)↓ = g↓ ◦ f↓;

(3) f↓ is surjective, or injective, or bijective if and only if [[f is surjec-
tive, or injective, or bijective ]] = 1.

� Let h be the descent of f in the sense of 3.2.5. It follows from 3.2.6 (1, 7)
that h : X↓ → Y ↓. Then, since (x, h(x))B ∈ f↓ for all x ∈ X↓; therefore,

[[h(x) = f(x)]] = [[(x, h(x)) ∈ f ]] = [[(x, h(x))B ∈ f ]] = 1.

The so-defined mapping h is unique. Indeed, if g : X↓→ Y ↓ has the same property
then

[[h(x) = g(x)]] ≥ [[g(x) = f(x)]] ∧ [[h(x) = f(x)]] = 1.

Hence, h(x) = g(x) for every x ∈ X↓ because V(B) is separated. Using the defining
relation of h and 3.2.6 (9), proceed with this calculation
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[[x = x′]] ≤ [[f(x) = f(x′)]] ∧ [[f(x) = h(x)]]
∧[[f(x′) = h(x′)]] ≤ [[h(x) = h(x′)]].

We have thus established (1), while (2) follows from 3.2.6 (5).
So, we are left with checking (3). The claim about surjectivity is easy from

3.2.6 (6), while bijectivity is the conjunction of surjectivity and bijectivity. The
injectivity of f inside V(B) is equivalent to the formula

[[x = x′]] = [[f(x) = f(x′)]] = [[h(x) = h(x′)]] (x, x′ ∈ X↓).

Hence, x = x′ if and only if h(x) = h(x′), which means that the mapping h is
injective. �

3.2.13. Theorem. Let X, Y, F ∈ V(B) be such that [[X �= ∅]] = [[Y �= ∅]] =
[[∅ �= F ⊂ X×Y ]] = 1. Let Φ ∈ V(B) be a correspondence from X to Y with graph
F inside V(B); i.e., V(B) |= Φ = (F,X, Y ). Then the 3-tuple Φ↓ := (F↓, X↓, Y ↓),
the descent of Φ, is a unique correspondence obeying the equality

Φ↓(x) = Φ(x)↓ (x ∈ X↓).

The descent of a correspondence has the following properties:
(1) Φ(A)↓ ∈ Φ↓(A↓) for every A ∈ V(B) satisfying [[A ⊂ X ]] = 1;
(2) πΦ(A)↓ = πΦ↓(A↓) for every A ∈ V(B) satisfying [[A ⊂ X ]] = 1;
(3) (Φ′ ◦ Φ)↓= Φ′↓ ◦ Φ↓ for another correspondence Φ′ inside V(B);
(4) (IX)↓= IX↓.

� All claims but (2) are elementarily deduced from 3.2.6. Note only that the
defining relation Φ↓(x) = Φ(x)↓ (x ∈ X↓) must be understood in accord with the
remark on 3.2.1.

Indeed, by the maximum principle that there exists a member Ψ in V(B) such
that [[Ψ : X → P(Y )]] = 1 and [[Φ(x) = Ψ(x)]] = 1 for all x ∈ X↓. By 3.2.12,
Ψ↓ : X↓ → P(Y )↓ and [[Φ(x) = Ψ↓(x)]] = 1 for x ∈ X↓. In this case, however, Φ↓
is defined by the relation

Φ↓(x) = (Ψ↓(x))↓= Ψ(x)� (x ∈ X↓).

In particular, this yields Φ↓(A↓) = Ψ(A)�. Using these remarks, turn to prov-
ing (2). Note that

[[πΦ(A) =
⋂

Ψ(A)]] = 1;

i.e., πΦ(A) =
⋂{Ψ(a) : a ∈ A} is fulfilled inside V(B). Whence, using 3.2.11 (2),

deduce

πΦ(A)↓= (
⋂

Ψ(A))↓=
⋂

(Ψ(A)�)

=
⋂

{Φ↓(a) : a ∈ A↓} = πΦ↓(A↓),

so completing the proof. �
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3.2.14. We now address families of functions and correspondences inside V(B).

(1) Assume that X and Y are nonempty sets inside V(B). Assume
further that a family (fξ)ξ∈Ξ of members of V(B) is such that

[[fξ : X → Y ]] = 1 (ξ ∈ Ξ).

Then the mixing mixξ∈Ξ(bξfξ) of (fξ)ξ∈Ξ by each partition of unity (bξ)ξ∈Ξ ⊂ B is
a function from X to Y inside V(B) and

mix
ξ∈Ξ

(bξfξ)↓(x) = mix
ξ∈Ξ

(bξfξ↓(x)) (x ∈ X↓).

� Put g := mixξ∈Ξ(bξfξ). Since

bξ ≤ [[g = fξ]] ∧ [[fξ : X → Y ]] ≤ [[g : X → Y ]];

therefore, [[g : X → Y ]] = 1 meaning that g is a function from X to Y inside V(B).
Moreover, by 3.2.12, given x ∈ X↓, find

bξ ≤ [[g↓(x) = g(x)]] ∧ [[g(x) = fξ(x)]]
∧[[fξ↓(x) = fξ(x)]] ≤ [[g↓(x) = fξ↓(x)]].

Hence, g↓(x) = mixξ∈Ξ(bξfξ↓(x)). �
(2) With X , Y , and (bξ) the same as above, assume that (Φξ)ξ∈Ξ is

a family in V(B) consisting of correspondences from X to Y inside V(B). Then the
mixing mixξ∈Ξ(bξΦξ) itself is a correspondence from X to Y insideV(B). Moreover,

mix
ξ∈Ξ

(bξΦξ)↓(x) = mix
ξ∈Ξ

(bξΦξ↓(x)) (x ∈ X↓).

� The proof is analogous to 3.2.14 (1). �

3.2.15. Let F ↓ stand for the mapping sending a nonempty V(B)-set X to its
descent X↓ and taking each correspondence Φ inside V(B) to Φ↓.
Theorem. The mapping F ↓ is a covariant functor from the category V

(B)
∗ to

the category V∗ (from the category V (B) to the category V , respectively).

3.2.16. Theorem. Let K be a category inside V(B). Then there is a unique
category K′ (in the sense of V) such that Ob K′ = (Ob K)↓, Mor K′ = (Mor K)↓,
and Com′ = Com↓, where Com′ is the composition of K′ and V(B) |=“Com is the
composition of the category K.”
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� It follows from 3.2.6 (7) that Com′ is a partial binary operation on the class
(Mor K)↓. Since [[Com(α, β) = Com′(α, β)]] = 1 for all α, β ∈ Mor K′ and Com is
associative inside V(B); therefore, Com′ is also associative.

Let D and R be the V(B)-classes of the definition of K (cf. 2.5.19). Put
D′ := D↓ and R′ := R↓. By 3.2.6 (1), (7), D′ and R′ are mappings from Mor K′ to
Ob K′. Appealing to 3.2.6 (1) again, conclude that for α, β ∈ Mor K′ the formulas
(α, β) ∈ dom(Com′) and [[(α, β) ∈ dom(Com)]] = 1 are equivalent. On the other
hand, the equality R′(α) = D′(β) is fulfilled only if [[R(α) = D(β)]] = 1. Existence
of the identity morphisms in K′ is obvious. Hence, K satisfies all hypotheses of the
definition in 2.5.19. �

3.2.17. The category K′ of 3.2.16 is called the descent of K and denoted by
K↓. Let SetB∗ be the category of nonempty sets and correspondences inside V(B).
More explicitly, Mor SetB∗ , Ob SetB∗ , and Com : V(B) → B have the form

Ob SetB∗ : x �→ [[x �= ∅]],

Mor SetB∗ : α �→ [[(∃x)(∃ y)(∃ f)
(x �= ∅ ∧ y �= ∅ ∧ f �= ∅ ∧ f ⊂ x× y ∧ α = (f, x, y))]],

Com : u �→ [[(∃α)(∃β)(∃γ)
(α, β, and γ are correspondences) ∧ γ = α ◦ β ∧ u = (α, β, γ)]].

The descent of the category SetB∗ is easily seen to coincide with the category V
(B)
∗

of 3.1.7. The category SetB of nonempty sets and mappings inside V(B) is defined
similarly, yielding V (B) = SetB↓.

3.2.18. Comments.

(1) As was mentioned in 3.2.5, we use the unique symbol ↓ for denoting
various operations of the same provenance. Consequently, the record X↓ is unam-
biguously understood only if extra information is available on which object X is
descending. This runs in a perfect analogy with using the same sign + for denoting
many group operations: addition of numbers, vectors, linear operators, etc. The
context always prompts the precise meaning.

(2) The double descent of 3.2.10 appears in dealing with other set-
theoretic operations. For instance, let

∏
X stand for the class of all mappings f

from X to
⋃
X such that f(x) ∈ x for all x ∈ X and

∑
X :=

⋃{x× {x} : x ∈ X}.
Then to each X ∈ V(B) there are natural bijections

(∏
X

)
�=

∏
(X�),

(∑
X

)
↓=

∑
(X�).

The double descent in (
∏
X)� relates to mappings.
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(3) The inclusion in 3.2.11 (3) is clearly strict on assuming that B �= 2.
Note also that P(X)↓ is an algebraic system of signature (∨,∧, ∗, 0, 1). It is possible
to show that this is a complete Boolean algebra presenting a completion of the
inclusion ordered set P(X)� in the following sense: There is an order preserving
injection ı : P(X)�→ P(X)↓ satisfying the following condition: given a ∈ P(X)↓,
a < 1, we may find b ∈ P(X)� so that a ≤ ı(b) < 1. This situation is in exact
analogy with the construction of the completion of a Boolean algebra (cf. [83, 220]).

(4) Proving 3.2.6 (10), we have established in particular that, for X ∈
V(B), the mapping ↓ is a bijection between the sets V (n,X↓) and V (B)(n∧, X).
This phenomenon is of a rather abstract nature, reflecting deep relationship between
the functors F∧ and F ↓. We elaborate details in Section 3.5.

3.3. The Ascent Functor

In this section we ascend from the von Neumann universe to a Boolean valued
universe, considering this as reversal of descent. We define an appropriate functor
and study its main properties.

3.3.1. Assume given a subclass X of the class V(B).
(1) The formula

Y (t) :=
∨

{[[t = x]] : x ∈ X} (t ∈ V(B))

defines a V(B)-class Y .

� By Theorem 1.3.14, there is a class Y in the sense of V such that

(y, b) ∈ Y ↔ y ∈ V(B) ∧ b ∈ B ∧
(
b =

∨

x∈X
[[x = y]]

)
.

Clearly, Y is single-valued and dom(Y ) = V(B); i.e., Y is a mapping from V(B)

to B. Moreover, this mapping is extensional since, by virtue of 2.1.8 (4),

Y (t) ∧ [[t = s]] =
∨

{[[t = x]] ∧ [[t = s]] : x ∈ X}
≤

∨
{[[s = x]] : x ∈ X} = Y (s).

Hence, Y is a class inside V(B). �
To each class X ⊂ V(B) we have thus assigned the class Y inside V(B) which

is called the ascent of X and denoted by X↑.
In case X is a set, there is a unique element y ∈ V(B) such that X↑(t) = [[t ∈ y]]

for all t ∈ V(B) (cf. 2.5.6). This y is the ascent ofX (cf. 2.5.10). By way of example,
note that, for a class X ⊂ V, the class X∧ is the ascent of {x∧ : x ∈ X} (cf. 2.5.15).
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(2) Assume now that X is a relation on V(B); i.e., X ⊂ V(B) × V(B).
In order for X to ascend, we will firstly embed it into V(B) and, secondly, apply
the above procedure. To this end, we use the function (x, y) �→ (x, y)B (cf. 3.2.4).
Therefore, we give the following definition of the ascent of a binary relation X on
V(B):

X↑ : t �→
∨

{[[t = (x, y)B]] : (x, y) ∈ X}.
In particular, if X is the product of some classes Y ⊂ V(B) and Z ⊂ V(B) then we
arrive at the ascent of Y × Z:

(Y × Z)↑ : t �→
∨

{[[t = (x, y)B]] : y ∈ Y, z ∈ Z}.

3.3.2. Assume that X ⊂ V(B) is a nonempty class and ϕ is a B-formula. Then

[[(∀u ∈ X↑)ϕ(u)]] =
∧

{[[ϕ(u)]] : u ∈ X},
[[(∃u ∈ X↑)ϕ(u)]] =

∨
{[[ϕ(u)]] : u ∈ X}.

� We demonstrate only the last formula (cf. 1.1.5 (2, 7)):

[[(∃u ∈ X↑)ϕ(u)]] = [[(∃u)(u ∈ X↑ ∧ϕ(u))]]

=
∨

v∈V(B)

∨

u∈X
[[u = v]] ∧ [[ϕ(v)]]

=
∨

u∈X

( ∨

v∈V(B)

[[v = u]] ∧ [[ϕ(v)]]
)

=
∨

{[[ϕ(u)]] : u ∈ X}.

The case of a universal quantifier is settled by analogy. �
3.3.3. For an arbitrary class X ⊂ V(B) and a nonempty V(B)-class Y :

V(B) → B, the following arrow cancellation rules hold:

(1) X↑↓= mix(X);
(2) Y ↓↑= Y .

� (1) If X is empty then the claim is trivial. If x ∈ X then [[x ∈X ↑]] = 1.
Hence, x ∈ X↑↓. This fact, together with 3.2.3, yields mix(X) ⊂ X↑↓. The reverse
inclusion follows from 3.3.2 and the mixing principle.

(2) By 2.5.16, given y ∈ V(B), note that

[[y ∈ Y ↓↑]] =
∨

{[[y = t]] : t ∈ Y ↓} = [[(∃t ∈ Y )(t = y)]] = [[y ∈ Y ]],

so completing the proof. �
(3) Using the mixing of a family of ordered pairs, we find the following

proposition of service:
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Assume that (bξ)ξ∈Ξ is a partition of unity in B. Assume further that (xξ)ξ∈Ξ

and (yξ)ξ∈Ξ are some families in V(B). Then

mix
ξ∈Ξ

bξ(xξ, yξ)B =
(

mix
ξ∈Ξ

bξxξ,mix
ξ∈Ξ

bξyξ
)B
.

� Show first that b(x, y)B = b(bx, by)B for all x, y ∈ V(B) and b ∈ B. To this
end, successively apply 2.3.2, 2.4.9, and 2.3.6:

[[b(x, y)B = b(bx, by)B]] = b→ [[(x, y)B = (bx, by)B]] = b

→ ([[x = bx]] ∧ [[y = by]]) = b→ ((b∗ ⇒ [[x = ∅]])
∧(b∗ ⇒ [[y = ∅]])) = b∗ ∨ ((b ∨ [[x = ∅]]) ∧ (b ∨ [[y = ∅]]))

= (b∗ ∨ b ∨ [[x = ∅]]) ∧ (b∗ ∨ b ∨ [[y = ∅]]) = 1.

Now, assign
x := mix

ξ∈Ξ
bξxξ, y := mix

ξ∈Ξ
bξyξ.

Summarizing, obtain

bξ(xξ, yξ)B = bξ(bξxξ, bξyξ)B = bξ(bξx, bξy)B = bξ(x, y)B.

To complete the proof, refer to the mixing principle. �
This fact allows us to consider mixings in the class V(B) × V(B). Namely, we

agree to assign
mix
ξ∈Ξ

bξ(xξ, yξ) :=
(

mix
ξ∈Ξ

bξxξ,mix
ξ∈Ξ

bξyξ
)
.

We are in a position now to assert that the mapping (x, y) �→ (x, y)B preserves
mixing.

3.3.4. Theorem. For all classes X ⊂ V(B) and Y ⊂ V(B) the following hold:
(1) V(B) |= X↑ ⊂ Y ↑ provided that X ⊂ Y ;
(2) V(B) |= (X ∪ Y )↑ = X↑ ∪ Y ↑;
(3) V(B) |= (mix(X) ∩ mix(Y ))↑ = X↑ ∩ Y ↑;
(4) V(B) |= (X × Y )↑ = X↑ × Y ↑.

Moreover, if X and Y are relations and Z is a class then
(5) V(B) |= dom(X)↑ = dom(X↑) ∧ im(X)↑ = im(X↑);
(6) V(B) |= (X−1)↑ = (X↑)−1;
(7) V(B) |= (mix(X)“ mix(Z))↑ = (X↑)“(Z↑);
(8) V(B) |= (mix(X) ◦ mix(Y ))↑ = (X↑) ◦ (Y ↑);
(9) V(B) |= (Zn)↑ = (Z↑)n

∧
for all n ∈ N.
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� (1) The claim follows from the definition of descent.
(2) This ensues from the following calculation:

[[t ∈ (X ∪ Y )↑]] =
∨

{[[t = u]] : u ∈ X ∪ Y }
=

∨

u∈X
[[t = u]] ∨

∨

u∈Y
[[t = u]] = [[t ∈ X↑ ∨ t ∈ Y ↑]].

(3) Assume proven that the ascent of the intersection of X and Y coincides
with the intersection of the ascents X↑ and Y ↑ inside V(B). By 3.2.6 (2) and 3.3.3,
conclude

mix(X ∩ Y ) = (X ∩ Y )↑↓ = (X↑ ∩ Y ↑)↓
= X↑↓ ∩ Y ↑↓ = mix(X) ∩ mix(Y ).

Conversely, assume that the cyclic hull of the intersection of X and Y equals the
intersection of the cyclic hulls of X and Y . On appealing to 3.2.6 (2) and 3.3.3
again, infer

(X ∩ Y )↑↓ = X↑↓ ∩ Y ↑↓ = (X↑ ∩Y ↑)↓.
Hence, [[(X ∩ Y )↑ = X↑ ∩ Y ↑]] = 1 according to 3.2.3 (3).

To complete the proof, apply the above to the classes mix(X) and mix(Y ) and
recall the rules for arrow cancellation of 3.3.3.

(4) Using 3.3.2, proceed with the calculation

[[z ∈ X↑ × Y ↑]] = [[(∃u ∈ X↑)(∃ v ∈ Y ↑)z = (u, v)]]

=
∨

u∈X

∨

v∈Y
[[z = (u, v)]] =

∨

(u,v)∈X×Y
[[z = (u, v)B]] = [[z ∈ (X × Y )↑]].

(5) Supposing that X is a binary relation, it is easy to check the following
chain of equalities (cf. 1.1.5 (2, 7)):

[[x ∈ dom(X↑)]] = [[(∃y)((x, y) ∈ X↑)]]

=
∨

y∈V(B)

∨

(s,t)∈X
[[(x, y)B = (s, t)B]]

=
∨

(s,t)∈X

∨

y∈V(B)

[[x = s]] ∧ [[y = t]]

=
∨

s∈dom(X)

[[x = s]] = [[x ∈ dom(X)↑]].
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The claim about im(X) is demonstrated by analogy.

(6) [[(x, y) ∈ (X↑)−1]] = [[(y, x) ∈ X↑]] =
∨

(s,t)∈X
[[(s, t) = (y, x)]]

=
∨

(t,s)∈X−1

[[(t, s) = (x, y)]] = [[(x, y) ∈ (X−1)↑]].

(7), (8) It is obvious that

mix(X) ∩ (mix(Z) × V(B)) = mix(X) ∩ mix(Z ×V(B));

(mix(Y ) × V(B)) ∩ (V(B) × mix(X))

= mix(Y × V(B)) ∩ mix(V(B) ×X).

Proceed further along the lines of 3.2.6 (5, 6), using (3), (4) and the fact that [[V(B)↑
= UB ]] = 1.

(9) Considering 3.3.3 (3), note that mix(Zn) = mix(Z)n. Using 3.2.6 (10) and
3.3.3 (1), conclude (

(Z↑)n
∧)↓= (Z↑↓)n = (Zn)↑↓.

This yields the claim by 3.2.3 (3). �
3.3.5. Consider a class X composed of subsets of V(B); i.e., X ⊂ P(V(B)).

The double or repeated ascent of X , denoted by X�, is the ascent of the class
{x↑: x ∈ X}. Hence,

[[t ∈ X�]] =
∨

{[[t = x↑]] : x ∈ X} (t ∈ V(B)).

Introduce one more notation:

mix “X := {mix(u) : u ∈ X}.
Obviously, [[X�= (mix “X)�]] = 1.

Let P0(X) stand for the class of nonempty members of P(X); i.e.,

P0(X) := {z : z ⊂ X, z �= ∅}.
3.3.6. Suppose that X is a nonempty V(B)-class and Y ⊂ P(V(B)). Then

(1) V(B) |= ⋃
(Y�) = (

⋃
Y )↑;

(2) V(B) |= ⋂
(Y�) =

⋂
(mix “(Y ↑));

(3) V(B) |= ⋃
X = (

⋃
(X�))↑;

(4) V(B) |= P0(X↓)�= P0(X).
� The proof is left to the reader as an exercise. �
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3.3.7. We now return to Theorem 3.3.4 and observe by items (1) and (4) of
this theorem that the ascent of a correspondence is again a correspondence. For
the purposes of analysis, it is desirable that “the images of points and sets,” X(t)
and X“A, be preserved in ascending. Unfortunately, this is not so as seen from
3.3.4 (7). Moreover, the ascent of a function may fail to be single-valued. This is
easy to comprehend on recalling that the consecutive “ascending and descending”
provides cyclic hulls (3.3.3 (1)), whereas every descended function is extensional by
3.2.6 (9).

We exhibit an appropriate example. Suppose that X ⊂ V(B) is a cyclic set and
f : X → {0∧, 1∧} is a two-valued function. Assume that f(x) = 0∧ and f(y) = 1∧

for some x, y ∈ X , x �= y, while an element b ∈ B is other than 0 and 1.
If f sends z := mix{bx, b∗y} ∈ X to 0∧, then 0 < b∗ ≤ [[z = y]] � [[f(z) =

f(y)]] = 0. Analogously, if f(z) = 1∧ then 0 < b ≤ [[z = x]] � [[f(z) = f(x)]] = 0.
On the other hand, [[z = y]] ≤ [[f↑(z) = f↑(y)]] by 3.2.6 (9). Therefore, either
[[f↑(y) = f(y)]] �= 1, or [[f↑(x) = f(x)]] �= 1; i.e., the equality [[f↑(x) = f(x)]] = 1 is
fulfilled not for all x ∈ X .

Therefore, we must study in more detail what happens with an ascending
correspondence.

3.3.8. For an arbitrary relation X ⊂ V(B)×V(B) the following are equivalent:
(1) If b ≤ [[x1 = x2]] for x1, x2 ∈ dom(X) and b ∈ B then

∨
{b ∧ [[y1 = u]] : y1 ∈ X(x1)} =

∨
{b ∧ [[y2 = u]] : y2 ∈ X(x2)}

for every u ∈ V(B);

(2) If x1, x2 ∈ dom(X) and y1 ∈ X(x1) then

[[x1 = x2]] ≤
∨

{[[y1 = y2]] : y2 ∈ X(x2)};

(3) mix(X(x)) = mix(X)(x) (x ∈ dom(X));
(4) [[X↑(x) = X(x)↑]] = 1 (x ∈ dom(X));
(5) [[x1 = x2]] ≤ [[X(x1)↑= X(x2)↑]] (x1, x2 ∈ dom(X)).

� (1) → (2) Insert b := [[x1 = x2]] and u := y1 in (1).
(2) → (3) The inclusion ⊂ is obvious. To prove the reverse inclusion, take

a partition of unity (bξ) ⊂ B and a family ((xξ, yξ)) ⊂ X and arrange (x, y) =
mix(bξ(xξ, yξ)). The task is to establish that y ∈ mix(X(x)). It follows from (2)
that

bξ ≤ [[x = xξ]] ≤
∨

{[[y′ = yξ]] : y′ ∈ X(x)} = [[yξ ∈ X(x)↑]].

Therefore, bξ ≤ [[y = yξ]] ∧ [[yξ ∈ X(x)↑]] ≤ [[y ∈ X(x)↑]], so that [[y ∈ X(x)↑]] = 1.
But then y ∈ X(x)↑↓= mix(X(x)), which completes the proof.
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(3) → (4) Using 3.3.3 (1) and 3.2.6 (6), note that

X(x)↑↓= mix(X(x)) = mix(X)(x) = (X↑↓)(x) = (X↑(x))↓.
Applying 3.3.3 (2), obtain the desired.

(4) → (5) It suffices to apply 3.2.6 (9).
(5) → (1) By 2.3.2, if b ≤ [[x1 = x2]] and x1, x2 ∈ dom(X) then b(X(x1)↑=

b(X(x2)↑). On the other hand, by the definition of descent,

[[u ∈ b(X(xk)↑)]] =
∨

{b ∧ [[u = y]] : y ∈ X(xk)},

which yields the claim. �
3.3.9. Now return in more diverse circumstances to the notion of extension-

ality which we have encountered in 3.2.6 (9) and 3.2.12 (1). A binary relation
R ⊂ V(B) × V(B) is extensional in second coordinate provided that R obeys one
(and hence all) of the equivalent conditions 3.3.8 (1–5). Note that if R is a function
then each of the conditions (2) and (5) of 3.3.8 turns into the following formula (cf.
2.5.5)

[[x1 = x2]] ≤ [[R(x1) = R(x2)]] (x1, x2 ∈ dom(R)).

Let X ⊂ V(B) and Y ⊂ V(B) be sets. A correspondence Φ := (F,X, Y ) is exten-
sional if the graph F of Φ, viewed as a relation on V(B) × V(B), is extensional in
second coordinate.

If, moreover, dom(Φ) = mix(dom(Φ)) and Φ(x) = mix(Φ(x)) for every x ∈
dom Φ then Φ is said to be fully extensional. Evidently, if Φ is fully extensional
then F = (X × Y ) ∩ mix(F ).

Say that some sets A and C ⊂ V(B) are in general position provided that

[[a = c]] ≤
∨

{[[a = b]] ∧ [[b = c]] : b ∈ A ∩ C}

for all a ∈ A and c ∈ C. When this condition is fulfilled, the last inequality becomes
an equality since [[a = b]] ∧ [[b = c]] ≤ [[a = c]].

The following are equivalent:

(1) V(B) |= (A ∩ C)↑= A↑ ∩C↑;
(2) mix(A ∩ C) = mix(A) ∩ mix(C);
(3) A and C are in general position.

� The equivalence of (1) and (2) results from 3.2.6 (1), 3.3.3 (1), and 3.2.4 (3).
Prove (1) ↔ (3). To this end, note that the inclusion A↑ ∩C ↑⊂ (A ∩ C)↑

amounts to the formula

(∀ a ∈ A↑)(∀ c ∈ C↑)(a = c→ (∃ b ∈ A ∩ C)(a = b ∧ b = c)).
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The Boolean truth value of this formula is as follows:
∧

a∈A,c∈C
[[a = c]] ⇒

∨

b∈A∩C
[[a = b]] ∧ [[b = c]].

This implies that (3) is equivalent to the inclusion A↑∩C↑ ⊂ (A∩C)↑ inside V(B).
The reverse inclusion is always true. �

We thus see that if A ⊂ C then A and C are in general position for a trivial
reason. Also, every two sets of the type A := {a∧ : a ∈ A′}, where A′ ∈ V, are in
general position.

The ascent of a correspondence Φ := (F,X, Y ) is by definition the element
Φ↑ := (F↑, X↑, Y ↑)B ∈ V(B), where F↑ is the ascent of the relation F (cf. 3.3.1 (2)).

3.3.10. Theorem. Suppose that X and Y are subsets of V(B) and Φ is an
extensional correspondence from X to Y . The ascent Φ↑ is a unique correspondence
from X↑ to Y ↑ inside V(B) such that

[[dom(Φ↑) = (dom(Φ))↑]] = 1,

[[Φ↑(x) = Φ(x)↑]] = 1 (x ∈ dom(Φ)).

Moreover, the following hold:
(1) If dom(Φ) and a set A ⊂ X are in general position then

V(B) |= Φ(A)↑= Φ↑(A↑);

(2) The composition Ψ ◦ Φ of extensional correspondences Φ and Ψ
is an extensional correspondence. In this event if dom(Ψ ◦ Φ) =
dom(Φ) and the sets dom(Ψ) and Φ(x) are in general position for
all x ∈ dom(Φ) then

V(B) |= (Ψ ◦ Φ)↑= Ψ↑ ◦Φ↑;

(3) V(B) |= (IX)↑= IX↑.
� By 3.3.4 and 3.3.8, it suffices to verify uniqueness for Φ↑ and the claims

(1)–(3). Also, the case of the empty correspondence is obvious and thus omitted.
Let Ψ be another correspondence inside V(B) obeying the same identities as

Φ↑; i.e., [[dom(Ψ) = (dom(Φ))↑]] = 1 and [[Ψ(x) = Φ(x)↑]] = 1 (x ∈ dom(Φ)). In
this case V(B) |= dom(Ψ) = dom(Φ↑) and

[[(∀x ∈ dom(Ψ))Ψ(x) = Φ↑(x)]]



118 Chapter 3

=
∧

x∈dom(Φ)

[[Ψ(x) = Φ↑(x)]] =
∧

x∈dom(Φ)

[[Ψ(x) = Φ(x)↑]] = 1.

(1) Using 3.3.9 (1) and the properties of Φ↑ established above, take an arbitrary
y ∈ V(B) and proceed with the equivalences:

y ∈ Φ↑(A↑) ↔ (∃x)(x ∈ (dom(Φ))↑∧x ∈ A↑∧y ∈ Φ↑(x))
↔ (∃x)(x ∈ (A ∩ dom(Φ))↑ ∧y ∈ Φ↑(x))
↔ (∃x ∈ (A ∩ dom(Φ))↑) y ∈ Φ(x)↑.

Hence,

[[y ∈ Φ↑(A↑)]] =
∨

x∈A∩dom(Φ)

[[y ∈ Φ(x)↑]]

=
∨

x∈A∩dom(Φ)

∨

v∈Φ(x)

[[y = v]] =
∨

v∈Φ(A)

[[y = v]] = [[y ∈ Φ(A)↑]].

(2) Show that the correspondence Θ := Ψ ◦ Φ is extensional. Take x1, x2 ∈
dom(Θ), y1 ∈ Φ(x1), and z1 ∈ Ψ(y1). By 3.3.8 (2), the following estimates hold:

∨

z2∈Θ(x2)

[[z1 = z2]] =
∨

y2∈Φ(x2)

( ∨

z2∈Ψ(y2)

[[z1 = z2]]
)

≥
∨

y2∈Φ(x2)

[[y1 = y2]] ≥ [[x1 = x2]].

Using 3.3.8 (2) again, note that Θ is extensional. Therefore, using the above for Θ,
infer:

[[Θ↑(x) = Θ(x)↑]] = 1 (x ∈ dom(Θ)).

Considering the facts established in (1), proceed inside V(B) as follows:

Θ↑(x) = Θ(x)↑= Ψ(Φ(x))↑= Ψ↑(Φ(x)↑)
= Ψ↑(Φ↑(x)) = (Ψ↑ ◦ Φ↑)(x) (x ∈ dom(Θ)).

Therefore, from 3.3.2 we derive

V(B) |= (∀x ∈ dom(Θ↑)) (Θ↑(x) = (Ψ↑ ◦ Φ↑)(x)),

which amounts to the claim since dom(Ψ↑ ◦ Φ↑) = dom(Θ↑).
(3) This is obvious. �
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3.3.11. Theorem. Let X and Y be subsets of V(B). Assume further that
f is an extensional mapping from X to Y . Then f↑ is a unique element of V(B)

satisfying
[[f↑ : X↑ → Y ↑]] = [[f↑(x) = f(x)]] = 1 (x ∈ X).

Moreover, the following hold:
(1) If Z is a subset of V(B) and g : Y → Z is an extensional mapping

then g ◦ f is also an extensional mapping and

V(B) |= (g ◦ f)↑= g↑ ◦f↑;

(2) V(B) |= f(A)↑ = f↑(A↑) (A ⊂ X);
(3) V(B) |= “the mapping f↑ is injective” if and only if f is injective;
(4) V(B) |= “the mapping f↑ is surjective” if and only if mix(im(f)) =

mix(Y ).

3.3.12. Proposition 3.3.3 directly yields the arrow cancellation rules for cor-
respondences and mappings.

Let Φ and f be extensional correspondences from X to Y , with f single-valued.
Assume further that Ψ is a correspondence inside V(B). Then the following hold:

(1) Φ↑↓(x) = mix(Φ(x)) (x ∈ dom(Φ)),

(2) f↑↓(x) = f(x) (x ∈ dom(f)),
(3) Ψ↓↑= Ψ,

(4) πΦ↑↓(A) = πΦ↑(A↑)↓ (A ⊂ X),

(5) πΦ↑↓(A)↑= πΦ↑(A↑) (A ⊂ X).
Moreover, if Φ is fully extensional and A ⊂ dom(Φ) then

(6) πΦ(A)↑= πΦ↑(A↑).
� (1) Given x ∈ dom(Φ), use 3.2.13, 3.3.10, and 3.3.3 (1) to derive:

Φ↑↓(x) = Φ↑(x)↓= Φ(x)↑↓ = mix(Φ(x)).

(2, 3) These are obvious.
(4) Considering A ⊂ X , obtain

z ∈ πΦ↑(A↑)↓ ↔ [[(∀ a ∈ A↑)z ∈ Φ↑(a)]] = 1

↔
∧

a∈A
[[z ∈ Φ↑(a)]] = 1 ↔ (∀ a ∈ A)(z ∈ Φ↑(a)↓)

↔ (∀ a ∈ A)z ∈ Φ↑↓(a) ↔ z ∈ πΦ↑↓(A).
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(5) The sought equality ensues from the above on appealing to 3.3.3 (2).
(6) Granted a fully extensional Φ, use (1) to observe

πΦ↑↓(A) =
⋂

a∈A
Φ↑↓(a) =

⋂

a∈A
Φ(a) = πΦ(A).

The claim now ensues from (5). �

3.3.13. Consider the category PV
(B)
∗ consisting of nonempty subsets of V(B),

extensional correspondences with a nonempty graph and the conventional compo-
sition law:

Ob PV
(B)
∗ := P(V(B)) \ {∅};

PV
(B)
∗ (X, Y ) := {Φ : Φ is an extensional correspondence from X

to Y and Gr(Φ) �= ∅},
Com(Φ,Ψ):= Ψ ◦ Φ (Φ,Ψ ∈ Mor PV

(B)
∗ ).

The subcategory of the category PV
(B)
∗ which consists of cyclic sets and fully

extensional correspondences is denoted by G PV
(B)
∗ . Let PV (B) and G PV (B) be

the respective subcategories of the categories PV (B)
∗ and G PV (B)

∗ with the same
classes of objects but now with extensional mappings as morphisms.

The soundness of this definition is ensured by 3.3.10 and 3.3.11. Consider
a mapping F ↑ assigning to every object X and every morphism Φ of the category
PV

(B)
∗ their ascents X↑ and Φ↑. By Theorem 3.3.10, F ↑ acts into the category

V
(B)
∗ (cf. 3.1.7).

3.3.14. Theorem. The mapping F ↑ is a covariant functor from the category
PV (B) to the category V (B).

3.3.15. Comments.

(1) We use the unique symbol ↑ for denoting various ascents in much
the same way as this is done with descents. Therefore, all precautions and agree-
ments of 3.2.5 and 3.2.18 (1) should be taken into account. The terminology of
“ascending and descending” was coined by S. S. Kutateladze in [141, 142] in mem-
ory of M. C. Escher (cf. [79, 156]).

(2) The functors F∧ and F ↑ act in the same category and resemble
one another in many respects (compare, for instance, the definitions 2.5.15 and
3.3.1 (1); the formulas 3.3.2 and 2.5.15; 3.3.3 and 3.1.1 (1); 3.3.4 and 3.1.4; 3.3.10
and 3.1.5; etc.). A deeper analogy is revealed in Section 3.4.
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(3) Formulas 3.3.2 and their counterparts of 2.5.15 are particular cases
of the following rules. If ϕ and ψ are predicative formulas in n+ 1 and m+ 1 free
variables, while X1, . . . , Xn and Y1, . . . , Ym are some V(B)-classes; then

[[(∀u)(ϕ(u,X) → ψ(u, Y )]] =
∧

{[[ψ(u,X)]] : x ∈ A},
[[(∃u)(ϕ(u,X) ∧ ψ(u, Y )]] =

∨
{[[ψ(u,X)]] : x ∈ A},

where A is any subclass of V(B) obeying the condition

mix(A) = {x ∈ V(B) : [[ϕ(x,X)]] = 1} �= ∅ (X = (X1, . . . , Xn)).

(4) Ascending was implicit in Section 2.4. We now explicate this point.
Let x be a subset of an unseparated universe. Assume further that x′ ⊂ V(B) is
the image of X under factorization (cf. 2.5.2 and 2.5.7): x′ := π“x := {πt : t ∈ x}.
Define some element y of the unseparated universe by the formulas: dom(y) := x,
im(y) := {1}. Then [[πy = x′↑]] = 1. Indeed,

[[πt ∈ x′↑]] =
∨

u∈x′
[[πt = u]] =

∨

u∈x
[[πt = πu]]

=
∨

u∈dom(y)

y(u) ∧ [[t = u]] = [[t ∈ y]] = [[πt ∈ πy]].

Therefore, the element y of 2.4.5 (2), {x}B and {x, y}B of 2.4.8, f of 2.4.11 (1–3) are
all ascents in the unseparated universe. Moreover, X∧ is the ascent of {x∧ : x ∈ X}
(cf. 3.3.1 (1)).

(5) The hypothesis of general position is impossible to omit in Theo-
rem 3.3.10. The corresponding counterexamples are easily available on using the
following argument: Assume that A ⊂ X and Φ is a correspondence from X to X
with graph {(x, x) : x ∈ M}. If A ⊂ X and A ∩M = ∅ but A ∩ mix(M) �= ∅,
then Φ(A) = ∅ and [[Φ(A)↑= ∅]] = 1. On the other hand, [[Φ↑(A↑) �= ∅]] = 1
since [[z ∈ Φ↑(A↑)]] = 1 for z ∈ A ∩ mix(M). Observe also that in some of our rele-
vant articles (cf., for instance, [123, 131, 141]) the condition of general position was
absent on the implicit presumption that A ⊂ dom(Φ) or im(Φ) ⊂ dom(Ψ). This
inadvertent omission might lead to confusion in the case of general correspondences.
However, there is no danger at all in dealing with the correspondences defined ev-
erywhere and, in particular, with mappings. The same remarks are appropriate in
regard to the rules for calculating polars (cf. 3.3.12 (6)).
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3.4. The Immersion Functor

Of utmost import for applications of Boolean valued models to analysis is
the following technique: We immerse the object under study, i.e. some set X , in
a suitable Boolean valued universe V(B), making the structure of X less intricate or
even transparent. We then continue analysis inside V(B), which often completes the
original task. This immersion procedure proves to be functor-like, enabling us to
study not only the inner structure of individual objects but also interplay between
them.

3.4.1. A complete Boolean algebra B induces some extra algebraic structure in
the descent of every object inside V(B). Therefore, only those objects may pretend
to be immersed into V(B) that are duly related to the complete Boolean algebra B.

We now introduce the appropriate terminology. Consider an arbitrary set X .
A mapping d : X ×X → B is a B-semimetric provided that for all x, y, z ∈ X the
following are fulfilled:

(1) d(x, x) = 0;
(2) d(x, y) = d(y, x);
(3) d(x, y) ≤ d(x, z) ∨ d(z, y).

If, moreover, d(x, y) = 0 yields x = y then d is called a B-metric or Boolean metric
on X . In this event (X, d) is called a B-set or Boolean set.

Each set X , lying in V(B), is equipped with the canonical B-metric

d(x, y) := [[x �= y]] = [[x = y]]∗ (x, y ∈ X).

The fact that d is a B-metric follows from 2.1.8 (1, 3, 4) and the separation
property of V(B). Considering subsets of V(B) as B-sets, we always imply that are
furnished with the canonical Boolean metric.

Many concepts of Chapter 2 translate naturally to B-sets by dualizing with
respect to complementation in B. Thus, we sometimes omit some minor details in
introducing new notions.

3.4.2. Let (bξ) be a partition of unity in B and let (xξ) be a family in a B-
set X . The mixing of (xξ) by (bξ) is an element x ∈ X such that bξ ∧ d(x, xξ) = 0
for all ξ. As before, we write x = mix(bξxξ). This mixing, if existent, is unique.
Indeed, if y ∈ X and (∀ ξ)(bξ ∧ d(y, xξ) = 0) then

bξ ∧ d(x, y) ≤ bξ ∧ (d(x, xξ) ∨ d(xξ, y)) = 0.

The infinite distributive law 1.1.5 (2) in B implies

d(x, y) =
∨

{bξ ∧ d(x, y)} = 0,
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and so x = y.
Note that unlike the case of the universe V(B) (cf. Section 2.3), not all mixings

in a B-set may fail to contain each mixing.

3.4.3. Consider a B-set (X, d). Given a subset A ⊂ X , we denote by mix(A)
the set of all mixings of elements of A. If mix(A) = A then A is a cyclic subset
of X .

Denote by cyc(A) the intersection of all cyclic sets containing A. A Boolean
set X is universally complete or extended if X contains the mixing mix(bξxξ) of
each family (xξ) ⊂ X by any partition of unity (bξ) ⊂ B. In the event when these
mixings exist only for finite subsets of X , we call X finitely complete (the word
“decomposable” prevails in the Russian literature).

In much the same way as in 3.2.8, it is possible to show that if X is a universally
complete B-set then mix(A) = cyc(A) for all A ⊂ X . A cyclic subset of a B-set
is not always a universally complete B-set. Every cyclic subset of V(B) with the
canonical B-metric is a universally complete B-set.

3.4.4. Let A be a set. Assume that to each α ∈ A there corresponds a B-set
(Xα, dα). Put X := Πα∈AXα and define the mapping d : X ×X → B as follows:

d(x, y) :=
∨

{dα(x(α), y(α)) : α ∈ A}.

Then d is a Boolean metric on X ; moreover, (X, d) is universally complete if and
only if Xα is universally complete for all α ∈ A.

� It is easy to prove that the above mapping is a B-metric. Moreover, if (bξ) is
a partition of unity and (xξ) is a family in the product X then x = mix(bξxξ) if and
only if x(α) = mix(bξxξ(α)) for all α ∈ A. Whence it follows that X is universally
complete. �

In the sequel we always view the product of B-sets as a B-set with the Boolean
metric of 3.4.4.

3.4.5. Let A be a subset of a universally complete B-set (X, d). Then for any
x ∈ X the Boolean distance from x to A, defined as

dist(x,A) :=
∧

{d(x, a) : a ∈ A},

is attained for some a ∈ mix(A). In other words, to every x ∈ X there is some
a ∈ mix(A) satisfying dist(x,A) = d(x, a).

� If b0 := dist(x,A) then there are a partition (bξ) of b∗0 and a family (aξ) ⊂ A
such that bξ ∧ d(x, aξ) = 0 for all ξ. Put a := mix{b0a0, bξaξ}, where a0 is an
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arbitrary element of A. Since (bξ) ∪ {b0} is a partition of unity then a ∈ mix(A).
Moreover, for every ξ we obtain

bξ ∧ d(x, a) ≤ (bξ ∧ d(x, aξ)) ∨ (bξ ∧ d(aξ, a)) = 0.

Hence, b∗0 ∧ d(x, a) =
∨{bξ ∧ d(x, a)} = 0 or d(x, a) ≤ b0. The converse claim is

immediate. �
3.4.6. Note three useful corollaries to 3.4.5:

(1) The distance from a point x ∈ X to a subset A of a universally
complete B-set X is equal to zero if and only if x ∈ mix(A).

(2) The Boolean distance between A1 ⊂ X and A2 ⊂ X is defined by
the formula

d̄(A1, A2) :=
∨

α∈A1

dist(a, A2) ∨
∨

α∈A2

dist(A1, a).

It is easy to check that d̄ is a Boolean semimetric on P(X) but not a metric in
general. It would be natural to call d̄ the Hausdorff B-semimetric associated with d.
If X is universally complete then d̄(A1, A2) = 0 if and only if mix(A1) = mix(A2).

(3) LetPcyc(X) be the set of all cyclic subsets of a B-set (X, d). Then
(X, d) is universally complete if and only if (Pcyc(X), d̄) is a universally complete
B-set.

� Indeed, assume that X is universally complete. Then, by (2), d̄ is a metric
on Pcyc(X) and we have only to prove that (Pcyc(X), d̄) is universally complete.
To this end, consider a partition of unity (bξ) and a family (Aξ) in Pcyc(X).

Define A ⊂ X as the union of all mixings of the form mix(bξxξ), where xξ ∈ Aξ
for all ξ. Then, given x ∈ A and x′ ∈ Aξ and using 1.1.5 (8), note the equalities

bξ ∧ dist(x′, A) =
∧

{bξ ∧ d(x′, a) : a ∈ A} = 0,

bξ ∧ dist(x,Aξ) =
∧

{bξ ∧ d(x, a) : a ∈ Aξ} = 0.

Finally, by the distributive laws 1.1.5 (1, 2), bξ ∧ d̄(A,Aξ) = 0. The last equality
holds for all ξ and so A = mix(bξAξ). To prove that A is cyclic, proceed along the
lines of 3.2.8.

The converse claim results from the fact that the mapping x �→ {x} is an
injection of X to Pcyc(X) satisfying d̄({x}, {y}) = d(x, y) for all x, y ∈ X . �

3.4.7. Consider B-sets (X, dX) and (Y, dY ). A correspondence Φ from X to
Y is called contractive, or a contraction correspondence, or simply a contraction
provided that

d̄Y (Φ(x),Φ(y)) ≤ dX(x, y) (x, y ∈ dom(Φ)),

where d̄Y is the Hausdorff B-semimetric associated with dY .
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(1) The contraction property of a correspondence Φ is equivalent to
each of the conditions (cf. 3.3.8 (1, 2)):

(a) If dX(x1, x2) ≤ b (x1, x2 ∈ dom(Φ)) then

b ∨ dist(y,Φ(x1)) = b ∨ dist(y,Φ(x2))

for all y ∈ Y ;

(b) dist(y1,Φ(x2)) ≤ dX(x1, x2) for arbitrary x1, x2 ∈ dom(Φ) and
y1 ∈ Φ(x1).

If X and Y are subsets of V(B) then to denote the same property of a corre-
spondence after introducing the above definition we may use two terms, contraction
and extensionality, which are contrasting in common parlance. To avoid ambiguity,
recall that extensionality is interpreted with the Boolean truth value of equality
[[ · = · ]], whereas contraction pertains to the B-metric under study.

A correspondence Φ is called fully contractive if Φ is contractive and

Φ(x) = mix(Φ(x)) (x ∈ dom(Φ)).

(2) The descent of every correspondence is a fully contractive or, which
is the same, fully extensional correspondence.

� The conclusion means that if Ψ is a correspondence inside V(B) and Φ :=
Ψ↓ then Φ is an extensional correspondence and Φ(x) is a cyclic set for every
x ∈ dom(Φ). By 3.2.6 (9), 3.2.13, and 3.3.8 (5), Φ is extensional; while by 3.2.3 (1)
and 3.2.13 (1) Φ(x) is cyclic. �

A mapping f : X → Y is contractive whenever

dY (f(x), f(x′)) ≤ dX(x, x′) (x, x′ ∈ X).

If the last formula holds with equality then f is a B-isometry. A bijective B-
isometry is an isomorphism of B-sets.

3.4.8. Each set X ∈ V becomes a B-set if equipped with the discrete B-metric:

d(x, y) :=
{

1B , if x �= y,

0B , if x = y.

In this case the pair (X, d) is called a discrete B-set. In a discrete B-set there is
no mixing mix(bξxξ) if only the set of elements (xξ) has more than one element
and the partition of unity (bξ) differs from the trivial partition {0B, 1B}. Every
correspondence from a discrete B-set to an arbitrary B-set is contractive.

Discrete and universally complete B-sets are two extreme examples of “B-
qualification” offered by the elements of the universes V and V(B) (cf. 3.2.3).
Compromises are plentiful among the members of P(V(B)). In analysis, we of-
ten encounter B-sets of another provenance.
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3.4.9. Assume that π is a complete monomorphism of B to a Boolean alge-
bra C. Put

dπ(x, y) :=
∧

{b∗ : π(b) ∧ x = π(b) ∧ y} (x, y ∈ C).

Then dπ is a B-metric on C, and the Boolean operations on C are contractive.

� If π = IB then dπ(b, b′) = (b ⇔ b′)∗ = b � b′. Consider one more com-
plete Boolean algebra C′ and a complete monomorphism π′ : B → C′. Then the
homomorphism h : C → C′ is a contractive mapping between the B-sets (C, dπ)
and (C′, dπ′) if and only if h ◦ π = π′. Indeed, the fact that h is contractive in the
metrics dπ and dπ′ means that π(b)∧x = π(b)∧y implies π′(b)∧h(x) = π′(b)∧h(y)
for all x, y ∈ C and b ∈ B.

If π′ = h ◦ π then, applying h to the equality π(b) ∧ x = π(b) ∧ y, obtain
π′(b) ∧ h(x) = π′(b) ∧ h(y). Conversely, if in the last equality we put x = 1C and
y := π(b) then we get either π′(b) = π′(b) ∧ hπ(b) or π′(b) ≤ h ◦ π(b). Since b ∈ B
is arbitrary, deduce π′ = h ◦ π. �

3.4.10. Consider another construction with B-sets analogous to 2.2.10. Let
ψ be an ultrafilter on a Boolean algebra D. Consider a Boolean set (X, dX) with
a D-valued B-metric dX . Equip X with the binary relation ∼ψ by the formula

(x, y) ∈ ∼ψ ↔ dX(x, y)∗ ∈ ψ.

The definition of Boolean metric implies that ∼ψ is an equivalence. Let X/∼ψ be
the factor set of the set X by ∼ψ. Also, let πX : X → X/∼ψ stand for the canonical
mapping. If the same is done with the Boolean set (D,�) then D/∼ψ presents the
two-element Boolean algebra, so that D/∼ψ � {0D, 1D}.

Clearly, there is a unique mapping d̃ : X/∼ψ → D/∼ψ such that d̃(πXx, πXy)
= πD(d(x, y)) (x, y ∈ X). Moreover, d̃ is a discrete Boolean metric on X/∼ψ.
If dX is a discrete metric then ∼ψ = IX and X/∼ψ = X . Some set-theoretic
operations on X and X/∼ψ are simply interrelated. If (Xα) is a family in X then
(
⋃
Xα)/∼ψ =

⋃
(Xα/∼ψ).

In the case of powers there is a natural bijection between Xn/∼ψ and (X/∼ψ)n

given by the formula

πXn : (x1, . . . , xn) �→ (πXx1, . . . , πXxn) (x1, . . . , xn ∈ X).

Note also that if A ⊂ X then A/∼ψ = πX(A) and πA = πX � A.
Choose one more B-set (Y, dY ), and let F ⊂ X × Y . It is then easily checked

that
dom(F/∼ψ) = dom(F )/∼ψ, im(F/∼ψ) = im(F )/∼ψ.

3.4.11. Assume that ρ is an arbitrary automorphism (homomorphism into
itself) of a Boolean algebra B, and ψρ is an element of V(B) determined by the
function {(b∧, ρ(b)) : b ∈ B} in accord with 2.5.6. Then the following hold:
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(1) ρ(b) = [[b∧ ∈ ψρ]] for all b ∈ B;

(2) [[A∧ ⊂ ψρ → (
∧
A)∧ ∈ ψρ]] = 1 for A ⊂ B if and only if ρ (

∧
A) =∧

ρ(A);

(3) [[ψρ is an ultrafilter on B∧]] = 1.

� (1) This is checked by calculation on appealing to 2.2.8 (1, 2).
(2) Using (1) and given A ⊂ B, obtain

[[A∧ ⊂ ψρ]] =
∧

a∈A
[[a ∈ ψρ]] =

∧

a∈A
ρ(a) =

∧
ρ(A).

Since ρ (
∧
A) ≤ ∧

ρ(A) by monotonicity of ρ, the inequality [[A∧ ⊂ ψρ]] ≤ [[(
∧
A)∧ ∈

ψρ]] amounts to the equality ρ (
∧
A) =

∧
ρ(A).

(3) First of all, note that V(B) |= ψρ ⊂ B∧. Indeed, granted t ∈ V(B), observe

[[t ∈ ψρ]] =
∨

b∈B
ρ(b) ∧ [[t = b∧]] ≤

∨

b∈B
[[t = b∧]] = [[t ∈ B∧]].

It then follows from (1) that [[0∧ /∈ ψρ]] = 1, while (2) implies that [[ψρ is a filter
base ]] = 1. Moreover, if b ∈ B then

[[(∃a ∈ ψρ)(a ≤ b∧)]] =
∨

a∈B
ρ(a) ∧ [[a∧ ≤ b∧]] =

∨

a≤b
ρ(a)

= ρ(b) = [[b∧ ∈ ψρ]],

so that
[[(∀ b ∈ B∧)((∃ a ∈ ψρ)(a ≤ b) → b ∈ ψρ)]] = 1.

Therefore, ψρ is a filter on B∧ inside V(B), and we have to show that V(B) |= “for
each b ∈ B∧ either b ∈ ψρ or b∗ ∈ ψρ.” This claim is demonstrated by the following
formulas:

[[(∀ b ∈ B∧)(b ∈ ψρ ∨ b∗ ∈ ψρ)]]

=
∧

b∈B
[[b∧ ∈ ψρ]] ∨ [[(b∗)∧ ∈ ψρ]] =

∧

b∈B
ρ(b) ∨ ρ(b∗)

=
∧

{ρ(b ∨ b∗) : b ∈ B} = ρ(1) = 1.

The proof is over. �
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3.4.12. Let ψ := ψı, where ı is the identity homomorphism on B. According
to 3.4.11, V(B) |=“ψ is an ultrafilter on B∧, and A∧ ⊂ ψ implies

∧
(A)∧ ∈ ψ” for

an arbitrary set A ⊂ B.
Take an arbitrary B-set (X, d). It is obvious from 3.1.16 that (X∧, d∧) is

a B-set inside V(B). By 3.4.10, 3.4.11, and the maximum principle, there are X̃,
∼ := ∼ψ, and πX ∈ V(B) such that

(1) V(B) |= “∼ is an equivalence relation on X∧”;

(2) V(B) |= X̃ := X∧/∼;

(3) V(B) |= “πX : X → X̃ is the factor mapping”;
(4) [[(x∧, y∧)B ∈ ∼]] = d(x, y)∗ (x, y ∈ X).

If we apply the described procedure to a B-set (B,�) (cf. 3.4.9) then in place
of B̃ we obtain the two-element Boolean algebra, so that V(B) |= B̃ � {0∧

B, 1
∧
B}B.

Therefore, inside V(B) there is a unique {0∧
B , 1

∧
B}-valued Boolean metric d̃ on X̃

satisfying
V(B) |= (∀x, y ∈ X∧)d̃(πX(x), πX(y)) = πB(d∧(x, y)).

As seen from 3.4.10, for a discrete B-set (X, d) we have ∼ = IX∧ and X∼ = X∧.
Say that subsets A and C of some B-set (X, d) are in general position whenever

d(a, c) ≥
∧

{d(a, b) ∨ d(b, c) : b ∈ A ∩ C}
for all a ∈ A and c ∈ C. In much the same way as in 3.3.9, the above inequality is
in fact an equality since d(a, c) ≤ d(a, b) ∨ d(b, c).

(5) Sets A and C are in general position if and only if

V(B) |= (A ∩ C)∼ = A∼ ∩ C∼.

� Note that (A ∩ C)∼ = πX((A ∩ C)∧) = πX(A∧ ∩ C∧) and A∼ ∩ C∼ =
πX(A∧) ∩ πX(C∧). Hence, the inclusion (A ∩ C)∼ ⊂ A∼ ∩ C∼ holds always, while
A∼ ∩ C∼ ⊂ (A ∩ C)∼ amounts to the formula

(∀ a ∈ A∧)(∀ c ∈ C∧)(a∼c→ (∃ b ∈ (A ∩ C)∧)(b∼a ∧ b∼c)).
Writing out the Boolean truth value of the last formula and considering the equality
[[a∧∼c∧]] = d(a, c)∗, obtain

∧

a∈A,c∈C
d(a, c)∗ ⇒

( ∨

b∈A∩C
d(a, b)∗ ∧ d(b, c)∗

)
= 1.

It is now evident that [[A∼ ∩ C∼ ⊂ (A ∩ C)∼]] = 1 if and only if, for all a ∈ A and
c ∈ C, we have

d(a, c)∗ ≤
( ∧

b∈A∩C
d(a, b) ∨ d(b, c)

)∗
.

This means that A and C are in general position. �
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3.4.13. Theorem. Suppose that (X, dX) and (Y, dY ) are some B-sets and Φ
is a contractive correspondence from X to Y . Then inside V(B) there is a unique
correspondence Φ∼ from X∼ to Y ∼ such that

dom(Φ∼) = (dom Φ)∼,
[[Φ∼(πXx∧) = πY (Φ(x)∧)]] = 1 (x ∈ dom Φ).

In this event the following hold:
(1) If A ⊂ X and dom(Φ) are in general position then

V(B) |= Φ(A)∼ = Φ∼(A∼);

(2) The composition Ψ ◦ Φ of contractive correspondences Φ and Ψ is
contractive, and if dom(Ψ◦Φ) = dom(Φ) and the sets dom(Ψ) and
Φ(x) are in general position for all x ∈ dom(Φ) then

V(B) |= (Ψ ◦ Φ)∼ = Ψ∼ ◦ Φ∼;

(3) V(B) |= (IX)∼ = IX∼ .

� As follows from 3.1.5, V(B) |= “Φ∧ is a correspondence from X∧ to Y ∧.”
Put Φ∼ := πY ◦Φ∧ ◦ π−1

X . It is obvious that V(B) |= “Φ∼ is a correspondence from
X∼ to Y ∼ and dom(Φ∼) = πX(dom(Φ∧)) = πX(dom(Φ)∧) = dom(Φ∼).”

Show now that the Boolean truth values b1 := [[y ∈ Φ∼ ◦ πX(x∧)]] and b2 :=
[[y ∈ πY ◦ Φ∧(x∧)]] coincide for all x ∈ Z := dom(Φ) and y ∈ V(B). Indeed,

b1 =[[(∃s ∈ Z∧)(∃t ∈ Y ∧)(y=πY (t) ∧ t ∈ Φ∧(s) ∧ πX(s) = πX(x∧))]]

=
∨

s∈Z

∨

t∈Y
[[t∧ ∈ Φ(s)∧]] ∧ [[y = πY (t∧)]] ∧ [[πX(s∧) = πX(x∧)]]

≥
∨

t∈Y
[[y = πY (t∧)]] ∧ [[t∧ ∈ Φ(x)∧]]

= [[(∃ t ∈ Y ∧)(y = πY (t) ∧ t ∈ Φ∧(x∧))]] = b2.

On the other hand, using the equalities

dX(s, x)∗ = [[πX(s∧) = πX(x∧)]],
d̄Y (Φ(x),Φ(s))∗ = [[πY (Φ(x)∧) = πY (Φ(s)∧)]]

and considering that the correspondence Φ is contractive, infer
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b1 ≤
∨

s∈Z

∨

t∈Y
[[πY (Φ(s)∧) = πY (Φ(x)∧)]] ∧ [[t∧ ∈ Φ(s)∧]]

∧[[y = πY (t∧)]] ≤
∨

s∈Z
[[y ∈ πY (Φ∧(x∧))]] = b2.

Therefore, b1 = b2, which immediately implies the defining relation [[πY (Φ(x)∧) =
Φ∼(πX(x∧))]] = 1 for all x ∈ Z. Hence, the relation

V(B) |= (∀x ∈ (dom(Φ))∧)Φ∼(πXx) = πY Φ∧(x)

holds. Moreover, Φ∼ is unique since dom(Φ∼) = (dom(Φ))∼ = πX((dom(Φ))∧).
(1) Using 3.4.12 (5), it is easy to note that

Φ∼(A∼) = Φ∼(A∼ ∩ dom(Φ∼)) = Φ∼((A ∩ dom(Φ))∼).

On the other hand, Φ(A)∼ = Φ(A∩ dom(Φ))∼ and so there is no loss of generality
in assuming that A ⊂ dom(Φ). In this case, however, using the defining property
of Φ∼, we may write inside V(B) the following chain of equalities

Φ∼(A∼) =
⋃

a∈A∼
Φ∼(a) =

⋃

a∈A∧
Φ∼(πXa)

=
⋃

a∈A∧
πY (Φ∧(a)) = πY (Φ∧(A∧)) = πY (Φ(A)∧) = Φ(A)∼.

(2) Let Ψ be a contractive correspondence from Y to U . Choose x1, x2 ∈ Z,
y1 ∈ Φ(x1) and u1 ∈ Ψ(y1). Then, according to 3.4.7 (1)

dist(u1,Ψ ◦ Φ(x2)) ≤
∧

{dist(u1,Ψ(y)) : y ∈ Φ(x2)}
≤

∧
{d(y1, y) : y ∈ Φ(x2)} = dist(y1,Φ(x2)) ≤ d(x1, x2).

Since x1, x2, y1, and u1 are arbitrary; therefore, the correspondence Ψ ◦ Φ is
contractive.

Given x ∈ Z, use (1), 3.1.5 (2), and the defining relations of (Ψ◦Φ)∼, Ψ∼, and
Φ∼ to obtain

(Ψ∼ ◦ Φ∼)(πXx∧) = Ψ∼(Φ(x)∼) = Ψ(Φ(x))∼

= πY ((Ψ ◦ Φ)(x)∧) = πY ((Ψ ◦ Φ)∧(x∧)) = (Ψ ◦ Φ)∼(πXx∧).

Hence, [[(Ψ ◦ Φ)∼ = Ψ∼ ◦ Φ∼]] = 1 since Z∼ = dom(Ψ∼ ◦ Φ∼).
(3) The claim is immediate from 3.1.5 (4). �
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3.4.14. Theorem. To each contractive mapping f : X → Y there is a unique
element f∼ ∈ V(B) such that

[[f∼ : X∼ → Y ∼]] = [[f∼ ◦ πX = πY ◦ f∧]] = 1.

Moreover, the following hold:
(1) V(B) |= f(A)∼ = f∼(A∼) for A ⊂ X ;
(2) If g : Y → Z is a contraction then g ◦ f is a contraction and

V(B) |= (g ◦ f)∼ = g∼ ◦ f∼;
(3) V(B) |= “f∼ is injective” if and only if f is a B-isometry;
(4) V(B) |= “f∼ is surjective” if and only if

∨{d(f(x), y) : x ∈ X} = 1
for every y ∈ Y .

3.4.15. Consider the categories BSet∗ and CBSet∗. The objects of these cate-
gories are nonempty B-sets and nonempty universally complete B-sets, respective-
ly, while the morphisms are contractive and fully contractive correspondences. As
composition of morphisms we take the usual composition of correspondences. The
subcategories of the categories BSet∗ and CBSet∗ consisting of the same objects
and of contractive mappings are denoted by BSet and CBSet, respectively. Let F∼

be the function assigning to an object X and a morphism Φ of BSet the elements
F∼(X) := X∼ and F∼(Φ) := Φ∼.

3.4.16. The mapping F∼ is a covariant functor from the category BSet to the
category V (B).

3.4.17. Comments.

(1) The concept of a Boolean metric appeared at the beginning of the
1950s in result of studying various “distances” given on abstract sets and taking
values in posets (cf. [15, 47, 205]).

Unfortunately, no particularly rich geometry associated with this concept was
ever discovered, which fact accounts most likely for the B-metrics being unpopular
in the years to follow. The reason of this curiosity is perfectly revealed in Theorems
3.4.13 and 3.5.4.

The geometry of Boolean metrics is rather meaningful and enthralling when
combined with topological and functional-analytical structures. In this case the
presence of a compatible B-metric opens up a possibility of studying the structure
in question by means of Boolean valued analysis.

(2) A mapping [[ · = · ]] : X2 → B is called a Boolean valued equality
provided that it obeys 2.2.8 (1, 3, 4). These mappings are plentiful in Boolean valued
interpretation of first-order theories (cf. [54]).

Clearly, the concept of a Boolean valued equality is just a “reflection” of the
idea of a Boolean metric since the conditions of 2.2.8 (1, 3, 4) are met if and only
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if the mapping (x, y) �→ [[x = y]]∗ is a Boolean metric. In this context the idea of
a Boolean metric proves to be rather fruitful.

(3) Definitions 3.4.1, effective in this section, are motivated by the fact
that the algebraic systems typical of analysis often possess a natural B-semimetric,
whereas the introduction of some B-valued equality might be artificial.

(4) It is possible to demonstrate that the converse of 3.4.6 is also true.
Namely, if ψ is an ultrafilter on B∧ inside V(B); then the mapping ρψ : B → B,
defined by the formula ρψ(b) := [[b∧ ∈ ψ]], is an automorphism of B∧. Moreover,
ρψρ = ρ and [[ψρψ = ψ]] = 1.

(5) Our remarks on 3.3.15 (5) apply fully to the case of 3.4.13 (1, 2).

3.5. Interplay Between the Main Functors

The main functors of the preceding four sections have a fruitful relationship
rather productive of applications. This specifies the topic of the present section.

3.5.1. Recall that for an arbitrary X ∈ P(V(B)) the set mix(X) consists of
all possible mixings mix(bξxξ) of all families (xξ) in X by all partitions of unity
(bξ) in B (cf. 3.2.7). In this event the operation mix sends X to the cyclic hull of
X (cf. 3.2.8). We now abstract mix to extensional correspondences.

Let X and Y be subsets of V(B). Assume that Φ is an extensional correspon-
dence from X to Y . There is a unique fully extensional correspondence Ψ from
mix(X) to mix(Y ) satisfying

Ψ(x) = mix(Φ(x)) (x ∈ dom(Φ)).

� To prove, assign Ψ:= Φ↑↓ and use 3.3.12 (1) and 3.4.7 (2). From 3.2.13 and
3.3.3 (1) it follows that Gr(Ψ) = mix(Gr(Φ)). �

By definition, mix(Φ) = Ψ. If Θ is another extensional correspondence and
dom(Θ) ⊂ Y then, by 3.2.13 (3) and 3.3.4 (8), we note that mix(Θ ◦Φ) = mix(Θ) ◦
mix(Φ) if and only if (Θ ◦ Φ)↑= Θ↑ ◦ Φ↑. Moreover, it is obvious that mix(IX) =
Imix(X).

3.5.2. Take a nonempty set X . Denote by B0(X) the set of all partitions of
unity in B of the type (bx = b(x))x∈X :

b ∈ B0(X) ↔ (b ∈ BX ∧ (∀x ∈ X)(∀y ∈ X)(x �= y) → b(x) ∧ b(y) = 0)).

Assign to an element y ∈ X the partition of unity ıy := ıXy := (bx)x∈X , where
bx = 1 for x = y and bx = 0 for x �= y. Evidently, ıX is an injection from X to
B0(X). Granted u, v ∈ B0(X), define

d(u, v) :=
∧

{u(x)∗ ∨ v(x)∗ : x ∈ X}.
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It is easy to check that d is a B-metric on B0(X). Moreover, (B0(X), d) is a univer-
sally complete B-set. The last fact is established by essentially the same arguments
as in 3.2.8. Hence, B0( · ) is a mapping from V to CBSet. We now extend this
mapping to correspondences.

Given a correspondence Φ := (F,X, Y ), define B0(Φ) := (G,B0(X), B0(Y )),
where

G := {(u, v) ∈ B0(X) ×B0(Y )
↔ (∀x ∈ X)(∀ y ∈ Y )(u(x) ∧ v(y) �= 0 → (x, y) ∈ F )}.

If Φ is single-valued then B0(Φ) is single-valued too.
By definition,

B0(IX) = IB0(X),

B0(Ψ ◦ Φ) = B0(Ψ) ◦B0(Φ),
Φ = ı−1

Y ◦B0(Φ) ◦ ıX .

Hence, the mapping B0( · ) is a covariant functor from V∗ to CBSet∗.

3.5.3. Some features of interplay between the main operations of Boolean
valued analysis have earlier been presented in the form of the arrow cancellation
rules. We now paraphrase these rules for functors.

(1) The descent functor F ↓ and the ascent functorF ↑ establish an iso-
morphism between the categories V (B) and C PV (B). This implies that F ↑ ◦ F ↓

andF ↓◦F ↑ coincide with the identity functors on V (B) and C PV (B), respectively.

� The functor F ↑ ◦ F ↓ acts as the identity by the rules for descending and
ascending 3.3.3 (2) and 3.3.12 (3). Similarly, the functor F ↓◦F ↑ acts as the identity
by the rules for ascending and descending 3.3.3 (1) and 3.3.12 (1). �

(2) The functor mix : PV (B) → C PV (B) coincides with the compo-
sition F ↑ ◦ F ↓ and is a C PV (B)-reflector of the category PV (B). In particular,
C PV (B) is a reflective subcategory in PV (B).

� The equality mix := F ↑ ◦ F ↓ results from 3.3.3 (1) and 3.3.12 (2). Con-
sider nonempty sets A, C ∈ P(V(B)), and suppose that C is cyclic. Then each
extensional mapping g : A → C admits a unique extensional extension ḡ = g↑↓ :
mix(A) → C (cf. 3.2.12, 3.3.11, and 3.3.12 (2)). Therefore, the restriction mapping
θA,C : h �→ h � A is a bijection of C PV (B) (mix(A), C) onto PV (B)(A,C). De-
note the family of the mappings θA,C by θ. Then θ is a adjunction from mix to the
functor of the identical embedding of C PV (B) to PV (B).
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Indeed, if A′, C′ ∈ P(V(B)) and C′ is cyclic then, granted extensional map-
pings f : mix(A) → C, g : A′ → A, and h : C → C′, observe (f ◦ mix(g)) � A′ =
(f � A) ◦ g. In turn, this makes obvious the equality

(h ◦ (f ◦ mix(g))) � A′ = h ◦ (f � A) ◦ g,

or, which is the same,

θA′,C′(h ◦ f ◦ mix(g)) = h ◦ θA,C(f) ◦ g. �

(3) The composition of the canonical embedding functor and the de-
scent functor is naturally isomorphic to the functor B0 or, in symbols, F ↓◦F∧∼B0.

� Given a set X , note that the mapping

θX : (bx)x∈X �→ mix
x∈X

(bxx∧) ((bx)x∈X ∈ B0(X))

is a bijection of B0(X) onto X∧↓. The mapping θ : X �→ θX (X ∈ Ob V∗) is an
isomorphism of the functors B0 and F↓ ◦ F∧. To see this, it suffices to observe
that, for u ∈ B0(X), v ∈ B0(Y ), a := θX(u), and b := θY (v), we have (a, b) ∈ Φ∧↓
if and only if (x, y) ∈ Φ whenever u(x) ∧ v(x) �= 0. �

3.5.4. Theorem. Let (X, dX) be a B-set and X ′ := X∼↓. Then the following
hold:

(1) There is an injection ıX : X → X ′ such that

dX(x1, x2) = [[ıXx1 �= ıXx2]] (x1, x2 ∈ X);

(2) To each x′ ∈ X ′ there are a partition of unity (bξ) and a family
(xξ)⊂X such that x′ = mix(bξıxξ);

(3) If Φ is a contractive correspondence from X to a B-set Y , Y ′ :=
Y ∼↓, and Φ′ := Φ∼↓; then Φ′ is a unique fully extensional corre-
spondence from X ′ to Y ′ satisfying dom(Φ′) = mix(ıX(dom(Φ)))
and

Φ′(ıXx) = mix(ıX(Φ(x))) (x ∈ dom(Φ)).

� (1) By the definitions of X∼ and πX (cf. 3.4.12 (1–3)), [[πXx∧ ∈ X∼]] = 1
for every x ∈ X . Hence, there is a unique element x′ ∈ X ′ such that [[x′ =
πXx

∧]] = 1. Assign ıXx := x′. This defines the mapping ı := ıX : X → X ′ such
that [[ıx = πXx

∧]] = 1 (x ∈ X). Using the last relation and 3.4.12 (4), for arbitrary
x1, x2 ∈ X , deduce

[[ıx1 �= ıx2]] = [[πXx∧
1 = πXx

∧
2 ]]∗ = [[x1∼x2]]∗ = dX(x1, x2),
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which implies in particular that ı is injective.
(2) Note first that the following formula holds: [[t ∈ im (ı)↑ = πX(X∧)]] = 1.

Indeed, given t ∈ V(B), by the definition of ı we have

[[t ∈ im(ı)↑]] =
∨

x∈X
[[t = ıx]] =

∨

x∈X
[[t = πXx

∧]] = [[t ∈ πX(X∧)]].

Using the arrow cancellation rule 3.3.3 (1), derive

X ′ = πX(X∧)↓= im(ı)↑↓= ı(X)↑↓= mix(ı(X)).

(3) Since Φ∼ is a correspondence from X∼ to Y ∼ inside V(B); therefore, Φ′ is
a fully extensional correspondence from X ′ to Y ′ (cf. 3.4.7 (2)). Using the property
3.2.13 (1) of descent and given arbitrary x ∈ X and y ∈ Y , infer

ıY y ∈ Φ′(ıXx) ↔ [[ıY y ∈ Φ∼(ıXx)]] = 1.

Using the construction of ıX , substitute πXx∧ for ıXx on the right-hand side of the
above equivalence. Appealing to Theorem 3.4.13, note then that

[[ıY y ∈ Φ∼(πXx∧)]] = [[ıY y ∈ πY (Φ(x)∧)]].

All in all, ıY y ∈ Φ′(ıXx) if and only if ıY y ∈ πY (Φ(x)∧)↓, which implies the claim.
Indeed, using (1) and (2), conclude that A∼↓= πY (A∧)↓= mix(ıY (A)) for A ⊂ Y .
Involving 3.2.13 (1), proceed as follows:

Φ′(ıXx) = Φ∼↓(ıXx) = Φ∼(πX(x∧))↓= πY (Φ(x)∧) = mix(ıY (Φ(x))),

where x ∈ dom(Φ). Put X1 := im(ıX), Y1 := im(ıY ), and Φ1 := ı−1
Y ◦ Φ′ ◦ ıX . Then

Φ1 is an extensional correspondence from X1 to Y1, and the following hold:

X ′ = mix(X1), Y ′ = mix(Y1), Φ′(x) = mix(Φ1(x)) (x ∈ dom(Φ1)).

Hence, Φ′ = mix(Φ1), and so Φ′ is unique. �
3.5.5. We now describe the modified descents and ascents of correspondences.

(1) Suppose that X is a nonempty B-set, and Y is an arbitrary element
V(B) satisfying [[Y �= ∅]] = 1. Consider a member Φ of V(B) such that V(B) |=
“Φ = (F,X∼, Y ) is a correspondence from X∼ to Y .”

By Theorem 3.2.13, Φ↓ is a correspondence from X ′ := X∼↓ to Y ↓. Assign
Φ↓ := Φ↓◦ıX . The correspondence Φ↓ is called the modified descent of Φ. By virtue
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of Theorems 3.2.13 and 3.5.4, Φ↓ is a unique fully contractive correspondence from
X to Y ↓ satisfying

y ∈ Φ↓(x) ↔ [[y ∈ Φ(ıXx)]] = 1 (x ∈ X).

Note also that Φ↓ = (F↓−, X, Y ↓), where

F↓−:= {(x, y) ∈ X × Y ↓: (ıXx, y)B ∈ F}.
(2) Assume that Ψ:= (F,X, Y ↓) is a contractive correspondence. The

ascent operation of Section 3.3 does not apply directly to Ψ. However, the corre-
spondence Ψ ◦ ıX is clearly extensional and so it ascends. Assign Ψ↑ := (Ψ ◦ ı−1

X )↑
and call Ψ↑ the modified ascent of Ψ. By Theorems 3.3.10 and 3.5.4, Ψ↑ is a unique
correspondence from X∼ to Y inside V(B) such that

[[dom(Ψ↑) = (dom(Ψ))∼]] = 1, [[Ψ↑(ıXx) = Ψ(x)↑]] = 1 (x ∈ dom(Ψ)).

Note again that Ψ↑ = (F−↑, X∼, Y ), where

F− := {(ıXx, y)B : (x, y) ∈ F}.
(3) Assume now that X is a discrete B-set. Then Φ↓ is a correspon-

dence from X to Y ↓ uniquely determined from the formula

y ∈ Φ↓(x) ↔ [[y ∈ Φ(x∧)]] = 1 (x ∈ X).

On the other hand, in this case each correspondence Ψ from X to Y ↓ is contractive
so that there is a unique correspondence Ψ↑ from X∧ to Y satisfying

[[Ψ↑(x∧) = Ψ(x)↑]] = 1 (x ∈ X).

3.5.6. Theorem. The modified descent and ascent are inverse to one another,
each implementing a bijection between the set of elements Φ ∈ V(B) satisfying
[[Φ is a correspondence from X∼ to Y ]] = 1 and the set of all fully contractive
correspondences from X to Y ↓.

� For simplicity, put ı := ıX . By 3.5.4 (2) and 3.3.3 (1), X∼ = im(ı)↑. Hence,
in virtue of 3.3.10 (3), note that IX∼ = (Iim(ı))↑. Applying the arrow cancellation
rules for correspondences, conclude then that the following holds inside V(B):

Φ↓↑ = ((Φ↓ ◦ı) ◦ ı−1)↑= (Φ↓ ◦Iim(ı))↑= Φ↓↑ ◦(Iim(ı))↑= Φ ◦ IX∼ = Φ.

On the other hand, granted a fully contractive Ψ, observe

Ψ↑↓(x) = (Ψ ◦ ı−1)↑↓(ıx) = (mix(Ψ)) ◦ ı−1(ıx)
= mix(Ψ)(x) = Ψ(x) (x ∈ mix(dom(Ψ)) = dom(Ψ)),

which completes the proof. �
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3.5.7. Theorem. The descent functor F ↓ is right adjoint to the immersion
functor F∼. In this event the modified descent ↓ is an adjunction, while the
modified ascent ↑ is a coadjunction.

� Consider the functors H ∼ and H ↓ from the category BSet × V (B) to the
category V defined as follows:

H ∼(X, Y ) := V (B)(X∼, Y ), H ↓(X, Y ) := BSet0(X, Y ↓);

H ∼(α, β) := Φ′ ↔ V(B) |= Φ′ = β ◦ Φ ◦ α∼;
H ↓(α, β) := β↓ ◦Ψ ◦ α,

where X ∈ Ob BSet, Y ∈ Ob V (B), α ∈ BSet(X1, X), β ∈ V (B)(Y, Y1), Φ ∈
H ∼(X, Y ), and Ψ ∈ H ↓(X, Y ).

The claim is that the modified descent ↓ is an isomorphism of the functors
H ∼ and H ↓. By virtue of Theorem 3.5.6, we only have to establish that ↓ is
a functor morphism of the functor H ∼ to the functor H ↓ or, in other words, that
the following diagram commutes

H ∼(X, Y )
↓−−−−→ H ↓(X, Y )

H ∼(α,β)

⏐⏐�
⏐⏐� H ↓(α,β)

H ∼(X1, Y1) −−−−→
↓

H ↓(X1, Y1)

for the above indicated X , X1, Y , Y1, α, and β. The commutativity amounts to the
fact that the equality (H (α, β)Φ)↓ = H ↓(α, β)(Φ↓) holds for every Φ ∈ H ∼(X, Y )
or, in virtue of the definitions of H ∼ and H ↓, that the following conditions are
compatible:

Ψ ∈ H ↓(X, Y ), [[Ψ = β ◦ Φ ◦ α∼]] = 1,

(β↓) ◦ (Φ↓) ◦ α = Ψ↓.
These are fulfilled if and only if

[[β ◦ Φ ◦ α∼ = (β↓ ◦ (Φ↓) ◦ α)↑]] = 1.

However, the arrow cancellation rules, together with the definitions of modified
descent and ascent, imply that the following holds inside V(B):

(β↓ ◦ (Φ↓) ◦ α)↑ = (β↓ ◦ (Φ↓) ◦ ı ◦ α ◦ ı−1)↑
= β↓↑ ◦ (Φ↓↑) ◦ (ı ◦ α ◦ ı−1)↑ = β ◦ Φ ◦ (ı ◦ α ◦ ı−1)↑.

To complete the proof, it suffices to note that [[(ı ◦ α ◦ ı−1)↑ = α∼]] = 1. �
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3.5.8. We now list some important corollaries to Theorem 3.5.4 with its hy-
potheses and notation presumed effective.

(1) If (X, dX) is a universally complete B-set then ıX is a bijection be-
tween X and X ′.

� Note that if x = mix(bξxξ) for a partition of unity (bξ) and a family (xξ) ⊂ X
then ıXx = mix(bξıXxξ). �

(2) To each B-set (X, dX) there is a 3-tuple (X ′, d′X , ıX) called a B-
completion of (X, dX) and obeying the following conditions:

(a) (X ′, d′X) is a universally complete B-set, and ıX is an isometry of
X to X ′;

(b) X ′ = mix(im(ıX));
(c) to each contractive correspondence Φ from X to a universally com-
plete B-set Y , there is a unique fully contractive correspondence
Φ′ from X ′ to Y satisfying dom(Φ′) = mix(ı(dom(Φ))) and

mix(Φ(x)) = Φ′(ıXx) (x ∈ dom(Φ));

(d) if a 3-tuple (X ′′, d′′X , ı
′
X) obeys (a)– (c), then there exists some B-

isomorphism ı between X ′ and X ′′ satisfying ı ◦ ıX = ı′X .

� To prove, take some universally complete B-set as Y in 3.5.4 (3) and appeal
to (1). �

(3) If X ∈ Ob V (B) then there is a member jX of V(B) such that [[ jX is
an isomorphism (in the category V (B)) of X onto X↓∼ ]] = 1.

� Indeed, if Y := X↓ then, letting jX := ıY ↑, note that jX is an isomorphism
between Y ↑= X and Y ∼ = X↓∼, since ıY is an isomorphism between Y and
Y ∼↓. �

(4) IfX and Y are universally complete B-sets and Φ is a correspondence
from X∼ to Y ∼ inside V(B), then there is a unique fully contractive correspondence
Ψ from X to Y such that Ψ∼ = Φ.

� Indeed, Φ′ := Φ↓ is a fully extensional correspondence from X ′ := X∼↓ to
Y ′ := Y ∼↓. Hence, Ψ:= ı−1

Y ◦ Φ′ ◦ ıX is a fully contractive correspondence from X
to Y . If Ψ′ := Ψ∼↓ then, using 3.5.4 (3), obtain ı−1

Y ◦Ψ ◦ ıX = ı−1
Y ◦Ψ′ ◦ ıX . By (1),

Ψ = Ψ′, and so Φ = Φ′↑= Ψ′↑= Ψ↑. �

(5) If X and Y are universally complete B-sets then the mapping Φ �→
Φ∼ is a bijection between the sets of morphisms CBSet∗(X, Y ) and V

(B)
∗ (X∼, Y ∼).
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3.5.9. Suppose that X and Y are arbitrary B-sets and Φ is a fully contractive
correspondence from X to Y . Then

V(B) |= πΦ(A)∼ = πΦ∼(A∼)

for every subset A of dom(Φ).
� Note that the formulas (∀ a ∈ A∧) (y ∈ Φ∼(πXa)) and y ∈ πΦ∼(A∼) are

equivalent since A∼ = πX(A∧). Using Theorem 3.4.13 and the fact that Φ is fully
contractive, take y ∈ ıY (Y ) and proceed with the following equivalences:

y ∈ πΦ∼(A∼)↓ ↔
∧

{[[ y ∈ Φ∼(πXa∧) ]] : a ∈ A} = 1

↔ (∀ a ∈ A)[[y ∈ πY (Φ(a)∧)]] = 1 ↔ (∀ a ∈ A)(y ∈ Φ(a)∼↓)
↔ (∀ a ∈ A)y ∈ mix(ıY (Φ(a))) ↔ (∀ a ∈ A) y ∈ ıY (mix(Φ(a)))

↔ y ∈
⋂

a∈A
ıA(Φ(a)) ↔ y ∈ ıY (πΦ(A)).

Hence,
πΦ∼(A∼) = ıY (πΦ(A))↑= πΦ(A)∼. �

3.5.10. Theorem. The functors F∼ and F ↓ establish equivalence between
the categories CBSet∗ and V

(B)
∗ . In particular, F∼ and F ↓ are mutually adjoint

full and faithful functors preserving inductive and projective limits (for the given
categories).

� It suffices to demonstrate the following:
(1) the functor F ↓ ◦ F∼ is naturally isomorphic to the identity functor on

CBSet∗; while the isomorphism is implemented by the mappings ıX : X �→ X ′

where X ∈ CBSet∗;
(2) the functor F∼ ◦ F ↓ is naturally isomorphic to the identity functor on

V
(B)
∗ ; while the isomorphism is accomplished by the mappings jX ∈ V (B)(X,X↓∼)

where X ∈ V
(B)
∗ .

To prove (1), involve 3.5.8 (1) and note that, by virtue of 3.5.4 (3), for X ,
Y ∈ Ob CBSet∗ and Φ ∈ CBSet∗(X, Y ), the following diagram commutes:

X
ıX−−−−→ X∼↓

Φ

⏐⏐�
⏐⏐�Φ∼↓

Y −−−−→
ıY

Y ∼↓
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It then ensues from 3.5.8 (3, 4) that, for all X , Y ∈ Ob V (B)
∗ and Φ ∈ V (B)

∗ (X, Y ),
the following diagram commutes:

X
jX−−−−→ X↓∼

Φ

⏐⏐�
⏐⏐�Φ↓∼

Y −−−−→
jY

Y ↓∼

This yields (2). �

3.5.11. For all X ∈ Ob CBSet∗ and Y ∈ Ob V
(B)
∗ , the following hold:

(jY )↓= ıY ↓, V(B) |= (ıX)∼ = jX∼ .

� The first equality is immediate from the definitions: (jY )↓ = (ıY ↓)↑↓ = ıY ↓.
To prove the second equality, assign

b := [[(ıX)∼ = jX∼ ]], bx := [[ıX∼πXx
∧ = jX∼πXx

∧]] (x ∈ X).

Note that b =
∧{bx : x ∈ X}. Hence, we are to check that bx = 1 for every

x ∈ X . However, if x ∈ X then, by 3.4.13 and the definition of jX , obtain bx =
[[πX∼↓(ıXx)∧ = (ıX∼↓)↑ ◦ πX(x∧)]]. Now, apply the following equalities which hold
by the definition of ıX :

[[πXx∧ = ıXx]] = [[πX∼↓y∧ = ıX∼↓y]] = 1 (x ∈ X, y ∈ Y ∼↓).

Whence, on letting y = ıXx and using 3.5.4 (1), infer

bx = [[πX∼↓(ıXx)∧ = ıX∼↓(ıXx)]] = 1,

which completes the proof. �



Chapter 4

Boolean Valued Analysis of
Algebraic Systems

Every Boolean valued universe has the collection of mathematical objects in
full supply: available in plenty are all sets with extra structure: groups, rings, alge-
bras, normed spaces, etc. Applying the descent functor to the established algebraic
systems in a Boolean valued model, we distinguish bizarre entities or recognize old
acquaintances, which reveals new facts of their life and structure.

This technique of research, known as direct Boolean valued interpretation, al-
lows us to produce new theorems or, to be more exact, to extend the semantical
content of the available theorems by means of slavish translation. The information
we so acquire might fail to be vital, valuable, or intriguing, in which case the direct
Boolean valued interpretation turns out to be a leisurely game.

It thus stands to reason to raise the following questions: What structures signif-
icant for mathematical practice are obtainable by the Boolean valued interpretation
of the most common algebraic systems? What transfer principles hold in this pro-
cess? Clearly, the answers should imply specific objects whose particular features
enable us to deal with their Boolean valued representation which, if understood
duly, is impossible to implement for arbitrary algebraic systems.

In the preceding chapter we have shown that an abstract B-set U embeds
in the Boolean valued universe V(B) so that the Boolean distance between the
members of U becomes the Boolean truth value of the negation of their equality. The
corresponding element of V(B) is, by definition, the Boolean valued representation
of U . In case the B-set U has some a priori structure, we may try to equip the
Boolean valued representation of U with an analogous structure, intending to apply
the technique of ascending and descending to studying the original structure of
U . Consequently, the questions we raised above may be treated as instances of
the same problem of searching the qualified Boolean valued representation of a
B-set furnished with some additional structure.
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The present chapter analyzes the problem for the main objects of general al-
gebra. Located at the epicenter of exposition, the notion of an algebraic B-system
refers to a nonempty B-set endowed with a few contractive operations and B-
predicates, the latter meaning B-valued contractive mappings.

The Boolean valued representation of an algebraic B-system appears to be
a conventional two-valued algebraic system of the same type. This means that an
appropriate completion of each algebraic B-system coincides with the descent of
some two-valued algebraic system inside V(B). On the other hand, each two-valued
algebraic system may be transformed into an algebraic B-system on distinguishing
a complete Boolean algebra of congruences of the original system. In this event the
task is to find the formulas holding in direct or reverse transition from a B-system
to a two-valued system. In other words, we have to seek here some versions of the
transfer principle or the identity preservation principle of long standing in some
branches of mathematics.

We illustrate the general facts of Boolean valued analysis with particular al-
gebraic systems in which complete Boolean algebras of congruences are connected
with the relations of order and disjointness.

4.1. Algebraic B-Systems

We now introduce a class of algebraic systems suitable for the Boolean valued
interpretation of first-order languages. These systems arise as B-sets equipped with
contractive operations and predicates.

4.1.1. Recall that a signature is a 3-tuple σ := (F, P, a), where F and P are
some (possibly, empty) sets and a is a mapping from F ∪ P to ω. If F and P are
finite then σ is a finite signature. In applications we usually deal with algebraic
systems of finite signature.

An n-ary operation and an n-ary-predicate on a B-set A are contractive map-
pings f : An → A and p : An → B respectively. By definition, f and p are
contractive mappings provided that

d(f(a0, . . . , an−1), f(a′0, . . . , a
′
n−1)) ≤

n−1∨

k=0

d(ak, a′k),

ds
(
p(a0, . . . , an−1), p(a′0, . . . , a

′
n−1)

) ≤
n−1∨

k=0

d(ak, a′k)

for all a0, a′0, . . . , an−1, a′n−1 ∈ A, where d is the B-metric of A, and ds is the
symmetric difference on B; i.e., ds(b1, b2) := b1 � b2 (cf. 1.1.4).
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Clearly, the above definitions depend on B and it would be cleaner to speak
of B-operations, B-predicates, etc. We adhere to a simpler practice whenever this
entails no confusion.

An algebraic B-system A of signature σ is a pair (A, ν), where A is a nonempty
B-set, the underlying set or carrier of A, and ν is a mapping such that (a) dom(ν) =
F ∪ P ; (b) ν(f) is an a(f)-ary operation on A for all f ∈ F ; and (c) ν(p) is an
a(p)-ary predicate on A for every p ∈ P .

It is in common parlance to call ν the interpretation of A, in which case the
notations fν and pν are familiar substitutes for ν(f) and ν(p).

The signature of an algebraic B-system A := (A, ν) is often denoted by σ(A);
while the carrier A of A, by |A|. Since A0 = {∅}, the nullary operations and
predicates on A are mappings from {∅} to the set A and to the algebra B re-
spectively. We agree to identify a mapping g : {∅} → A ∪ B with the element
g(∅). Each nullary operation on A thus transforms into a unique member of A.
Analogously, the set of all nullary predicates on A turns into the Boolean alge-
bra B. If F := {f1, . . . , fn} and P := {p1, . . . , pm} then an algebraic B-system of
signature σ is often written down as (A, ν(f1), . . . , ν(fn), ν(p1), . . . , ν(pm)) or even
(A, f1, . . . , fn, p1, . . . , pm). In this event the expression σ = (f1, . . . , fn, p1, . . . , pm)
is substituted for σ = (F, P, a).

4.1.2. If B is the two-element Boolean algebra {0, 1}, then instead of algebraic
B-system we speak about a two-valued algebraic system or simply about an algebraic
system. In this case an arbitrary set may be treated as a B-set, while an n-ary
operation becomes an arbitrary mapping from An to A and a predicate P on a B-set
transforms into the characteristic function p : An → {0, 1} of {x ∈ An : p(x) = 1}.
Therefore, an algebraic system A of signature σ is a pair A = (A, ν), where the
underlying set A of A is nonempty and the interpretation ν of A is a function from
dom(ν) = F ∪ P to V such that

ν(f) : Aa(f) → A, ν(p) ⊂ Aa(p) (f ∈ F, p ∈ P ).

On the other hand, if (A, ν) is an algebraic system of signature σ and A ⊂ V(B)

then, considering A as a B-set (with the B-metric d(a, a′) := [[a = a′]]∗ = [[a �= a′]]
(a, a′ ∈ A)) and given p ∈ P , we may define the n-ary B-predicate ν′(p) on A with
n := a(p) by the following formula (cf. 3.4.5)

ν′(p) := (a0, . . . , an−1) �→ dist((a0, . . . , an−1), ν(p)).

It is obvious that ν′(p) : An → B is a contractive mapping. Assume further that
ν(f) is a contractive mapping for every f ∈ F . Put ν′(f) := ν(f) for all f ∈ F .
Then (A, ν′) is an algebraic B-system.
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Considering a particular algebraic system A, we describe the ingredients of
A in a liberal fashion. Rather than solemnly proclaiming the formalities of the
signature of A, we usually indicate only the most significant symbols of operations
and predicates and even identify the whole system A with its underlying set |A|.
This routine is another sacrosanct privilege of the working mathematician.

4.1.3. An algebraic B-system A is universally complete or finitely complete
provided that A is a universally complete or finitely complete algebraic B-set
(cf. 3.4.3). Note that “decomposable” is synonymous with “finitely complete” and
“extended” stands for “universally complete” in the texts of Russian provenance.

A B-predicate p on the set A is called assertive if there exists an element x in
A such that p(x) = 1.

(1) A contractive mapping p from a universally complete B-set A to B
is an assertive B-predicate if and only if 1 =

∨{p(x) : x ∈ A}.
� Indeed, if the proviso is fulfilled then there are a family (xξ) ⊂ A and

a partition of unity (bξ) ⊂ B such that p(xξ) ≥ bξ. If x := mix(bξxξ) then p(x) =
1. �

To each algebraic B-system A we may relate the algebraic system A with the
same underlying set |A| := |A| and the interpretation ν defined as follows: If f is
a function symbol then ν(f) := ν(f); while if p is a predicate symbol and n = a(p),
then ν(p) := {(x0, . . . , xn−1) ∈ An : p(x0, . . . , xn−1) = 1}. Clearly, the predicate
ν(p) might be empty for some p.

The algebraic system A is said to be the purification or reduct of A. It is in
common parlance also to say that A is obtained from A by purification or reduction.

(2) If (A, ν) is an algebraic B-system and (A, ν) is the purification of
(A, ν) then

pν : x �→ dist(x, ν(p))∗ (x ∈ Aa(p))

for every assertive predicate pν .

� By corollaries to the theorem on Boolean valued representation of B-sets
(cf. 3.5.8), the B-set A has a B-completion A′ ⊂ V(B), and pν admits a unique
extension ν′(p) to some B-predicate on A′.

In this event, ν′(p)(x) = dist(x,mix(ν(p)))∗ = dist(x, ν(p))∗ = [[x ∈ pν↑]] (x ∈
Aa(p)). This yields the desired result since we lose no generality in assuming that
A ⊂ A′. �

Proposition 4.1.3 (2) makes it possible to identify an algebraic B-system with
assertive predicates A and some algebraic system, namely, the purification of A. It is
natural to ask the question: What algebraic systems are obtainable by purification
of finitely or universally complete algebraic B-systems? The answer to this question
is formulated in terms of congruences.
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4.1.4. Consider an arbitrary algebraic system A := (A, ν) of signature σ :=
(F, P, a).

An equivalence ρ on A is a congruence of A if, for every f ∈ F and for all
x0, . . . , xn−1, y0, . . . , yn−1 ∈ A, n = a(f), from (x0, y0) ∈ ρ, . . . , (xn−1, yn−1) ∈ ρ it
follows that (fν(x0, . . . , xn−1), fν(y0, . . . , yn−1)) ∈ ρ.

The set of all congruences of A is denoted by Cong(A). Equip Cong(A) with
some order by the formula

ρ1 ≤ ρ2 ↔ ρ1 ⊂ ρ2 (ρ1, ρ2 ∈ Cong(A)).

The identity congruence IA := {(x, x) : x ∈ A} and the trivial, indiscriminate
congruence A× A are obviously the least and greatest elements of Cong(A).

(1) Theorem. The poset Cong(A) is a complete lattice. The greatest
lower bound of a subset P of Cong(A) coincides with the intersection

⋂{ρ : ρ ∈
P}. The least upper bound of a subset P of Cong(A) is the union of all possible
compositions ρ1 ◦ . . . ◦ ρn, where {ρ1, . . . , ρn} is an arbitrary finite set in Cong(A).

The poset Cong(A) is the congruence lattice of A. The join ρ1 ∨ ρ2 of ρ1, ρ2 ∈
Cong(A), as seen from the above theorem, coincides with the union of all possible
relations of the form ρ1 ◦ ρ2 ◦ ρ1 ◦ . . . ◦ ρ1 ◦ ρ2. Hence, if ρ1 and ρ2 commute, i.e.,
ρ1 ◦ ρ2 = ρ2 ◦ ρ1; then ρ1 ∨ ρ2 = ρ1 ◦ ρ2. Conversely, if ρ1 ∨ ρ2 = ρ1 ◦ ρ2 then the
congruences ρ1 and ρ2 commute.

A set of congruences Λ on an algebraic system A is independent (finitely inde-
pendent) if, to every family (finite family) (λξ)ξ∈Ξ in Λ and to every family (finite
family) (aξ)ξ∈Ξ in A, there is an element a in A satisfying (a, aξ) ∈ λξ for all ξ ∈ Ξ.

A set of congruences Λ is complete provided that (a) inf(Λ) :=
⋂

(Λ) = IA and
(b) for all p ∈ P and an arbitrary n-tuple (x0, . . . , xn−1) ∈ An, n = a(p), the formula
(x0, . . . , xn−1) /∈ ν(p) yields the existence of λ in Λ such that (y0, . . . , yn−1) /∈ ν(p)
as soon as (x0, y0) ∈ λ, . . . , (xn−1, yn−1) ∈ λ (cf. [164]).

Considering the definition of a complete set of congruences, it is convenient to
paraphrase (b) in terms of mixing.

Take a family (aλ)λ∈Λ in A. If (a, aλ) ∈ λ for some a ∈ A and all λ ∈ Λ
then we naturally say that a is the mixing of (aλ) relative to Λ. A subset U of
An is closed under Λ-mixing if for each family ((a0

λ, . . . , a
n−1
λ ))λ∈Λ in U we have

(a0, . . . , an−1) ∈ U , where ak is the mixing of (akλ) relative to Λ.
(2) An independent set of congruences Λ of an algebraic system A is

complete if and only if inf(Λ) = IA and every predicate ν(p), p ∈ P , is closed under
Λ-mixing.

� To proof sufficiency, assume that all predicates are closed under Λ-mixing.
Assume further that p ∈ P , n = a(p), and (x0, . . . , xn−1) /∈ ν(p) but, nonetheless, to
each λ ∈ Λ there are (y0

λ, . . . , y
n−1
λ ) ∈ ν(p) such that (xk, ykλ) ∈ λ (k = 0, . . . , n−1).
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Denote by yk the mixing of the family (yλ,k)λ∈Λ relative to Λ. Then (y0, . . . , yn−1) ∈
ν(p). At the same time (xk, yk) ∈ λ for all λ ∈ Λ. Hence, xk = yk (k = 0, . . . , n−1)
since

⋂
Λ = IA; a contradiction.

Assume conversely that Λ is a complete set of congruences. Take p ∈ P and
a family of n-tuples (aλ,0, . . . , aλ,n−1) contained in ν(p). Let ak stand for the mixing
of (aλ,k)λ∈Λ relative to Λ.

If (a0, . . . , an−1) /∈ ν(p) then, since Λ is complete, there is a congruence λ ∈ Λ
satisfying (aλ,0, . . . , aλ,n−1) /∈ ν(p). This, however, contradicts the choice of (aλ,0,
. . . , aλ,n−1). Hence, ν(p) is closed under Λ-mixing.

Necessity holds clearly without the assumption that Λ is independent. �

4.1.5. A Boolean algebra of congruences is a Boolean algebra B ⊂ Cong(A)
such that the least upper bound of an arbitrary set in B is inherited from the
congruence lattice Cong(A) and the least congruence IA serves as the zero of B.

It is worth observing that the Boolean complement ρ∗ of ρ ∈ B may fail to be
the complement of ρ in the congruence lattice Cong(A); i.e., the least upper bound
of ρ and ρ∗ in Cong(A) may be less than A×A.

A base for an algebraic system A is a complete Boolean algebra of congruences
B ⊂ Cong(A) such that each predicate ν(p) (p ∈ P ) is closed under Λ∗-mixing for
each partition of unity Λ ⊂ B where Λ∗ := {b∗ : b ∈ Λ}.

An algebraic system with base B is universally (finitely) complete provided
that the set of congruences Λ∗ is independent where Λ ⊂ B is an arbitrary (finite)
partition of unity.

An algebraic system A has a base B isomorphic to a complete Boolean algebra
B if and only if there is an injective mapping h : B → Cong(A) obeying the following
conditions:

(1) h preserves infima and h(0) = IA;
(2) every predicate ν(p) (p ∈ P ) is closed under h(Λ∗)-mixing for each

partition of unity Λ ⊂ B.
In this event A is universally (finitely) complete if and only if the set h(Λ∗) is
independent for every (finite) partition of unity Λ ⊂ B.

4.1.6. An algebraic B-system A is full provided that to each 0 �= b ∈ B there
are elements x, y ∈ A, x �= y, such that d(x, y) ≤ b. It is obvious that a finitely
complete B-system is full, but the converse may fail in general.

Theorem. An algebraic system A is the purification of some full algebraic
B-system A′ if and only if A has a base isomorphic to B. In this event, A and A′

are universally (finitely) complete or not simultaneously.

� Let A′ be a full algebraic B-system. Take b ∈ B and put h(b) := {(x, y) ∈
A2 : d(x, y) ≤ b}.
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Since ν(f) is a contractive mapping for every f ∈ F ; therefore, h(b) is a con-
gruence on A. It is obvious that h(0) = IA and h preserves infima. Since A is full,
conclude that h is injective. Assume that the algebraic system A is the purification
of A′. Note that every set of the type {z ∈ A : p(z) = 1} is closed under all mixings
in the B-set A. Whence, it follows from 4.1.5 that A has a base isomorphic to B.
Conversely, assume that A has a base B and there exists a Boolean isomorphism
h from B to B. Assign

d(x, y) :=
∧

{b ∈ B : (x, y) ∈ h(b)} (x, y ∈ A).

If b1, b2 ∈ B are such that (x, z) ∈ h(b1) and (z, y) ∈ h(b2) then (x, y) ∈ h(b2)◦h(b1).
However, h(b2) ◦ h(b1) ⊂ h(b1 ∨ b2) and so d(x, y) ≤ b1 ∨ b2.

Taking the infimum over b1 and b2, use the distributive law 1.1.5 (1) to conclude
that d(x, y) ≤ d(x, z) ∨ d(z, y). It is now evident that d is a Boolean semimetric
on A. Since h preserves infima; therefore,

h(d(x, y)) =
⋂

{h(b) : b ∈ B, (x, y) ∈ h(b)}.

Whence we deduce that d(x, y) ≤ b if and only if (x, y) ∈ h(b). In particular,
d(x, y) = 0 implies that x = y; while, given 0 �= b ∈ B, we may find x, y ∈ A
satisfying x �= y and d(x, y) ≤ b.

It remains to show that if Λ is a partition of unity in B then for a family
(ab)b∈Λ ⊂ A the mixing relative to h(Λ∗) coincides with that in the sense of the B-
metric d, i.e., with mixb∈Λ(bab). This fact, however, is immediate from the above:
(a, ab) ∈ h(b∗) ↔ d(a, ab) ≤ b∗ ↔ b ∧ d(a, ab) = 0. We now define A′ := (A′, ν′) by
putting A′ := A, ν′(f) = ν(f), f ∈ F , and

ν′(p) : x �→ dist(x, ν(p)) (p ∈ P, x ∈ Aa(p)).

If f ∈ F and n = a(f) then for all b ∈ B and x0, y0, . . . , xn−1, yn−1 ∈ A the contain-
ments (xk, yk) ∈ h(b), k < n imply that (fν(x0, . . . , xn−1), fν(y0, . . . , yn−1)) ∈ h(b),
which gives

d(fν(x0, . . . , xn−1), fν(y0, . . . , yn−1)) ≤ b.

Passing to the infimum over b and observing that

∧
{b : (xk, yk) ∈ h(b), k < n} =

n−1∨

k=0

d(xk, yk),

conclude that the mappings fν = ν(f) are contractions. Choosing p ∈ P , a(p) = m,
take x := (x0, . . . , xm−1) and y := (y0, . . . , ym−1) in Am. Then

d(x, y) ∧ dist(x, ν(p)) ≤ dist(y, ν(p)),
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which implies that ν′(p) is a contractive mapping. Moreover, since ν(p) is closed
under mixing (see 4.1.3 (2)), observe that ν(p) = {x ∈ Am : ν′(p)(x) = 1} which
makes the contraction property of ν′(p) obvious. Moreover, since ν(p) is closed
under mixing (cf. 4.1.3 (2)), we see that ν(p) = {x ∈ Am : ν′(p)(x) = 1}. Hence, A
is the purification of the full algebraic B-system A′. The fact that the systems A
and A′ are universally complete implies that Λ∗, where Λ is a partition of unity in
B, is an independent set and that (A, d) is closed under any mixings. By similar
reasons, the claims about finite completeness of the two systems are also equivalent
to each other. �

4.1.7. Consider some concrete examples of algebraic B-systems. Recall that
an associative ring R is a Boolean ring if every element of R is idempotent, i.e., if
(∀x ∈ R)(x2 = x). A unital Boolean ring is a Boolean algebra. Conversely, each
Boolean algebra B is a Boolean ring with unity. In this event the zero and unity of
a ring coincide with the Boolean zero and unity, respectively (see 1.2.1).

(1) Let B0 be a Boolean algebra. Assume that X is a unital module
over the Boolean ring B0. Denote by B the completion of B0 and let j stand for
an isomorphism of B0 onto a dense subalgebra of B. Assign

dj(x, y) :=
∧

{j(b) : b∗x = b∗y, b ∈ B0} (x, y ∈ X).

It is easy to see that dj is a B-semimetric on X . For instance, demonstration of the
triangle inequality proceeds as follows: If b∗x = b∗z and c∗z = c∗y then, considering
e := b∗ · c∗ = b∗ ∧ c∗ = (b ∨ c)∗, note that ex = ez and ey = ez. Therefore, ex = ey
and dj(x, y) ≤ e ≤ j(b ∨ c) = j(b) ∨ j(c). Since b and c are arbitrary, obtain
dj(x, y) ≤ dj(x, z) ∨ dj(z, y).

Call X a laterally faithful module if for each partition of unity (bξ) in B0 from
(∀ ξ) (bξx = 0) it follows that x = 0 for all x ∈ X . It is beyond a doubt that the
semimetric dj is a metric for a laterally faithful unital B0-module X . By analogy
with the triangle inequality for dj, we may show that all module operations are
contractive:

dj(x+ u, y + v) ≤ dj(x, y) ∨ dj(u, v) (x, y, u, v ∈ X),
dj(bx, cy) ≤ dj(x, y) ∨ ds(b, c) (x, y ∈ X ; b, c ∈ B).

The last inequality implies in particular that

dj(bx, by) ≤ dj(x, y) (b ∈ B; x, y ∈ X).

Moreover, dj(−x,−y) = dj(x, y). Therefore, the set X , furnished with the opera-
tions + and − and the unary operations of multiplication by b ∈ B0, is an algebraic
B-system.
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(2) Assume that R is a unital commutative ring. Consider the set
B0 := {e ∈ R : e · e = e} of all idempotents of R. Then B0 is a Boolean ring with
unity and R is a module over B0. In case B and j are the same as in (1), we notice
the B-semimetric dj on R.

Clearly, R is laterally faithful over B0. By (1), we deduce that a unital com-
mutative ring R, laterally faithful over the subring B0 of the idempotents of B, is
an algebraic B-system of signature (+,−, · , 1).

(3) Assume that C is a Boolean algebra and ı is a homomorphism from
a Boolean algebra B0 to C. Since ı(B0) is a subring of the Boolean ring C, we can
readily endow C with the structure of a unital module over B0. If B and j are the
same as in (1) then

dj(x, y) :=
∧

{j(b) : ı(b∗)x = ı(b∗)y}.

The module C is laterally faithful if ı is a complete monomorphism. In view of the
above mentioned interrelation between Boolean and ring operations, the Boolean
algebra C is an algebraic B-system of signature (∨,∧, ∗, 0, 1) in the case when ı is
a complete monomorphism. This system is universally complete if, for instance, B0

and C are complete Boolean algebras.

4.1.8. We now address the B-valued interpretation of a first-order language.
Consider an algebraic B-system A := (A, ν) of signature σ := σ(A) := (F, P, a).

Let ϕ(x0, . . . , xn−1) be a formula of signature σ with n free variables. Assume
given a0, . . . , an−1 ∈ A. Define the Boolean truth value |ϕ|A(a0, . . . , an−1) ∈ B
of a formula ϕ in the system A for the given values a0, . . . , an−1 of the variables
x0, . . . , xn−1. The definition proceeds readily by usual recursion on the length of ϕ:
Considering propositional connectives and quantifiers, put

|ϕ ∧ ψ|A (a0, . . . , an−1) := |ϕ|A(a0, . . . , an−1) ∧ |ψ|A(a0, . . . , an−1);
|ϕ ∨ ψ|A (a0, . . . , an−1) := |ϕ|A(a0, . . . , an−1) ∨ |ψ|A(a0, . . . , an−1);

|¬ϕ|A (a0, . . . , an−1) := |ϕ|A(a0, . . . , an−1)∗;

|(∀x0)ϕ|A (a1, . . . , an−1) :=
∧

a0∈A
|ϕ|A(a0, . . . , an−1);

|(∃x0)ϕ|A (a1, . . . , an−1) :=
∨

a0∈A
|ϕ|A(a0, . . . , an−1).

Now, the case of atomic formulas is in order. Suppose that p ∈ P symbolizes an m-
ary predicate, q ∈ P is a nullary predicate, and t0, . . . , tm−1 are terms of signature
σ assuming values b0, . . . , bm−1 at the given values a0, . . . , an−1 of the variables
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x0, . . . , xn−1. By definition, we let

|ϕ|A(a0, . . . , an−1) := ν(q), if ϕ = qν ;
|ϕ|A(a0, . . . , an−1) := d(b0, b1)∗, if ϕ = (t0 = t1);

|ϕ|A(a0, . . . , an−1) := pν(b0, . . . , bm−1), if ϕ = pν(t0, . . . , tm−1),

where d is a B-metric on A.
Say that ϕ(x0, . . . , xn−1) is satisfied in A by the assignment a0, . . . , an−1 ∈ A of

x0, . . . , xn−1 and write A |= ϕ(a0, . . . , an−1) provided that |ϕ|A(a0, . . . , an−1) = 1B .
Alternative expressions are as follows: a0, . . . , an−1 ∈ A satisfies ϕ(x0, . . . , xn−1)
or ϕ(a0, . . . , an−1) holds in A. In case B := {0, 1}, we arrive at the conventional
definition of the satisfaction of a formula in an algebraic system (cf. [48, 164]).

Recall that a closed formula ϕ of signature σ is a tautology or logically valid if
ϕ is satisfied in every algebraic 2-system of signature σ.

4.1.9. Theorem. Let A be an arbitrary algebraic B-system. Then the follow-
ing hold:

(1) Every theorem of predicate calculus holds in A;

(2) Every tautology of signature σ(A) holds in A.

� (1) We are to demonstrate that the axioms of predicate calculus are satisfied
in A, and the rules of inference do not destroy satisfaction in A (see 2.1.8). To this
end, it suffices to inspect the corresponding calculations of Boolean truth values
(cf. [11, 48, 123, 131, 240, 241]).

(2) If a closed formula ϕ fails in A then b := |ϕ|A < 1B . Let h : B → 2 := {0, 1}
be a complete homomorphism satisfying h(b) = 0. Such an h exists, since the ideal
[0, b] lies in a maximal ideal that may be taken as h−1(0). If ν is an interpretation
of A then we put ν′(f) := fν for function symbols and ν′(p) := h ◦ pν for predicate
symbols. Then A′ := (|A|, ν′) is an algebraic 2-system and |ϕ|A′

= h(b) = 0; i.e., ϕ
fails in A′. Hence, ϕ is not a tautology. �

4.1.10. Consider algebraic B-systems A := (A, ν) and C := (C, μ) of the same
signature σ. The mapping h : A→ C is a homomorphism of A to C provided that,
for all a0, . . . , an−1 ∈ A, the following hold:

(1) dB(h(a1), h(a2)) ≤ dA(a1, a2);

(2) h(fν) = fμ if a(f) = 0;

(3) h(fν(a0, . . . , an−1)) = fμ(h(a0), . . . , h(an−1)) if 0 �= n := a(f);

(4) pν(a0, . . . , an−1) ≤ pμ(h(a0), . . . , h(an−1)), with n := a(p).
A homomorphism h is called strong if
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(5) a(p) := n �= 0 for all p ∈ P , and the following inequality holds:

pμ(c0, . . . , cn−1)

≥
∨

a0,...,an−1∈A
{pν(a0, . . . , an−1) ∧ dC(c0, h(a0)) ∧ . . . ∧ dC(cn−1, h(an−1))}

for all c0, . . . , cn−1 ∈ C.
If a homomorphism h is injective and (1) and (4) are equalities then h is said

to be an isomorphism from A to C. Undoubtedly, each surjective isomorphism h
and, in particular, the identity mapping IA : A → A are strong homomorphisms.
The composition of (strong) homomorphisms is a (strong) homomorphism. Clearly,
if h is a homomorphism and h−1 is a homomorphism too then h is an isomorphism.

Note again that in the case of the two-element Boolean algebra B := {0, 1} we
come to the conventional notions of homomorphism, strong homomorphism, and
isomorphism (cf. [48, 164]).

4.1.11. Consider some set Φ of formulas of the same fixed signature σ. Define
the category B-AS(Φ) as follows: The class ObB-AS(Φ) consists of all algebraic
B-systems of signature σ each of which satisfies all formulas of Φ. The class MorB-
AS(Φ) is the class of all homomorphisms of algebraic B-systems of ObB-AS(Φ)
with the conventional composition of mappings as composition of morphisms. An
isomorphism in the category B-AS(Φ) is obviously a B-isometric strong homomor-
phism. Denote by B-CAS(Φ) the full subcategory of the category B-AS(Φ) whose
objects are universally complete algebraic B-systems.

4.1.12. According to 4.1.5 and 4.1.6, the structure of an algebraic B-system A
may be reconstructed from the complete Boolean algebra of congruences Cong(A).
On the other hand, one of the most general methods for obtaining complete Boolean
algebras is associated with the abstract concept of disjointness. We now dwell for
a while on essential relationship between these notions, starting with some relevant
facts to be recalled.

Consider sets X and Y . Assume that Φ is a correspondence from X to Y .
Denote by πΦ(A) and π−1

Φ (C) the polar of A ⊂ X and the inverse polar of C ⊂ Y
with respect to Φ (see A.3.10):

πΦ(A) :=
⋂

x∈A
Φ(x), π−1

Φ (C) :=
⋂

y∈C
Φ−1(y).

A set K ⊂ Y is a Φ-band or simply a band of Φ when the context prompts Φ
provided that K = πΦ(π−1

Φ (K)) or, which is equivalent, K = πΦ(A) for some
A ⊂ X . Denote by KΦ(Y ) the set of all Φ-bands. Let [C] stand for the least band
that includes a subset C of Y ; i.e., [C] = πΦ(π−1

Φ (C)).
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(1) Theorem. The inclusion ordered set KΦ(Y ) is a complete lattice.
The supremum and infimum of a family (Kξ)ξ∈Ξ ⊂ KΦ(Y ) are calculated by the
formulas

∧

ξ∈Ξ

Kξ =
⋂

ξ∈Ξ

Kξ,
∨

ξ∈Ξ

Kξ =
[ ⋃

ξ∈Ξ

Kξ

]
.

The inverse polar mapping K �→ π−1
Φ (K) is an antitonic bijection of KΦ(Y ) on

KΦ−1(X).

(2) A relation Δ on a set X is a disjointness relation or disjointness
(on X) provided that the following conditions are met:

(a) Δ = Δ−1; i.e., Δ is symmetric;

(b) Δ ∩ IX ⊂ Θ × Θ,
with Θ:= πΔ(X) signifying the least Δ-band;

(c) [x] ∩ [y] ⊂ Θ → (x, y) ∈ Δ.
A disjointness Δ is called simple if Δ obeys the additional requirement

(d) (x, y) ∈ Δ → x ∈ Θ ∨ y ∈ Θ.
Since Δ is symmetric, the lattices KΔ(X) and KΔ−1(X) coincide. If A ⊂ X

then the polar πΔ(A) is called the disjoint complement of A in which case we also
denote πΔ(A) by A⊥. The relations x ∈ πΔ(A) and C ⊂ πΔ(A) are rewritten as
x ⊥ A and C ⊥ A. Note also that A⊥⊥ := (A⊥)⊥ = [A].

(3) Theorem. The inclusion ordered set KΔ(X) of all bands of a dis-
jointness Δ is a complete Boolean algebra. The Boolean complement of a band
coincides with its disjoint complement.

� As mentioned in (1), KΔ(X) is a complete lattice. The zero and unity of
this lattice are Θ and X . Applying elementary rules for operations on polars from
A.3.10 and using the distributive laws for the set-theoretic operations on arbitrary
bands K, L, and M , we may write the following chain of equalities:

(K ∨ L) ∧M = ((K ∨ L)⊥ ∪M⊥)⊥ = ((K⊥ ∩ L⊥) ∪M⊥)⊥

= ((K⊥ ∪M⊥) ∩ (L⊥ ∪M⊥))⊥ = [(K⊥ ∪M⊥)⊥ ∪ (L⊥ ∪M⊥)⊥]
= (K⊥⊥ ∩M⊥⊥) ∨ (L⊥⊥ ∩M⊥⊥) = (K ∧M) ∨ (L ∧M).

Hence, the lattice KΔ(X) is distributive. Obviously, K ∩K⊥ = Θ. On the other
hand,

K ∨K⊥ = [K ∪K⊥] = (K⊥ ∧K)⊥ = Θ⊥ = X ;

i.e., K⊥ is the complement of K in KΔ(X). �
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4.1.13. Consider a set X with disjointness Δ. Let j be an isomorphism of
KΔ(X) onto a complete Boolean algebra B. Introduce a mapping s : X → B by
the formula s(x) := j([x]) (x ∈ X). Assume that the least band is a singleton; i.e.,
Θ:= {θ} = [θ] for some θ ∈ X . Say that a B-metric d and the disjointness Δ on X
agree provided that

d(x, θ) = s(x) (x ∈ X).

Consider another mapping

δ : (x, y) �→ (s(x) ∧ s(y))∗ (x, y ∈ X).

Theorem. Assume that X is a set equipped with disjointness and B-metric d
that agree on X . Then the 3-tuple X := (X, δ, θ) is an algebraic B-system satisfying
the axioms of simple disjointness (a)–(d) of 4.1.12 (2).

� First of all, note that

d(x, y)∗ ∧ s(x) = d(x, y)∗ ∧ d(x, θ)
≤ d(x, y)∗ ∧ (d(x, y)∨ d(y, θ)) ≤ d(y, θ) = s(y).

Hence, s is a contractive mapping. Therefore, the mapping δ is contractive too, and
so X is an algebraic B-system with binary predicate δ and distinguished element θ.
By definition, obtain

|xδy|X = δ(x, y), |x �= θ|X = s(x) (x, y ∈ X).

Validate the axioms of disjointness for δ. Obviously, δ is symmetric. The set {θ} is
the least δ-band as is immediate from the following:

|x ∈ πδ(X) → x = θ|X =
( ∧

y∈X
δ(x, y)

)
⇒ s(x∗)

=
∨

y∈X
(s(x) ∧ s(y)) ∨ s(x)∗ = s(x)∗ ∨

∨

y∈X
s(y) = 1.

It is also obvious that

δ(x, x) = |xδx|X = s(x)∗ = |x = θ|X

for all x, y ∈ X . Therefore, condition (b) of the definition of disjointness is fulfilled.
Note further that

|u ∈ [x]|X = s(u) ⇒ s(x) (x, u ∈ X).
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Using this, proceed with the calculation

|[x] ∩ [y] = {θ}|X =
( ∧

u∈X
(s(u) ⇒ s(x)) ∧ (s(u) ⇒ s(y))

)

⇒ s(u)∗ =
∧

u∈X
s(u)∗ ∨ (s(x)

∧
s(y))∗ = δ(x, y).

Therefore, |[x]∩ [y] = {θ} → xδy|X = 1. Hence, δ is a disjointness. Furthermore, δ
is simple. Indeed, if x, y ∈ X then

|xδy → x = θ ∨ y = θ|X = 1

or, equivalently,
δ(x, y) ⇒ s(x)∗ ∨ s(y)∗ = 1,

which ensues from the definition of δ. �
Assume now that A := (A, ν) is an algebraic B-system and Δ is the same as

in 4.1.13. Assume further that all operations of A preserve disjointness, i.e., for
each function symbol f and all a ∈ A, x0, . . . , xn−1 ∈ A (n := a(f)), from xk ⊥ a
(k := 0, 1, . . . , n−1) it follows that fν(x0, . . . , xn−1) ⊥ a. If, moreover, the B-metric
and disjointness Δ agree then the 3-tuple (A, ν,Δ) is called an algebraic B-system
with disjointness.

4.1.14. Comments.

(1) While proving the Stone Theorem 1.2.4, we find that every Boolean
algebra B is isomorphic to the algebra of continuous functions C(St(B), 2), with
St(B) a Boolean space. It seems reasonable to substitute an arbitrary universal
algebra for the two-element field 2. This leads us to an important example of an
algebraic B-system, the Boolean power of a universal algebra which was introduced
by R. F. Arens and I. Kaplansky [5] (see also [51, 52, 202]).

(2) In the sequel we proceed along the lines of the present section,
discussing only the problems pertinent to Boolean valued representation of algebraic
B-systems and to relevant specification of ascending and descending. The logical-
algebraic aspects of algebraic B-systems are expounded in full detail elsewhere
[9, 54].

4.2. The Descent of an Algebraic System

In the present section we specify the technique of descent in the case of algebraic
systems and give some illuminating examples.
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4.2.1. Let σ := (F, P, a) be a signature. From the general properties of the
canonical embedding of the von Neumann universe V into a Boolean valued universe
V(B) (cf. 3.1.6 and 3.1.9) it follows that V(B) |= “a∧ is a mapping from F∧ ∪ P∧

into the set of positive integers ω∧.” Moreover, V(B) |= σ∧ = (F∧, P∧, a∧) and so

V(B) |= “σ∧ is a signature.”

If σ is a signature inside V(B) then σ↓ fails in general to be a signature in the
conventional sense of the word. Indeed, assume that σ = (F, P, a)B ∈ V(B) for
some F , P , and a in V(B) satisfying [[a : F ∪ P → ω∧]] = 1. Then, for every
u ∈ F ↓ ∪P ↓, we can find a countable partition of unity (bn)n∈ω ⊂ B such that
a↓(u) = mix(bnn∧).

Therefore, the descent of an algebraic system of arbitrary signature leads to
function and predicate symbols of “mixed arity.” It goes without saying that we can
elaborate a theory that admits operations and predicates of mixed arity since this
entails no principal difficulties. Another possible abstraction concerns algebraic
systems with operations and predicates of infinite arity. The present exposition
leaves these possibilities intact for better times.

4.2.2. Before giving general definitions, consider the descent of a very simple
but important algebraic system, the two-element Boolean algebra. Choose two
arbitrary elements, 0, 1 ∈ V(B), satisfying [[0 �= 1]] = 1B . We can for instance
assume that 0:= 0∧

B and 1:= 1∧
B .

The descent C of the two-element Boolean algebra {0, 1}B ∈ V(B) is a complete
Boolean algebra isomorphic to B. The formulas

[[χ(b) = 1]] = b, [[χ(b) = 0]] = b∗ (b ∈ B)

define an isomorphism χ : B → C.

� Since 0, 1 ∈ C; for every b ∈ B, the mixing c := mix(b1, b∗0) belongs to C;
moreover, [[c = 1]] ≥ b and [[c = 0]] ≥ b∗. On the other hand,

[[c = 1]] ∧ [[c = 0]] = [[c = 1 ∧ c = 0]] ≤ [[0 = 1]] = 0.

Hence, [[c = 1]] = b and [[c = 0]] = b∗. Putting χ(b) := c, obtain a mapping
χ : B → C. Obviously, χ is injective. Check that χ is surjective. Indeed, if c ∈ C
then, letting b := [[c = 1]], note that

[[χ(b) = 0]] = b∗ = [[c = 0]], [[χ(b) = 1]] = b,

and so
[[χ(b) = c]] ≥ [[χ(b) = 1]] ∧ [[c = 1]] = b.
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By analogy, [[χ(b) = c]] ≥ b∗ and so χ(b) = c.
Descend the Boolean operations of {0, 1}(B) to note that, for all x, y, z ∈ C,

the following hold:

z = x ∧ y ↔ [[z = 1 ↔ x = 1 ∧ y = 1]] = 1,

z = x ∨ y ↔ [[z = 0 ↔ x = 0 ∧ y = 0]] = 1,

x = y∗ ↔ [[x = 1 ↔ y = 0]] = 1.

These formulas make it easy to prove that C is a Boolean algebra while χ is
a Boolean isomorphism. For instance, show that χ preserves joins. Assume that
b1, b2 ∈ B, b0 := b1 ∨ b2, and cl := χ(bl) for l = 0, 1, 2. By definition,

[[cl = 1]] = bl, [[cl = 0]] = b∗l (l = 0, 1, 2),

and so
[[c0 = 0]] = b∗0 = b∗1 ∧ b∗2 = [[c1 = 0]] ∧ [[c2 = 0]]

or, which is the same, [[c0 = 0 ↔ c1 = 0 ∧ c2 = 0]] = 1. Therefore, c0 = c1 ∨ c2 or
χ(b0) = χ(b1)∨χ(b2). By analogy, show that meets and complements are preserved
too, so completing the proof. �

4.2.3. Consider now an algebraic system A of signature σ∧ inside V(B), and let
[[A = (A, ν)B]] = 1 for some A, ν ∈ V(B). The descent of A is the pair A↓ := (A↓, μ),
where μ is the function determined from the formulas:

μ : f �→ (ν↓(f))↓ (f ∈ F ),
μ : p �→ χ−1 ◦ (ν↓(p))↓ (p ∈ P ).

Here χ is the canonical isomorphism of the Boolean algebras B and the descent of
{0, 1}B (of 4.2.2).

In more detail, the modified descent ν↓ is a mapping with domain dom(ν↓) =
F ∪ P . Given p ∈ P , observe [[a(p)∧ = a∧(p∧)]] = 1, [[ν↓(p) = ν(p∧)]] = 1 and so

V(B) |= ν↓(p) : Aa(f)∧ → {0, 1}B.

It is now obvious that (ν↓(p))↓ : (A↓)a(f) → C := {0, 1}B↓ and we may put μ(p) :=
χ−1 ◦ (ν↓(p))↓.

Let ϕ(x0, . . . , xn−1) be a fixed formula of signature σ in n free variables. Write
down the formula Φ(x0, . . . , xn−1,A) in the language of set theory which formalizes
the proposition A |= ϕ(x0, . . . , xn−1). Recall that the formula A |= ϕ(x0, . . . , xn−1)
determines an n-ary predicate on A or, which is the same, a mapping from An
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to {0, 1}. By the maximum and transfer principles, there is a unique element
|ϕ|A ∈ V(B) such that

[[|ϕ|A : An
∧ → {0, 1}B]] = 1,

[[|ϕ|A(a↑) = 1]] = [[Φ(a(0), . . . , a(n− 1),A)]] = 1

for every a : n → A↓. Henceforth we write |ϕ|A (a0, . . . , an−1) instead of |ϕ|A(a↑),
where al := a(l). Therefore, the formula

V(B) |= “ϕ(a0, . . . , an−1) is satisfied in A”

holds if and only if [[Φ(a0, . . . , an−1,A)]] = 1.

4.2.4. Theorem. Let A be an algebraic system of signature σ∧ inside V(B).
Then A↓ is a universally complete algebraic B-system of signature σ. In this event,

χ ◦ |ϕ|A↓ = |ϕ|A↓

for each formula ϕ of signature σ.

� As we already know, A↓ is a universally complete B-set. Further, the mod-
ified descent ν′ of ν ∈ V(B) is a mapping with dom(ν′) = F ∪ P (see 3.5.5 (3)).
Furthermore,

[[ν′(f) : Aa(f)∧ → A]] = 1 (f ∈ F ),

[[ν′(p) : Aa(p)∧ → {0, 1}]] = 1 (p ∈ P ).

By 3.2.6 (10) and 3.2.12, the above formulas show that ν′(f)↓ and ν′(p)↓ are contrac-
tive mappings from (A↓)a(f) to A↓ and from (A↓)a(p) to C := {0, 1}B↓, respectively.
Hence, (A↓, μ) is a universally complete algebraic B-system.

Assume now that ϕ is a formula of signature σ and show that

[[|ϕ|A (a0, . . . , an−1) = 1]] = |ϕ|A↓(a0, . . . , an−1)

for all a0, . . . , an−1 ∈ A↓. Using 3.2.12 and the definition of χ in 4.2.2, obtain

|ϕ|A↓(a0, . . . , an−1) = [[|ϕ|A↓ (a0, . . . , an−1) = 1]]
= χ−1(|ϕ|A↓ (a0, . . . , an−1)),

which implies the claim.
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Induct on the length of ϕ. At first, assume that ϕ is atomic. If q ∈ P and
a(q) = 0 then [[ν(q∧) = 0 ∨ ν(q∧) = 1]] = 1, so that ν′(q) ∈ C and μ(q) =
χ−1(ν′(q)) ∈ B. By 4.2.2, μ(q) = [[χ ◦ μ(q) = 1]] = [[1 = ν(q∧)]]. Now consider
the terms t0, . . . , tm−1 of signature σ which assume the values b0, . . . , bm−1 when
the variables x0, . . . , xn−1 take the values a0, . . . , an−1. Assume that p ∈ P and
a(p) = m. If ϕ(x0, . . . , xn−1) := p(t0, . . . , tm−1) then

[[|ϕ|A (a0, . . . , an−1) = 1]] = [[ν↓(p)(b0, . . . , bm−1) = 1]]
= [[χ ◦ pμ(b0, . . . , bm−1) = 1]] = pμ(b0, . . . , bm−1).

Whereas if ϕ(x0, . . . , xn−1) := (t0(x0, . . . , xn−1) = t1(x0, . . . , xn−1)) then

[[|ϕ|A(a0, . . . , an−1) = 1]] = [[b0 = b1]] = d(b0, b1)∗.

Suppose now that ϕ1 and ϕ2 are ϕ ∧ ψ and (∀x0)ϕ while the claim is already
demonstrated for ϕ and ψ. In this event,

[[|ϕ1|A(a0, . . . , an−1) = 1]]
= [[|ϕ|A(a0, . . . , an−1) = 1 ∧ |ψ|A(a0, . . . , an−1) = 1]]

= [[|ϕ|A(a0, . . . , an−1) = 1]] ∧ [[|ψ|A(a0, . . . , an−1) = 1]]
= |ϕ1|A↓(a0, . . . , an−1);

[[|ϕ2|A(a0, . . . , an−1) = 1]] = [[(∀x0 ∈ A)|ϕ|A(a0, . . . , an−1) = 1]]

=
∧

a0∈A↓
[[|ϕ|A(a0, . . . , an−1) = 1]] = |ϕ2|A↓(a0, . . . , an−1).

The cases of the remaining propositional connectives are settled in much the same
way. �

4.2.5. Theorem. Let A and B be algebraic systems of the same signature
σ∧ inside V(B). Put A′ := A↓ and B′ := B↓. If h is a homomorphism (strong
homomorphism) from A to B inside V(B) then h′ := h↓ is a homomorphism (strong
homomorphism) of the B-systems A′ and B′.
Conversely, if h′ : A′ → B′ is a homomorphism (strong homomorphism) of

algebraic B-systems then h := h′ ↑ is a homomorphism (strong homomorphism)
from A to B inside V(B).

� We confine exposition to substantiating 4.1.10 (3) of the definition of homo-
morphism; i.e., we will consider only the case of a nonnullary function symbol, since
reasoning for the other symbols of signature σ proceeds by analogy.

Let A := (A, ν)B for some A, ν ∈ V(B), and A′ = (A′, ν′). Assume that
μ ∈ V(B) and μ′ ∈ V are the interpretations of B and B′, respectively. Consider
a function symbol f of arity n = a(f) and elements a0, . . . , an−1 ∈ A′.
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As before, the record t = g(a0, . . . , an−1) for g ∈ V(B) denotes the formula
t = g(a) where a ∈ V(B) is a member of V(B) such that [[a : n∧ → A]] = 1 and
a↓(l) = al (l < n). If h ∈ V(B) is a homomorphism from A to B inside V(B) then

[[h(ν(f∧)(a0, . . . , an−1)) = μ(f∧)(h(a0), . . . , h(an−1))]] = 1.

Moreover, by the definition of descents (see 3.5.5 (3))

[[ν(f∧) = ν↓(f)]] = [[μ(f∧) = μ↓(f)]] = 1;
[[ν↓(f)(a0, . . . , an−1) = ν′(f)(a0, . . . , an−1)]] = 1;
[[μ↓(f)(b0, . . . , bn−1) = μ′(f)(b0, . . . , bn−1)]] = 1;

[[h(t) = h′(t)]] = 1 (t ∈ A′).

Combining the above formulas and recalling that V(B) is a separated universe, we
obtain

h′(ν′(f)(a0, . . . , an−1)) = μ′(f)(h(a0), . . . , h(an−1)).

Assume conversely that the last equality holds. By replacing h′ in it with h :=
h′↑, we arrive at a true formula inside V(B). Substituting in the latter consecutively
ν′(f) for ν↓(f), ν↓(f) for ν(f∧), μ′(f) for μ↓(f), and μ↓(f) for μ(f∧), come to
another true formula inside V(B). It is this new formula that has the required
property inside V(B). �
Corollary. In the notation of Theorem 4.2.5 [[h is an isomorphism between

the algebraic systems A and B]] = 1 if and only if h′ is an isomorphism between
the algebraic B-systems A′ and B′.

4.2.6. As noted in 4.1.3, a universally complete algebraic B-system A := (A, ν)
can be viewed as a conventional (i.e., {0, 1}-valued) algebraic system A′ := (A, ν′) of
the same signature provided that the B-valued predicates pν are replaced with the
sets ν′(p) := {(x0, . . . , xn−1) ∈ An : pν(x) = 1}. This does not mean however that
if A is a B-model of an arbitrary formula ϕ of signature σ(A) then A′ is a {0, 1}-
valued model; i.e., a model in the conventional sense for the same formula ϕ. On
the other hand, this phenomenon may take place for some formulas.

We elaborate the details in the section to follow. Now, we confine exposition
to some concrete examples of algebraic B-systems obtainable by descent.

If a formula ϕ is the conjunction of the axioms of a group (a ring, a module,
etc.) and the algebraic system A is a two-valued model for ϕ then we adopt the usual
practice of calling A a group (a ring, a module, etc.). Whereas if A is a B-model
for ϕ then we say that A is a B-group (a B-ring, a B-module, etc.).

Consider an arbitrary group G. An endomorphism π : G → G is a projection
or idempotent whenever π ◦ π = π. Say that B is a Boolean algebra of projections
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in G if B consists of mutually commuting projections in G and presents a Boolean
algebra with zero 0B := 0 and unity 1B := IG under the operations:

π1 ∨ π2 := π1 + π2 − π1 ◦ π2,

π1 ∧ π2 := π1 ◦ π2, π
∗ := 1 − π (π1, π2, π ∈ B).

The order on B is defined as follows: π1 ≤ π2 if and only if π1(G) ⊂ π2(G). We
call the algebraic system (G,B), as well as the underlying group G, a group with
projections or a BAP-group. Given a BAP-group we refer to B as the distinguished
Boolean algebra of projections of (G,B) or G. A BAP-group (G,B) is universally
complete if B is a complete Boolean algebra and, to each family (xξ) ⊂ G and each
partition of unity (πξ) ⊂ B, there is a unique element x ∈ G such that πξxξ = πξx
for all ξ.

Let (G,B) and (G′,B′) be BAP-groups. A group homomorphism h : G→ G′

is a BAP-homomorphism if there is a Boolean isomorphism j : B → B′ such that
h ◦ π = j(π) ◦ h for all π ∈ B.

Assume that R is a ring whose additive group has a distinguished Boolean alge-
bra of projections B. If, moreover, each projection π ∈ B is a ring homomorphism
then (R,B) is a BAP-ring or a ring with projections.

Given x ∈ R, call the projection [x] :=
∧{π ∈ B : πx = x} the carrier of x. It

is obvious that if the carriers of [x] and [y] are disjoint (as elements of the Boolean
algebra B) then x · y = 0, but the converse proposition fails in general. If x · y = 0
then x and y are orthogonal. An element x of R is regular if x is orthogonal only to
the zero of R. A zero divisor is each element orthogonal to some nonzero element.

A ring is semiprime, if it has no nonzero nilpotent ideals. Recall that an ideal
J ⊂ K is nilpotent if Jn := J · . . . · J︸ ︷︷ ︸

n times

= {0} for some natural n.

Let S be a multiplicative subset of a unital ring K; i.e., 1 ∈ S and xy ∈ S for
all x, y ∈ S. Furnish the set K × S with an equivalence, by letting

(x, s) ∼ (x′, s′) ↔ (∃ t ∈ S)(t(sx′ − s′x) = 0).

Let S−1K := (K × S)/∼, and (x, s) �→ x/s be the canonical mapping. The set
S−1K becomes a ring under the operations

(x/s) + (y/t) := (tx+ sy)/st, (x/s)(y/t) := (xy)/(st).

The mapping x �→ x/1 (x ∈ K) is a homomorphism from K to S−1K called
canonical. The ring S−1K is the ring of fractions or ring of quotients of K by S.
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4.2.7. Theorem. Let G be a group inside V(B) and G := G↓. Then G is
a BAP-group with distinguished complete Boolean algebra of projections B and

there is an isomorphism j : B onto−→ B such that

b ≤ [[x = 0]] ↔ j(b)x = 0 (x ∈ G, b ∈ B).

Moreover, (G,B) is a universally complete BAP-group and the following hold:
(1) V(B) |= “G is commutative” ↔ “G is commutative”;
(2) V(B) |= “G is torsion-free” ↔ “G is torsion-free.”

� By Theorem 4.2.4, G↓ is a universally complete algebraic B-system; namely,
a B-group. Denote the descent of + by the same symbol. Show that G is a group.
We confine demonstration to the existence of inverses.

Put ϕ := (∀x)(∃! y)(x+ y = 0). Then, by 4.1.8,

|ϕ|G :=
∧

x∈G

∨

y∈G
|x+ y = 0|G = 1.

Since G is a universally complete B-set, to every x ∈ G there is some y in G such
that

1 = |x+ y = 0|G = d(x+ y, 0)∗ = [[x+ y = 0]],

and so x + y = 0. If x + z = 0 for some z ∈ G then |x + z = 0|G = 1. Recalling
that G is a B-group, note

1 = |x+ y = 0 ∧ x+ z = 0|G ⇒ |y = z|G.

Hence, |y = z|G = [[z = y]] = 1 and z = y.
The congruences of G are exactly the equivalences determined by its various

normal subgroups. Therefore, by Theorem 4.1.6, there is an isomorphism j from B
onto some complete Boolean algebra B′ of normal subgroups of G such that

b ≤ [[x = 0]] ↔ x ∈ j(b∗) (b ∈ B, x ∈ G).

If b ∈ B then f(b) ∩ f(b∗) = 0. On the other hand, given x ∈ G, we may arrange
x1 := mix{bx, b∗0} and x2 := mix{b∗x, b0}. Since b∗ ≤ [[x1 = 0]] and b ≤ [[x2 = 0]];
therefore, x1 ∈ j(b), x2 ∈ j(b∗). Moreover, [[x = x1 + x2]] ≥ [[x1 = x]] ∧ [[x2 = 0]] ≥ b
and [[x = x1 + x2]] ≥ [[x1 = 0]] ∧ [[x2 = x]] ≥ b∗, which gives x = x1 + x2.

Therefore, each subgroup of the type j(b) is a summand of G to which there
corresponds the projection πb on j(b) along the complementary subgroup j(b∗). To
be more exact, πb is determined from the conditions: πbx = x for all x ∈ j(b)
and πbx = 0 for all x ∈ j(b∗). Let the same letter j stand for the isomorphism
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b �→ πb (b ∈ B), and put B := j(B). Obviously, B and j obey the required
conditions. The universal completeness of G amounts to the same property of the
underlying B-set. Indeed, x = mix(bξxξ) if and only if j(bξ)x = j(bξ)xξ for all ξ.

Assume now that G is torsion-free. Then

[[(∃x ∈ G )(∃n ∈ ω∧)(nx = 0) ∧ (0 �= x) ∧ (0 < n)]] = 1.

Hence, there are an element 0 �= x ∈ G and a partition of unity (bn)n∈ω in B such
that bn ≤ [[n∧x = 0]] for all n ∈ ω. Note that [[n∧x = nx]] = 1 and so bn ≤ [[x �= 0]],
bn ≤ [[nx = 0]], and j(bn)(nx) = nj(bn)x = 0.

The projection j(bn) is nonzero for at least one 0 �= n ∈ ω, which implies that
G is not torsion-free. Conversely, if nx = 0 for some 0 �= x ∈ G and n ∈ ω then
[[n∧x = 0]] = [[nx = 0]] = 1 and [[(∃n ∈ ω∧)(nx = 0) ∧ (n > 0)]] = 1; i.e., [[G is not
torsion-free ]] = 1.

The claim about commutativity is obvious. �

4.2.8. Theorem. Let K be a ring inside V(B) and K := K ↓. Then K is
a universally complete BAP-ring with distinguished Boolean algebra of projections
B and there is an isomorphism j : B onto−→ B such that

b ≤ [[x = 0]] ↔ j(b)x = 0 (x ∈ K, b ∈ B).

Moreover, the following hold:

(1) V(B) |= “K is commutative (semiprime)” ↔ “K is commutative
(semiprime)”;

(2) V(B) |= “K has no zero divisors” ↔ “every two elements of K are
orthogonal only if their carriers are disjoint”;

(3) V(B) |=“S is a multiplicative subset of K ” ↔ “S := S↓ is a mul-
tiplicative subset in K”; moreover, (S −1K )↓ � S−1K (with �
standing for a ring isomorphism);

(4) V(B) |= “K is a field” ↔ “K is semiprime, the orthogonality of
the elements of K is equivalent to the disjointness of their carriers,
and every regular element in K is invertible”;

(5) V(B) |= “R is the radical of the unital ring K ” ↔ “R↓ is the
radical of the unital ring K”; in other words, if K has unity then
R(K )↓= R(K);

(6) V(B) |= “(K ,D) is a BAP-ring”↔ “the mapping π �→ π↓ (π ∈ D↓)
is an isomorphism of D↓ onto some Boolean algebra of projections
D of K, in which case B is a regular subalgebra in D and (K,D)
is a BAP-ring.”
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� By Theorem 4.2.7, K is a universally complete BAP-group, and there is an
isomorphism j from B onto a complete Boolean algebra B of additive projections
obeying the necessary condition. Furnish K with multiplication by appealing to
the general definition of 4.2.3: Given x, y ∈ K, note that [[x, y ∈ K ]] = 1; and so to
x and y in K there corresponds their product z in V(B) which satisfies [[z ∈ K ]] =
[[z = x · y]] = 1. We let z be the product of x and y in K. Therefore,

z = x · y ↔ [[z = x · y]] = 1 (x, y, z ∈ K).

Using Theorem 4.2.4, we easily see that K becomes a ring. Take an arbitrary
element b in B and show that the projection j(b) is a ring homomorphism. Indeed,
the multiplication of K, as the descent of an operation on K , is extensional and so
it preserves mixing. Therefore, by the definition of j(b) (see 4.2.7), given x, y ∈ K,
we find

j(b)xy = mix{bxy, b∗0}
= mix{bx, b∗0} · mix{by, b∗0} = j(b)x · j(b)y.

We now turn to demonstrating (1)–(6).
(1) The proof proceeds by analogy with 4.2.7 (1).
(2) The proposition V(B) |= “K has no zero divisors” is equivalent to the fact

that b := [[xy = 0]] = [[x = 0]] ∨ [[y = 0]] for all x and y in K ↓. If the last formula is
fulfilled and xy = 0 then b = 1. Hence, letting e := [[x = 0]] and c := [[y = 0]], note
that e∗ ∧ c∗ = 0. Moreover, j(e∗)x = x and j(c∗)y = y. Therefore, [x] ≤ j(e∗) and
[y] ≤ j(c∗). Clearly, the carriers [x] and [y] are disjoint. If, however, [x] ◦ [y] = 0
then, as was mentioned in 4.2.6, x · y = 0. Conversely, assume that the equality
xy = 0 is equivalent to the fact that the carriers [x] and [y] are disjoint. Then for
b := [[xy = 0]] the equalities 0 = j(b)xy = (j(b)x) · (j(b)y) yield that the projections
π := [j(b)x] and ρ := [f(b)y] are disjoint. Note that j(b) ◦π∗x = 0 and j(b) ◦ρ∗y = 0
and so

[[x = 0]] ∨ [[y = 0]] ≥ (b ∧ f−1(π∗)) ∨ (b ∧ j−1(ρ∗)) = b.

(3) The claim about multiplicativity is evident. Prove that the descent of a ring
of fractions is a ring of fractions. Note first that (S ×K )↓= S ×K. Consider an
equivalence relation P ∈ V(B) such that, for x, x′ ∈ K and s, s′ ∈ S, we have

V(B) |= (x, s)P(x′, s′) ↔ (∃ t ∈ S )(t(sx′ − s′x) = 0).

If P := P↓ then P is an equivalence relation in K × S, in which case

(x, s)P (x′, s′) ↔ (∃ t ∈ S) (t(sx′ − s′x) = 0).
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Then the descent of the factor set (S ×K )/P is bijective with the set (KS×K)/P .
Finally, for x, y ∈ K and s, t ∈ S, the formulas

(x/s) + (y/t) = (tx+ sy)/st, (x/s)(y/t) = (xy/st)

hold if and only if they are satisfied inside V(B). All we have to do now is to
compare this with the definition of ring of fractions.

(4) Assume that [[K is a field ]] = 1. In this case K is semiprime and xy = 0
yields that [x] ◦ [y] = 0 for all x and y in K (see (1) and (2)). Given a regular
element x ∈ K, note that j(b)xy = 0 → j(b)y = 0 for all b ∈ B and y ∈ K.
However, [[xy = 0]] ≤ [[y = 0]]; i.e., [[x �= 0]] = 1. Consequently, there is an element
u ∈ K such that [[xu = ux = 1]] = 1. Hence, xu = ux = 1; i.e., x is invertible in K.

Conversely, assume that K is semiprime, every regular element in K is in-
vertible, and the orthogonality of two elements in K is equivalent to the disjoint-
ness of their carriers. Then V(B) |= “K is a commutative ring.” Hence, [[ K is
a field ]] = [[(∀x)(x ∈ K ∧ x �= 0 → (x is invertible)) ]] =

∧{[[(∃ z)(z = x−1)]] :
x ∈ K ∧ [[x �= 0]] = 1}. Therefore, it suffices to show that if [[x �= 0]] = 1, then
[[ x is invertible ]] = 1 for all x ∈ K. Assume that [[x �= 0]] = 1 and xy = 0 for
some y ∈ K. Then, putting π := [x] and ρ := [y], note π ◦ ρ = 0. On the other
hand, j(b)x = 0 implies b ≤ [[x = 0]] = [[x �= 0]]∗ = 1∗ = 0, and so ρ := j(1) = IK .
Therefore, π ≤ ρ∗ = 0 or y = 0. Hence, x is an invertible element of K. Whence it
is immediate that [[x is invertible in K ]] = 1.

(5) An element x belongs to the radical of a ring if and only if for each y the
element 1− yx is left-invertible. Now, we have to note that 1− yx is left-invertible
in K if and only if [[1 − yx is left-invertible in K ]] = 1.

(6) If [[ (K ,D) is a BAP-ring ]] = 1 and π ∈ D↓ then, by 4.2.7, π↓ : K → K
is a homomorphism. On the other hand, [[π ◦ π = π]] = 1. Hence, (π↓) ◦ (π↓) =
(π ◦ π)↓= π↓; i.e., π↓ is a projection.

The fact that D is a Boolean algebra will be established in 4.2.9. Therefore,
(K,D) is a BAP-ring. By definition, B = {π↓ : π ∈ {0D , 1D}B ↓} (see 4.2.7).
Hence, B ⊂ D. The converse implication is established by analogy. �

4.2.9. Theorem. Let D be a complete Boolean algebra inside V(B) and
D := D↓. Then D is a complete Boolean algebra and there exists a complete
monomorphism ı : B → D such that

b ≤ [[x ≤ y]] ↔ ı(b)x ≤ ı(b)y

for all x, y ∈ D and b ∈ B.

� By virtue of 4.2.4, D is a universally complete algebraic B-system of sig-
nature (∨,∧, ∗, 0, 1). The fact that D is a Boolean algebra also follows from 4.2.4.
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We temporarily denote the Boolean operations in D by ∨̃, ∧̃ and check only dis-
tributivity to give an example of reasoning.

Take the terms t1(x, y, z) := (x ∧ y) ∨ z and t2(x, y, z) := (x ∨ z) ∧ (x ∨ y).
Consider the formula ψ := (∀x)(∀ y)(∀ z)ϕ(x, y, z) where ϕ(x, y, z) := (t1(x, y, z) =
t2(x, y, z)). Using 4.2.4, note that

1 = [[|ψ|D = 1]] = |ψ|D =
∧

a,b,c∈D
|ϕ|D(a, b, c),

and so |ϕ|D(a, b, c) = 1 for all a, b, c ∈ D. Furthermore,

1 = |ϕ|D(a, b, c) = d(t1(a, b, c), t2(a, b, c))∗

= [[t1(a, b, c) = t2(a, b, c)]] = [[(a∧̃b)∨̃c = (a∨̃c)∧̃(b∨̃c)]].

Since V(B) is separated, we thus obtain (a∧̃b)∨̃c = (a∨̃c)∧̃(b∨̃c). In much the same
way we demonstrate the remaining axioms of Boolean algebras. Therefore, D is
a Boolean algebra.

The completeness of D is not expressible by a bounded formula. Consequently,
the above approach is inapplicable, and so we proceed otherwise.

Let ≤∈V(B) stand for the conventional order relation on D ; i.e.,

V(B) |= (∀x ∈ D)(∀ y ∈ D)(x ≤ y ↔ x ∧ y = x).

Put ≤̃ := (≤)↓. Given x, y ∈ D, observe then that x≤̃y if and only if x∧̃y =
x. Consider the correspondence Φ := (≤̃, D,D). It is obvious that Φ is fully
contractive. Recall that if A ⊂ D then πΦ(A) (π−1

Φ (A)) is the set of all upper
(lower) bounds of A (with respect to the order ≤̃). Therefore,

sup(A) = πΦ(A) ∩ π−1
Φ (πΦ(A))

provided that sup(A) exists. If Ψ:= (≤,D ,D)B then Ψ is a correspondence inside
V(B) and Φ = Ψ↓. Since D is complete, there is an element a ∈ D such that
[[a = sup(A)]] = 1 or [[πΨ(A) ∩ π−1

Ψ (πΨ(A)) = a]] = 1. Employing the rule for
descending polars (cf. 3.2.13 (2)), carry out the simple calculations

a = (π−1
Ψ (πΨ(A↑)) ∩ πΨ(A↑))↓

= π−1
Ψ (πΨ(A↑↓)) ∩ πΦ(A↑↓) = sup(mix(A)) = sup(A).

Therefore, a = sup(A), and so D is complete.
Let λ ∈ V(B) be the identical embedding of the algebra {0D , 1D}B in D inside

V(B). Put ı1 = λ↓ and ı := ı1 ◦ ı2, where ı2 is an isomorphism B on {0D , 1D}B↓.
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In this case ı is a monomorphism. The monomorphism ı is complete. Indeed, if
A ⊂ B then ı(πΦ′(A)) ⊂ πΦ(ı(A)), where Φ′ := ı−1 ◦ Φ ◦ ı. Furthermore, using the
obvious relation

V(B) |= (∀x, y ∈ D)(∀ c ∈ {0D , 1D})
(λ(c)x = λ(c)y ↔ (c = 0D) ∨ (c = 1D ∧ x = y))

and given x, y ∈ D and b ∈ B, note that

[[ı(b)x = ı(b)y]] = b∗ ∨ (b ∧ [[x = y]]).

Hence,
ı(b)x = ı(b)y ↔ b ≤ [[x = y]],

and so
d(x, y)∗ = [[x = y]] =

∨
{b ∈ B : ı(b)x = ı(b)y}.

It is now evident that if ϕ(x, y) := x ≤ y then

|ϕ|D(x, y) =
∨

{b ∈ B : ı(b)x ≤ ı(b)y},
[[|ϕ|D(x, y) = 1]] = [[x ≤ y]],

which yields the equivalence in question. �

4.2.10. We now list a few corollaries for BAP-rings and Boolean algebras
whose proofs are in fact implicit in 4.2.5, 4.2.7, 4.2.8, and 4.3.2.

Given BAP-rings K1 and K2, assume that j1 and j2 are isomorphisms of B to
the distinguished Boolean algebras of K1 and K2 respectively.

A homomorphism h : K1 → K2 is B-homogeneous if h ◦ j1(b) = j2(b) ◦ h
(b ∈ B). We also say in this event that K1 is a BAP-ring with distinguished algebra
B and h commutes with the members of B.

(1) Theorem. Let K1 and K2 be BAP-rings with distinguished alge-
bra D inside V(B). Put D := D↓ and Kl := Kl↓ for l := 1, 2. Then K1 and K2 are
BAP-rings with distinguished algebra D.
Moreover, if h is a homomorphism from K1 to K2 commuting with the mem-

bers of D inside V(B), then h↓ is a homomorphism from K1 to K2 commuting
with the members of D. If h is an isomorphism between K1 and K2 then h↓ is an
isomorphism between K1 and K2.
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(2) Theorem. Let D1 and D2 be complete Boolean algebras inside
V(B). Put Dk := Dk↓ and let ık : B → Dk symbolize the canonical monomorphism
for k = 1, 2 (cf. 4.2.9). If h ∈ V(B) is an isomorphism of D1 onto D2 inside V(B)

then there is an isomorphism H of D1 onto D2 such that the following diagram
commutes:

B

ı1 ı2

H
D1 D2

−−−−−−−−−→

Conversely, if H : D1 → D2 is an isomorphism of D1 onto D2 making the above
diagram commutative then D1 and D2 are isomorphic Boolean algebras insideV(B).

4.3. Immersion of Algebraic B-Systems

In the present section the immersion functor of Section 3.4 is extended to the
category of algebraic B-systems.

4.3.1. Let A := (A, ν) be an algebraic B-system of signature σ := (F, P, a).
Consider a mapping ν′ : F ∪ P → V(B) acting by the rule

ν′ : s �→ ν(s)∼ := F∼(ν(s)) (s ∈ F ∪ P ),

where F∼ is the descent functor (cf. 3.4.12–3.4.16). In accordance with the general
definition of immersion for correspondences (cf. 3.4.13), to each f ∈ F , a(f) = n,
there corresponds the mapping λ′(f) : (A∼)n

∧ → A∼ inside V(B) defined by the
formula

[[ν′(f)(ıA(x0), . . . , ıA(xn−1)) = ıA ◦ ν(f)(x0, . . . , xn−1)]] = 1,

where ıA is the canonical embedding of A to A′ := A∼↓ (see 3.5.4). Analogously,
for p ∈ P , a(p) = m, the element ν′(p) ∈ V(B) is the mapping from (A∼)m

∧
to

{0, 1}B ∈ V(B) acting by the rule

[[ν′(p)(ıA(x0), . . . , ıA(xm−1)) = ıB ◦ ν(p)(x0, . . . , xm−1)]] = 1.

The modified ascent μ := (ν′)↑ of ν′ : F ∪ P → im(ν′) is clearly an interpretation
inside V(B).

Given an algebraic B-system A, call the pair (A∼, μ) or the element (A∼, μ)B

∈ V(B) the Boolean valued representation of A and denote it by A∼.
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4.3.2. Theorem. For each algebraic B-system A of signature σ the Boolean
valued representation A∼ of A is an algebraic system of signature σ∧ inside V(B).
Moreover,

|ϕ|A(a0, . . . , an−1) = [[|ϕ|A∼
(ıA(a0), . . . , ıA(an−1)) = 1]]

for every formula ϕ of signature σ with n free variables and all a0, . . . , an−1 ∈ |A|.
� Recall that, considering an arbitrary set U as a B-set, we imply the discrete

B-metric on U . Therefore, σ∼ = σ∧ (see 3.4.12). By 3.5.5,

V(B) |= “μ is a function with dom(μ) = F∧ ∪ P∧.”

Let A stand for |A|. By Theorem 3.4.14, V(B) |= “μ(f∧) is a mapping from
(A∼)a(f)∧ to A∼” for all f ∈ F , and V(B) |= “μ(p) is a mapping from (A∼)a(p)∧

to {0, 1}” for every p ∈ P . Hence, V(B) |= “A∼ is an algebraic system of signature
σ∧.”

Consider a formula ϕ of signature σ. By Theorem 3.5.5 (3), granted f ∈ F and
p ∈ P , observe

ıA ◦ fν(a0, . . . , an−1) = μ(f∧)↓(ıA(a0), . . . , ıA(an−1)) (al ∈ A),
ıB ◦ pν(a0, . . . , an−1) = μ(p∧)↓(ıA(a0), . . . , ıA(an−1)) (al ∈ A).

Using the above equalities and inducting on the length of ϕ, deduce

|ϕ|A(a0, . . . , an−1) = |ϕ|A′
(ıA(a0), . . . , ıA(an−1)) (a0, . . . , an−1 ∈ A),

with A′ := A∼↓. To complete the proof, appeal to Theorem 4.2.4. �
4.3.3. Theorem. Let A := (A, ν) be an algebraic B-system of signature σ.

Then there are A and μ ∈ V(B) such that the following are fulfilled:
(1) V(B) |= “(A , μ) is an algebraic system of signature σ∧”;
(2) If A′ := (A′, ν′) is the descent of (A , μ) then A′ is a universally

complete algebraic B-system of signature σ;
(3) There is an isomorphism ı from A to A′ such that A′ = mix(ı(A));
(4) For every formula ϕ of signature σ in n free variables, the equalities

hold

|ϕ|A(a0, . . . , an−1) = |ϕ|A′
(ı(a0), . . . , ı(an−1))

= χ−1 ◦ (|ϕ|A∼
)↓(ı(a0), . . . , ı(an−1))

for all a0, . . . , an−1 ∈ A, where χ is the same as in 4.2.2.

� Put A := A∼ and ı := ıA. Define μ as in 4.3.1. Now, all claims ensue from
3.5.5 (3), 4.2.4, and 4.3.2. �
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4.3.4. Theorem. Consider algebraic B-systems A and B of the same signa-
ture.

(1) Let h be a contractive mapping from |A| to |B|. Then h is a ho-
momorphism (strong homomorphism, or isomorphism) if and only
if V(B) |= “h∼ is a homomorphism (strong homomorphism, or iso-
morphism) from A∼ to B∼.” A homomorphism h∼ is surjective
inside V(B) if and only if |B| = mix(h(|A|)).

(2) Assume that g ∈ V(B) and V(B) |= “g : A∼ → B∼ is a homomor-
phism of algebraic B-systems.” If B is a universally complete alge-
braic B-system then there is a unique homomorphism h : A → B
such that g = h∼.

� (1) If h′ := h∼↓, A′ := A∼↓, B′ := B∼↓, ı := ı|A|, and j := ı|B|; then
h′ ◦ ı = j ◦ h (cf. 3.5.4 (3)).

Show now that h is a homomorphism if and only if h′ is a homomorphism. We
agree to confine exposition to demonstrating 4.1.10 (3) with n = 1. In other words,
we will demonstrate that h and h′ preserve or fail to preserve unary operations
simultaneously.

To this end, let ν, λ, μ(ν), and μ(λ) be the interpretations of the systems
A, B, A∼, and B∼. If h is a homomorphism then h ◦ fν = fλ ◦ h. Moreover,
ı ◦ fν = (fμ(ν)↓) ◦ ı and j ◦ fλ = (fμ(λ)↓) ◦ j. Hence,

h′ ◦ (fμ(ν)↓) ◦ ı = j ◦ h ◦ fν = j ◦ fλ ◦ h = (fμ(λ)↓) ◦ h′ ◦ ı.

Using the equality |A∼↓| = mix(ı(|A|)), obtain h′ ◦ (fμ(ν)↓) = (fμ(λ)↓) ◦ h′. Con-
versely, if the last equality holds then, reasoning in the opposite direction, we find
h ◦ fν = fλ ◦ h. The case of an arbitrary operation, as well as that of an arbitrary
predicate, is more cumbersome but causes no principal difficulties. Consequently,
h is a homomorphism, a strong homomorphism, or an isomorphism between A and
B if and only if the mapping h′ from A′ to B′ has the corresponding property.
Therefore, all claims follow from 4.2.5 and 4.3.3.

(2) If A is a universally complete algebraic system then the claims ensue from
3.5.8 (4). The general case is settled on appealing to 3.5.8 (2) at the beginning of
the proof. The sought homomorphism has the shape h := j−1 ◦ (g↓) ◦ ı. �

4.3.5. Note some corollaries to Theorems 4.3.3 and 4.3.4.
(1) Theorem. If A is an algebraic system of finite signature σ then

V(B) |= “A∧ is an algebraic system of signature σ∧.” Moreover,

A |= ϕ(a0, . . . , an−1) ↔ [[A∧ |= ϕ(a∧
0 , . . . , a

∧
n−1)]] = 1

for a formula ϕ of signature σ in n free variables and all a0, . . . , an−1 ∈ A.
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� To demonstrate, it suffices to note that in case A := (A, f0, . . . , fk−1,
p0, . . . , pm−1), the proposition A |= ϕ(a0, . . . , an−1) is as a bounded set-theoretic
formula ψ(A∧, f∧

0 , . . . , f∧
n , p∧

0 , . . . , p∧
m−1, a∧

0 , . . . , a
∧
n−1). Reference to 2.2.9 com-

pletes the proof. �

(2) Theorem. To each algebraic B-system A there are a universally com-
plete algebraic B-system A′ of signature σ(A) and an isomorphism ı from A to A′

such that
(a) |A′| = mix(ı(|A|));
(b) if h is a homomorphism from A to a universally complete algebraic

B-system B then there is a unique homomorphism h′ : A′ → B
such that h′ ◦ ı = h;

(c) if A′′ is a universally complete algebraic B-system, and a homo-
morphism ı′ : A → A′′ obeys (a) with A′ substituted for A′′; then
there is a unique isomorphism h from A′ onto A′′ such that h◦ı = ı′.

� Let (A , μ) be the Boolean valued representation of A. Then the descent
A′ := (A , μ)↓ of A obeys all requirements. Indeed, by 4.3.3 (3, 4) the canonical
embedding ı := ı|A| is an isomorphism satisfying (a). If h and B are the same as
in (b) then, by Theorem 4.3.4, g := h∼↓ is a homomorphism from A′ to B′ := B∼↓.
Since B is universally complete, the canonical mapping j := ı|B| is an isomorphism
“onto.” Obviously, h′ := j−1 ◦ g is a sought homomorphism. It stands to reason to
remark that if a ∈ |A′| and a = mix(bξı(aξ)) then h′(a) = mix(bξh ◦ ı(aξ)). The
claim (c) results now from (a) and Theorem 4.3.4. �

Each pair (A′, ı), where A′ is a universally complete algebraic B-system and
ı is an isomorphism from A to A′ obeying (a) of Theorem (2), is naturally called
a universal completion of A. Consequently, Theorem (2) yields the following:

(3) Each algebraic B-system has a universal completion unique up to iso-
morphism.

Take a complete homomorphism π from B to a complete Boolean algebra C.
Let A := (A, f0, . . . , fk−1, p0, . . . , pm−1) be an algebraic system of finite signature
inside V(B). Assign

π∗(A) := (π∗(A), π∗(f0), . . . , π∗(pm−1))C , π∗(A) ∈ V(C),

where π∗ : V(B) → V(C) is the mapping associated with π (cf. Section 2.2).
As usual, these facts enable us to speak about the universal completion of an

algebraic B-system (cf. 1.1.6 (7)).

(4)Theorem. The element π∗(A) is an algebraic system of finite signature
σ(A) inside V(C). The mapping a �→ π∗(a) (a ∈ A↓) is a homomorphism from A↓
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to π∗(A)↓. For each formula ϕ of signature σ(A) with n free variables and for all
a0, . . . , an−1 ∈ |A↓|, the following holds

A↓ |= ϕ(a0, . . . , an−1) → π∗(A)↓ |= ϕ(π∗(a0), . . . , π∗(an−1)).

In particular, if B is an algebraic B-system of finite signature and A = B∼ then,
for a0, . . . , an−1 ∈ |B|,

B |= ϕ(a0, . . . , an−1) → π∗(A)↓ |= ϕ(π∗ ◦ ı(a0), . . . , π∗ ◦ ı(an−1)),

with ı := ı|B|. If π is a monomorphism then π∗ is a monomorphism from A↓ to
π∗(A)↓ and the converse implication is also true in the above formulas. If π is an
isomorphism of algebraic systems then π∗ is an isomorphism of algebraic B-systems.

� To prove, combine 2.2.4, 2.2.5, 4.1.10, and 4.2.5, on using the reasoning
of (1). �

(5) If A is an algebraic system inside V(B) then [[ A↓∼ � A ]] = 1.

(6) Theorem. The Boolean valued representation (A , ν, δ) of an alge-
braic B-system with disjointness (A, ν,Δ) is an algebraic system with simple dis-
jointness inside V(B). If (A′, ν′) := (A , μ)↓ and Δ′ := {(x, y) ∈ A′ × A′ : δ↓(x, y) =
1} then (A′, ν′,Δ′) is a universally complete algebraic B-system with disjointness
and for all x, y ∈ A the following hold:

x ⊥ y ↔ ıx ⊥ ıy ↔ [[ıx = θ ∨ ıy = θ]] = 1,

with ı = ıA : A→ A′ the canonical embedding.
� It suffices to use 4.1.13 and 4.3.3. �
4.3.6. We now address the important problem that was mentioned in 4.2.6.
Take an algebraic B-system A of signature σ. Given a formula ϕ of signature

σ and elements a0, . . . , an−1 ∈ |A|, we will temporarily employ the record A |=B

ϕ(a0, . . . , an−1) in place of A |= ϕ(a0, . . . , an−1) since the latter is less informative.
Starting with the B-system A, arrange the two-valued algebraic system A by

purification (cf. 4.1.3). We may speak about satisfaction of ϕ(a0, . . . , an−1) both in
A and A since |A| = |A| and σ(A) = σ. This gives rise to a natural question of inter-
relation between the statements A |=B ϕ(a0, . . . , an−1) and A |= ϕ(a0, . . . , an−1).

Theorems 4.2.7 and 4.2.8 provide examples of the formulas ϕ for which A |= ϕ
results from A |=B ϕ. On the other hand, we can easily exhibit an example that
violates this implication. Indeed, assume that B := P([0, 1]) and A := R

[0,1] is the
set of all real functions on the interval [0, 1] with the B-metric

d(f, g) := {t ∈ [0, 1] : f(t) �= g(t)} (f, g ∈ A).
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Equip A with the B-valued binary predicate [[ · ≤ · ]] as follows:

[[f ≤ g]] := {t ∈ [0, 1] : f(t) ≤ g(t)} (f, g ∈ A).

Then A := (A, [[ · ≤ · ]]) is an algebraic B-system and A |=B ϕ, where ϕ :=
(∀x)(∀ y)(x ≤ y ∨ y ≤ x). Moreover, A := (A,≤) is obviously the purification
of A if we assign

f ≤ g ↔ (∀ t ∈ [0, 1])f(t) ≤ g(t).

Evidently, A |= ¬ϕ. Denote by T B(A) and T (A) the sets of all true formulas in
the systems A and A, with the constants ranging over |A|. Clearly, none of these
two sets is in general a subset of the other.

We may expect therefore that for a certain class Φ of formulas of signature σ
there exist only relations of the type T B(A) ∩ Φ(?)T (A) ∩ Φ. Exact formulations
require some syntactic analysis of the texts under study.

4.3.7. Here we select particular classes of formulas.
(1) Consider the classes of generic and strictly generic formulas. These

are defined by recursion on the length of a formula. The rules are as follows:
(a) Every atomic formula is strictly generic.
(b) If ϕ and ψ are strictly generic formulas then ϕ ∧ ψ, (∃x)ϕ, and

(∀x)ϕ are also strictly generic.
(c) A strictly generic formula is generic.
(d) If ϕ and ψ are generic formulas then ϕ ∧ ψ, (∃x)ϕ, and (∀x)ϕ

are also generic.
(e) If ϕ is a strictly generic formula then ¬ϕ is a generic formula.
(f) If ϕ is a strictly generic formula and ψ is a generic formula then

ϕ→ ψ is a generic formula.
(2) A basis Horn formula is a disjunction θ1 ∧ . . . ∧ θn where at most

one of the formulas θk is a basis formula and the remaining formulas are negations
of atomic formulas. A formula is a Horn formula if it is built from basis Horn
formulas with the connectives ∧, ∃, and ∀.

(3) Each generic formula is equivalent in predicate calculus to a Horn
formula and conversely.

4.3.8. Examples.

(1) Let ϕ be a formula of signature {≤} with a sole predicate symbol. If
ϕ is the conjunction of the axioms of a lattice (cf. 1.1.1) then ϕ is a generic formula.
It is impossible to express distributivity as a generic formula in the signature {≤}.
If, however, we take the signature σ := {∧,∨}, where ∧ and ∨ are binary function
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symbols; then the formula x∧(y∨z) = (x∧y)∨(x∧z) is atomic and, hence, strictly
generic. Moreover, the property of being a distributive lattice is a strictly generic
formula of signature {∧,∨}.

(2) Consider formulas ϕ and ψ of signature {∧,∨, ∗, 0, 1}. Let ϕ be the
conjunction of the axioms of a Boolean algebra (see 1.1.2), while ψ := “there exists
at least one atom,” i.e.,

ψ := (∃x)(∀ y)(x �= 0 ∧ y = y → x = y ∨ y = 0).

Then ϕ is a strictly generic formula, whereas ψ is not generic.
(3) Let σ := {+, 0}, where + is a binary function symbol and 0 is a con-

stant. If ϕ is the conjunction of the axioms of a group (associativity of the group
operation, the axiom of zero, and existence of an inverse); then ϕ is a strictly generic
formula of signature σ.

(4) Let σ := {+, · , 0, 1}, where + and · are binary function symbols,
and 0 and 1 are constants. Let ϕ be the conjunction of the axioms of a ring and ψ,
the conjunction of the axioms of an integral domain; i.e., ψ := ϕ ∧ θ, with

θ := (∀x)(∀ y)(x · y = 0 → x = 0 ∨ y = 0).

Then ϕ is a strictly generic formula, while ψ is a generic formula.

4.3.9. We continue our syntactic analysis with the following
(1) Jech Theorem. Let A be a universally complete algebraic B-

system. Assume further that ϕ is a formula of signature σ(A) and a0, . . . , an−1 ∈
|A|. Then the following hold:

(a) A |=B ϕ(a0, . . . , an−1) ↔ A |= ϕ(a0, . . . , an−1)

in case ϕ is strictly generic;

(b) A |=B ϕ(a0, . . . , an−1) → A |= ϕ(a0, . . . , an−1)

in case ϕ is generic.

� The proof proceeds by induction on the length of ϕ. By Theorem 4.3.3, we
may assume that A = A ↓ where A is an algebraic system of signature σ∧ inside
V(B).

We start with the case of a strictly generic ϕ. If ϕ is an atomic formula then (a)
is immediate from the definition of purification. Indeed, given a predicate symbol
p ∈ σ(A), a(p) = n, note that

pν(a0, . . . , an−1) = 1 ↔ (a0, . . . , an−1) ∈ ν(p)
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for all a0, . . . , an−1 ∈ |A|.
Regarding the conjunction ϕ := ψ ∧ θ, use the induction hypothesis to obtain

[[ψ ∧ θ]]A = 1 ↔ |ψ|A = 1 ∧ |θ|A = 1 ↔ A |= ψ ∧ A |= θ ↔ A |= ψ ∧ θ.

The case of a universal quantifier ϕ := (∀x)ψ is settled by analogy:

|(∀x)ϕ|A = 1 ↔ (∀ a ∈ |A|)ψ(a)|A = 1

↔ (∀ a ∈ |A|)A |= ψ(a) ↔ A |= (∀x)ψ.

Consider the case of an existential quantifier ϕ := (∃x)ψ. By the maximum
principle, there is an element z ∈ V(B) such that

[[A |= (∃x)ψ]] = [[z ∈ |A | ∧ A |= ψ(z)]].

By Theorem 4.3.3, the above formula may be rewritten as

[[z ∈ |A |]] ∧ |ψ(z)|A = |(∃x)ψ|A.

This, together with the induction hypothesis, implies that the following equivalences
hold:

|(∃x)ψ|A = 1 ↔ (∃ z ∈ |A|)|ψ(z)|A = 1

↔ (∃ z ∈ |A|)(A |= ψ(z) ↔ A |= (∃x)ψ),

since |A| = |A |↓ by the definition of descent in 4.2.3. Therefore, the induction step
is legitimate for a strictly generic ϕ, which settles (a).

Turning to (b), note that the cases of ∧, ∃, and ∀ are settled in much the same
way as above. We are left with considering negation and implication, cf. 4.1.7 (e, f).

Let ϕ := ¬ψ, where ψ is a strictly generic formula. If |ϕ|A = 1 then |ψ|A = 0
and from (a) it follows that ψ cannot be true in A. However, A |= ϕ.

Finally, consider a formula of the type ϕ := θ → ψ, where θ is a strictly generic
formula and ψ is a generic formula. Assume that |θ → ψ|A = 1. If A |= θ then from
(a) it follows that |θ|A = 1 and so |ψ|A = 1. By the induction hypothesis, A |= ψ.
Therefore, A |= θ → ψ. �

Note that the Jech Theorem makes it possible to replace the proofs of some
fragments of Theorems 4.2.7–4.2.9 with syntactic analysis of the corresponding
sentences. It goes without saying that we may proceed further in the abstract.
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(2) Corollary. Assume that A and A stand for the Boolean valued
representation and the purification of a universally complete algebraic B-system.
For every Horn sentence ϕ the following holds:

[[A |= ϕ]] = 1 → A |= ϕ.

4.3.10. Let Φ be some set of formulas of signature σ. Introduce the category
AS(B)(Φ) as follows:

Ob AS(B)(Φ)

:= {A ∈ V(B) : [[ A is an algebraic system of signature σ∧ and A |= Φ ]] = 1};

AS(B)(A,B)

:= {h ∈ V(B) : [[ h is a homomorphism from A to B ]] = 1};
Com(f, g) = h↔ [[h = g ◦ f ]] = 1.

The above assignments determine a category in view of the transfer and maxi-
mum principles, Theorem 4.3.2, and other properties of the embedding functor.
As before, by F∼ and F ↓ we denote the mappings of immersion and descent
which act in the categories of algebraic systems: F∼: B-AS(Φ) → AS(B)(Φ),
F ↓ : AS(B)(Φ) → B-AS(Φ).

Theorem. The following hold:
(1) The mappingF ↓ is a covariant functor from the category AS(B)(Φ)

to the category B-CAS(B)(Φ);
(2) The mappingF∼ is a covariant functor from the category B-AS(Φ)

(as well as from B-CAS(Φ)) to the category AS(B)(Φ);
(3) The functors F ↓ and F∼ carry out equivalence between the cate-

gories AS(B)(Φ) and B-CAS(Φ).

4.3.11. We now state two important theorems by R. Solovay and S. Tennen-
baum.

(1) Theorem. Assume that D is a complete Boolean algebra and j :
B → D is a complete monomorphism. Then there are a complete Boolean algebra
D insideV(B) and an isomorphism H from D onto D′ := D↓ such that the following
diagram commutes:

B

j ı′

H
D D′−−−−−−−−−→

where ı′ is the canonical monomorphism from B to D′.
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(2) Theorem. Let (K,D) be a BAP-ring and let j : B → D be a com-
plete homomorphism. Then there are a BAP-ring (K ,D) inside V(B) and an
isomorphism h of K to K ′ := K ↓ such that for each b ∈ B the following diagram
commutes:

K
h−−−−→ K ′

j(b)

⏐⏐�
⏐⏐�ı′(b)

K −−−−→
h

K ′

where ı′ is the canonical monomorphism from B to D′.
Analogous results hold also for BAP-groups.

4.3.12. Comments.

(1) Assume that C and D are Boolean algebras. Assume further that
P and Q are the Stone spaces of C and D. Define the tensor product C ⊗D of C
and D as the Boolean algebra of clopen subsets of the product P ×Q (cf. 1.1.6 (6)
and 1.2.6 (8)). Agree to denote by C⊗̂D the completion of C ⊗D (cf. 1.1.6 (7) and
1.2.6 (9)).

If D is a Boolean algebra and D ∈ V(B) is such that V(B) |= “D is the
completion of D∧,” then D↓ and B⊗̂D are isomorphic Boolean algebras (cf. [227]).

(2) The Solovay–Tennenbaum Theorems 4.3.11 (1, 2) give grounds to
iterating the construction of a Boolean valued model.

Assume that D ∈ V(B) and V(B) |= “D is a complete Boolean algebra.”
Proceeding along the lines of Section 2.1 inside V(B), we may construct the following
V(B)-classes: the Boolean valued universe (V(B))(D), the corresponding Boolean
truth values [[ · = · ]]D and [[ · ∈ · ]]D , and the canonical embedding ( · )∧ of the
universal class UB in (V(B))D . Put D := D↓, W(D) := (V(B))(D)↓, [[ · = · ]]D :=
([[ · = · ]]D)↓, [[ · ∈ · ]]D := ([[ · ∈ · ]]D)↓, j := ( · )∧↓. Let ı : B → D be the canonical
monomorphism, with ı∗ : V(B) → V(D) standing for the corresponding injection
(cf. Section 2.2). Then there is a unique bijection h : V(D) → W(D) such that
[[x = y]]D = [[h(x) = h(y)]]D and [[x ∈ y]]D = [[h(x) ∈ h(y)]]D for all x, y ∈ V(B).

In this event the following diagram commutes:

V(B)

ı∗ j

h
V(D) W(D)−−−−−−−−−−→

For more details, see [227].
As regards some related Boolean topics in the theory of universal algebras,

cf. [202].
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(3) Further iterations of the above construction lead to a transfinite se-
quence of Boolean valued extensions. In this way there appears an efficient method,
the iterated forcing, which has been used to establish the relative consistency of the
Suslin hypothesis with ZFC (cf. [227]).

4.4. Ordered Algebraic Systems

A complete Boolean algebra of congruences necessary for Boolean valued rep-
resentation of an algebraic system is often generated by an order relation. This
peculiarity brings about the possibility of Boolean valued representation for or-
dered algebraic systems. Supplementary information may be found in [13, 14, 56,
111].

4.4.1. An ordered group is an algebraic system (G,+, 0,≤) satisfying the fol-
lowing conditions:

(1) (G,+, 0) is a group;

(2) (G,≤) is a poset;

(3) The group and order structures of G are compatible, which means
that group translations are isotonic mappings; i.e., G is a model for

(∀x)(∀ y)(∀ a)(∀ b)(x ≤ y ↔ a+ x+ b ≤ a+ y + b).

(Notice that the plus sign for the group operation does not imply commutativity.)
Say that G is a totally ordered group in the case when in addition to (1)–(3)

the following condition is also fulfilled:

(4) (G,≤) is a totally ordered set; i.e., the formula (∀x)(∀ y) (x ≤
y ∨ y ≤ x) holds in G.

An element x in G is positive if x ≥ 0. The set of all positive elements is called
the positive cone of G and denoted by G+. A subset K of G is the positive cone of
some order on G provided that the following conditions are met:

(a) K ∩ (−K) = {0};

(b) K +K = K;

(c) x+K = K + x (x ∈ G).
In this case K and the order that K induces on G are related as follows:

x ≤ y ↔ y − x ∈ K ↔ −x+ y ∈ K.

A group G is totally ordered if and only if
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(d) G = G+ ∪ (−G+).
The positive cone G+ of G reproduces G or is reproducing provided that G =
G+ −G+. In this event G is sometimes called a directed group. A homomorphism
h : G→ G′, acting from an ordered group G to another ordered group G′, is positive
if h(x) ≥ 0 for every 0 ≤ x ∈ G.

An ordered group G is integrably-closed if, for all x, y ∈ G, the inequalities
nx ≤ y, n ∈ ω, imply that x ≤ 0. An ordered group G is Archimedean if, for all x,
y ∈ G, the inequalities nx ≤ y, ±n ∈ ω, imply that x = 0.

4.4.2. A lattice ordered group is an ordered group G in which every nonempty
finite set {x0, . . . , xn−1} ⊂ G has the join x0 ∨ . . .∨ xn−1 := sup{x0, . . . , xn−1} and
meet x0 ∧ . . .∧ xn−1 := inf {x0, . . . , xn−1}. Given an element x of a lattice ordered
group G, define the elements |x| := x∨(−x), x+ := x∨0, and x− := (−x)+ = −x∧0
which are called the absolute value or module of x, the positive part of x, and the
negative part of x.

In every lattice ordered group the following hold:
(1) x = x+ − x−, |x| = x+ + x−, x+ ∧ x− = 0;
(2) (x+ y)+ ≤ x+ + y+, (x+ y)− ≤ x− + y−;
(3) (nx)+ = nx+, (nx)− = nx−, |nx| = n|x| (n ∈ ω);
(4) |x+ y| ≤ |x| + |y| + |x|;
(5) |x+ y − x| = x+ |y| − x; (x+ y − x)− = x+ y− − x;
(6) u ∧ x = 0, u ∧ y = 0 → u ∧ (x+ y) = 0.

A lattice ordered group G is commutative if and only if (4) becomes |x+y| ≤ |x|+|y|
for all x, y ∈ G. Recall that a commutative group is also referred to as Abelian or
abelian.

Listing the properties of a lattice ordered group G, note that G is a torsion-free
group and a distributive lattice. Moreover, the following identities hold:

a+ (
∨
xα) + b =

∨
(a+ xα + b),

a+ (
∧
xα) + b =

∧
(a+ xα + b).

A subgroup G0 of a lattice ordered group G is an o-ideal, or an order ideal or
a convex subgroup if, for all x and y in G, it follows from |x| ≤ |y| and y ∈ G0 that
x ∈ G0. If, moreover, G0 is a normal subgroup then G0 is called an l-ideal.

4.4.3. From now on we assume G to be a lattice ordered group and equip G
with the disjointness ⊥ by the rule:

⊥ := {(x, y) ∈ G×G : |x| ∧ |y| = 0}.
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There is no doubt that ⊥ obeys all axioms of disjointness of 4.1.12 (2). The complete
Boolean algebra K⊥(G) of ⊥-bands of G is called the base of G and denoted by
B(G). Assume that a band K ∈ B(G) is a summand of G. The corresponding
band projection πK is a positive endomorphism in G satisfying πKx ≤ x for all
0 ≤ x ∈ G. If each band of K is a summand then the set Pr(G) of all band
projections πK (K ∈ B(G)) is a complete Boolean algebra isomorphic to B(G). In
this event, say that G has the band projection property.

A lattice ordered group G with the band projection property is universally
complete or orthogonally complete provided that G is universally complete with
respect to the Boolean algebra Pr(G). The universal completion of a lattice ordered
group G is a universally complete lattice ordered group G′ together with an order
isomorphism ı : G → G′ such that (a) G′ = mix(ı(G)), where mix is calculated
with respect to the Boolean algebra Pr(G), and (b) to each 0 < x′ ∈ G′ there is
0 < x ∈ G satisfying ı(x) ≤ x′

Recall that [x] stands for the least band containing x. The properties, listed
in 4.4.2, allow us to deduce that

(1) The following hold:

[x+ y] = [x ∨ y] = [x] ∨ [y] (x, y ∈ G+);
[x] = [|x|] = [x+] ∨ [x−] (x ∈ G);

[x+ y − x] = x+ [y] − x (x, y ∈ G);
x ⊥ y → x+ y = y + x (x, y ∈ G).

(2) Each band, a member of B(G), is an order ideal of G.

� Indeed, if x and y belong to A⊥ for some A ⊂ G then, using the second
identity of (1) and 4.4.2, we may write

{x+ y}⊥ ⊃ {x}⊥ ∧ {y}⊥ ∧ {x}⊥ ⊃ A.

Hence, x+ y ∈ {x+ y}⊥⊥ ⊂ A⊥. Therefore, A⊥ is a subgroup of G. On the other
hand, if y ∈ A⊥ and |x| ≤ |y| then {x}⊥ ⊃ {y}⊥ ⊃ A and so x ∈ {x}⊥⊥ ⊂ A⊥,
which completes the proof. �

4.4.4. If G is not commutative then the bands of G are not necessarily normal
subgroups; i.e., they are not l-ideals in general. Therefore, the following definition
is timely: A band K ∈ B(G) is invariant if x + K − x ⊂ K for all x ∈ G. By
4.4.3 (2), this amounts to the property that K is an l-ideal. Let Bı(G) stand for
the set of all invariant bands of G.

(1) Bı(G) is a regular subalgebra of B(G).
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� It is obvious that the intersection of invariant bands is an invariant band too.
Therefore, it suffices to show that the disjoint complement of an invariant band is
invariant too. To this end, take K ∈ Bı(G) and x ∈ K⊥. Granted y ∈ K and
a ∈ G, observe 0 = (a+|y|−a)∧|x| = −a+(a+|y|−a)∧|x|+a = |y|∧(−a+|x|+a).
Hence, −a+ |x| + a ∈ K⊥, which means that K⊥ is an invariant band. �

(2) The following are equivalent for a lattice ordered group G:
(a) Every band is invariant; i.e., B(G) = Bı(G);
(b) For all x, y ∈ G,

{x}⊥ = y + {x}⊥ − y;

(c) If x in G is disjoint from all its conjugates y+x−y then x = 0.
� The condition (b) is an obvious consequence of (a). Assume that (b) holds

and x ⊥ (y + x− y) for some x and y in G. Then

x ∈ {y + x− y}⊥ = y + {x}⊥ − y = {x}⊥,
which immediately yields x = 0.

Assume finally that (c) is fulfilled and a band K has the form A⊥ for some
A ⊂ G. Take x ∈ K, y ∈ G, and a ∈ A and put z := (y + |x| − y) ∧ |a|.
Obviously, 0 ≤ z ∧ (−y + z + y) ≤ |x| ∧ |a| = 0, so that z = 0. This means that
|y + x− y| = y + |x| − y ∈ A⊥ = K; i.e., y +K − y ⊂ K. �

Furnish G with the symmetric relation defined as follows:

� := {(x, y) ∈ G×G : (∀ a)(∀ b)(a+ |x| − a) ∧ (b+ |y| − b) = 0}.
If, for some x and y in G, it is false that x � y; then there are a0 and b0 in G such
that u0 := (a0 + |x|−a0)∧ (b0 + |y|−b0) �= 0. Obviously, u0 ∈ {a0 + |x|−a0}��. On
the other hand, {a0 + |x| − a0}�� = {x}��. Therefore, u0 ∈ {x}��. Analogously,
u0 ∈ {y}��. Note also that the least �-band is {0}, and � ∩IG⊂ ⊥ ∩IG = {(0, 0)}.
Hence, � is a disjointness on G (cf. 4.1.12 (2)).

(3) The set of all �-bands coincides with the complete Boolean algebra
of invariant ⊥-components: R�(G) = Bı(G).

4.4.5. Assume given a group G with invariant base; i.e., all bands of G are
invariant. This means exactly that �=⊥. Clearly, each commutative lattice ordered
group has invariant base. In this event, G may be transformed into an algebraic
B-system.

Let j be an isomorphism of a complete Boolean algebra B on the (invariant)
base B(G) of G. Assign

p(x) := j−1({x−}�) (x ∈ G).

The mapping p : G→ B has a few important properties.
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(1) For all x and y in G the following hold:
(a) 0 ≤ x→ p(x) = 1;
(b) p(x) ∧ p(−x) = j−1({x}⊥);
(c) p(x) ∧ p(y) ≤ p(x+ y);
(d) p(x) = p(y + x− y);
(e) p(x) ∨ p(−x) = 1.

� Claim (a) is evident. To prove (b), note that {x}⊥ = {x+}⊥∧{x−}⊥ =
{x−}⊥∧{(−x)−}⊥ since x+ and x− are disjoint. It is now clear that j−1({x−}⊥)
= j−1({x−}⊥)∧j−1({(−x)−}⊥) = p(x)∧p(−x). Analogous arguments will lead to
(c) if we begin with 4.4.2 (2, 6). Claim (d) ensues from 4.4.2 (5) since every band is
invariant.

Considering again that x+ and x− are disjoint, we may write

({x+}⊥ ∨ {x−}⊥)⊥ = {x+}⊥⊥ ∧ {x−}⊥⊥ = {0}.
Whence we infer that {x+}⊥ ∨ {x−}⊥ = G, which amounts to (e). �

Introduce the two mappings σ, d : G×G→ B by the rules:

σ(x, y) := p(y − x), d(x, y) := j−1({x− y}�) (x, y ∈ G).

From 4.4.5 (1) (a–e) we immediate derive
(2) The mapping σ possesses the following properties:

(a) σ(x, x) = 0 (reflexivity);
(b) σ(x, y) ∧ σ(y, z) ≤ σ(x, z) (transitivity);
(c) σ(x, y) = σ(a+ x− b, a+ y − b) (invariance);
(d) σ(x, y) ∧ σ(y, x) = d(x, y)∗ (antisymmetry).

By virtue of (d), d(x, y) = σ(x, y)∗∨σ(y, x)∗. Hence, d is a B-metric on G invariant
under left and right translations, while σ is a B-predicate. Finally, it is obvious that
d(x, 0) = j−1({x}⊥⊥), i.e., the B-metric d agrees with the disjointness ⊥ (cf. 4.1.13).

4.4.6.Theorem. LetG be a lattice ordered group with invariant base. Denote
by G the algebraic system that results from furnishing G with the B-predicate σ
and the corresponding B-metric d. Then G is an algebraic B-system of signature
(+, 0,≤) which satisfies the axioms of a totally ordered group.

� As was mentioned above, the B-metric d is translation-invariant. Using this,
deduce

d(x+ y, u+ v) = d(x,−y + u+ v) ≤ d(x, u) ∨ d(u,−y + u+ v),
d(u,−y + u+ v) = d(u+ y − u, v) ≤ d(y, v) ∨ d(u+ y − u, y),

d(u+ y − u, y) = d(u+ y, u+ y) = 0.
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These formulas show that d(x+ y, u+ v) ≤ d(x, u)∨ d(y, v); i.e., addition is a con-
traction. Using 4.4.5 (1) (c) and the definition of d, obtain

d(x, y)∗ ∧ p(x) = p(x) ∧ p(x− y) ∧ p(y − x) ≤ p(y)

for all x, y ∈ G. Whence it follows easily that σ(x, y)∧d(x, u)∗∧d(y, v)∗ ≤ σ(u, v),
which implies that σ is a contraction too. Hence, (G,+, 0, σ) is an algebraic B-
system of signature (+, 0,≤). By implication, we interpret the symbol ≤ as follows:
given x, y ∈ G, we let |x ≤ y|G := σ(x, y).

The unary B-predicate p on G is obviously the interpretation of the positivity
property; i.e., |0 ≤ x|G = p(x) for all x ∈ G. The fact that G is a B-model for the
axioms of a totally ordered group is just a paraphrase of the properties 4.4.5 (1) (a–
e). For instance, we demonstrate that the order σ is total and compatible with the
group structure.

Let ϕ be the axiom of total order 4.4.1 (4) (d). Using 4.1.8, write

|ϕ|G =
∧

x,y∈G
|x ≤ y ∨ y ≤ x|G =

∧

x,y∈G
σ(x, y) ∨ σ(y, x).

Applying 4.4.5 (1) (e), note that

σ(x, y) ∨ σ(y, x) = p(y − x) ∨ p(x− y) = 1,

and so |ϕ|G = 1.
If ϕ is now the closed formula 4.4.1 (4) (c); then, developing the Boolean truth

values for quantifiers according to 4.1.8, obtain

|ϕ|G =
∧

x,y,a,b∈G
|x ≤ y → a+ x+ b ≤ a+ y + b|G.

Since σ interprets ≤, infer

|x ≤ y → a+ x+ b ≤ a+ y + b|G = σ(x, y) ⇒ σ(a+ x+ b, a+ y + b).

On the other hand, by 4.4.5 (1) (d),

σ(a+ x+ b, a+ y + b) = p(a+ y + b− (a+ x+ b))
= p(a+ (y − x) − a) = p(y − x) = σ(x, y).

Therefore, 1 = σ(x, y) ⇒ σ(a+ x+ b, a+ y + b) and so |ϕ|G = 1. �
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4.4.7. We now turn to lattice ordered rings.
An algebraic system (A,+, · , 0,≤) is an ordered ring if the following conditions

are satisfied:
(1) (K,+, 0,≤) is a commutative ordered group;
(2) (K,+, · , 0) is a ring (not necessarily commutative or associative);
(3) multiplication and order are compatible on K so that 0 ≤ x, y ∈ K

yields 0 ≤ xy; i.e., K is a model for the formula

(∀x)(∀ y)(x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0).

In other words, an ordered ring is a ring whose additive group is ordered and,
moreover, the ring homomorphisms corresponding to positive elements are positive
endomorphisms of the ordered additive group.

We often ascribe to a ring the properties of the underlying ordered additive
group. For instance, speaking about a lattice ordered ring, a totally ordered ring,
the positive cone of a ring, etc., we bear in mind the properties of the ordered group
of the ring under study, avoiding further specification. The order on a ring is called
a ring order provided that it obeys all conditions from (1) to (3).

An ordered ring K is commutative if, alongside with (1)–(3), the following
axiom holds:

(4) (∀x)(∀ y)(xy = yx).

A subset P of a ring K is the positive cone of some ring order if and only if

P ∩ (−P ) = {0}; P + P ⊂ P ; P · P ⊂ P.

Every lattice ordered ring K, having the properties indicated in 4.4.2, obeys
the conditions: (xy)+ ≤ x+y+ + x−y−; (xy)− ≤ x+y− + x−y+; |xy| ≤ |x| · |y|.

4.4.8. Each lattice ordered ring K may be transformed into an ordered B-
group, in which case K may fail to become a B-ring in general. The point is
that the ring multiplication on K is not necessarily a contraction with respect to
the relevant B-metric. In order to exclude this undesirable phenomenon, we need
a closer compatibility between multiplication and order.

A lattice ordered ring K is an f -ring provided that K satisfies the following
condition: if x, y ∈ K and x ∧ y = 0 then (ax) ∧ y = 0 and (xa) ∧ y = 0 for
all 0 ≤ a ∈ K. Note that in every f -ring the following condition is fulfilled:
|x| ∧ |y| = 0 → xy = 0.

If an f -ring K has no nilpotent elements then the converse statement is also
true, which is expressed customarily as K is a faithful f -ring. In particular, an
f -ring without zero divisors is totally ordered. Also, every totally ordered ring
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without nilpotent elements contains no zero divisors. Among the other properties
of an f -ring, we mention a few:

(x ∨ y)z = (xz) ∨ (yz); z(x ∨ y) = (zx) ∨ (zy);
(x ∧ y)z = (xz) ∧ (yz); z(x ∧ y) = (zx) ∧ (zy);

|xy| = |x| · |y|.

For every lattice ordered ring K the following are equivalent:

(1) K is an f -ring;

(2) {xy}⊥⊥ ≤ {x}⊥⊥ ∧ {y}⊥⊥;

(3) d(xy, uv) ≤ d(x, u) ∨ d(y, v).

� Assume that K is an f -ring. If |x| ∧ |u| = 0 or |y| ∧ |u| = 0 then |xy| ∧ |u| =
(|x| · |y|) ∧ |u| = 0. Therefore, u ∈ {x}⊥ or u ∈ {y}⊥ yields u ∈ {x · y}⊥, i.e.,
{x}⊥ ∪ {y}⊥ ⊂ {xy}⊥. Hence, {xy}⊥⊥ ≤ ({x}⊥ ∪ {y}⊥)⊥ = {x}⊥⊥ ∧ {y}⊥⊥.

Assuming (2), note that |xy−uv| = |x(y−v)+(x−u)v| ≤ |x|·|y−v|+|x−u|·|v|.
Hence,

{xy − uv}⊥⊥ ≤ {y − v}⊥⊥ ∨ {x− u}⊥⊥.

This amounts to (3) by the definition of the B-metric d in 4.4.5.
Assume finally that (x, y) �→ xy is a contraction. Put u := 0, and v := y := a in

(3) and rewrite the result as {x·a}⊥⊥ ⊂ {x}⊥⊥∨{0}⊥⊥ = {x}⊥⊥ or {xa}⊥ ⊃ {x}⊥.
By analogy, show that (ax) ∧ y = 0, implying that K is an f -ring. �

4.4.9. Theorem. Each (associative, commutative) f -ring K with B-predicate
σ and B-metric d is a B-ring, i.e., an algebraic B-system that is a B-model for the
axioms of an (associative, commutative) totally ordered ring. Moreover, an element
0 �= e ∈ K is a ring unity of this B-ring if and only if e is an order and ring unity
of K.

� As shown in 4.4.6, K, furnished with σ and d, is a totally ordered B-group.
Enrich this group with the contractive mapping (x, y) �→ xy and prove that the
so-obtained algebraic B-system is an f -ring. Associativity, commutativity, and
distributivity in the B-system K follow trivially from the corresponding properties
of the ring K. Check the compatibility condition 4.4.7 (3). To this end, note that,
by 4.4.7 and 4.4.8 (2),

{(xy)−}⊥ ≥ {x+y−}⊥ ∧ {x−y+}⊥ ≥ {x−}⊥ ∧ {y−}⊥.

Recalling the definition of p, conclude that p(x) ∧ p(y) ≤ p(xy). We are left with
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calculating the Boolean truth values by using 4.1.8:

|(∀x)(∀ y)(x ≥ 0 ∧ y ≥ 0 → xy ≥ 0)|K
=

∧

x,y∈K
|x ≥ 0|K ∧ |y ≥ 0|K ⇒ |xy ≥ 0|K

=
∧

x,y∈K
p(x) ∧ p(y) ⇒ p(x · y) = 1.

Given e ∈ K, note further that the equality 1 = |θ < e|K = |e ≥ 0 ∧ e �= 0|K
implies p(e) ∧ d(e, 0) = 1; i.e., e ≥ 0, and e is an order unit. On the other hand,

|(∀x)(xe = ex = x)|K =
∧

x∈K
d(x, ex)∗ ∧ d(x, xe)∗.

Hence, e is the unity of the B-ring K if and only if e is an order unit in K. In
other words, for all x ∈ K, the equalities d(xe, x) = d(ex, x) = 0 hold, meaning
that x = ex = xe. This completes the proof. �

4.4.10. Theorem. Let G be an ordered group inside V(B), and put G := G↓.
Then G is a universally complete ordered group with respect to the Boolean algebra
of projections B, and there is an isomorphism j from B to B such that

b ≤ [[0 ≤ x]] ↔ 0 ≤ j(b)x (x ∈ G, b ∈ B).

In this event the following are equivalent:
(1) V(B) |= “G is directed (integrally-closed, or Archimedean)” ↔ “G

is directed (integrally-closed, or Archimedean)”;
(2) V(B) |= “G is lattice ordered (Dedekind complete)”↔ “G is lattice

ordered (Dedekind complete)”;
(3) V(B) |= “G is an ordered ring” ↔ “G is a universally complete

ordered BAP-ring with distinguished Boolean algebra B”;
(4) V(B) |= “G is a totally ordered skew field” ↔ “G is a universally

complete f -ring without nilpotent elements, B is the algebra of
band projections of G, and every regular element in G is invertible.”

� The fact is established in 4.2.7 that G is a universally complete BAP-group
with distinguished Boolean algebra B. Denote by G + the positive cone of G inside
V(B). Then

[[G + + G + ⊂ G +]] = [[G + ∩ −G + = {0}]]
= [[(∀x ∈ G )(x+ G + = G + + x)]] = 1.



186 Chapter 4

Assign G+ := G +↓ and note that, by the rules for the descending intersection and
image, G+ + G+ ⊂ G+, G+ ∩ −G+ = {0}. So, given x ∈ G, note [[x + G + =
G + + x]] = 1; i.e., x+ G + = G + + x. But then

(x+G+) = (x+ G +)↓= (G + + x)↓= G+ + x.

Therefore, G is an ordered group with positive cone G+. The existence of the
isomorphism j : B → B is proven in 4.2.7. Moreover, the equalities b ≤ [[x = y]] and
j(b)x = j(b)y are equivalent. Take x ∈ G and note that [[0 ≤ x ↔ (∃ y ∈ G +)(x =
y)]] = 1. This implies that b ≤ [[0 ≤ x]] if and only if b ≤ [[(∃ y ∈ G +)(x = y)]].
The last statement is equivalent to the existence of some y ∈ G +↓ =: G+ such that
either b ≤ [[x = y]] or j(b)x = j(b)y ≥ 0.

We now prove the equivalence of the propositions from (1) to (4).
(1) If G is directed then [[G + − G + = G ]] = 1, which is equivalent to the fact

that G is directed since (G +−G +)↓= G +↓ −G +↓= G+−G+. The integral closure
of G is nothing else but

∧
{[[x ≤ 0]] : [[(∃ y ∈ G )(∀n ∈ ω∧)(nx ≤ y)]] = 1} = 1.

Hence, G is integrally-closed if and only if, for every x ∈ G, the following implication
holds:

(∃ y ∈ G)([[(∀n ∈ ω∧)(nx ≤ y)]] = 1 → [[x ≤ 0]] = 1),

or
((∃ y ∈ G)(∀n ∈ ω)[[n∧x ≤ y]] = 1) → [[x ≤ 0]] = 1.

The last line is an equivalent paraphrase of the property that G is integrally-closed.
The claim about the Archimedean property of G is proven analogously.
(2) Let G be a lattice ordered group. Prove that the closed formula (∀x)(∀ y)

(∃ z)(z = sup{x, y}) holds on G; i.e., every two elements of G has a least upper
bound. If x and y belong to G then [[{x, y} ⊂ G ]] = 1. Therefore, [[(∃u ∈ G )(u =
sup{x, y})]] = 1. By the maximum principle, there is some z ∈ V(B) such that

[[z ∈ G ]] ∧ [[z = sup{x, y}]] = 1.

This implies that, on the one hand, z ∈ G; whereas, on the other hand,

|z = sup{x, y}|G↓ = 1.

By definition, z = x∨ y. Analogous reasoning enables us to proclaim the existence
of x ∧ y.
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Assume now that [[ G is a Dedekind complete group ]] = 1. Show that in this
case G is also Dedekind complete. We first recall the following equivalent definition
of the least upper bound sup(A) of a set A in an arbitrary ordered set:

sup(A) = π≤(A) ∩ π−1
≤ (π≤(A)).

Choose an arbitrary upper bounded subset A of G↓, this means that π≤(A) �=
∅. In this case, however, by the rules for ascending and descending polars infer
that [[π≤(A↑) �= ∅]] = 1 or, which is equivalent, [[A↑ is an upper bounded subset of
G ]] = 1. Using the maximum principle, find a ∈ G↓ so that

[[a = sup(A↑) = π≤(A↑) ∩ π−1
≤ (π≤(A↑))]] = 1.

Applying now the rules for ascending and descending, deduce a = sup(mix(A)).
Since the relation ≤ is fully extensional, conclude that sup(mix(A)) = sup(A).
Therefore, A has a least upper bound, and so G is a Dedekind complete group.

(3) This follows from 4.2.8 and the properties of G we have established earlier.
(4) Assume that V(B) |= “G is a totally ordered skew field.” By (3) and

4.2.8, conclude that G is a universally complete associative ordered BAP-ring with
distinguished Boolean algebra of positive projections B, and G has no nilpotent
elements.

Since G is a model for (∀x)(∀ y)(x ∧ y = 0 → x = 0 ∨ y = 0); therefore,
[[x ∧ y = 0]] ≤ (x = 0) ∨ (y = 0) for all x, y ∈ G. If x ∧ y = 0 then b∗ ≤ [[x = 0]] and
b ≤ [[y = 0]], or j(b)x = x and j(b)y = 0 for a suitable b ∈ B.

Hence, we easily deduce that B is a Boolean algebra of band projections. But
then the orthogonal completeness of G amounts to the universal completeness of
G with respect to B. Since the projections j(b) (b ∈ B) are multiplicative (see
4.2.8), the kernel of each of them is a ring ideal. From this it is immediate that the
defining property of an f -ring holds for G (cf. 4.4.8 (2)).

Conversely, if G obeys (4) then, by virtue of (2), [[ G is a lattice ordered ring ]] =
1. As is readily seen, G is also an f -ring without nilpotent elements inside V(B). In
this case, however, for x, y ∈ G it follows from [[xy = 1]] = 1 that [[|x|∧ |y| = 0]] = 1,
or |x|∧|y| = 0. Hence, there is an element b in B such that j(b)x = 0 and j(b∗)y = 0.
Therefore, b ≤ [[x = 0]] and b∗ ≤ [[y = 0]], yielding [[x = 0∨ y = 0]] ≥ b ∨ b∗ = 1. We
have thus established that V(B) |= “G has no zero divisors.” An f -ring with no
zero divisors is, however, known to be totally ordered. Hence, V(B) |= “G is totally
ordered.”

Finally, by 4.2.8, the nonzero elements of G are invertible. Hence, V(B) |= “G
is a totally ordered skew field.” �

4.4.11. The above shows that totally ordered groups and f -rings both trans-
form somehow into B-groups and B-rings. By the results of Section 4.3, this implies
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that the Boolean valued representations of these groups are totally ordered groups
and rings, respectively. We may thus translate the available information on the
structure of totally ordered groups and rings to more general classes of groups and
rings. We will illustrate the last statement with the examples of the well known
facts (see [14, 56]):

(1) Hölder Theorem. Each Archimedean totally ordered group is
isomorphic to a subgroup of the additive group of the reals.

(2) Every Archimedean directed group is commutative.

(3) Theorem. An Archimedean totally ordered ring R is either a ze-
ro field ; i.e., the product of every two elements of R is zero; or R is order and
algebraically isomorphic to a uniquely determined subring of the reals.

4.4.12. Theorem. Let G be an Archimedean lattice ordered group with base
isomorphic to a Boolean algebra B. Then there is a subgroup G of the additive
group of the reals inside V(B) such that the lattice ordered group G′ := G ↓ is the
universal completion of G.

� By 4.4.6, the group G can be transformed into an ordered B-group. Let G
be the Boolean valued representation of this algebraic B-system. Then, by 4.3.3,
G is a totally ordered group inside V(B). In line with Theorem 4.4.10, G′ := G ↓
is a lattice ordered group, in which case G′ = mix(ı(G)), with ı the canonical
isomorphism from G to G′. If b ∈ B and Lb ∈ B(G) and πb ∈ Pr(G′) are the
corresponding band and band projection, respectively; then the conditions x ∈ Lb
and (I − πb)(ı(x)) = 0 are equivalent for all x ∈ G.

Indeed, by the definition of a B-metric on G (see 4.4.5), the containment
x ∈ Lb is fulfilled if and only if d(x, 0) ≤ b. However, Theorem 4.4.10 implies that
the equality πbı(x) = ı(x) holds if and only if b∗ ≤ [[ı(x) = 0]]. We know in this
event that

[[ı(x) = 0]] = [[ı(x) �= 0]]∗ = d(x, 0)∗.

We have thus established that the correspondence L′ �→ ı−1(L′) (L′ ∈ B(G′)) is
an isomorphism between the bases B(G′) and B(G). Choose 0 < x ∈ G′. If
x = mix(πξı(xξ)) then 0 < πξ ◦ı(xξ) ≤ ı(xξ) for some ξ. In view of the isomorphism
between the bases, there is 0 < z ∈ G for which z ∈ {πξ ◦ ı(xξ)}⊥⊥. Putting
x0 := xξ ∧ z, note that

0 < ı(x0) ≤ ı(z) ∧ πξ ◦ ı(xξ) ≤ πξ ◦ ı(xξ) ≤ x.

Therefore, ı(G) minorizes G′. Assume that n|x| ≤ y (n ∈ ω) for some x, y ∈ G′.
Let y = mix(πξı(yξ)) and x = mix(πξı(xξ)) for some families (xξ) and (yξ) in G
and a partition of unity (πξ) in Pr(G′).
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Put Ξ0 := {ξ ∈ Ξ : πξ ◦ ı(|xξ|) = 0}. Since ı(G) is minorant, for all ξ ∈ Ξ \ Ξ0

there is some uξ ∈ G, uξ > 0, satisfying ı(uξ) ≤ πξ(ı|xξ|). Then, for the same ξ
and for all n ∈ ω, obtain

ı(nuξ) ≤ πξ ◦ ı(n|xξ|) = πξ(n|x|) ≤ πξy = πξ ◦ ı(yξ) ≤ ı(yξ)

or nuξ ≤ yξ.
Since G is Archimedean, conclude that uξ = 0, which implies that Ξ0 = Ξ

and so x = 0. Therefore, the group G′ is Archimedean and, by 4.4.10, [[ G is
Archimedean ]] = 1. In line with the Hölder Theorem 4.4.11 (1), G is isomorphic to
an additive subgroup of the reals R. By Theorem 4.3.4, we may assume G to be
a totally ordered subgroup of R. �

4.4.13. Theorem. Let K be an Archimedean f -ring. Then K splits into the
direct sum of two bands K0 and K1 complementary to each other such that if the
bases B(K0) and B(K1) are isomorphic to the Boolean algebras B0 and B1, then
the following hold:

(1) There is a subgroup K0 of the reals inside V(B0) such that the
lattice ordered group K ′

0 := K0 ↓ with zero multiplication is the
universal completion of f -ring K0;

(2) There is a subring K1 of the reals inside V(B) such that the f -ring
K ′

1 := K ′
1↓ is the universal completion of K.

In this event the f -ring K ′
0 ⊕K ′

1 is the universal completion of K.

� As we have seen in 4.4.12, the representation of the additive group of the
f -ring K in V(B), with B = B(K), is a subgroup of the additive group of the reals.
According to 4.4.9, K is a B-ring; while, by Theorem 4.3.3, [[ K is a ring ]] = 1. Put
b0 := [[ K is a zero ring ]] and b1 := [[ K is a subring of the reals ]]. By the transfer
principle and Theorem 4.4.11 (3), b0 ∨ b1 = 1. On the other hand, b0 ∧ b1 = 0, since
a ring cannot be simultaneously a zero ring and a subring of the reals. Let K0 and
K1 be the bands of K corresponding to b0 and b1; i.e., K0 and K1 are determined
from the conditions

x ∈ Kı ↔ d(x, 0) ≤ bı (ı = 0, 1),

where d is the B-metric of the B-system K. Assign Bı := [0, bı] and observe that
the base B(Kı) is isomorphic to Bı, in which case bı is the unity of the algebra Bı.
Put Kı := π∗

ı (K ) ∈ V(Bı), where πı : b �→ b∧bı, b ∈ B. Since πı is an epimorphism
of B onto Bı; therefore, V(B0) |= “π∗

0(K ) is a subgroup of the additive group of the
reals” and V(B1) |= “π∗

1(K ) is a subring of the reals.” By Theorem 4.4.12, K ′ := K↓
is the universal completion of the ordered group K. As far as bı = [[π∗

ı (K ) � K ]],
where K ′

l := Kı↓ � j(bı)(Kı), and so K ′ � K ′
0 ⊕K ′

1. Therefore, K ′ is the universal
completion of K. �
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4.5. The Descent of a Field

Here we prove that rationally complete semiprime commutative rings are in
one-to-one correspondence with fields in Boolean valued universes. This implies in
particular the possibility of transferring the Horn properties of fields to these rings.
All preliminaries to ring theory we need are explicit, for instance, in [50, 150].

4.5.1. Throughout this section, we let K stand for a commutative ring with
unity 1, presuming that 0 �= 1. In this event K is a semiprime ring if K is free of
nilpotent elements other than zero. Recall that x is nilpotent provided that xn = 0
for some n ∈ N. Recall also that a commutative ring K is an integral domain if
0 �= 1 and 0 is the only zero divisor of K.

(1) Given a semiprime ring K, define ⊥ as follows

⊥ := {(x, y) ∈ K ×K : xy = 0}.

Then ⊥ is a disjointness relation on K and the least ⊥-band is the singleton {0}.
The disjointness ⊥ is simple if and only if K is an integral domain.

� The relation ⊥ is symmetric since K is commutative. Considering x ∈
π⊥(K), note that x2 = 0, and so x = 0. Hence, the second defining property of
disjointness (cf. 4.1.12 (2)) follows on recalling that K is semiprime. If z = xy �= 0
then uz = (ux)y = 0 and zv = x(yv) = 0 for all u ∈ π⊥(x) and v ∈ π⊥(y).
Therefore,

z ∈ π⊥
(
π⊥(x) ∪ π⊥(y)

)
= [x] ∩ [y].

Alternatively, the third defining property of disjointness is available too. So, ⊥ is
a disjointness on K. From 4.1.12 (2) it follows that ⊥ is a simple disjointness only
if the equality xy = 0 implies either x = 0 or y = 0. �

Evidently, the annihilator L⊥ of a nonempty L ⊂ K, defined as

L⊥ := π⊥(L) :=
{
k ∈ K : kL = {0}},

is an ideal of K. An ideal of this provenance is called an annihilator ideal. It is an
easy matter to show that a subset J of K is an annihilator ideal of K if and only
if J = J⊥⊥, where J⊥⊥ := (J⊥)⊥. From 4.1.12 (3) we infer the following:

(2) The annihilator ideals of each semiprime ring K comprise the com-
plete Boolean algebra B(K) with the following meet and join:

L ∧M := L ∩M, L ∨M := (L ∪M)⊥⊥ (L,M ∈ B(K)),

while the Boolean complement L∗ of an ideal L ∈ B(K) is the annihilator L⊥ of L.
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4.5.2. Let B stand for the complete Boolean algebra B(K) of the annihilator
ideals of a ring K. Equip K with a B-metric by putting

d(k1, k2) := {k1 − k2}⊥⊥ (k1, k2 ∈ K).

(1) A semiprime commutative ring K with B-metric d and disjointness
⊥ is a B-ring with disjointness.

� Show first that D satisfies the properties of a Boolean metric in 3.4.1. The
properties (1) and (2) are immediate from the definition of d. To show (3), take
k ∈ {k1 − k2}⊥ ∩ {k2 − k3}⊥ and note that k(k1 − k2) = 0 and k(k2 − k3) = 0; i.e.,
k(k1 − k3) = 0, which amounts to k ∈ {k1 − k3}⊥. Whence,

d(k1, k3) = {k1 − k3}⊥⊥ ⊂ ({k1 − k2}⊥ ∩ {k2 − k3}⊥)⊥

= {k1 − k2}⊥⊥ ∨ {k2 − k3}⊥⊥ = d(k1, k2) ∨ d(k2, k3).

If d(k1, k2) = 0 then {k1 − k2}⊥ = K, and so (k1 − k2)2 = 0. Since K has no
nonzero nilpotents, infer that k1 = k2.

Show now that the ring operations of K are contractive. To this end, demon-
strate that

{k1 − k′1}⊥ ∩ {k2 − k′2}⊥ ⊆ {(k1 + k2) − (k′1 + k′2)}⊥;
{k1 − k′1}⊥ ∩ {k2 − k′2}⊥ ⊆ {k1k2 − k′1k

′
2}⊥.

The first inclusion is obvious. Further, note the evident equalities k1k2 − k′1k
′
2 =

k1k2 − k1k
′
2 + k1k

′
2 − k′1k

′
2 = k1(k2 − k′2) + k′2(k1 − k′1) which imply the second

inclusion.
Obviously, the ring operations are disjointness-preserving; i.e., from x, y ∈ a⊥

it follows that xy, x+ y ∈ a⊥. The fact that the disjointness and B-metric d agree
is easy from the definitions, since d(x, 0) = x⊥⊥ (cf. 4.1.13). �

(2) For all x, y ∈ K, the equality holds: d(xy, 0) = d(x, 0) ∧ d(y, 0).
� It suffices to show the equality {xy}⊥⊥ = {x}⊥⊥ ∧ {y}⊥⊥ in which the

inclusion ⊂ is evident. Take u ∈ {x}⊥⊥ ∧ {y}⊥⊥ = ({x}⊥ ∪ {y}⊥)⊥. This means
that, for all a, b ∈ K, from ax = 0 it follows that au = 0; and by = 0 implies that
bu = 0. Using this with b := v2x and a := v2u, consider an arbitrary v ∈ K and
deduce

v ⊥ xy → (v2x)y = 0 → (v2u)y = 0
→ v2u2 = 0 → (vu)2 = 0 → vu = 0.

Thus, v ⊥ u holds for all v ∈ {xy}⊥, and so u ∈ {xy}⊥⊥. �
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4.5.3. An element e in K is an idempotent of K provided that e2 = e. The
idempotents of K comprise the Boolean algebra P(K) with the Boolean operations
as follows

e ∧ d = e · d, e ∨ d = e+ d− e · d, e⊥ = 1 − e (e, d ∈ P(K)).

A ring K is regular (in the sense of von Neumann), if each principal ideal of
K is generated by an idempotent or equivalently, each finitely generated ideal is a
summand of K. The regularity of K amounts to solvability of the equation a2x = a
for each a ∈ K (the equation aa′a = a in the case of a noncommutative K).

If a semiprime commutative ring K is finitely complete with respect to the B-
metric d then each annihilator ideal of K is generated by an idempotent, implying
that K is regular. In this event the mapping j : e �→ e ·K is a Boolean isomorphism
of P(K) to B(K).

� Take an annihilator ideal b ∈ B(K). Since the B-ring K is finitely complete,
there is an element e in K such that b ∧ d(1, e) = 0 and b∗ ∧ d(0, e) = 0; i.e.,
e := mix{b1, b∗0}. This element is an idempotent, since from 4.5.2 (2) it follows
that d(e2, e) = d(e, 0) ∧ d(1, e) ≤ b ∧ b⊥ = 0. In particular, e ⊥ (1 − e). Hence,
the annihilator ideals d(e, 0) = {e}⊥⊥ and d(1, e) = {1− e}⊥⊥ are disjoint, yielding
d(e, 0) = b and d(1, e) = b⊥. Now, using the equality d(ex, x) = d(1, e) ∧ d(x, 0)
(cf. 4.5.2 (2)) and given x ∈ K, infer

x ∈ b↔ d(x, 0) ≤ b↔ d(ex, x) = 0 ↔ ex = x.

Consequently, b = eK. The remaining details are all evident. �
4.5.4. A subset S of K is dense if S⊥ = {0}; i.e., the equality k · S = {0}

implies k = 0 for all k ∈ K. A ring K is rationally complete if, to each dense ideal
J ⊂ K and each group homomorphism h : J → K satisfying h(kx) = kh(x) for all
k ∈ K and x ∈ J , there is an element r in K such that h(x) = rx for all x ∈ J .

Theorem. Each rationally complete ring K is a universally complete B-ring,
withB = B(K). IfK is regular then the converse holds: Every universally complete
B-ring is rationally complete.

� Let (bξ) be a partition of unity in the Boolean algebra B of the annihilator
ideals of K. Assume also that (kξ) is a family in K. Denote by J the set of all sums
like

∑
ξ xξ, with xξ ∈ bξ and at most finitely many of xξ are nonzero. Then J is a

dense ideal. Define the mapping h : J → K by the formula h(x) := kξx for x ∈ bξ.
Clearly, h obeys the needed conditions in the definition of rational completeness.
Therefore, we may find r ∈ K satisfying h(x) = rx for all x ∈ J . If x ∈ bξ then
h(x) = rx = kξx and x(r − kξ) = 0. Hence, bξ ⊂ {r − kξ}⊥ = d(r, kξ), implying
that bξ ∧ d(r, kξ) = 0 and r = mix(bξkξ).



Boolean Valued Analysis of Algebraic Systems 193

Assume now that K is a regular ring. Take an ideal J ⊂ K and a ring ho-
momorphism h : J → K. Using the Kuratowski–Zorn Lemma, choose an inclusion
maximal disjoint family (eξ) in J ∩ P(K). Since our B-ring K is universally com-
plete, there is an element k in K satisfying eξk = eξh(eξ) = h(eξ). Note that
eξkx = xh(eξ) = eξh(x); i.e., eξ(h(x) − kx) = 0 for all ξ and x ∈ J . Now, if
h(x) �= kx then e0(h(x) − kx) �= 0 for some nonzero idempotent e0 ∈ P(K). But
then we would have e0 ⊥ eξ for all ξ, which contradicts the maximality of (eξ). �

4.5.5. Notice the three corollaries to the just-established fact:

(1) Every rationally complete semiprime ring is regular.

(2) Each annihilator ideal of a rationally complete semiprime commu-
tative ring is a rationally complete ring.

Say that a ring K selfinjective if K is an injective K-module. Recall that
a K-module M is injective if, to whatever K-module N , a K-submodule N0 of
N , and a K-homomorphism h0 : N0 → M , there is an extension of h0 to a K-
homomorphism h : N → M . Baer’s Criterion asserts that a K-module M is
injective if and only if, to J ⊂ K and a K-homomorphism h : J → M , there is an
element m in M such that h(x) = mx for all x ∈ J (see, for instance, [50] or [150]).

(3) A ring K is rationally complete if and only if K is selfinjective.

� Consider a homomorphism h : J → K, with J an ideal of a rationally
complete ring K. By 4.5.4, K0 := J⊥⊥ = eK for some idempotent e ∈ K. Since
K0 is a rationally complete ring and eh : J → K0 is a homomorphism, there is
an element k in K such that eh(x) = kx for all x ∈ J . It suffices to note that
eh(x) = h(ex) = h(x) for all (x ∈ J) and complete proving →. The implication ←
follows from Baer’s Criterion. �

4.5.6. Theorem. Let K ∈ V(B) satisfy [[K is a field ]] = 1. Then K ↓ is
a rationally complete semiprime commutative ring and there is an isomorphism j
of the Boolean algebra B to the Boolean algebra B(K ↓) of the annihilator ideals
of K such that

b ≤ [[x = 0]] ↔ x ∈ j(b∗) (x ∈ K, b ∈ B).

� Everything follows from 4.2.8, 4.5.3, and 4.5.4. It suffices to note that, by
4.2.8 (4), the projection j(b) corresponds in a one-to-one manner to the annihilator
ideal j(b). �

4.5.7. We proceed with Boolean valued analysis “in the field.”
(1) Theorem. Let K be a rationally complete semiprime commutative

ring. Also, let B stand for the complete Boolean algebra B(K ↓) of the annihilator
ideals of K. Then there is a field K inside V(B) such that the rings K and K ↓
are isomorphic.
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� Appeal to Theorem 4.3.3. The ring K is a universally complete algebraic
B-system by 4.5.4. Consequently, the isomorphism ı of 4.3.3 (3) (in the sense of
algebraic B-systems) is a bijection. Since K is a commutative B-ring, from 4.3.3 (4)
it follows that [[K is a commutative ring]] = 1. We are left with showing that every
nonzero member of K is invertible; i.e., [[K |= ϕ]] = 1, with ϕ standing for
(∀y)(∃x)(y �= 0 → xy = 1). By 4.3.3 (4) it suffices to check that |ϕ|K = 1; i.e.,
K |=B ϕ.

Since K is a regular ring (cf. 4.5.3 and 4.5.4), to each y ∈ K there is some
x ∈ K satisfying y2x = y. The following implications are evident:

y2x = y → y(yx− 1) = 0 → y ∈ {yx− 1}⊥
→ {y} ⊂ {yx− 1}⊥ → {y}⊥⊥ ⊂ {yx− 1}⊥⊥⊥

→ {y}⊥⊥ ⊂ {yx− 1}⊥.

Recalling the definition of d, infer d(y, 0) ≤ d(yx, 1)⊥. Using the definition of the
B-valued interpretation of atomic formulas in 4.1.8, conclude that, to each y ∈ K,
there is some X ∈ K satisfying |y �= 0 → yx = 1|K = 1. Using the definitions of
4.1.8 again, arrive at |ϕ|K = 1, as desired. �

(2)Corollary. The Horn theories of rationally complete semiprime com-
mutative rings and fields coincide.

4.5.8. We now give the construction of the so-called complete ring of fractions
on using the above results on Boolean valued representation. We start with recalling
a few definitions.

A ring K̂ is a classical ring of fractions of a ring K provided that there is a
ring monomorphism λ : K → K̂ such that λ(x) is invertible in K̂ for each regular
x ∈ K and, moreover,

K̂ = {λ(x)λ(y)−1 : x, y ∈ K; y is regular in K}.

Considering K̂ up to isomorphism, we speak about the classical ring of fractions. If
K is an integral domain then K̂ is a field called the field of fractions of K. Denote
the classical ring of fractions of K by Qcl(K) := K̂. Note that Qcl(K) = S−1h(K) if
we take the set of regular elements of K as the multiplicative set S in the definition
of 4.2.6.

Since K is an algebraicB-system; therefore, by 4.3.5 (2) K possesses a universal
completion (K ′, ı), where ı : K → K ′ is a ring monomorphism. The ring QB(K) :=
K ′ is also referred to as orthogonal completion of K.

The ring Q(K) := Qcl

(
QB(K)

)
, together with the monomorphism κ := λ ◦ ı, is

the complete ring of fractions of K.
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Theorem. Assume that K is a semiprime commutative ring and B stands
for the Boolean algebra B(K) of the annihilator ideals of K. Denote by K the
Boolean valued representation of K viewed as an algebraic B-system. Then [[ K is
an integral domain ]] = 1. Moreover, there are elements F , λ ∈ V(B) such that the
following hold:

(1) V(B) |= “F is the field of fractions of the integral domain K , and
λ : K → F is an embedding of K into the ring of fractions of
K ”;

(2) (F↓, λ↓ ◦ ı) is the complete ring of fractions of K, where ı : K →
K ′ := K↓ is the canonical embedding of K to K ′.

� The Boolean valued representation K := K∼ of the algebraic B-system (B-
ring) K is a ring inside V(B), cf. 4.3.1, 4.3.3, and 4.5.2 (1). In accord with 4.1.13,
the B-valued disjointness Δ on K is defined by the formula Δ(x, y) :=

(
d(x, 0) ∧

d(y, 0)
)∗. From 4.5.2 (2) it follows now that Δ(x, y) =

(
d(xy, 0)

)∗ = [[xy = 0]].
Hence, the Boolean valued representation δ of Δ satisfies [[δ(x, y) ↔ xy = 0]].
Consequently, δ relates to the ring multiplication of K in much the same way as
Δ relates to the ring multiplication of K ′. By 4.3.5 (6), δ is a simple disjointness,
which means that [[ K is an integral domain ]] = 1 in view of 4.5.1 (1).

The existence of F , λ ∈ V(B) satisfying (1) follows from the maximum principle
and fact that the ring of fractions of an integral domain is a field. Put K ′ := K ↓,
and let ı : K → K ′ stand for the respective canonical monomorphism (cf. 4.3.3).
Then K ′ is the orthogonal completion of K; i.e., K ′ = QB(K). Moreover, from
4.2.8 (3) it follows that F↓= Qcl(K ′). Thus, F↓= Q(K). �

4.5.9. The above theorem provides various corollaries on the structure of a
ring of fractions. A few of them follow.

(1) The complete ring of fractions of a semiprime commutative ring is
rationally complete (consequently, selfinjective and regular).

� The claim is immediate from 4.5.5 (1, 3), 4.5.6, and 4.5.8. �
(2) The Boolean algebra B := B(K) of the annihilator ideals of a semi-

prime commutative ringK is isomorphic with the Boolean algebra of the annihilator
ideals of each of the rings K ′ and Q(K). The isomorphisms are carried out as
follows:

gı : L �→ ı−1(L) (L ∈ B(K ′)), gκ : L �→ κ−1(L) (L ∈ B(Q(K))).

� A consequence of 4.2.8 and 4.3.5 (6). �
(3) The complete ring of fractions Q(K) of a semiprime commutative

ring K is an injective K-module.
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� By Baer’s Criterion (cf. 4.5.5) it suffices to prove that if J is an ideal of K
and h : J → Q(K) is a K-homomorphism then, for some q ∈ Q(K), the following
holds: h(x) = qx for all x ∈ J . By Theorem 4.5.8, there is no loss of generality in
assuming that K ⊂ K ′ := K ↓⊂ Q(K) = F↓. Given x ∈ J and k ∈ K, note that
x ⊥ k implies h(x) ⊥ k. Thus, x ∈ b → h(x) ∈ g−1

κ (b) for all b ∈ B, and so h is
an extensional mapping. Assign J := J↑ and η := h′↑. Then J is an ideal of K ,
and η : J → F is a K -homomorphism.

It suffices now to show that we may find q ∈ F so that η(x) = qx for all x ∈ J .
The last claim is immediate from the evident formula aη(x) = η(ax) = xη(a)
holding for all a, x ∈ J . Indeed, if a �= 0 then we may put q := η(a)a−1 ∈ F . �

A submodule M of a K-module M̂ is massive or essential if to each 0 �= x ∈ M̂
there is some k ∈ K such that kx �= 0 and kx ∈M . An injective hull of a ring K is a
pair (K̂, τ) such that M̂ is an injective K-module, τ : M → M̂ is a monomorphism,
and τ(M) is a massive submodule of M̂ .

(4) The (Q(K), κ) is an injective hull of a semiprime commutative ring
K viewed as a K-module.

� By (3) it suffices to check only that κ(K) is a massive submodule of the
K-module Q(K). We may moreover assume that K ⊂ Q(K). Hence, we are left
with demonstrating that to each 0 �= q ∈ Q(K) there is some k ∈ K such that
kq �= 0 and kq ∈ K.

By the definition of Q(K), there are families (xξ) ⊂ K and (yξ) ⊂ K and a
partition of unity (bξ) ⊂ B satisfying q = xy−1, x = mix(bξxξ), and y = mix(bξyξ).
Since q �= 0; therefore, for some index ξ we have exξ �= 0, where e is the idempotent
of K ′ corresponding to the ideal b; = bξ. It is also clear that eyξ �= 0 because y
is a regular element. Let a be an arbitrary nonzero member of the ideal b, with
axξ �= 0. Put k := ayξ = aeyξ. Then qk = a(ex)(yξy−1) = axξ = aexξ ∈ b ⊂ K. �

A fraction we call a homomorphism of K-modules J → K, where J is a dense
ideal of K. Equip the set of fractions with the following equivalence: Two fractions
are equivalent if they agree on the intersection of their domains. It is an easy matter
to make the resultant factor set into a ring (for details, see [150]). Denote the new
ring by Q′(K).

(5) The rings Q(K) and Q′(K) are isomorphic.

� We again consider K as a subring of Q(K). Using (4), to each fraction
h ∈ Q′(K) we may assign the element σ(h) such that h(x) = σ(h)x for all x
in the domain of h. Clearly, h �→ σ(h) is a ring monomorphism. We are left
with demonstrating that h is a surjection. To this end, take q ∈ Q′(K) and put
J := {k ∈ K : qk ∈ K}. Then J is a dense ideal of K. If the fraction hq is defined
by the formula hq : x �→ qx then σ(hq) = q, which completes the proof. �

A ring of fractions of K in the Utami sense is a pair (R, ν), with R a ring
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and ν : K → R a ring monomorphism provided that there is a monomorphism
τ : R→ Q(K) satisfying κ = τ ◦ ν.

(6) Let K ′ stand for the universal completion of a semiprime commu-
tative ring K considered as an algebraic B-system. Then K ′ is a ring of fractions
of K in the Utami sense.

� The claim is immediate from the definition of a ring of fractions on letting
ν := ı and τ := λ. �

(7) There is a unique (up to isomorphism) rationally complete ring of
fractions Q(K) of a semiprime commutative ring K.

� This follows for instance from the fact that the injective hull is unique up
to isomorphism. �

4.5.10. Comments.

(1) It is not a new idea to study regular commutative rings by consid-
ering the properties of appropriate fields. For instance, these rings were studied by
representing them as subproducts of fields or as the ring of global sections of a ring
bundle over a Boolean topological space [203, 212]. The approach of the current
section unifies this idea and is advantageous as regards technique and methodology.

(2) Theorem 4.5.8 shows that, from the standpoint of V(B), the com-
plete ring of fractions of a semiprime ring K is simply the field of fractions of the
integral domain we obtain by embedding K in V(B), with B the Boolean algebra
of annihilator ideals of K.

(3) A more explicit exposition is available of all preliminaries to ring
theory, see for instance [50, 61, 150]. The results of 4.5.6 and 4.5.7 belong to
E. I. Gordon [65]. Similar results were published somewhat later by K. Smith [222]
who factually established equivalence of the category of regular commutative rings
and the category of Boolean valued fields. Using this fact, K. Smith demonstrated
that a regular commutative ring has an algebraic closure.

(4) The above methods apply to more general classes of rings. For
instance, the relation of 4.5.1 is a disjointness also in the case of a noncommutative
ring without nonzero nilpotents. Consequently, the set of annihilator ideals of
such a ring K provides a complete Boolean algebra, and K itself ascends to V(B)

becoming a ring without zero divisors.

(5) Starting with the results of this section and using the same tech-
nique, we may come to analogous results about modules, cf. [66].

A module M over a ring K is separated if the equality J · x = {0} implies that
x = 0 for every x ∈M and every dense ideal J ⊂ K.
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Theorem. Let M be a vector space over a field K inside V(B). Let also
ı : B → B(K ↓) stand for the Boolean isomorphism of 4.5.3 (2). Then M↓ is a
unital separated injective module over K satisfying

b ≤ [[x = 0]] ↔ ı(b)x = 0 (x ∈ M↓, b ∈ B).

(6) If a K-module M is separated then the B-semimetric d acting by
the rule

d(x, y) :=
∧

{b ∈ B : b∗x = b∗y} (x, y ∈M)

is a B-metric. Consequently, a separated K-module may be treated as an algebraic
B-system, which leads to the following result (cf. [66]).

Theorem. Assume thatK is a rationally complete commutative ring. Assume
also that B = B(K) and K is the Boolean valued representation of K. Let M be
a unital separated injective K-module. Then there is some M ∈ V(B) such that
[[ M is a vector space over K ]]. In this event, there are isomorphisms of algebraic
B-systems ıK : K → K ↓ and ıM : M → M↓ such that

ıM (ax) = ıK(a)ıM (x) (a ∈ K, x ∈M).



Chapter 5

Boolean Valued Analysis of
Banach Spaces

The Boolean valued inverse V(B) associated with a fixed Boolean algebra B
is one of the arenas of mathematical events. Indeed, by virtue of the transfer and
maximum principles, V(B) contains numbers and groups as well as the Lebesgue
and Riemann integrals, with the Radon–Nikodým theorem and the Jordan normal
form of a matrix available.

The elementary technique of ascending and descending which we become ac-
quainted with when considering algebraic systems shows each of the mathemati-
cal objects in V(B) to be a representation of an analogous classical object with
an additional structure induced by the algebra B. This relates in particular to
functional-analytical objects.

In this chapter we present the facts that are associated with Boolean valued
representation of the latter objects. Our main topic is Banach spaces in Boolean
valued universes. It turns out that these spaces are inseparable from ordered vector
spaces and, above all, K-spaces which were introduced by L. V. Kantorovich at the
beginning of the thirties.

The fundamental result of Boolean valued analysis in regard to this aspect is
Gordon’s Theorem 5.2.2 which we may read as follows: Every universally complete
K-space is an interpretation of the reals in an appropriate Boolean valued universe.
Moreover, each theorem about the reals within Zermelo–Fraenkel set theory has an
analog in the originalK-space. Translation of theorems is carried out by appropriate
general operations of Boolean valued analysis.

Theorems 5.2.4, 5.4.2, and 5.5.11 also rank among the principal results of
the current chapter. The first of them claims that every Archimedean vector lattice
embeds in a suitable universe V(B), becoming a vector sublattice of the reals viewed
as a vector space over some dense subfield of the reals. The second declares that
every lattice normed space may be represented as a dense subspace of a Banach
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space viewed a vector space over some field, e.g., the rationals, in an appropriate
V(B). Finally, the third theorem means essentially that a Banach space X appears
in result of bounded descent from a Boolean valued model if and only if X includes
a complete Boolean algebra of norm one projections which possesses the cyclicity
property. In other words, X is a Dedekind complete lattice normed space and the
norm of X is a mixed norm. This fact serves as a starting point for the approach
to involutive algebras which we pursue in the next chapter.

5.1. Vector Lattices

In this section we give some preliminaries to the theory of vector lattices;
a more explicit exposition may be found elsewhere [1, 4, 103, 104, 158, 214, 253,
258].

5.1.1. Let F be a totally ordered field. Consider an algebraic system E whose
signature contains the symbols +, 0,≤, and λ, with λ ranging over F and denoting a
unary operation. Given λ ∈ F, call this operation λ-scaling or (scalar) multiplication
by λ. Assume that E obeys the conditions:

(1) (E,+, 0,≤) is an ordered commutative group;
(2) E is a vector space over F;
(3) Each multiplication by a positive λ in F is a positive endomorphism

of the ordered group (E,+, 0,≤).
Say in this event that E is an ordered vector space.

Therefore, an ordered vector space E may be defined as a pair (E,≤), with
E a vector space over F and ≤ a vector order on E; i.e., an order relation on E
compatible with vector structure. Informally speaking, we may “sum inequalities
in E and multiply them by positive members of F.” Formally, a vector order on E
must be a cone in E2 as well as an order on E.

Equipping a vector space E over F with a vector order amounts to defining some
positive cone E+ of E, that is a subset of E satisfying the conditions: E+ +E+ ⊂
E+; λE+ ⊂ E+ (0 ≤ λ ∈ F); and E+ ∩ (−E+) = 0. The order ≤ on E and the
positive cone E+ are connected as follows:

x ≤ y ↔ y − x ∈ E+ (x, y ∈ E).

Clearly, all notions and results of the theory of ordered groups apply freely to
ordered vector spaces. For instance, when we say that an ordered vector space E
is Archimedean or speak about some ideal of E, we imply the underlying ordered
group of E.

5.1.2. A vector lattice is an ordered vector space whose underlying group is
lattice ordered. Hence, each finite set {x1, . . . , xn} in a vector lattice E has the
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join, i.e. the least upper bound x1 ∨ . . . ∨ xn := sup{x1, . . . , xn}, and the meet,
i.e. the greatest lower bound x1 ∧ . . . ∧ xn := inf{x1, . . . , xn}. In particular, each
member x of a vector lattice has the positive part x+ := x ∨ 0, the negative part
x− := (−x)+ := −x ∧ 0, and the absolute value or modulus |x| := x ∨ (−x).

Recall that we introduce the disjointness of E by the formula

⊥:= {(x, y) ∈ E × E : |x| ∧ |y| = 0}.

A set K is a band of E (or component in the Russian literature) provided that K
coincides with the disjoint complement of a subset of E; i.e., K equals to

M⊥ := {x ∈ E : (∀ y ∈M)(x ⊥ y)}

where M is some nonempty subset of E. If K has the shape {u}⊥⊥ then K is
a principle band and |u| is an order unity or order unit of K.

The inclusion ordered set B(E) of all bands of E is a complete Boolean algebra.
The Boolean operations of B(E) take the shape:

L ∧K = L ∩K, L ∨K = (L ∪K)⊥⊥, L∗ = L⊥ (L,K ∈ B(E)).

The Boolean algebra B(E) is the base of E.
Let K be a band of a vector lattice E and 0 ≤ x ∈ E. Assume that the set

{u ∈ K : 0 ≤ u ≤ x} has a supremum in E. This supremum sup{u ∈ K : 0 ≤
u ≤ x} is unique. Call it the projection of x to K and denote it by [K]x or PrK x.
Given an arbitrary x ∈ E, put [K]x := [K]x+ − [K]x−.

The projection of an element x ∈ E to a band K exists if and only if we have
the decomposition x = y + z with y ∈ K and z ∈ K⊥, in which case y = [K]x and
z = [K⊥]x. Assume that each element x ∈ E has a projection to K. Then x �→ [K]x
(x ∈ E) is a linear idempotent operator and 0 ≤ [K]x ≤ x for all 0 ≤ x ∈ E. We
call [K] the band projection to K and say that K is a projection band. Say that
a vector lattice E possesses the projection property (principal projection property) if
every band (principal band) of E is a projection band. If a vector lattice E has the
projection property and each disjoint positive subset of E (i.e., a subset composed
of disjoint positive elements) has a supremum in E then E is a universally complete
vector lattice or an extended vector lattice in the Russian literature.

5.1.3. An element 1 ∈ E is called an order unity or order unit of E provided
that {1}⊥⊥ = E; i.e., if E has no nonzero elements disjoint from 1. In other words,
an order unit 1 of E is an order unit of the band E of E. Assume that some
0 ≤ e ∈ E satisfies e ∧ (1 − e) = 0. We then say that e is a unit element relative
to 1. The set C(1) := C(E) of all unit elements is a Boolean algebra under the
induced order from E. The lattice operations of C(1) are inherited from E, while
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the Boolean complement has the form e∗ = 1 − e for e ∈ C(1). A disjoint positive
family in E is total or complete provided that E has no nonzero element disjoint
from every member of the family. Clearly, a total family pretends to play the role
of a “compound” order unit of E.

Henceforth, unless specifying F explicitly, we imply only vector lattices over
the reals R equipped with the natural total order. Considering the ideal I(u) :=⋃∞
n=1[−nu, nu] generated by an element 0 ≤ u ∈ E, we may introduce the following

seminorm:
‖x‖u := inf{λ ∈ R : |x| ≤ λu} (x ∈ I(u)).

If I(u) = E then call u a strong unity or strong order unit and E, a vector lattice of
bounded elements. The seminorm ‖ · ‖u is a norm if and only if E is Archimedean.

An element x ≥ 0 of a lattice is discrete, if [0, x] = [0, 1]x; i.e., in the case when
from 0 ≤ y ≤ x it follows that y = λx for some 0 ≤ λ ≤ 1. A vector lattice E is
discrete if to each 0 < y ∈ E there is a discrete element x ∈ E satisfying 0 < x ≤ y.
If E has no nonzero discrete elements then E is continuous.

5.1.4. A Kantorovich space or, briefly, a K-space is a Dedekind complete vec-
tor lattice; i.e., a vector lattice whose every nonempty order bounded subset has a
supremum and an infimum. Sometimes, a K-space is also referred to as boundedly
order complete vector lattice. A vector lattice E is a Kσ-space if each countable
nonempty bounded subset of E has a supremum and an infimum in E. Every
Kσ-space, as well as every K-space, is Archimedean.

Denote the set of all band projections of E by Pr(E). Given π and ρ in Pr(E),
put π ≤ ρ if and only if πx ≤ ρx for all 0 ≤ x ∈ E.

Theorem. Let E be an arbitrary K-space. Then the mapping K �→ [K],
sending a band K to the band projection [K], is an isomorphism between the
Boolean algebras B(E) and Pr(E).
If E has an order unit then the mappings π �→ π1 from Pr(E) to C(E) and

e �→ {e}⊥⊥ from C(E) to B(E) are also isomorphisms of the respective Boolean
algebras.

The band projection πu to the principal band {u}⊥⊥, with 0 ≤ u ∈ E, can be
obtained by a simpler rule than that in 5.1.2; namely,

πux = sup{x ∧ (nu) : n ∈ N} (0 ≤ x ∈ E).

In particular, every Kσ-space has the principal projection property.
Let E be a Kσ-space with order unit 1. We call the projection of the unit to the

band {x}⊥⊥ the trace of x and denoted it by ex. Therefore, ex := sup{1 ∧ (n|x|) :
n ∈ N}. The trace ex serves both as an order unit of {x}⊥⊥ and a unit element
of E. Given a real λ, denote the trace of the positive part of λ1 − x by exλ; i.e.,
exλ := e(λ1−x)+ . The function λ �→ exλ, with λ ∈ R, arising in this case is called the
spectral function or characteristic of x.
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5.1.5. We now turn to algebra endowed with compatible order.

(1) Assume that E is an algebra over a field F. Assume further that
E is furnished with some order so that E becomes an ordered vector space whose
positive cone is closed under multiplication. In this event E is an ordered algebra
or an ordered F-algebra. We may say that an ordered algebra E is an algebraic
system E whose signature contains the symbols +, 0,≤, λ, · , with λ ranging over F

and standing for λ-scaling, provided that

(a) E is an ordered vector space;

(b) (E,+, 0,≤, · ) is an ordered ring.

Say that E is a lattice ordered algebra (f -algebra) if the underlying ring of E is
a lattice ordered ring (an f -ring). An f -algebra is faithful if for whatever x and y
the equality x · y = 0 implies that x ⊥ y. Clearly, an f -algebra is faithful if and
only if it has no nonzero nilpotents. Also, an f -algebra is faithful if and only if it
has nonzero positive element whose square is zero (cf. 4.4.8).

(2) A complex vector lattice is the complexification E ⊗ iE of a real
vector lattice E. As usual, we let i stand for the imaginary unity in any appropriate
context here and in the sequel. Furthermore, it is a routine to require additionally
that every member z of E ⊗ iE has the absolute value or modulus

|z| := sup{Re(eiθz) : 0 ≤ θ ≤ π}.
The conditions for E to ensure existence for the absolute value of each element in
E ⊗ iE are easy to formulate. Any proviso is perfectly excessive for a K-space and
even for a Kσ-space. So, a complex K-space is simply the complexification of a real
K-space.

Speaking about the order properties of a complex vector lattice E ⊗ iE, we
always mean its real part E. The definitions of sublattice, ideal, projection band,
etc. are all naturally abstracted to the case of a complex vector lattice by way of
due complexification.

5.1.6. The order of a vector lattice provides various types of convergence.
Let (A,≤) be an upward-directed set; i.e., ≤ ◦ ≤−1= A2. Consider a net

(xα) := (xα)α∈A in E. Call (xα) an increasing (decreasing) net provided that
xα ≤ xβ (xβ ≤ xα) for all α ≤ β, α, β ∈ A.

A net (xα) converges in order or is order convergent or o-convergent to x ∈ E
if there is a decreasing net (eα)α∈A in E satisfying infα∈A eα = 0 and |x−xα| ≤ eα
(α ∈ A). In this case x is the order limit or o-limit of (xα); in symbols, x = o-limxα

or xα
(o)−→ x.
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Given an order bounded net (xα) in a K-space for E, define the upper o-limit
and lower o-limit (or limit superior and limit interior) of (xα) by the formulas:

lim sup
α∈A

xα := lim
α∈A

xα := inf
α∈A

sup
β≥α

xβ,

lim inf
α∈A

xα := lim
α∈A

xα := sup
α∈A

inf
β≥α

xβ .

Clearly,
x = o-limxα ↔ lim supxα = x = lim inf xα.

The net (xα)α∈A converges with regulator or is relatively uniform convergent (r-
convergent) to x ∈ X if there are an element 0 ≤ u ∈ E, called the regulator of
convergence, and a numerical net (λα)α∈A ⊂ R satisfying limλα = 0 and |x−xα| ≤
λαu (α ∈ A). In this event, call x the r-limit of (xα) and write x = r-limxα or

xα
(r)−→ x. Clearly, relative uniform convergence with regulator u is convergence in

norm in the normed space (I(u), ‖ · ‖u).
The presence of order convergence in a K-space allows us to determined the

sum of an infinite family (xξ)ξ∈Ξ. Indeed, given θ := {ξ1, . . . , ξn} ∈ Pfin(Ξ), put
yθ := xξ1+. . .+xξn . So, we arrive at the net (yθ)θ∈Θ, where Θ:= Pfin(Ξ) is naturally
ordered by inclusion. Assuming that there is some x satisfying x = o-limθ∈Θ yθ, we
call the family (xξ) summable in order, or order summable, or o-summable. The
element x is the o-sum of (xξ); in symbols, x = o-

∑
ξ∈Ξ xξ. Obviously, if xξ ≥ 0

(ξ ∈ Ξ) then for the o-sum of the family (xξ) to exist it is necessary and sufficient
that the net (yθ)θ∈Θ be order bounded, in which case o-

∑
ξ∈Ξ xξ = supθ∈Θ yθ. If

(xξ) is a disjoint family then

o-
∑

ξ∈Ξ

xξ = sup
ξ∈Ξ

x+
ξ − sup

ξ∈Ξ
x−ξ .

Every K-space E is order complete (o-complete) in the following sense: If (xα)α∈A

is a net in E satisfying the condition

lim sup |xα − xβ | = inf
γ∈A

sup
α,β≥γ

|xα − xβ| = 0,

then there is an x ∈ E such that x = o-limxα.

5.1.7. Examples.

(1) Assume given a family (Eα)α∈A of vector lattices (f -algebras) over
the same ordered field F. Furnish the product E := Πα∈AEα with the coordinate-
wise operations and order. Then E becomes a vector lattice (f -algebra) over F.
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In this case E is a Dedekind complete, universally complete, or discrete vector
lattice if and only if all factors Eα have the same property. The base B(E) is
isomorphic with the product of the family of the Boolean algebras (B(Eα))α∈A.
An element e ∈ E is an order unit if and only if e(α) is an order unit in Eα for all
α ∈ A.

In particular, the set R
A (CA) of all real (complex) functions on a nonempty

set A is a universally complete discrete K-space (complex K-space).

(2) Every ideal of a vector lattice is a vector lattice. Moreover, every
ideal of a K-space is a K-space.

In particular, lp(A), the space of p-summable families, is a K-space for 1 ≤
p ≤ ∞ (cf. (1)). The same applies to the most important instance of an ideal in
a vector lattice E which is an order dense ideal or a foundation of E in the Russian
literature. The base of a vector lattice E is isomorphic with that of each order
dense ideal of E.

(3) Let N be an ideal of a vector lattice E. Then the factor space
Ẽ := E/N is also a vector lattice provided that the order on Ẽ is determined by
the positive cone ϕ(E+), with ϕ : E → Ẽ standing for the factor mapping.

The factor lattice E/N is Archimedean if and only if N is closed under relative
uniform convergence. If E is an f -algebra and N is a ring and order ideal then E/N
is an f -algebra. If E is a Kσ-space and N is sequentially order closed then E/N

is a Kσ-space and ϕ is sequentially order continuous. The base of Ẽ is isomorphic
to the complete Boolean algebra of Δ-bands RΔ(E), where Δ:= {(x, y) ∈ E × E :
|x| ∧ |y| ∈ N}.

(4) Let (Ω,A ) be a measurable space; i.e., Ω is a nonempty set and A
is a σ-algebra of its subsets. Denote by M (Ω,A ) the set of all real (complex) mea-
surable functions on Ω and equip M (Ω,A ) with the pointwise operations and order
induced from R

Ω (from C
Ω). Choose some σ-complete ideal N of the algebra A .

Let N comprise the functions f ∈ M (Ω,A ) such that {t ∈ Ω : f(t) �= 0} ∈ N .
Assign M(Ω,A , N) := M (Ω,A )/N . Then M (Ω,A ) and M(Ω,A ,N ) are real
(complex) Kσ-spaces and f -algebras at the same time.

Assume now that μ : A → R∪{+∞} is a countably additive positive measure.
The vector lattice M(Ω,A , μ) := M(Ω,A , μ−1(0)) is a universally complete K-
space provided that μ is a totally finite or σ-finite measure. In general, the Dedekind
completeness property of M(Ω,A , μ) relates to the direct sum property for μ [82,
103]. However, we will confine exposition to the case of a σ-finite measure μ for the
sake of simplicity.

The space M(Ω,A , μ) is continuous if and only if μ has no atoms. Recall that
an atom of a measure μ is a set A ∈ A such that 0 < μ(A) and if A′ ∈ A , A′ ⊂ A,
then μ(A′) = 0 or μ(A′) = μ(A).
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If M(Ω,A , μ) is discrete then μ is a purely atomic measure; i.e., each set of
nonzero measure contains an atom of μ. The coset of the identically one function
is an order and ring unity in M(Ω,A , μ).

The base of the K-space M(Ω,A , μ) is isomorphic to the Boolean algebra
A /μ−1(0) of measurable sets modulo zero measure sets.

By (2), the Lp(Ω,A , μ)-space, 1 ≤ p ≤ ∞, presenting an order dense ideal of
M(Ω,A , μ), is a K-space.

(5) Assume thatH is a complex Hilbert space and A is a strongly closed
commutative algebra of bounded selfadjoint operators on H. Denote by P(A) the
set of all orthoprojections in H belonging to A. Then P(A) is a complete Boolean
algebra.

We now let A∞ stand for the set of all densely defined selfadjoint operators a
in H such that the spectral function λ �→ eaλ of a takes values in P(A). Denote by
A∞ the set of densely defined normal operators a in H such that if a = u|a| is the
polar decomposition of a then |a| ∈ A∞.

Furnish the sets A∞ and A∞ with the structure of an ordered vector space in
a natural way. Indeed, given a and b in A∞, define the sum a+ b and the product
a ·b as the unique selfadjoint extensions of the operators h �→ ah+bh and h �→ a ·bh
with h ∈ dom(a) ∩ dom(b) and dom(c) standing for the domain of c. Moreover,
granted a ∈ A∞, we say that a ≥ 0 if and only if 〈ah, h〉 ≥ 0 for all h ∈ dom(a).
The operations and order on A∞ result from complexifying A∞. The sets A∞ and
A∞ with the above operations and order are a universally complete K-space and
a universally complete complex K-space with base P(A), respectively. In this case
A is the K-space of bounded elements of A∞.

(6) Take a topological space Q and denote by Bor(Q) := Bor(Q,R)
the set of all Borel functions from Q to R with addition, multiplication, and order
introduced pointwise. Then Bor(Q,R) is a Kσ-space.

By N we denote the set of such Borel functions f ∈ Bor(Q) that {t ∈ Q :
f(t) �= 0} is a meager set (i.e., a set of the first category). Let B(Q) stand for
the factor space Bor(Q)/N with the operations and order induced from Bor(Q).
Then B(Q) is a K-space whose base is isomorphic to the Boolean algebra of Borel
subsets Q modulo meager sets.

If Q is a Baire space (i.e., every nonempty open subset of Q is not meager),
then the base B(B(Q)) is isomorphic to the Boolean algebra of all regular open
(or regular closed) subsets of Q. Each of the spaces Bor(Q) and B(Q) is a faithful
f -algebra. The identically one function serves as an order and ring unity in these
spaces. Replacing R with C, we arrive at the complex K-space B(Q).

(7) Let Q be a topological space again. Denote by C(Q) the space of
continuous real functions onQ. Then C(Q) is a sublattice and subalgebra of Bor(Q).
In particular, C(Q) is a faithful Archimedean f -algebra. Generally speaking, C(Q)
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is not a K-space. The Dedekind completeness property of C(Q) amounts to the
extremal disconnectedness property of Q (see 1.2.5). In the case of a uniformizable
space Q the base of C(Q) is isomorphic to the algebra of regular open sets.

We now let LSC(Q) stand for the set of (the cosets of) lower semicontinuous
functions f : Q → R := R∪{±∞) such that f−1(−∞) is nowhere dense whereas
the interior of the set f−1([−∞,∞)) is dense in Q. As usual, two functions are
equivalent if they agree on the complement of a meager set. The sum f + g (the
product f ·g) of f, g ∈ LSC(Q) is defined as the lower semicontinuous regularization
of the pointwise sum t �→ f(t) + g(t) (t ∈ Q0) (the pointwise product t �→ f(t) · g(t)
(t ∈ Q0)) where Q0 is some dense subset of Q on which f and g are both finite.
We this make LSC(Q) into a universally complete K-space and an f -algebra, with
the base of LSC(Q) isomorphic to the algebra of regular open sets. Hence, if Q is
Baire then B(Q) and LSC(Q) are isomorphic K-spaces; if Q is uniformizable then
C(Q) is an (order) dense sublattice of LSC(Q).

5.1.8. A special role in the theory of vector lattices is played by the spaces
of continuous functions assuming possibly infinite values on a nowhere dense set
depending on a function. Before introducing these spaces, we need some prelimi-
naries.

Given a function f : Q→ R and λ ∈ R, put

{f < λ} := {t ∈ Q : f(t) < λ}, {f ≤ λ} := {t ∈ Q : f(t) ≤ λ}.

(1) Assume that Q is a topological space, Λ is a dense set in R, and
λ �→ Uλ (λ ∈ Λ) is an increasing mapping from Λ to the inclusion ordered set
P(Q). Then the following are equivalent:

(a) There is a unique continuous function f : Q→ R satisfying

{f < λ} ⊂ Uλ ⊂ {f ≤ λ} (λ ∈ Λ),

(b) If λ, μ ∈ Λ, and λ < μ then

cl(Uλ) ⊂ int(Uμ).

� The implication (a) → (b) is evident.
Prove (b) → (a). To this end, given t ∈ Q, put f(t) := inf{λ ∈ Λ : t ∈ Uλ}.

For the so-defined f : Q → R, we easily see that {f < λ} ⊂ Uλ ⊂ {f ≤ λ}. It is
also clear that

{f < λ} =
⋃

{Uμ : μ < λ ∧ μ ∈ Λ}, {f ≤ λ} =
⋂

{Uν : λ < ν ∧ ν ∈ Λ}.

Note that by now we have used only the fact that λ �→ Uλ is an increasing mapping.
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Consider the mappings

λ �→ Vλ := int(Uλ), λ �→Wλ := cl(Uλ) (λ ∈ Λ).

These are also increasing mappings. So, the above implies that there are functions
g and h : Q→ R such that

{g < λ} ⊂ Vλ ⊂ {g ≤ λ}, {h < λ} ⊂Wλ ⊂ {h ≤ λ} (λ ∈ Λ).

From the definition of Wλ it follows that Uμ ⊂ Wλ for μ < λ. Since Λ is dense in
R, to all t ∈ Q and ν > f(t) there are λ, μ ∈ Λ such that f(t) < μ < λ < ν and
so t ∈ Uμ ⊂ Wλ and h(t) < λ < ν. Letting ν tend to f(t), obtain h(t) ≤ f(t).
The same inequality is immediate for f(t) = +∞. By analogy, Vμ ⊂ Uλ for μ < λ.
Hence, f(t) ≤ g(t) for all t ∈ Q.

Writing (b) as Wμ ⊂ Vλ (μ < λ), and arguing as above, conclude that g(t) ≤
h(t) for all t ∈ Q. Therefore, f = g = h.

The fact that f is continuous follows from the equalities

{f < λ} = {g < λ} =
⋃

{Vμ : μ < λ, μ ∈ Λ},
{f ≤ λ} = {h ≤ λ} =

⋂
{Wμ : μ > λ, μ ∈ Λ},

since Vμ is open whereas Wμ is closed for all μ ∈ Λ. �
(2) Let Q be an extremally disconnected compact space; i.e., Q is

a compact topological space wherein the closure of every open set is open. As-
sume that Q0 is a dense open subset of Q and f : Q0 → R is a continuous function.
Then there is a unique continuous function f̄ : Q0 → R such that f(t) = f̄(t)
(t ∈ Q0).

� Indeed, if Uμ := cl({f < μ}) then the mapping μ �→ Uμ, with μ ∈ R, increases
and meets the condition (b) of (1). Hence, there is a unique function f̄ : Q → R

satisfying {f̄ < μ} ⊂ Uμ ⊂ {f̄ ≤ μ} (μ ∈ R). Obviously, in this case f̄ � Q0 = f ,
i.e. the restriction of f̄ to Q0 coincides with f . �

(3) Denote by C∞(Q) the set of all continuous functions x : Q →
R assuming the values ±∞ possibly on a nowhere dense set. Order C∞(Q) by
assigning x ≤ y whenever x(t) ≤ y(t) for all t ∈ Q. Then, take x, y ∈ C∞(Q)
and put Q0 := {|x| < +∞} ∩ {|y| < +∞}. In this case Q0 is open and dense
in Q. According to (2), there is a unique continuous function z : Q→ R such that
z(t) = x(t) + y(t) for t ∈ Q0. It is this function z that we declare the sum of x
and y.

In an analogous way we define the product of a pair of elements. Identifying the
number λ with the identically λ function on Q, we obtain the product of x ∈ C∞(Q)
and λ ∈ R.
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Clearly, the space C∞(Q) with the operations and order introduced above is
a vector lattice and a faithful f -algebra. The identically one function is a ring and
order unity.

We shall prove in the sequel that C∞(Q) is a universally complete K-space.
The base of C∞(Q) is isomorphic with the Boolean algebra of all clopen subsets of
the compact set Q.

5.1.9. Let E and F be vector lattices.

(1) A linear operator U : E → F is positive if U(E+) ⊂ F+; U is
regular if it is representable as a difference of two positive operators; and, finally,
U is order bounded or o-bounded if U sends every order bounded subset of E into
an order bounded subset of F .

If F is a K-space then an operator is regular if and only if it is order bounded.
The set of all regular (positive) operators from E into F is denoted by L∼(E, F )
(L∼(E, F )+).

Riesz–Kantorovich Theorem. Assume that E is a vector lattice
and F is a K-space. Then the space L∼(E, F ) of regular operators with positive
cone L∼(E, F )+ is a K-space.

(2) Recall that an operator U : E → F is order continuous (or o-
continuous) if, for every net (xα)α∈A in E, the equality o-limα∈A xα = 0 yields
o-limα∈A Uxα = 0. Sequential o-continuity is understood likewise. The set of all
order continuous regular operators equipped with the operations and order induced
from L∼(E, F ) is denoted by L∼

n (E, F ). If U ∈ L∼
n (E, F ) then the band N (U)⊥,

where N (U) := {x ∈ E : U(|x|) = 0}, is the carrier or band of essential positivity
of U . If F = R then we write E∼

n rather than L∼
n (E,R).

The space L∼
n (E, F ) is a band in L∼(E, F ) and so L∼

n (E, F ) is a K-space. If
f ∈ E∼

n and Ef is the carrier of f then the Boolean algebras B(f) := B({f}⊥⊥) and
B(Ef ) are isomorphic. A functional f is a unity in E∼

n if and only if N (f)⊥ = E.

(3) Consider a vector lattice E and a vector sublattice D ⊂ E. A linear
operator U from D into E is said to be a stabilizer if Ux ∈ {x}⊥⊥ for every x ∈ D.
A stabilizer may fail to be regular. A regular stabilizer is called an orthomorphism.

Denote by Orth(E) the subspace of L∼(E) comprising the orthomorphisms
with domain E. We also let Z (E) stand for the order ideal generated by the
identity operator IE in L∼(E). The space Z (E) is often called the center of E.

We now define the orthomorphism algebra Orth∞(E) of E as follows. First we
denote by M the collection of all pairs (D, π), where D is an order dense ideal in E
and π is an orthomorphism from D into E. Elements (D, π) and (D′, π′) in M are
declared equivalent if the orthomorphisms π and π′ agree on the intersection D∩D′.
The factor set of M by the equivalence relation is exactly Orth∞(E). Identify every
orthomorphism π ∈ Orth(E) with the corresponding coset in Orth∞(E). Then
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Z (E) ⊂ Orth(E) ⊂ Orth∞(E). The set Orth∞(E) can be naturally furnished with
the structure of an ordered algebra justifying the term “orthomorphism algebra.”

(4) Theorem. If E is an Archimedean vector lattice then Orth∞(E)
is a faithful f -algebra with unity IE . Moreover, Orth(E) is an f -subalgebra in
Orth∞(E) and Z (E) is an f -subalgebra of bounded elements in Orth(E).

(5) Theorem. Every Archimedean f -algebra E with unity 1 is alge-
braically and latticially isomorphic to the f -algebra of orthomorphisms. Moreover,
the ideal I(1) is mapped onto Z (E).

If E is an Archimedean vector lattice then the base of each of the f -algebras
Orth∞(E), Orth(E), and Z (E) is isomorphic to the base of E. If E is a K-space
then Orth∞(E) is a universally complete K-space and Orth(E) is an order dense
ideal of it.

5.1.10. Comments.

(1) The rise of the theory of ordered vector spaces is commonly attrib-
uted to the contribution by G. Birkhoff, L. V. Kantorovich, M. G. Krĕın, H. Nakano,
F. Riesz, H. Freudenthal, et al. in the 1930s. At present, the theory of ordered
vector spaces and its applications occupy a vast field of mathematics, serving as
one of the main sections of contemporary functional analysis. The theory is well
expounded in many monographs, cf. [1, 3, 4, 91, 103, 104, 114, 149, 154, 158, 214,
216, 253, 258]. Also, notice the surveys [22, 23].

(2) The contents of this subsection are the preliminaries to vector lat-
tice theory whose exposition is given in each of the following sources [4, 103, 158,
214, 253]. Another title for a vector lattice is a Riesz space, see [158, 258].

(3) It was L. V. Kantorovich who initiated research into Dedekind com-
plete vector lattices, alternatively, K-spaces. The notion of K-space appeared in
Kantorovich’s first article on this topic [96]. Therein he treated the members of
a K-space as generalized numbers and propounded the heuristic transfer principle.
He wrote: “In this note, I define a new type of space that I call a semiordered
linear space. The introduction of such a space allows us to study linear operations
of one abstract class (those with values in these spaces) in the same way as linear
functionals.”

(4) The heuristic transfer principle by L. V. Kantorovich was corrobo-
rated many times in the works of L. V. Kantorovich and his followers, cf. [97–102,
104]. Attempts at formalizing the heuristic ideas by L. V. Kantorovich have started
at the initial stages of K-space theory, resulting in the so-called theorems of identity
preservation (sometimes a less exact term “conservation” is also employed). They
assert that if a proposition with finitely many function variables is proven for the
reals then a similar fact holds for the members of an arbitrary K-space (see [104,
253]).
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Unfortunately, no satisfactory explanation was suggested for the internal mech-
anism controlling the phenomenon of identity preservation. Insufficiently clear re-
mained the limits on the heuristic transfer principle. The same applies to the
general reasons for similarity and parallelism between the reals and their analogs
in K-space. The omnipotence and omnipresence of Kantorovich’s transfer principle
found its full explanation within Boolean valued analysis (cf. 5.2.15 (1)).

5.2. Representation of Vector Lattices

In this section we prove that Archimedean vector lattices are represented as
subgroups of the additive group of the reals in an appropriate Boolean valued uni-
verse. This enables us to deduce the basic structural properties of vector lattices:
the functional calculus, spectral decomposition of elements, representation by func-
tion spaces, etc.

5.2.1. Denote by R the reals viewed as a totally ordered field and let R
∧ be

the standard name of R; i.e., the value at R of the canonical embedding of the von
Neumann universe into V(B) (see 2.2.7).

Since R is an algebraic system of signature σ := (+, · , 0, 1,≤); therefore, by
virtue of Corollary 4.3.5 (1), R

∧ is an algebraic system of signature σ∧ inside V(B).
Moreover, given a formula ϕ(u0, . . . , un−1) of signature σ and x0, . . . , xn−1 ∈ R,
note that ϕ(x0, . . . , xn−1) holds if and only if ϕ(x∧

0 , . . . , x
∧
n−1) holds inside V(B).

Choosing as ϕ the axioms of an Archimedean totally ordered field, we note in
particular that V(B) |= “R

∧ is an Archimedean totally ordered field.”
However, we cannot claim that R

∧ stands for the reals inside V(B) (cf. [72]).
The reason behind this is that the completeness postulate for the reals is not ex-
pressed by a bounded formula. In fact, one of the equivalent formulations of the
completeness postulate reads:

(∀A) (A ⊂ R ∧ A �= ∅ ∧ π≤(A) �= ∅ → (∃x ∈ R)(x = sup(A)));

i.e., each upper bounded nonempty set of reals has a least upper bound. This
formula uses generalization over the powerset of R.

Recall (cf. 3.1.1) that B0(R) := R
∧↓ consists of all mixings mixt∈R(btt∧), where

(bt)t∈R is a partition of unity inB. Theorem 4.4.10 shows that B0(R) is a universally
complete faithful f -ring.

The f -ringB0(R) may be identified with the f -ring of all continuous functions x
from the Stone space Q of the Boolean algebra B to the set R := R ∪ {±∞} with
the discrete topology each of which takes the values ±∞ on a nowhere dense set.
Obviously, B0(R) is indeed an f -algebra, since we may assume R ⊂ B0(R) on
identifying λ in R with the identically λ function on Q.
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5.2.2. By the transfer and maximum principles, there is an element R ∈ V(B)

such that V(B) |= “R is an ordered field of the reals.” It is obvious that inside
V(B) the field R is unique up to isomorphism; i.e., if R′ is another field of the reals
inside V(B) then V(B) |= “R and R′ are isomorphic.”

As was pointed out above, R
∧ is an Archimedean ordered field inside V(B) and

so we may assume that V(B) |= “R
∧ ⊂ R and R is the (metric) completion of R

∧.”
Regarding the unity 1 of R, notice that V(B) |= “1:= 1∧ is an order unit of R.”

Consider the descent R↓ of the algebraic system R := (|R|,+, · , 0, 1,≤). By
implication, we equip the descent of the underlying set of R with the descended
operations and order of R. In more detail, addition, multiplication, and order
on R↓ appear in accord with the following rules (cf. 4.2.3):

x+ y = z ↔ [[x+ y = z]] = 1,

xy = z ↔ [[xy = z]] = 1,

x ≤ y ↔ [[x ≤ y]] = 1,

λx = y ↔ [[λ∧x = y]] = 1

(x, y, z ∈ R↓, λ ∈ R).

Gordon Theorem. Let R be the reals in V(B). Assume further that R ↓
stands for the descent |R|↓ of the underlying set of R equipped with the descended
operations and order. Then the algebraic system R is a universally complete K-
space.

Moreover, there is a (canonical) isomorphism χ from the Boolean algebra B
onto the Boolean algebra of band projections Pr(R↓) or onto the Boolean algebra
of the unit elements C(R↓) such that the following hold:

χ(b)x = χ(b)y ↔ b ≤ [[x = y]],
χ(b)x ≤ χ(b)y ↔ b ≤ [[x ≤ y]]

for all x, y ∈ R↓ and b ∈ B.

� This is already proven in 4.4.10.
Indeed, by 4.4.10 (2, 4), R↓ is a universally complete and Dedekind complete

f -ring with unity 1 := 1∧.
The mapping λ �→ λ∧ · 1 is an isomorphism of R to R↓. Putting λx := λ∧x

(x ∈ R↓, λ ∈ R), obtain a sought vector structure on R ↓. Therefore, R ↓ is
a universally complete K-space. �

5.2.3. With the notation of 5.2.2, we elaborate some general propositions
about vector lattices in terms of the K-space R↓.
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(1) Assume that (bξ)ξ∈Ξ is a partition of unity in B and (xξ)ξ∈Ξ is
a family in R↓. Then

mix
ξ∈Ξ

(bξxξ) = o-
∑

ξ∈Ξ

χ(bξ)xξ.

� Indeed, if x = mix(bξxξ) then the definition of mixing, together with The-
orem 5.2.2, implies that χ(bξ)x = χ(bξ)xξ for all ξ. Summing these formulas with
respect to ξ, complete the proof. �

(2) For a set A ⊂ R↓ and arbitrary a ∈ R↓ and b ∈ B the following
equivalence holds:

χ(b)a = sup(χ(b)(A)) ↔ b ≤ [[a = sup(A↑)]].

� Indeed, by 5.2.2, the equality χ(b)a = sup{χ(b)x : x ∈ A} holds if and only
if b ≤ [[x ≤ a]] for all x ∈ A and for every y ∈ R↓ the formula (∀x ∈ A)(b ≤ [[x ≤ y]])
implies b ≤ [[a ≤ y]]. The last statement is just another expression of the estimate
b ≤ [[sup(A↑) = a]]. �

(3) Consider a net s : A → R↓, with A a directed set. The modified
ascent s↑ : A∧ → R is a net inside V(B). Moreover,

χ(b)x = o-lim(χ(b) ◦ s) ↔ b ≤ [[x = lim(s↑)]]

for all x ∈ R↓ and b ∈ B.

� The equality χ(b)x = o-lim(χ(b) ◦ s) amounts to the existence of a net
r : A → R ↓ such that r(α) ≤ r(β) for α ≤ β, inf{r(α) : α ∈ A} = 0 and
|χ(b)x− χ(b)s(α)| ≤ χ(b)r(α) for all α ∈ A.

In view of 5.2.3 (2) and the equality r(A)↑= r↑(A∧), the last three formulas
imply the inequalities:

b ≤ [[(∀α ∈ A∧)(|x− s↑(α)| ≤ r(α))]],
b ≤ [[inf(r↑(A∧) = 0)]],

b ≤ [[(∀α, β ∈ A∧)(α ≤ β → r↑(α) ≤ r↑(β)]].

These may be rewritten briefly as b ≤ [[x = lim(s↑)]], as claimed. �
The following proposition is proven along the same lines.

(4) Assume given s and A in V(B) such that [[s : A → R is a net ]] = 1.
Then the descent s↓: A↓→ R↓ is a net. Moreover,

χ(b)x = o-lim(χ(b) ◦ (s↓)) ↔ b ≤ [[x = lim(s)]]

for all x ∈ R↓ and b ∈ B.
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(5) For every element x ∈ R↓ the following equalities hold:

ex = χ([[x �= 0]]), exλ = χ([[x < λ]]) (λ ∈ R).

� Note that a real t is other than zero if and only if the least upper bound of
the set {1 ∧ (n|t|) : n ∈ ω} is 1. Given x ∈ R↓, by the transfer principle, we thus
have [[x �= 0]] = [[sup{1∧ ∧ (n|x|) : n ∈ ω∧} = 1]].

If A := {1∧(n|x|) : n ∈ ω} then [[sup(A↑) = sup{1∧∧(n|x|) : n ∈ ω∧}]] = 1 and
ex = sup(A). Therefore, b := [[x �= 0]] = [[ex = 1]] and, analogously, b∗ = [[ex = 0]].
Using the properties of χ, deduce ex = χ(b).

Now, choose an arbitrary number λ ∈ R and note that λ∧ = λ∧1, and so
exλ = e(λ∧−x)+ . Whence,

χ−1(exλ) = [[(λ∧ − x) ∨ 0 �= 0]] = [[λ∧ − x > 0]] = [[x < λ∧]]. �

5.2.4. Theorem. Assume that X is an Archimedean vector lattice with base
B := B(X) and let R stand as before for the reals in V(B). Then there is a linear
and lattice isomorphism ı from X into the universally complete K-space R↓ such
that the following conditions are met:

(1) The isomorphism ı preserves suprema and infima;
(2) The order ideal J(ı(X)) generated by ı(X) is an order dense ideal

of R↓;
(3) inf{ı(x) : x ∈ X, ı(x) ≥ y} = y = sup{ı(x) : x ∈ X, ı(x) ≤ y} for

all y ∈ J(ı(X));
(4) If x ∈ X and b ∈ B then b ≤ [[ı(x) = 0]] whenever x ∈ b⊥.

� By Theorem 4.4.12 there are a subgroup X of the additive group of the
reals R ∈ V(B) and a group and lattice isomorphism ı := ıX from X to X .

Let e be a nonzero positive element of X . Replacing, if need be, X with the
group e−1X isomorphic to X , assume that e = 1 ∈ X .

Note that X∧ is a vector space over R
∧. In these circumstances the factor

mapping ϕ := ϕX : X∧ → X is R
∧-linear. In particular, [[ϕ((λx)∧) = λ∧ϕ(x∧)]] = 1

for all λ ∈ R and x ∈ X . Therefore, [[ı(λx) = λ∧ı(x)]] = 1, or ı(λx) = λı(x)
(cf. 5.2.2).

Considering 1 = mix(bξı(eξ)), (eξ) ⊂ X and λ ∈ R, we may write

bξ ≤ [[λ∧ = λ∧ · ıeξ]] ∧ [[λ∧ · ıeξ = ı(λeξ)]] ∧ [[ı(λeξ) ∈ X ]] ≤ [[λ∧ ∈ X ]].

Therefore, λ∧ ∈ X and so [[R∧ ⊂ X ⊂ R]] = 1.
Moreover, V(B) |= “X is a vector sublattice of R viewed as a vector lat-

tice over R
∧.” In this case, however, X ↓ is a vector sublattice of the universally

complete K-space R↓, while ı may be considered as an embedding of X in R↓.
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The task we are left with now is to check that the claims of (1)–(4) hold.
(1) Take A ⊂ X and a ∈ X so that a = sup(A). Put z = sup(ı(A)) where the

supremum is calculated in R↓. From the obvious equality [[X minorizes R]] = 1 it
is easy that X ↓ minorizes R↓. In this case, however, ı(X) also minorizes R↓ (see
4.4.12). If ı(a) ≥ z then ı(x) ≤ ı(a) − z or z ≤ ı(a− x) for some 0 < x ∈ X , which
implies that a − x is an upper bound of A and the equality a = sup(A) implies
a− x ≥ a or x ≤ 0. This contradiction yields z = ı(a).

(2) Since ı(X) minorizes R ↓; therefore, R ↓= ı(X)⊥⊥. Hence, the equality
R↓= J(ı(X))⊥⊥ holds, where J(ı(X)) is the order ideal generated by ı(X).

(3) The formula [[R∧ ⊂ X ⊂ R]] = 1 allows us to conclude that V(B) |= “X
is a dense subgroup in R.” Hence, arguing inside V(B), note that

inf{x′ ∈ X : x′ ≥ x} = x = sup{x′ ∈ X : x′ ≤ x}
for every x ∈ R↓. Applying 5.2.3 (2), immediately obtain

inf{x′ ∈ X ↓: x′ ≥ x} = x = sup{x′ ∈ X ↓: x′ ≤ x}.
To complete the proof, recall that ı(X) minorizes X ↓.

(4) This is proven in 4.4.12. �
5.2.5. We now list a few corollaries to the above representation theorem.

(1) Let X be an Archimedean vector lattice with base B(X) isomorphic
to a Boolean algebra B. Then there is an elementX ∈ V(B) obeying the conditions:

(a) V(B) |= “X is a vector sublattice of the reals R viewed as a vector
space over R

∧”;
(b) X ′ := X ↓ is a universally complete vector lattice with the projec-

tion property which is an r-dense sublattice of the K-space R↓;
(c) There is a linear and lattice isomorphism ı : X → X ′ preserving
suprema and infima. Moreover, for each x ∈ X ′ there are a par-
tition of unity (πξ)ξ∈Ξ in Pr(X ′) and a family (xξ)ξ∈Ξ in X such
that

x = o-
∑

ξ∈Ξ

πξ ◦ ı(xξ).

� All claims are in fact immediate from 5.2.4. Prove for instance that X ′ is
r-dense in R↓.

If x ∈ R ↓ then V(B) |= “x is a real and x may be approximated with any
accuracy by the elements of X .” In other words, the following holds:

[[(∀ ε ∈ R
∧)(ε > 0 → (∃λ ∈ X )(|λ− x| < ε))]] = 1.

Writing out Boolean truth values for the quantifiers, observe that to every ε > 0
there is some λ ∈ X ′ satisfying |λ− x| ≤ ε1. The proof is complete. �
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(2) If X is a K-space then X = R and ı(X) is an order dense ideal of
R↓. The image of X under the isomorphism ı is the whole of R↓ if and only if X
is a universally complete K-space.

� The proof results from 5.2.2 and 5.2.4 (2, 3). �
(3) Universally complete K-spaces are order isomorphic if and only if

they have isomorphic bases.

� Indeed, if X and Y are universally complete K-spaces, while h is an order
isomorphism between X and Y ; then the mapping K �→ h(K) (K ∈ B(X)) is
an isomorphism between the respective bases.

Conversely, if B(X) and B(Y ) are isomorphic to a Boolean algebra B then,
by (2), each of the spaces X and Y is order isomorphic to the universally complete
K-space R↓. �

A completion of a K-space X is a pair (Y, ı), with Y another K-space and ı
an isomorphism of X onto an order dense ideal of Y . Furnish the class Ext(X)
of all completions of a K-space X with some order as follows: Given (Y, ı) and
(Z, j)∈ Ext(X), put (Y, ı) ≺ (Z, j) provided that there is an isomorphism h of Y
onto some order closed ideal of Z such that h ◦ ı = j. A maximal element of the
preordered class Ext(X) is a universal completion of X .

The following result ensues from (1) and (2).
(4) Each K-space has a universal completion which is unique up to

order isomorphism and presents a universally complete K-space.

This proposition allows us to use the same symbol mX for every universal
completion of X and speak about the universal completion of X (cf. 1.1.6 (7)).
Note that the Russian literature uses the term “extension” for “completion” and
“maximal extension” for “universal completion.”

(5) Assume that X is a universally completeK-space with order unit 1.
There is a unique multiplication in X making X into a faithful f -ring with 1 the
ring unity.

� Identify λ ∈ R with λ · 1. By virtue of (2), X is isomorphic to R↓ with 1
becoming 1 := 1∧ ∈ R↓, since [[ 1∧ is the unity of R ]] = 1. The descent of multipli-
cation in R brings about with the sought multiplicative structure. If × : X2 → X
is another multiplication in X satisfying the above conditions then it is extensional
and its ascent (×)↑ is some multiplication in R whose unity is 1. We clearly see
that × = · in this event, since the multiplicative structure of the field R is unique
when we have fixed a unity. �

(6) To each Archimedean vector lattice X there are a K-space oX ,
unique up to linear and lattice isomorphism, and a linear isomorphism ı : X → oX
preserving suprema and infima such that

sup{ı(x) : x ∈ X, ı(x) ≤ y} = y = inf{ı(x) : x ∈ X, ı(x) ≥ y}
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for all y ∈ oX .

� Let R and J(ı(X)) be the same as in 5.2.4. Then the pair (J(ı(X)), ı) meets
all requirements.

If (Y, j) is another pair with the same properties then the bases B(Y ) and
B(R↓) are isomorphic and so the K-spaces mY and R↓ are isomorphic by virtue
of (2). We may thus assume that ı(X) ⊂ Y ⊂ R↓ in which case Y is an order dense
ideal of R↓. Then J(ı(X)) ⊂ Y . On the other hand, to every y ∈ Y there must
exist x′ and x′′ in X satisfying ı(x′) ≤ y ≤ ı(x′′); i.e., Y ⊂ J(ı(X)). �

Assume that F is a K-space and A ⊂ F . Denote by dA the set that consists
of c ∈ F presentable as o-

∑
ξ∈Ξ πξaξ, with (aξ)ξ∈Ξ ⊂ A and (πξ)ξ∈Ξ a partition of

unity in Pr(F ). Assume further that rA stands for the set comprising x ∈ F of the
form r-limn→∞ an, where (an) is an arbitrary r-convergent sequence in A.

(7) oX = rdX for every Archimedean vector lattice X .

5.2.6. Theorem. Let X be an arbitrary Kσ-space with order unit 1. The
spectral function λ �→ exλ (λ ∈ R) of x ∈ X has the following properties:

(1) exλ ≤ exμ for λ ≤ μ;
(2) ex+∞ :=

∨
μ∈R

exμ = 1 and ex−∞ :=
∧
μ∈R

exμ = 0;

(3)
∨
μ<λ

exμ = exλ (λ ∈ R);

(4) x ≤ y ↔ (∀λ ∈ R) (eyλ ≤ exλ);
(5) ex+yλ =

∨{exμ · eyν : μ, ν ∈ R, μ+ ν = λ};
(6) ex·yλ =

∨{exμ · eyν : 0 ≤ μ, ν ∈ R, μν = λ} (x ≥ 0, y ≥ 0);
(7) e−xλ =

∨{1− ex−μ : μ ∈ R, μ < λ} = (1− ex−λ) · e(x+λ1);
(8) x = inf(A) ↔ (∀λ ∈ R)(exλ =

∨{eaλ : a ∈ A});
(9) ex∨yλ = exλ · eyλ;

(10) ecxλ = cexλ + c∗ for λ > 0, ecxλ = cexλ for λ ≤ 0 (c ∈ C(X)).
Moreover, the numbers μ and ν in (2), (3), and (5)– (7) may range over some dense
subfield P of R.

� Suppose first that X is a K-space. By Theorem 5.2.4, assume without loss of
generality that X = R↓. In this case, the desired claims ensue easily from 5.2.3 (5)
and the appropriate properties of the reals.

By way of example, prove (6) and (8).
(6) Assume that x ≥ 0 and y ≥ 0 with the product x · y. Evidently, x and y

are nonnegative reals inside V(B). By 5.2.3 (5), ex·yλ = χ([[x · y < λ∧]]), exλ = χ([[x <
λ∧]]), and eyλ = χ([[y < λ∧]]). Working inside V(B), note that

(∀x ∈ R)(∀ y ∈ R)
(
x ≥ 0 ∧ y ≥ 0 → (x · y < λ

↔ (∃ 0 < μ, ν ∈ P
∧)(x < μ) ∧ (y < ν) ∧ (λ = μν))

)
,
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and so
[[x · y < λ∧]] =

∨

0<μ,ν∈P

λ=μν

{[[x < μ∧]] ∧ [[y < ν∧]]},

whence the desired result follows.
(8) Now, given A ⊂ X assume that x = inf(A). Then exλ = χ([[x < λ∧]]) =

χ([[inf(A↑) < λ∧]]) (see 5.2.3 (1, 5)). However, A↑ is a certain nonempty subset of
the reals inside V(B). Hence,

V(B) |= inf(A↑) < λ∧ ↔ (∃ a ∈ A↑)(a < λ∧).

Calculating Boolean truth values, find

[[x < λ∧]] =
∨

a∈A
[[a < λ∧]],

and so
exλ =

∨
{χ([[a < λ∧]]) : a ∈ A} =

∨
{eaλ : a ∈ A}.

Conversely, assume that exλ is the supremum of the set {eaλ : a ∈ A} for λ ∈ R.
Then

[[x < λ∧]] = [[(∃ a ∈ A↑)(a < λ∧)]] = [[inf(A↑) < λ∧]]

for every λ ∈ R and so

[[(∀λ ∈ R
∧)(x < λ↔ inf(A↑) < λ)]] = 1.

Whence [[x = sup(A↑)]] = 1. Applying 5.2.3 (2), note that x = inf(A). The last
claim of the theorem results from the fact that if P is a dense subfield of R then
V(B) |= “P

∧ is dense in R.”
In the case when X is a Kσ-space, we may assume that X ⊂ R↓. If we put

the rationals Q in place of P then each of the suprema and infima above ranges
over a countable set. Consequently, a supremum taken in R↓ belongs in fact to X ,
serving so as the supremum in X . �

5.2.7. Here we establish the following three useful properties of order conver-
gence.

(1) Assume again that X is a K-space with order unit 1. Consider
an order bounded net (xα)α∈A of positive elements in X . Then (xα) vanishes in
order, i.e., converges in order to zero, if and only if for every 0 < ε ∈ R the net of
unit elements (exαε ) converges in order to 1.
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� Indeed, by Theorem 5.2.4, each xα may be viewed as a positive element of the
K-space R↓. The mapping s : α �→ s(α) := xα has the modified ascent δ := s↑ which
is a set in R, i.e., a numerical net inside V(B). According to 5.2.3 (3), o-lim(xα) = 0
if and only if [[lim(δ) = 0]] = 1, which can be rewritten in an equivalent form as

V(B) |= (∀ ε ∈ R
∧)(ε > 0 → (∃α ∈ A∧)(∀β ∈ A∧)(β ≥ α→ δ(β) = xβ < ε)).

Writing out the Boolean truth values of quantifiers, find another equivalent record:

(∀ ε > 0)(∃ (bα))(∀β ∈ A)(α ≤ β → bα ≤ [[δ(β∧) = xβ < ε∧]]),

where (bα) is a partition of unity in B.
Finally, applying 5.2.3 (5), infer

(∀ ε > 0)(∃ (bα)α∈A)(∀β ∈ A)(α ≤ β → χ(bα) ≤ e
xβ
ε )

or
(∀ ε > 0)(∃ (bα)α∈A)(χ(bα) ≤

∧
{exβε : β ≥ α}).

Since ∨(bα) = 1, the equality o-limxα = 0 amounts to the following: Granted
ε > 0, we have

o-lim(exαε ) = lim inf(exαε ) =
∨

α∈A

∧
{exβε : β ≥ α} = 1. �

(2) An order bounded net (xα)α∈A in a K-space X with order unit
1 converges in order to an element x ∈ X if and only if to every ε > 0 there is
a partition of unity (πα)α∈A in Pr(X) such that

πα|x− xβ| ≤ ε1 (α, β ∈ A, β ≥ α).

� To prove, appeal again to 5.2.4. Take s and δ the same as in (1). Reasoning
as above, find out that xα

o→ x is equivalent to the following: To each ε > 0 there
is a partition of unity (bα)α∈A in B satisfying

bα ≤ [[|xβ − x| ≤ ε∧]] (α, β ∈ A, β ≥ α).

If πα := χ(bα) (see 5.2.2) then the last formula means

πα|xβ − x| ≤ ε1 (α, β ∈ A, β ≥ α). �

(3) An order bounded net (xα) in the K-space X with order unit 1
converges in order to an element x ∈ X if and only if to every ε > 0 there is
an increasing net of projections (ρα) such that o-lim(ρα) = IX and

ρα|x− xβ | ≤ ε1 (α, β ∈ A, β ≥ α).

� Indeed, this is so on putting ρα :=
∨{πβ : β ≥ α} in (2). �
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5.2.8. We now turn our attention to results on function representation of vec-
tor lattices.

(1) Let B be a complete Boolean algebra. A resolution of the identity
in B or simply a resolution of identity in B is a mapping e : R → B having the
properties 5.2.6 (1–3) of a spectral function.

Denote by R(B) the set of all resolutions of identity in B. Furnish R(B) with
addition, scalar multiplication, and order by the following rules (cf. 5.2.6 (4–6)):

(e1 + e2)(λ) :=
∨

{e1(μ) · e2(ν) : μ, ν ∈ R, μ+ ν = λ};

(αe)(λ) := e(λ/α) (α > 0);

(−e)(λ) :=
∨

μ<λ

1 − e(−μ) = 1 −
∧

μ<λ

e(−μ);

(0 · e)(λ) := 0(λ) :=
{

1, if λ > 0,
0, if λ ≤ 0;

e1 ≤ e2 ↔ (∀λ ∈ R) e1(λ) ≥ e2(λ).

(2) The set R(B) with the above operations and order is a universally
complete K-space isomorphic to R↓.

� In line with 5.2.2, there is no loss of generality in assuming B to be the base
of unit elements of the K-space R↓.

Put in correspondence to an element x ∈ R ↓ its spectral function λ �→ exλ
(λ ∈ R). We have thus obtained an injective lattice homomorphism from R ↓
to R(B), as is seen from Theorem 5.2.6. We are left with justifying that this
homomorphism is surjective.

Take an arbitrary resolution of identity e : R → B. Let Σ be a set of all
partitions of the real axis; i.e., σ ∈ Σ if σ : Z → R is a strictly increasing function,
limn→∞ σ(n) = ∞ and limn→∞ σ(−n) = −∞ (as usual, Z stands for the integers).
In the universally complete K-space R↓ there is a sum xσ :=

∑
n∈Z

σ(n + 1)bnσ,
where bnσ := e(σ(n + 1)) − e(σ(n)). Put A := {xσ : σ ∈ Σ} and x = inf(A). The
infimum does exist since xσ ≥ ∑

n∈Z
σ(n)bnσ for a fixed partition σ ∈ Σ.

Note also that xσ = mix(bnσσ(n+ 1)∧) and

[[xσ < λ∧]] =
∨

{bnσ : σ(n+ 1) < λ} =
∨

{e(σ(n+ 1)) : σ(n+ 1) < λ}.

Since [[x = inf(A↑)]] = 1, the following calculations hold:

[[x < λ∧]] = [[(∃ a ∈ A↑)a < λ∧]]

=
∨

a∈A
[[a < λ∧]] =

∨

σ∈Σ

∨

σ(n+1)<λ

bnσ
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=
∨

σ∈Σ

∨

σ(n+1)<λ

e(σ(n)) =
∨

μ<λ

e(μ) = e(λ).

Therefore, e is the spectral function of x. �
(3) Theorem. Assume that Q denotes the Stone space of a complete

Boolean algebra B, and let R stand for the reals inside V(B). The vector lattice
C∞(Q) is a universally complete K-space linearly and latticially isomorphic to R↓.
Such an isomorphism may be carried out by sending x̂ : Q→ R to x ∈ R↓ according
to the rule

x̂(q) := inf{λ ∈ R : [[x < λ∧]] ∈ q}.
� As was shown in (1), the K-space R↓ is isomorphic to the space of all B-

valued spectral functions, with the function λ �→ [[x < λ∧]] (λ ∈ R) corresponding to
x ∈ R↓. Assume that a clopen subset Uλ of the Stone space Q corresponds to [[x <
λ∧]] ∈ B. Then, by virtue of 5.1.8 (2), to every element x ∈ R↓ there corresponds
a unique continuous function x̂ : Q→ R such that {x̂ < λ} ⊂ Uλ ⊂ {x̂ ≤ λ}.

In this case, however, x̂(q) = inf{λ ∈ R : q ∈ Uλ} = inf{λ ∈ R : [[x < λ∧]] ∈ q}.
The formulas

∧{[[x < λ∧]]} = 0 and
∨{[[x < λ∧]]} = 1 (cf. 5.2.6 (2)) imply that the

interior of the closed set
⋂{Uλ : λ ∈ R} is empty while the open set

⋃{Uλ : λ ∈ R}
is dense in Q. Therefore, the function x̂ may assume the values ±∞ only on
a nowhere dense set and so x̂ ∈ C∞(Q).

We omit the elementary demonstration of the fact that x �→ x̂ is a linear and
lattice isomorphism. �

5.2.9. We now list a few corollaries to the above theorem.
(1) Let X be an arbitrary K-space. Assume further that {eξ}ξ∈Ξ is

a total disjoint positive family in X . Denote by Q the Stone space of the Boolean
algebra of bands of B(X). Then there is a unique linear and lattice isomorphism
of X on an order dense ideal of the K-space C∞(Q) such that eξ transforms into
the characteristic function of a clopen subset Qξ of Q. This isomorphism sends
x ∈ X to the function x̂ : Q→ R acting by the rule

x̂(q) := inf
{
λ ∈ R : {eξλ}⊥⊥ ∈ q

}
(q ∈ Qξ),

where (eξλ) is the (value at λ of the) characteristic of the band projection of x to
{eξ}⊥⊥ with respect to the order unit eξ.

(2) A space X is a universally complete K-space (K-space of bounded
elements) if and only if the image of X under the above isomorphism is all C∞(Q)
(the subspace C(Q) of all continuous functions on Q).

(3) Each Archimedean vector lattice (f -algebra) X is linearly and lat-
ticially isomorphic to a vector sublattice (and a subalgebra) of the space C∞(Q),
where Q is the Stone space of the base B(X) of X .
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By C∞(Q, SZ) we denote the subset of C∞(Q) that comprises the functions
each of which assumes integer values on a clopen set S ⊂ Q. It is obvious that
C∞(Q, SZ) is a universally complete f -ring.

(4) An order complete lattice ordered group G is isomorphic to an order
dense ideal of the universally complete lattice ordered group C∞(Q, SZ), with Q
the Stone space of the base B(G) of G.

� If G is the Boolean valued representation of G then G is isomorphic to
R or is an infinite cyclic group. Therefore, there is a member b of B such that
b = [[G � Z

∧]] and b∗ = [[G � R]].
In the same way as in 4.4.13 we establish that G splits into the direct sum

of two summands: one is representable as R in V([0,b∗]) and the other, as Z
∧ in

V([0,b]).
It suffices to apply (1) to observe that Z

∧↓� B0(Z) � C∞(S, SZ) where S is
the clopen set in Q corresponding to b ∈ B. �

In an analogous way we may deduce the following proposition.
(5) Each f -ring is order isomorphic to the product of two f -rings K1

and K2 such that K1 is an order dense ideal and the subring of universally complete
f -ring C∞(Q1, S1Z), while K2 is an order dense ideal of the universally complete
group C∞(Q2, S2Z) with zero multiplication, where Qı is the Stone space of the
algebra B(Kı) and Sı ∈ B(Qı) (ı = 1, 2).

5.2.10. We will construct an integral of Stiltjes type with respect to a spectral
measure.

Assume that Ω is a nonempty set and Σ is a σ-algebra of subsets of Ω. Consider
the Boolean algebra B of unit elements of some Kσ-space X .

A spectral measure is a σ-continuous Boolean homomorphism μ from Σ to B.
Here σ-continuity means that

μ

( ∞∨

n=0

en

)
=

∞∨

n=0

μ(en)

for every sequence (en)n∈ω of elements of Σ.
Take a measurable function f : Ω → R. Given a countable partition of the real

axis Λ := (λk)k∈Z, −∞ . . . λ−1 < λ0 < λ1 < . . . →, put en := f−1([λn, λn+1)) and
arrange the integral sums

σ(f,Λ) =
∞∑

−∞
λnμ(en), σ(f,Λ) =

∞∑

−∞
λn+1μ(en),

with all sums calculated in X .
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Granted whatever tn ∈ en (n ∈ Z), we obviously have

σ(f,Λ) ≤
∞∑

−∞
f(tn)μ(en) ≤ σ(f,Λ).

Refining a partition Λ, we make σ(f,Λ) increase and σ(f,Λ) decrease. Assume
that there is an element x in X satisfying sup σ(f,Λ) = x = inf σ(f,Λ), where the
supremum and infimum range over all possible partitions Λ := (λl)l∈Z of the real
axis as δ(Λ) := supn∈Z

{λn − λn−1} → 0. In this event, call μ a spectral measure,
say that f is an integrable function with respect to μ, and write

I(f) := Iμ(f) :=
∫

Ω

fdμ :=
∫

Ω

f(t)dμ(t) := x.

Since 0 ≤ σ(f,Λ) − σ(f,Λ) ≤ ∑∞
n=−∞ δμ(ek) = δ1, where δ := δ(Λ); for

the integral Iμ(f) to exist it is necessary and sufficient that there exist σ(f,Λ) and
σ(f,Λ) for at least one partition of Λ. In particular, a bounded measurable function
is integrable.

(1) Let X = R↓ and μ be a spectral measure with values in B := C(X).
Then Iμ(f) is a unique element of X satisfying

[[Iμ(f) < λ∧]] = μ({f < λ}) (λ ∈ R)

for every measurable function f .

� Take λ ∈ R and assume that b ≤ [[λ∧ ≤ Iμ(f)]]. Given a partition Λ,
by Theorem 5.2.2 bλ ≤ bIμ(f) ≤ bσ(f,Λ). If Λ := (λl)l∈Z is such that λ0 = λ
and cn := {u ∈ Ω : λn ≤ f(u) < λn+1}, then λb ∧ μ(cn) ≤ λn+1b ∧ μ(cn) for
n < −1 and so either b ∧ μ(cn) = 0 or λn+1 < λ. Hence, putting c :=

∨−∞
n=−1 cn,

note that b ∧ μ(c) = 0 or b ≤ μ(c)∗ = μ(Ω − c) = μ({f ≥ λ}). Therefore,
[[Iμ(f) ≥ λ∧]] = μ({f ≥ λ}), which amounts to the desired equality.

Assume that [[x < λ∧]] = μ({f < λ}) for some x ∈ X . Using the above stated
property of Iμ(f), find that

[[(∀λ ∈ R
∧)(Iμ(f) < λ↔ x < λ)]]

=
∧

λ∈R

[[Iμ(f) < λ∧]] ⇔ [[x < λ∧]] = 1.

Using the denseness of R
∧ in R, conclude that x = Iμ(f). �

(2) In the hypotheses of (1), the mapping λ �→ μ({f < λ}), with λ ∈ R,
is the spectral function of Iμ(f).
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5.2.11. Theorem. Assume given a universally complete Kσ-space X and
a spectral measure μ : Σ → B := C(X). The spectral integral Iμ(·) is a sequen-
tially order continuous (linear, multiplicative, and lattice) homomorphism from the
f -algebra of measurable functions M (Ω,Σ) to X .

� Without loss of generality, assume that X ⊂ R↓.
The sums σ(f,Λ) and σ(f < Λ) do exist, since the summands are pairwise

disjoint and X is universally complete. As mentioned above, this implies existence
of Iμ(f).

It is evident that Iμ is a positive linear operator. Demonstrate that Iμ is
sequentially order continuous.

Take a decreasing sequence (fn)n∈ω of measurable functions satisfying the con-
dition limn→∞ fn(t) = 0 for all t ∈ Ω. Put xn := Iμ(fn) (n ∈ ω) and choose
0 < ε ∈ R. Denote cn := {t ∈ Ω : fn(t) < ε} to obtain Ω =

⋃∞
n=0 cn. By 5.2.3 (5)

and 5.2.10 (2),

o- lim
n→∞ exnε = lim

n→∞μ(cn) =
∨

n∈ω
μ(cn) = μ(Ω) = 1.

Recalling the order convergence test 5.2.7 (1), infer that o-limn→∞ xn = 0. More-
over, given measurable functions f, g : Ω → R and using 5.2.6 (9) and 5.2.10 (2),
note that

ef∨gλ = μ({f ∨ g < λ}) = μ({f < λ} ∩ {g < λ})

= μ({f < λ}) ∧ μ({g < λ}) = e
I(f)
λ ∧ eI(g)λ = e

I(f)∨I(g)
λ .

Therefore, I(f ∨ g) = I(f) ∨ I(g), which means that I := Iμ is a lattice homomor-
phism.

By analogy, given f ≥ 0, g ≥ 0, and λ ∈ Q, apply 5.2.6 (6) and 5.2.8 (3) to find

e
I(fg)
λ = μ({fg < λ}) =

∨
{μ({f < κ}) ∧ μ({g < ν}) : λ = νκ,

0 ≤ κ, ν ∈ Q} =
∨

{eI(f)
κ

· eI(g)ν : 0 ≤ κ, ν ∈ Q, νκ = λ} = e
I(f)·I(g)
λ .

Hence, I(f) ·I(g) = I(fg). In the case of arbitrary f and g, the last equality follows
from the properties of the spectral integral. Indeed,

Iμ(fg) = Iμ(f+g+) + Iμ(f−g−) − Iμ(f+g−) − Iμ(f−g+)
= Iμ(f)+Iμ(g)+ + Iμ(f)−Iμ(g)−Iμ(f)−Iμ(g)+ − Iμ(f)+Iμ(g)

= Iμ(f) · Iμ(g),

which completes the proof. �
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5.2.12. Let e0, . . . , en−1 : R → B be an arbitrary finite set of spectral functions
with values in a σ-algebra B. Then there is a unique B-valued spectral measure μ
defined on the Borel σ-algebra B(Rn) of the space R

n such that

μ

(
n−1∏

l=0

(−∞, λl)

)
=
n−1∧

l=0

el(λl)

for all λ0, . . . , λn−1 ∈ R.

� Without loss of generality, assume that B = Clop(Q), withQ the Stone space
of B. By 5.2.8 (3), there are continuous functions xl : Q → R (l := 0, . . . , n − 1)
satisfying el(λ) = {xl < λ} for all λ ∈ R and l = 0, . . . , n− 1.

Assign f(t) := (x0(t), . . . , xn−1(t)) ∈ R
n if all xl(t) are finite and f(t) = ∞ if

xl(t) = +∞ for all least one index l.
We have thus defined a continuous mapping f : Q→ R

n∪{∞} (recall that the
complements to all balls centered at zero make a base for the neighborhood filter
of the point at infinity ∞).

It is obvious that f is measurable with respect to the Borel algebras Clop(Q)
and B(Rn). Denote by Clopσ(Q) the σ-algebra of the subsets of Q which is gener-
ated by Clop(Q) and let Δ stand for the σ-ideal of Clopσ(Q) consisting of meager
sets. In this event there is an isomorphism h of the factor algebra Clopσ(Q)/Δ onto
the σ-algebra B := Clop(Q). Denote by [A]Δ the coset of A in Clopσ(Q). We now
define a mapping μ : B(Rn) → B by the formula

μ(A) := h([f−1(A)]Δ) (A ∈ B(Rn)).

Clearly, μ is a spectral measure.
If A =

∏n−1
l=0 (−∞, λl) then f−1(A) =

⋂n−1
l=0 {xl < λl} =

∧n−1
l=0 el(λl), and so

μ(A) = e0(λ0) ∧ . . . ∧ en−1(λn−1).
If μ′ is another spectral measure with the same properties as μ then the set

B := {A ⊂ R
n : μ(A) = μ′(A)} is a σ-algebra containing all sets of the type

(−∞, λ0) × . . .× (−∞, λn−1). Therefore, B(Rn) ⊂ B and μ = μ′. �
We now take some elements x0, . . . , xn−1 of a Kσ-space X with unit 1. Let

exl : R → B := C(1) stand for the spectral function of xl. By 5.2.12, there is
a spectral measure μ : B(Rn) → B satisfying

μ

(
n−1∏

l=0

(−∞, λl)

)
=
n−1∧

l=0

exl(λl).

Denote the integral of a measurable function f : R
n → R with respect to μ by

I(f, r) := I(f, x0, . . . , xn−1), where r := (x0, . . . , xn−1).
Recall that B(Rn,R), which is the space of all Borel functions from R

n to R,
is a Kσ-space and a universally complete f -algebra.
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5.2.13. Theorem. For every ordered tuple r := (x0, . . . , xn−1) of elements of
a universally complete Kσ-space X , the mapping f �→ I(f, r) (f ∈ B(Rn,R)) is
a homomorphism of the f -algebraB(Rn,R) to X meeting the following conditions:

(1) I(dλl, r) = xl for l < n where dλl : R
n → R is the lth coordinate

(λ0, . . . , λn−1) �→ λl;
(2) If a sequence (fk) ⊂ B(Rn,R) is such that limn→∞ fk(t) = f(t) for

all t ∈ R
n then o-limn→∞ I(fk, r) = I(f, r).

� By Theorem 5.2.11, it suffices to prove (1). For simplicity, we confine expo-
sition to the case of n = 1.

So, take x ∈ X , and let μ stand for the spectral measure associated with the
spectral function (exλ)λ∈R of x. Demonstrate that

x =
∫

R

λdμ(λ) :=
∫

R

λdexλ.

To this end, take an arbitrary ε > 0. Choose a partition Λ := (λl) of the real
axis so that λl+1 − λl < ε for all l ∈ Z. Put

σ :=
∞∑

−∞
ξnμ([λn−1, λn)) =

∞∑

−∞
ξn(exλn − exλn−1

),

where ξn ∈ [λn−1, λn).
By 5.2.3 (5),

bn := exλn − exλn−1
= exλn ∧ (exλn−1

)∗ = [[λ∧
n−1 ≤ x < λ∧

n]].

Note that bn = [[ξ∧
n = σ]] (cf. 5.2.2). On the other hand,

bn = [[λ∧
n−1 ≤ x < λ∧

n]] ∧ [[λ∧
n−1 − λ∧

n−1 ≤ ε∧]]
∧[[λ∧

n−1 ≤ ξn < λ∧
n]] ≤ [[ |x− ξ∧

n| ≤ ε∧]].

Hence, [[ |x− σ| ≤ ε∧]] = 1, or |x− σ| < ε1. This implies that x is the r-limit of the
integral sums in question. �

5.2.14. Freudenthal Spectral Theorem. Suppose that E is a Kσ-space
with unity 1. Each member x of E may be written down as follows

x =

∞∫

−∞
λ dexλ,

with the integral understood to be the relative uniform limit with regulator 1 of
the integral sums x(β) :=

∑
n∈Z

τn(extn+1
−extn), where tn < τn ≤ tn+1, β := (tn)n∈Z

,
R =

⋃
n∈Z

[tn, tn+1], and δ(β) := supn∈Z
(tn+1 − tn) → 0.



Boolean Valued Analysis of Banach Spaces 227

5.2.15. Comments.

(1) The Gordon Theorem of 5.2.2 was first established in [62] and re-
discovered by T. Jech in [85] where a universally complete K-space was defined
by another collection of axioms under the alias of a complete Stone algebra. The
Gordon Theorem, establishing the Boolean valued status of the concept of K-space,
may be paraphrased as follows: a universally complete K-space is an interpretation
of the reals in a suitable Boolean valued universe. Moreover, each theorem of ZFC
about the reals has an analog in every corresponding K-space. This makes precise
the Kantorovich motto: “The members of every K-space are generalized reals.”
Theorem 5.2.5 (1) was proven in [124], cf. [87]. Consult [63, 64, 135, 148] about
further Boolean valued analysis of vector lattices.

(2) The results of Section 5.2, with rare exceptions, are well known in
vector lattice theory. However, our proofs are far from the tradition: All principal
facts are derived by interpreting the simplest properties of the reals inside V(B)

with an appropriate B. It was L. V. Kantorovich who proved in [104] the assertion
of 5.2.8 which reads that, for a given complete Boolean algebra B, the set of all
resolutions of identity R(B) is (the underlying set of) a universally complete K-
space with base isomorphic to B. The result of 5.2.9 (1) about representation of
an arbitrary K-space as an order dense ideal of C∞(Q) was first established by
T. Ogasawara and B. Z. Vulikh independently of one another (cf. [104, 253]).
Propositions 5.2.9 (3–5) ensue from Theorem 4.4.13 on representation of a K-space.
In connection with 5.2.7 and 5.2.5 (3–6) we reverently mention other classical results
by L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker (cf. [104]) whose enormous
discoveries fall beyond the scope of our exposition.

(3) The claim of existence of the isomorphism h in the proof of 5.2.12
is a consequence of the following fact (cf. [220, Theorem 29.1]):

Loomis–Sikorski Theorem. Let Q be the Stone space of a Boolean σ-
algebra B. Denote by Clopσ(Q) the σ-algebra of subsets of Q which is generated
by the set Clop(Q) of all clopen subsets of Q. Let Δ stand for the σ-ideal of
Clopσ(Q) comprising all meager sets. Then B is isomorphic with the factor algebra
Clopσ(Q)/Δ. If ı0 is an isomorphism of B onto Clop(Q) then the mapping

ı : b �→ [ı0(b)]Δ (b ∈ B),

with [A]Δ the coset containing A ∈ Clopσ(Q) in the factor algebra by Δ, is an
isomorphism of B onto Clopσ(Q)/Δ.

In accord with this fact, we may put h := ı(−1) in the proof of 5.2.12.
(4) Borel functions ranging in an arbitraryKσ-space with unity seem to

be first studied by V. I. Sobolev [223]. The same article claimed that each spectral
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function with range a σ-algebra defines a spectral measure on the Borel σ-algebra of
the real axis. However, this measure is generally impossible to obtain by using the
Carathéodory extension. D. A. Vladimirov shown that a complete Boolean alge-
bra B, satisfying the countable chain condition, admits the Carathéodory extension
if and only if B is regular. This implies that the extension method of 5.2.12 differs
essentially from the Carathéodory extension.

(5) In the case of n = 1, J. D. M. Wright established 5.2.12 in [255]
as a corollary to the Riesz Theorem he abstracted for the operators with range in
a Kσ-space.

(6) The question of whether R
∧ and R coincide inside V(B) was com-

pletely settled by A. E. Gutman in [72]: This property amounts to the σ-distributivi-
ty of B (cf. 1.2.7). The same article provides an example of an atomless Boolean
algebra B with the desired property.

5.3. Lattice Normed Spaces

A function space X often admits a natural abstraction of a norm. Namely, we
may assume that to each vector of X there corresponds some member of another
vector lattice called the norm lattice of X . The availability of a lattice norm on X is
sometimes decisive in studying various structural properties of X . Furthermore, a
norm taking values in a vector lattice makes it possible to distinguish an interesting
class of the so-called dominated operators. The current section recall preliminaries.

5.3.1. Consider a vector space X and a real vector lattice E. We will assume
each vector lattice Archimedean without further stipulations. A mapping p : X →
E+ is called an (E-valued) vector norm if p satisfies the following axioms:

(1) p(x) = 0 ↔ x = 0 (x ∈ X),
(2) p(λx) = |λ|p(x) (λ ∈ R, x ∈ X),
(3) p(x+ y) ≤ p(x) + p(y) (x, y ∈ X).

A vector norm p is said to be a decomposable or Kantorovich norm if
(4) for arbitrary e1, e2 ∈ E+ and x ∈ X , the equality p(x) = e1 + e2

implies the existence of x1, x2 ∈ X such that x = x1 + x2 and
p(xk) = ek for k := 1, 2.

The 3-tuple (X, p, E) (simpler, X or (X, p) with the implied parameters omit-
ted) is called a lattice normed space if p is an E-valued norm on X . If p is a de-
composable norm then the space (X, p) itself is called decomposable.

5.3.2. Take a net (xα)α∈A in X . We say that (xα) converges in order to an
element x ∈ X and write x = o-limxα provided that there exists a decreasing
net (eγ)γ∈Γ in E such that infγ∈Γ eγ = 0 and, to every γ ∈ Γ, there exists an
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index α(γ) ∈ A such that p(x − xα) ≤ eγ for all α ≥ α(γ). Let e ∈ E+ be an
element satisfying the following condition: for an arbitrary ε > 0, there exists
an index α(ε) ∈ A such that p(x − xα) ≤ εe for all α ≥ α(ε). Then we say
that (xα) converges to x relatively uniformly or r-converges to x with regulator ε
and write x = r-limxα. A net (xα) is o-fundamental (r-fundamental) if the net
(xα − xβ)(α,β)∈A×A converges in order (r-converges) to zero. A lattice normed
space X is o-complete (r-complete) if every o-fundamental (r-fundamental) net in
it o-converges (r-converges) to some element of X .

Take a net (xξ)ξ∈Ξ and relate to it the net (yα)α∈A, where A:= Pfin(Ξ) is the
collection of all finite subsets of Ξ and yα :=

∑
ξ∈α xξ. If x := o-lim yα exists then

we say that (xξ) is o-summable with sum x and write x = o-
∑

ξ∈Ξ xξ.

5.3.3. Say that elements x, y ∈ X are disjoint and write x ⊥ y whenever p(x)∧
p(y) = 0. Obviously, the relation ⊥ satisfies all axioms of disjointness (cf. 4.1.12 (2)).
The complete Boolean algebra B(X) := K1(X) is called the base of X . It is easy to
see that a band K ∈ B(X) is a subspace of X . In fact, K = h(L) := {x ∈ X : p(x) ∈
L} for some band L in E. The mapping L �→ h(L) is a Boolean homomorphism
from B(E) onto B(X). We call a norm p (or the whole space X) d-decomposable
provided that, to x ∈ X and disjoint e1, e2 ∈ E+, there exist x1, x2 ∈ X such that
x = x1 +x2 and p(xk) = ek for k := 1, 2. Recall that, speaking of a Boolean algebra
of projections in a vector space X , we always mean a set of commuting idempotent
linear operators with the following Boolean operations:

π ∨ ρ = π + ρ− π ◦ ρ, π ∧ ρ = π ◦ ρ, π∗ = IX − π.

By implication, the zero and identity operators in X serve as the zero and unity of
every Boolean algebra of projections.

5.3.4. Theorem. Let E0 := p(X)⊥⊥ be a lattice with the projection property
and let X be a d-decomposable space. Then there exist a complete Boolean algebra
B of projections in X and an isomorphism h from P(E0) onto B such that

π ◦ p = p ◦ h(π) (π ∈ Pr(E0)).

� The mapping L �→ h(L) (L ∈ B(E0)) is an isomorphism between the Boolean
algebras B(E0) and B(X) since X is d-decomposable and we may project to every
band of E0. Moreover, given K ∈ B(X), the band K⊥ is the algebraic complement
of K; i.e., K ∩K⊥ = {0} and K + K⊥ = X . Consequently, there exists a unique
projection πK : X → X onto the band K along K⊥.

Put B := {πK : K ∈ B(X)}. Then B is a complete Boolean algebra iso-
morphic to B(X). We associate with ρ ∈ Pr(E0) the projection πK ∈ B, where
K := h(ρE0), and the so-obtained mapping ρ �→ πK is denoted by the same letter
h. Then h is an isomorphism of Pr(E0) onto B.
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Take π ∈ Pr(E0) and x ∈ X . Using the definition of h, find that h(π)x ∈
h(πE0) or p(h(π)x) ∈ πE0; therefore, π∗p(h(π)x) = 0. Thus, πph(π) = ph(π).
Further, note that p(x + y) = p(x) + p(y) for disjoint x, y ∈ X . Indeed, the
inequality p(x) ≤ p(x + y) + p(y) yields p(x) ≤ p(x + y), since p(x) ⊥ p(y). In a
similar way, p(y) ≤ p(x+ y). But then p(x) + p(y) = p(x)∨ p(y) ≤ p(x+ y). Given
x ∈ X , deduce

p(x) = p(h(π)x+ h(π∗)x) = p(h(π)x) + p(h(π∗)x).

Making use of the above proven equality πph(π∗) = 0, obtain

πp(x) = πp(h(π)x) (x ∈ X);

i.e., πp = πph(π). Finally, πp = πph(π) = ph(π) for all π ∈ Pr(E0). �
5.3.5. A Banach–Kantorovich space we call a decomposable o-complete lattice

normed space. Assume that (Y, q, F ) is a Banach–Kantorovich space and F =
q(Y )⊥⊥. It is easy to show that F is a K-space and q(Y ) = F+ (cf. [128]). By 5.3.4,
the Boolean algebras Pr(F ) and Pr(Y ) may be identified so that πq = qπ for all
π ∈ Pr(F ).

A set M ⊂ X is called bounded in norm or norm bounded if there exists
e ∈ E+ such that p(x) ≤ e for all x ∈ M . A space X is said to be d-complete if
every bounded set of pairwise disjoint elements in X is o-summable.

To every bounded family (xξ)ξ∈Ξ of Y and a partition of unity (πξ)ξ∈Ξ inPr(Y )
there is a unique x := o-

∑
ξ∈Ξ πξxξ satisfying πξx = πξxξ for all ξ ∈ Ξ.

� If e = sup p(xξ) then, given α, β ∈ Pfin(Ξ), find that

q(yα − yβ) = q

( ∑

ξ∈α�β
πξxξ

)
≤

( ∑

ξ∈α�β
πξ

)
e,

where yα =
∑
ξ∈α πξxξ and α � β is the symmetric difference between α and β.

Hence, (yα) is an o-fundamental net. Consequently, it has a limit x = o-limα yα. �
This proposition implies that Y is d-complete. Moreover, it follows from the

definitions that Y is r-complete as well.

5.3.6. Let (Y, q, F ) be a Banach–Kantorovich space and F = q(Y )⊥⊥. Say that
Y is universally complete if mF = F ; i.e., if the norm space F of Y is universally
complete. This means that Y is a decomposable o-complete space in which every
disjoint family is o-summable. A space Y is a universal completion of a lattice
normed space (X, p, E) provided that

(1) F = mE (in particular, Y is universally complete);
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(2) there is a linear isometry ı : X → Y ;
(3) if Z is a decomposable o-complete subspace of Y and ı(X) ⊂ Z

then Z = Y .
We show in the sequel that each lattice normed space possesses a universal

completion. Recall again that universal completion is often termed “maximal ex-
tension” in the Russian literature.

5.3.7. Examples.

(1) Put X := E and p(x) := |x| for all x ∈ X . Then p is a decomposable
norm.

(2) Assume that Q is a topological space and Y is a normed space. Let
X := Cb(Q, Y ) be the space of bounded continuous vector valued functions from Q
into Y . Put E := Cb(Q,R). Given f ∈ X , define the vector norm p(f) as follows:

p(f) : t �→ ‖f(t)‖ (t ∈ Q).

Then p is decomposable and X is r-complete if and only if Y is a Banach space.

(3) Let (Ω,Σ, μ) be a σ-finite measure space. Assume further that Y
is a normed space and E is an order dense ideal in M(Ω,Σ, μ). Denote by M(μ, Y )
the space of cosets of μ-measurable vector valued functions acting from Ω to Y .
As usual, vector functions are equivalent if they agree at almost all points of Ω.
If z ∈ M(μ, Y ) is the coset of a measurable function z0 : Ω → Y then denote by
p(z) := z the equivalence class of the measurable scalar function t �→ ‖z0(t)‖ with
t ∈ Ω. By definition, assign

E(Y ) := {z ∈M(μ, Y ) : p(z) ∈ E}.

Then (E(Y ), p, E) is a lattice normed space with decomposable norm. If Y is a Ba-
nach space then E(Y ) is a Banach–Kantorovich space and M(μ, Y ) is a universal
completion of E(Y ).

(4) Take the same E and Y as above and consider a norming subspace
Z ⊂ Y ′, i.e., a subspace such that

‖y‖ = sup{〈y, y′〉 : y′ ∈ Z, ‖y′‖ ≤ 1} (y ∈ Y ).

Here Y ′ stands for the dual of Y , and 〈·, ·〉 is the canonical duality bracket Y ↔ Y ′.
A vector function z : Ω → Y is said to be Z-measurable if the function t �→ 〈z(t), y′〉,
with t ∈ Ω, is measurable for every y′ ∈ Z. Denote by 〈z, y′〉 the coset of the last
function. Let M be the set of all Z-measurable vector functions z for which the
set {〈z, y′〉 : y′ ∈ Z, ‖y′‖ ≤ 1} is bounded in M(Ω,Σ, μ). Denote by N the set
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of all z ∈ M such that the measurable function t �→ 〈z(t), y′〉 equals zero almost
everywhere for each y′ ∈ Z; i.e., 〈z′, y〉 = 0. Given z ∈ M /N , put

p(z) := z := sup{〈u, y′〉 : y′ ∈ Z, ‖y′‖ ≤ 1},
where uh is an arbitrary representative of the coset z and the supremum is calculated
in the K-space M(Ω,Σ, μ). Now, define the space

Es(Y, Z) := {z ∈ M /N : p(z) ∈ E}
with the decomposable E-valued norm p. If Y is a Banach space then Es(Y, Z) is
a Banach–Kantorovich space.

(5) Suppose that E is an order dense ideal in the universally complete
K-space C∞(Q), where Q is an extremally disconnected compact space.

Recall that a set is comeager if its complement is meager. Vector valued
functions u and v with comeager domain are equivalent if u(t) = v(t) for all
t ∈ dom(u) ∩ dom(v).

Let C∞(Q, Y ) comprise the cosets of continuous vector valued functions u from
comeager subsets of dom(u) ⊂ Q to a normed space Y . To z ∈ C∞(Q, Y ), there
exists a unique function zz ∈ C∞(Q) such that ‖u(t)‖ = xz(t) for all t ∈ dom(u)
whatever a representative u of the coset z might be. Put p(z) := z := xz and

E(Y ) := {z ∈ C∞(Q) : p(z) ∈ E}.
(6) Let Z be the same as in (4). Denote by M the set of all σ(Y, Z)-

continuous vector functions u : Q0 := dom(u) → Y such that dom(u) is a comeager
set in Q and the set {〈u, y′〉 : y′ ∈ Z, ‖y′‖ ≤ 1} is bounded in the K-space C∞(Q).
Here 〈u, y′〉 is the unique continuous extension of the function

t �→ 〈u(t), y′〉 (t ∈ Q0)

to the whole Q. Consider the factor set M /∼, where u ∼ v means that u(t) = v(t)
for t ∈ dom(u) ∩ dom(v). Given z ∈ M /∼, put

p(z) := sup{〈u, y′〉 : y′ ∈ Z, ‖y′‖ ≤ 1},
Es(Y, Z) := {z ∈ M /∼ : p(z) ∈ E}.

We can naturally equip the sets C∞(Q, Y ) and M /∼ with the structure of a module
over the ring C∞(Q). Moreover, E(Y ) and Es(Y, Z) are lattice normed spaces with
decomposable norm. If Y is a Banach space then E(Y ) and Es(Y, Z) are Banach–
Kantorovich spaces. Furthermore, C∞(Q, Y ) is a universal completion of E(Y ).

Take a normed space X and let κ stand for the canonical embedding of X into
X ′′. Put Y := X ′ and Z := κ(X). In this event we use the notations

Es(X ′) := Es(Y, Z), 〈x, u〉 := 〈u,κ(x)〉,
where u is an arbitrary member of Es(X ′).
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5.3.8. Let (X, p, E) and (Y, q, F ) be lattice normed spaces. A linear operator
T : X → Y is called dominated if there exists a positive operator S : E → F (called
a dominant of T ) such that

q(Tx) ≤ S(p(x)) (x ∈ X).

If F is a Kantorovich space and the norm p is decomposable then there exists
a least element T in the set of all dominants with respect to the order on the
space L∼(E, F ) of regular operators. The mapping T �→ T (T ∈ M(X, Y )) is
a vector norm on the space M(X, Y ) of all dominated operators from X into Y .
This is the so-called dominant norm. If Y is a Banach–Kantorovich space and the
norm in X is decomposable then M(X, Y ) is a Banach–Kantorovich space under
the dominant norm (cf. [128, 140]).

5.3.9. Distinguish the following two instances.
(1) Take E := R and Y := F . Then X is a normed space and the fact

that T : X → F is a dominated operator means that the set

{Tx : x ∈ X, ‖x‖ ≤ 1}

is bounded in F . The least upper bound of this set is called the abstract norm
of T and is denoted by T (the notation agrees with what was introduced above
provided that the spaces F and L∼(R, F ) are identified). In this situation we say
that T is an operator with abstract norm.

(2) Let E and F be order dense ideals in the same K-space. An oper-
ator T ∈M(X, Y ) is bounded if T ∈ Orth(E, F ). Denote the space of all bounded
operators by Lb(X, Y ). Clearly, T belongs to Lb(X, Y ) if and only if there exists
c ∈ mE = mF such that c · E ⊂ F and q(Tx) ≤ cp(x) for all x ∈ X , where we
bear in mind the multiplicative structure on mE that is uniquely determined by
the choice of a unity (cf. 5.2.5 (5)).

5.3.10. Assume that X is a normed space and E is an order dense ideal of
the K-space C∞(Q). To each operator with abstract norm T : X → E there is a
unique uT ∈ Es(X ′) satisfying

Tx = 〈x, uT 〉 (x ∈ X).

The mapping T �→ uT is a linear isometry between the Banach–Kantorovich spaces
La(X,E) and Es(X ′).

� If e := T then, for every x ∈ X , the function Tx ∈ C∞(Q) takes a finite
value at each point of Q0 := {t ∈ Q : e(t) < +∞} since |Tx| ≤ e‖x‖. The
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last estimate also implies that, for t ∈ Q0, the functional v(f) : x �→ (Tx)(t),
with x ∈ X , is bounded and ‖v(f)‖ ≤ e(t). This gives rise to the mapping v :
Q0 → X ′ continuous in the weak topology σ(X ′, X). Let uT denote the coset of v.
Then Tx = 〈x, uT 〉 for all x ∈ X . In particular, the following supremum exists:
sup {〈Kx, uT 〉| : ‖x‖ ≤ 1} = e. Hence, uT ∈ Es(X ′) and uT = T . We thus see
that T �→ uT is an isometry from La(X,E) to Es(X ′). Clearly, this mapping is
linear and surjective. �

5.3.11. Take two normed spaces X and Y . Consider T ∈ La(X⊗̂Y,E), where
X⊗̂Y is the projective tensor product of X and Y . It is an easy matter to show
that the bilinear operator b := T⊗ : X × Y → E has the abstract norm

b := sup{|b(x, y)| : ‖x‖ ≤ 1, ‖y‖ ≤ 1},
with b = T . Denote by Ba(X×Y,E) the set of all bilinear operators b : X×Y →
E with abstract norm. We further let B(X×Y ) denote the set of all bilinear forms
on X × Y . Since the isometric isomorphy (X⊗̂Y )′ � B(X × Y ) is available, from
5.3.10 we derive the following proposition.

To b ∈ Ba(X × Y,E) there is a unique ub ∈ Es(B(X × Y )) such that

b(x, y) = 〈x⊗ y, ub〉 (x ∈ X, y ∈ Y ).

The mapping b �→ub is a linear isometry between Ba(X×Y,E) and Es(B(X×Y )).

5.3.12. Let G be an order dense ideal of C∞(Q). In line with 5.3.7 (5), put
Gs(L (X, Y ′)) := Gs(L (X, Y ′),X ⊗ Y ). Consequently, the space Gs(L (X, Y ′))
consists of the (cosets of) operator functions K : dom(K) → L (X, Y ′) such that
dom(K) is a comeager set in Q, the function t �→ 〈y,K(t)x〉, with t ∈ dom(K), is
continuous for all x ∈ X and y ∈ Y , and there exists

K := sup {|〈y,Kx〉| : ‖x‖ ≤ 1, ‖y‖ ≤ 1} ∈ G.

If K ∈ Gs(L (X, Y ′)) and u ∈ E(X) then the vector function t �→ K(t) u(t) (t ∈
Q0 := dom(K) ∩ dom(u)) is continuous in the weak topology σ(Y ′, Y ). Indeed,
granted arbitrary t, t0 ∈ Q0, observe the estimate

|〈y,K(t) u(t)−K(t0) u(t0)〉| ≤ |〈y, (K(t)−K(t0)) u(t0)〉|
+ K (t)‖y‖ · ‖u(t) − u(t0)‖.

We may assume that dom(K) = { K < +∞} and so K is bounded in a neigh-
borhood about t0. Considering the strong continuity of u and the weak continuity
of K, infer the desired. We denote the coset of a weakly continuous vector function
t �→ K(t) u(t) by Ku and the continuation of t �→ 〈y,K(t) u(t)〉 to the whole of Q
by 〈y,Ku〉.
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5.3.13. Theorem. To a bounded operator T ∈ Lb(E(X),Es(Y ′)) there is a
unique KT ∈ Gs(L (X, Y ′)), with G := Orth(E), satisfying

Tu = KTu (u ∈ E(X)).

The mapping T �→ KT is a linear isometry between the spaces Lb(E(X), Es(Y ′))
and Gs(L (X, Y ′)).

� By 5.3.12, it suffices to prove the first claim of the theorem.
Given x ∈ X , y ∈ Y , and e ∈ E, put Sx,y(e) := 〈y, T (x⊗ e)〉. Clearly, Sx,y ∈

Orth(E). If b(x, y) := Sx,y then b : X ×Y → G is a bilinear operator with abstract
norm and b = T . By 5.3.11 there is a unique KT ∈ Gs(B(X, Y )) such that
KT = T and

〈y, T (x⊗ e)〉 = 〈x⊗ y,KT 〉e.
With the isometric isomorphy B(X, Y ) � L (X, Y ′) available, we may assume that
KT ∈ Gs(L (X, Y ′)) and so

〈y, T (x⊗ e)〉 = 〈y,KTx〉e = 〈y,KTx⊗ e〉.

It suffices to note that X ⊗E is order dense in E(X), and T is an order continuous
operator (see all details in [125, 128]). �

5.3.14. Comments.

(1) It was L. V. Kantorovich who defined a lattice normed vector space
as far back as in 1935 (see [96] wherein the bizarre decomposition axiom 5.3.1 (4)
appeared for the first time). Curiously, this axiom was treated as inessential and
thus omitted in the subsequent publications of other researchers. A. G. Kusraev
explained its principal importance in connection with the Boolean valued represen-
tation of lattice normed spaces [123] (cf. Section 5.4 to follow).

(2) It was D. Kurepa who had considered the so-called espaces pseu-
dodistancies; i.e., the spaces whose metrics take values in an ordered vector space.
First applications of vector valued norms and metrics relate to the method of suc-
cessive approximations in numerical analysis, cf. [99, 104, 110, 215].

(3) The dominated operators of 5.3.8 were also introduced in the arti-
cle [96] by L. V. Kantorovich, cf. [100]. Their definition had twofold motivation:
the theoretical reasons were related to the course of the general development of op-
erator theory on ordered vector spaces, cf. [97, 98, 100, 104]); the applied reasons
were tied with what was then called “approximate methods of analysis,” cf. [99,
101, 104].
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(4) An elaborate theory of dominated operators was propounded in
the last decade, cf. [123, 125, 128, 138]. It was A. G. Kusraev who revealed the
connection of Theorem 5.3.4 between the decomposition property and existence of
a Boolean algebra of projections in a lattice normed space, cf. [122, 123]. The
proposition of 5.3.11 belongs to G. N. Shotaev [219]. It implies Theorem 5.3.13
which was demonstrated in [125].

(5) The details of what we sketched in 5.3.7 about measurable and
continuous functions with range in a Banach space and particularly the space of
bounded linear operators may be found in [36, 37, 42, 128, 152]. Further examples
of lattice normed spaces relate to the theory of continuous and measurable Banach
fiber bundles (see [71, 128]).

5.4. The Descent of a Banach Space

A Banach–Kantorovich space becomes a Banach space after embedding in an
appropriate Boolean valued universe V(B). The resultant interrelations make the
topic of the current section. Recall that C stands for the field of complex numbers
inside V(B).

5.4.1. Theorem. Let (X , ρ) be a Banach space inside V(B). Put X := X ↓
and p := ρ↓. Then

(1) (X, p,R↓) is a universally complete Banach–Kantorovich space;
(2) X admits the structure of a faithful unital module over the ring

Λ:= C↓ so that
(a) (λ1)x = λx (λ ∈ C , x ∈ X),
(b) p(ax) = |a|p(x) (a ∈ C↓, x ∈ X),
(c) b ≤ [[ x = 0 ]] ↔ χ(b)x = 0 (b ∈ B , x ∈ X),
where χ is some isomorphism from B to E(R↓).

� Denote the additions of X , C , and R by the same symbol ⊕. Let #
stand, first, for the scalar multiplication of the complex vector space X which is an
external composition law acting from C ×X to X and, second, for the conventional
multiplication in R and C . Put +:= ⊕↓ and · := #↓. This means that

x+ y = z ↔ [[ x⊕ y = z ]] = 1 (x, y, z ∈ X);
a · x = y ↔ [[ a# x = y ]] = 1 (a ∈ Λ; x, y ∈ X).

The simplest properties of descent imply that (X,+) is an Abelian group (cf. 4.2.7).
For instance, check that + is commutative as follows: Arguing inside V(B), note
[[⊕ ◦ j = ⊕ ]] = 1, where j : X ×X → X ×X is the transposition of coordinates.
But then ı := j↓ is the transposition of coordinates in X ×X and

+ ◦ ı = (⊕↓) ◦ (j↓) = (⊕ ◦ j)↓= ⊕↓= +.
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Given b ∈ B and x ∈ X , define χ(b)x := mix{ bx, b∗0 }, with 0 the neutral element
of the group (X,+). In other words, χ(b)x is a unique element of X satisfying
[[χ(b)x = x ]] ≥ b and [[χ(b)x = 0 ]] ≥ b∗. We have thus defined a mapping χ(b) :
X → X so that χ(b) is an additive idempotent. Put P := {χ(b) : b ∈ B }. Then P
is a complete Boolean algebra and χ is a Boolean isomorphism. Recalling that the
axioms of vector space are all satisfied for X inside V(B), we may write

a · (x+ y) = a# (x⊕ y) = a# x⊕ a# y = a · x+ a · y,
(a+ b) · x = (a⊕ b) # x = a# x⊕ b# x = a · x+ b · x,

(ab) · x = (ab) # x = a# (b# x) = a · (b · x),
1 · x = 1# x = x (a, b ∈ Λ; x, y ∈ X).

Since V(B) is a separated universe, the above shows that + and · bring about the
structure of a unital Λ-module on X . Letting λx = (λ1) · x (λ ∈ C, x ∈ X), arrive
at the structure of a complex vector space on X , with (a) holding. Arguing inside
V(B), note that

χ(b) = 1 → χ(b) # x = x,

χ(b) = 0 → χ(b) # x = 0,

and so, by the definition of χ (cf. 5.2.2),

b ≤ [[χ(b) # x = x ]] = [[χ(b) · x = x ]],
b∗ ≤ [[χ(b) # x = 0 ]] = [[χ(b) · x = 0 ]].

Hence, χ(b) · x = mix{bx, b∗0} = h(b)x, which implies (c).
We now examine the Banach properties of the space (X , ρ). Subadditivity and

homogenuity of the norm ρ may be written down as

ρ ◦ ⊕ ≤ ⊕ ◦ (ρ× ρ), ρ ◦ # = # ◦ (| · | × ρ),

where ρ × ρ : (x, x) �→ (ρ(x), ρ(x)) and | · | × ρ : (a, x) �→ (|a|, ρ(x)). Considering
the descent rule for composition 3.2.12, obtain

p ◦ + ≤ + ◦ (p× p), p ◦ (·) = (·) ◦ (| · | × p).

This means that the operator p : X → R ↓ satisfies 5.3.1 (3) and (b). But then
5.3.1 (2) holds in view of (a). If p(x) = 0 for some x ∈ X then the equality
[[ ρ(x) = p(x) ]] = 1 implies [[ ρ(x) = 0 ]] = 1, and so [[x = 0 ]] = 1; i.e., x = 0.
Therefore, p is a vector norm. We may derive that p is decomposable on using (b).
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Indeed, if c := p(x) = c1 + c2 (x ∈ X ; c1, c2 ∈ Λ+) then there are a1, a2 ∈ Λ+

such that akc = ck for k := 1, 2 and a1 + a2 = 1. (Put ak = ck(c + (1 − ec))−1,
where ec is the trace of c.) Assigning xk := ak · x (k := 1, 2), note x = x1 + x2 and
p(xk) = p(ak · x) = akp(x) = ck for k := 1, 2.

We are left with demonstrating that X is Dedekind complete. Take an o-
fundamental net s : A → X. If s(α, β) = s(α)−s(β) for all α, β ∈ A then o-limα,β p◦
s(α, β) = 0. Let σ : A∧ → X stand for the modified ascent of s and put σ(α, β) :=
σ(α) − σ(β) for all α, β ∈ A∧. Then σ is the modified ascent of s and ρ ◦ σ is
the modified ascent of p ◦ s. By 5.2.3, [[ lim ρ ◦ σ = 0 ]] = 1; i.e., V(B) |= “σ is
a fundamental net in X .” Since X is a Banach space inside V(B); therefore, by
the transfer principle there is an element x ∈ X such that [[ lim ρ ◦ σ0 = 0 ]] = 1,
where σ0 : A∧ → X is defined by the formula σ0(α) := σ(α) − x for all α ∈ A∧.
The modified descent of σ0 is the net s0 : α �→ s(α) − x with α ∈ A. Using 5.2.3,
conclude that o-lim p0s0 = 0 or o-limα p(s(α) − x) = 0. �

The descent of (X , ρ) is defined to be the universally complete Banach–
Kantorovich space X ↓ := (X , ρ)↓ := (X ↓, ρ↓,R↓).

5.4.2. Theorem. To each lattice normed space (X, p, E) there is a Banach
space X inside V(B), with B � B(p(X)⊥⊥), such that the descent X ↓ of X is
a universal completion of (X, p, E). Moreover, X is unique up to linear isometry
inside V(B).

� Without loss of generality, assume that E = p(X)⊥⊥ ⊂ mE = R ↓ and
B = B(E). Put

d(x, y) := p(x− y)⊥⊥ (x, y ∈ X).

Evidently, d is a B-metric on X . If we equip C with the discrete B-metric d0 then
the operations of addition + : X × X → X and multiplication · : C × X → X
are stabilizers. The vector norm p is a stabilizer too. All these claims are pretty
obvious. For instance, regarding multiplication, note that

d(αx, βy) = p(αx− βy)⊥⊥ ≤ (|α|p(x− y))⊥⊥ ∨ (|α− β|p(y))⊥⊥

≤ d(x, y) ∨ d◦(α, β)

for α, β ∈ C and x, y ∈ X .
Let X0 stand for the Boolean valued representation of the B-set (X, d). Put

ρ0 := F∼(p), ⊕ := F∼(+), and # := F∼(·), with F∼ the immersion functor
(see Section 3.4). The mappings ⊕ and # make X0 into a vector space over C

∧

with ρ0 : X0 × X0 → R a norm on X0. By the maximum principle we may find
X , ρ ∈ V(B) such that [[ (X , ρ) is a complex Banach space serving as a completion
of the normed space (X0, ρ0) ]] = 1. We may also presume that [[ X0 is a dense C

∧-
subspace of X ]] = 1. Let ı : X → X0 := X0↓ be the canonical injection (cf. 3.5.4).
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Since + is a stabilizer acting from X × X to X ; the addition + := ⊕↓ in the
space X0 is uniquely determined from the equality ı ◦ + = + ◦ (ı × ı), where
ı× ı : (x, y) �→ (ıx, ıy) is the canonical injection of the B-set X ×X (cf. 3.5.4). In
turn, this amounts to the additivity of ı. By analogy, considering (·) := #↓, obtain
ı ◦ (·) = (·) ◦ (κ × ı), where κ × ı : (λ, x) → (λ∧, ıx) (λ ∈ C, x ∈ X). Therefore, ı is
a linear operator.

Applying the same arguments to p0 := ρ0↓, infer that ıE ◦p = p0 ◦ ı, where ıE is
the canonical injection of E. Hence, ı is an isometry, i.e., a mapping preserving the
vector norm under study.

Consider some subspace Y such that ıX ⊂ Y ⊂ X ↓ and Y is a universally
complete Banach–Kantorovich space under the norm q(y) = ρ↓(y) (y ∈ Y ). Since
q is a decomposable norm and Y is a disjointly complete space; therefore, X0 ⊂ Y.
Indeed, X0 = mix(ı(X)) and by (c) of 5.4.1 (2), given x ∈ X ↓, we have x =
mix(bξıxξ) if and only if x = o-

∑
χ(bξ)ı(xξ). On the other hand, Y is decomposable

and d-complete. Hence, by 5.3.4 and 5.3.5, Y is invariant under every projection
x �→ χ(b)x, with x ∈ X ↓, containing all sums of the above type. By analogy,
Y = mix(Y ). If Y := Y ↑ then [[ X0 ⊂ Y ⊂ X ]] = 1, with Y ↓ = Y . Assume that
σ : ω∧ → Y is a fundamental sequence and s is the modified descent of σ. Then s
is an o-fundamental sequence in Y and so s has a limit y := o-lim s. From 5.2.3 (4)
it is clear that [[ y = limσ ]] = 1. This establishes the completeness of Y , and so
the equality X = Y , implying X = Y .

Let Z be a Banach space inside V(B). Assume that X ↓ is the universal
completion of the lattice normed space X . If ı′ is the corresponding isometric
embedding of X to Z ↓ then ı′ ◦ ı extends uniquely to a linear isometry of X0 to a
disjointly complete subspace Z0 ⊂ Z. The spaces X0 and Z0 := Z↑ are isometric.
Hence, their completions X and Y ⊂ Z are isomorphic too. Since Y ↓ is a Banach–
Kantorovich space and ı′X ⊂ Y ↓ ⊂ Z ↓; therefore, Y ↓ = Z ↓. Consequently,
Y = Z and so X and Z are linearly isometric. �

5.4.3. Corollary. The following hold:
(1) Each lattice normed space (X, p, E) possesses a universal comple-

tion (mX, pm, mE, ı) unique up to linear isometry. Moreover, to all
x ∈ mX and ε > 0 there are a family (xξ)ξ∈Ξ in X and a partition
of unity (πξxξ)ξ∈Ξ in Pr(mX) such that

pm

(
x−

∑

ξ∈Ξ

πξı(xξ)
)

≤ εpm(x).

(2) A lattice normed space X is linearly isometric with an order dense
ideal of the universal completion of X if and only if X is decom-
posable and o-complete; i.e. X is a Banach–Kantorovich space.
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� The two claims may conveniently be proven together. With the notations
of 5.3.7, assign mX := X ↓ and pm := ρ↓. Then (mX, pm, mE, ı) is the universal
completion of X . Fix an order unit e ∈ E+ and take x ∈ mX. Clearly, [[ e ∈ R ]] =
[[ e > 0 ]] = [[ x ∈ X ]] = 1. Since [[ X0 is dense in X ]] = 1, to each ε > 0 by the
maximum principle there is some element xε ∈ V(B) satisfying

[[ xε ∈ X◦ ]] = [[ ρ(x− xε) ≤ ε∧ · e ]] = 1.

Hence, xε ∈ X0 and pm(x − xε) ≤ εe. Note now that X0 = mix(ı(X)) and so
xε looks like

∑
ξ∈Ξ πξı(xξ) where (xξ) ⊂ X , and (πξ) is a partition of unity in

Pr(mX).
Evidently, an order dense ideal of a Banach–Kantorovich space is decompos-

able and o-complete. Conversely, let X be a decomposable and o-complete lattice
normed space. It is possible to show that E0 := p(X)⊥⊥ is a K-space. Therefore, we
loose no generality in assuming E0 to be an order dense ideal in R↓. Let x ∈ mX
and pm(x) ∈ E0. By (1), there exists a sequence (xn) ⊂ X0 such that

pm(xn − x) ≤ 1
n
e, pm(xn) ≤

(
1 +

1
n

)
e (n ∈ ω).

Hence, xn ∈ X and x ∈ X , since an o-complete space is d-complete and r-complete.
Thereby,

X = {x ∈ mX : pm(x) ∈ E0};

i.e., X is an order dense ideal in mX .
It remains to establish uniqueness in the claim of (1). Let (Y, q,mE, ı0) be

a universal completion of X . In view of 5.2.4 and assertion (2) we may assume that
Y = Y ↓, where Y is a Banach space inside V(B). By Theorem 5.3.3, [[ there exists
a linear isometry λ of X onto Y ]] = 1. But then λ↓ is a linear isometry of X ↓
onto Y ↓. �

5.4.4. A disjointly complete space (Y, q, dE), where dE stands for a disjoint
completion of E, is said to be a disjoint completion (d-completion) of a lattice
normed space (X, p, E) if there exists a linear isometry ı : X → Y such that
Y = mix(ıX).

A Banach–Kantorovich space (Y, q, oE), together with a linear isometry ı :
X → Y , is an order completion or o-completion of a lattice normed space (X, p, E)
provided that every decomposable o-complete subspace Z ⊂ Y , containing ıX ,
coincides with Y .

If E = mE then an o-completion of X is a universal completion ofX (see 5.3.3).
Given a subset U ⊂ Y , introduce the notations

rU := {y := r-lim
n→∞ yn : (yn)n∈N ⊂ U},
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oU := {y := o-lim yα : (yα)α∈A ⊂ U},
dU :=

{
y := o-

∑

ξ∈Ξ

πξyξ : (yξ)ξ∈Ξ ⊂ U
}
,

where A is an arbitrary directed set, (πξ)ξ∈Ξ is an arbitrary partition of unity in
Pr(Y ), and the limits and sum exist in Y .

5.4.5. Every lattice normed space admits an o-completion and d-completion
each unique to within a linear isometry.

� Recall that dE ⊂ oE ⊂ mE. Put
Y := {x ∈ mX : pm(x) ∈ oE}.

Then Y is an o-completion and dıX is a d-completion of X . �
We always assume that a lattice normed space X is contained in an o-comple-

tion X of X .

5.4.6. Every o-completion X of a space X satisfies the equality X = rdX .
Moreover, if X is decomposable and E0 := p(X)⊥⊥ is a vector lattice with the
principal projection property then X = oX .

� The first part of the assertion follows from 5.4.3 (1). Take an x ∈ X and
find a net (xα) ⊂ X converging in order to x. Endow X with the equivalence and
preorder by the formulas

z ∼ y ↔ p(x− z) = p(y − z),
z ≺ y ↔ p(x− z) ≥ p(y − z).

If E0 is a lattice with the principal projection property then there exists a projection
π ∈ Pr(X) such that

πp(x− y) + π∗p(x− z) = p(x− y) ∧ p(x− z).
Letting u := πy + π∗z, note that

p(x− u) = p(x− y) ∧ p(x− z);
therefore, y ≺ u and z ≺ u. Thus, the preordered set (X,≺) is directed upward.
Hence, the factor set A:= X/∼ with the factor order is an upward-directed ordered
set. Now, consider a net (xα)α∈A, where xα ∈ α (α ∈ A). The net (p(x− xα))α∈A

decreases by construction. Put e := inf p(x− xα), where the infimum is calculated
in oE. By the equality X = rdX , to ε > 0, there exist a family (xξ) ⊂ X and
a partition of unity (πξ) ⊂ Pr(X) such that

pm

(
x− o-

∑
πξxξ

)
≤ εpm(x).

Considering 5.3.4, infer

e =
∑

πξe ≤
∑

πξp(x− xξ) = p
(
x− o-

∑
πξxξ

)
≤ εp(x).

Hence e = 0 and x = o-limxα. �
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5.4.7. A decomposable lattice normed space is o-complete if and only if it is
d-complete and r-complete.

� Necessity was mentioned in 5.3.5. Sufficiency follows from 5.4.6. �

5.4.8. Let (X, p, E) be a Banach–Kantorovich space, E = p(X)⊥⊥, and A :=
Orth(E). Then X admits a unique structure of a faithful unital A-module such
that the natural representation of A in X becomes an isomorphism between the
Boolean algebras Pr(E) ⊂ A and Pr(X). Moreover,

p(ax) = |a|p(x) (x ∈ X, a ∈ A).

� We have to apply 5.4.1 (2). In particular, by virtue of 5.4.1 (2) (c), the
Boolean algebra Pr(X) coincides with the set of the multiplication operators x �→
χ(b)x, where b ∈ B. �

A Banach space X inside V(B) is said to be a Boolean valued representation
for a lattice normed space X if X ↓ is the universal completion of X .

5.4.9. Theorem. Let X and Y be the Boolean valued representations of
Banach–Kantorovich spaces X and Y normed by some universally complete K-
space E. Let L B(X ,Y ) be the space of bounded linear operators from X to
Y inside V(B), where B := B(E). The immersion mapping T �→ T∼ is a linear
isometry between the lattice normed spaces LB(X, Y ) and L B(X ,Y )↓.

� By Theorem 5.4.3 (2), without loss of generality we may assume that E =
R↓, X = X ↓, and Y ↓ = Y . Take a mapping T : X → Y inside V(B) and put
T := T ↓. Let ρ and θ be the norms of the Banach spaces X and Y . Put p := ρ↓
and q := θ↓, and let + stand for addition in each of the spaces X , Y , X , and Y .
The linearity and boundedness of T imply the formulas

T ◦ + = + ◦ (T × T ), θ ◦ T ≤ kρ,

where 0 ≤ k ∈ R↓. The rules for ascending and descending composition allow us
to paraphrase the above formulas as

T ◦ + = + ◦ (T × T ), q ◦ T ≤ kp.

But this means that T is linear and bounded. Let K be the set constituted of
0 ≤ k ∈ R↓ such that q(Tx) ≤ kp(x) (x ∈ X). Then K↑ coincides with {k ∈ R+ :
θ ◦ T ≤ kρ} inside V(B).

Appealing to 5.3.2 (2), derive

V(B) |= T = inf(K) = inf(K↑) = ‖T ‖.
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Hence, the mapping T �→ T ↓ preserves the vector norm. To justify the linearity of
the mapping, it suffices to check its additivity. Given T1,T2 ∈ L B(X ,Y )↓, note
that

(T1 + T2)↓(x) = (T1 + T2)(x) = T1x+ T2x

= T1↓x+ T2↓x = (T1↓ + T2↓)x

inside V(B) for every x ∈ X . Consequently, (T1+T2)↓ = T1↓+T2↓. So, the descent
is a linear isometry of L B(X ,Y )↓ onto the space of all extensional bounded linear
operators from X into Y . It remains to observe that every bounded linear operator
from X into Y is a stabilizer or, which is the same, satisfies the inequality [[x =
0]] ≤ [[Tx = 0]]. Indeed, if b := [[x = 0]] then χ(b)x = 0 by 5.4.1 (2); therefore,

χ(b)q(Tx) ≤ χ(b)p(x) = p(χ(b)x) = 0.

Hence, q(χ(b)Tx) = 0 or χ(b)Tx = 0. Appealing to 5.4.1 (2) again, conclude that
b ≤ [[Tx = 0]]. �

5.4.10. Theorem. Assume that X is a normed space and X̃ is the completion
of X . If X is the completion of the R

∧-normed space X∧ inside V(B), then the
universally complete Banach–Kantorovich space X ↓ is linearly isometric to the
space C∞(Q, X̃), with Q the Stone space of R↓.

� Identify the K-spaces R ↓ and C∞(Q); and apply Theorem 5.4.2 to the
lattice normed space (X, p,R ↓), with p(x) = ‖x‖ · 1. Using the notation of the
proof of 5.4.2, note that X0 = X∧. Hence, X ↓ := (X ↓, q, R↓) is the universal
completion of (X, p,R↓).

For simplicity, assume that X ⊂ X ↓. From 5.4.3 we deduce that to u ∈
C∞(Q, X̃) and ε > 0 there are a family (xξ) ⊂ X and a partition of unity (Qξ) ⊂
Clop(Q) for which the step function uε, equal to xξ on the set Qξ, obeys the
estimate u−uε ≤ ε1. Put T (uε) := mix(bξxξ) where bξ stands for the member of
B corresponding to the clopen set Qξ. Now, T (uε) = uε . Hence, T is a linear
isometric embedding of the subspace of all vector functions of the shape uε. If

ε → 0 then uε − u
(r)−→ 0, and so

(
T (u1/n)

)
is an r-fundamental sequence. Since

X ↓ is complete, X ↓ contains the limit v := r-lim T (u1/n). Assigning T (U) := v,
obtain a linear isometric embedding T : C∞(Q, X̃) → X ↓. If Z := im(T ) then Z
is a decomposable o-complete subspace of X ↓ and X ⊂ Z. By Theorem 5.4.2 and
the definition of 5.3.6, conclude that Z = X ↓. �

5.4.11. Assume that X and X are the same as in 5.4.10. Assume further
that X ′ is the dual of X inside V(B). Then the spaces X ′↓ and Es(X ′), with
E = C∞(Q), are linearly isometric.
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� Apply Theorem 5.4.9 to Y := E and X := (X, p, E), with p(x) = ‖x‖1.
Deduce that the spaces X ′↓ := L (B)(X ,R)↓ and La(X,E) are linearly isometric.
To complete the proof, refer to 5.3.10. �

5.4.12. Comments.

(1) Theorems 5.4.1, 5.4.2, and 5.4.9, the main results of the current
section, belong to A. G. Kusraev, cf. [123, 128].

(2) The completeness criterion of 5.4.7 was formulated by A. G. Kus-
raev in [122] under the hypothesis that the norm lattice E is Dedekind complete.
The article [123] gives a proof in a more general case of a decomposable vector
multinorm. The hypothesis about the Dedekind completeness of E was waived in
[110]. In the case of an Archimedean vector lattice; i.e., X = E, this fact is due to
A. I. Veksler and V. A. Gĕıler [247].

(3) It was A. G. Pinsker who began studying universal completion for
a K-space (cf. [104]). He established in particular that each K-space has a uni-
versal completion unique up to isomorphism. Proposition 5.4.3 (1), abstracting the
Pinsker Theorem to lattice normed spaces, was in fact established in [123]. About
Theorem 5.4.5 on order completion of a lattice normed space, consult [123, 128].
The assertion of 5.4.6 that X = oX belongs to A. E. Gutman. It was A. I. Veksler
who proved 5.4.6 for the case of an Archimedean vector lattice (cf. [245]).

(4) Theorem 5.4.10 is a particular case of the general construction of
the Boolean completion of a uniform space which was suggested by E. I. Gordon
and V. A. Lyubetskĭı [161]. Theorem 5.4.11 is a simple consequence of 5.3.10
and a relevant result by E. I. Gordon on representation of operators with abstract
norm [63].

5.5. Spaces with Mixed Norm

In this section we distinguish an important class of Banach spaces which is
connected with the concept of vector norm.

5.5.1. A normed vector lattice (Banach lattice) we call a vector lattice E that
is simultaneously a normed space (Banach space) whose norm is monotone in the
following sense: For all x, y ∈ E, if |x| ≤ |y| then ‖x‖ ≤ ‖y‖.

Let (X, p, E) be a lattice normed space, with a normed vector lattice E serving
as the norm lattice of X . We may then equip X with the mixed norm or composite
norm by putting

|||x||| := ‖p(x)‖ (x ∈ X).

In this event the normed space X := (X, ||| · |||) is also referred to as a space
with mixed norm, a composite normed space or even a mixed norm space. Since
|p(x) − p(y)| ≤ p(x − y) and the norm of E is monotone, the vector norm p is a
continuous mapping from (X, ||| · |||) to E.
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5.5.2. Suppose that E is a Banach lattice. Then (X , ||| · |||) is a Banach space
if and only if (X, p, E) is complete with respect to relative uniform convergence.

� Take a fundamental sequence (xn) ⊂ X . Without loss of generality, assume
that |||xn+1 − xn||| ≤ 1/n3 (n ∈ N). Put

en := p(x1) +
n∑

k=1

kp(xk+1 − xk) (n ∈ N).

Proceed with the estimates

‖en+l − en‖ = ‖
n+l∑

k=n+1

kp(xn+1 − xk)‖

≤
n+l∑

k=n+1

k|||xk+1 − xk||| ≤
n+l∑

k=n+1

1
k2

−→
n, l→0

0.

Observe that (en) is a fundamental sequence and so E contains the limit e :=
limn→∞ en. Since en+k ≥ en (n, k ∈ N); therefore, e = sup(en). If n ≥ m then

mp(xn+l − xn) ≤
n+l∑

k=n+1

kp(xn+1 − xk) ≤ en+l − en ≤ e.

Hence, p(xn+l−xn) ≤ (1/m)e implying that (xn) is an r-fundamental sequence. Us-
ing the hypothesis of r-completeness, find x := r-limn→∞ xn. Clearly, limn→∞ |||x−
xn||| = 0.

Suppose that (xn) ⊂ X is an r-fundamental sequence; i.e. p(xn − xm) ≤ λke
(m,n, k ∈ N; m,n ≥ k), where 0 ≤ e ∈ E and limk→∞ λk = 0. Then |||xn−xm||| ≤
λk‖e‖ → 0 as k → ∞. Consequently, we may find x := limn→∞ xn. The vector
norm p acts continuously from (X, ||| · |||) to (E, || · ||). Therefore, passage to the
limit in norm in the inequality p(xm−xn) ≤ λke as m→ ∞ leads to the inequality
p(x− xn) ≤ λke for all k ≤ n. Hence, x = r-limn→∞ xn. �

5.5.3. Let F be an ideal of E. Recall that, given Y := {x ∈ X : p(x) ∈ F} and
q := p � Y , the 3-tuple (Y, q, F ) is the restriction of X relative to F or F -restriction
of X . If X is a Banach–Kantorovich space then so is Y . If X is r-complete and
F is a Banach lattice then Y is a Banach space with mixed norm or a composite
Banach space.

Take a Banach space (X , ρ) inside V(B) and an order dense ideal F in R↓.
The F -restriction of X ↓ is the F -descent of X or the descent of X relative to F .
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The F -descent is denoted by F ↓(X ). More explicitly, the F -descent of X is the
triple (F ↓(X ), p, F ), where

F ↓(X ) := {x ∈ X ↓ : ρ↓(x) ∈ F}, p := (ρ↓) � E↓(X ).

If a Banach lattice E is an ideal of R↓ then E↓(X ) is a composite Banach space.
In the case when E is a K-space of bounded elements, i.e., the order ideal of

R↓ generated by the order unit 1 ∈ R↓, we call the E-descent of X the bounded
descent of X . Moreover, the bounded descent functor we call the resultant functor
E↓ which sends X to E↓(X ). Also, we use the notation X ↓∞ := E↓(X ).

5.5.4. The above definitions make it natural to raise the question: What Ba-
nach spaces are linearly isometric to E-descents and, in particular, to bounded
descents of Banach spaces inside V(B)? Clearly, the answer depends upon geom-
etry. Skipping details, we briefly consider the case of bounded descent which we
need in the sequel.

Let X be a normed space. Suppose that L (X) has a complete Boolean algebra
of norm one projections B which is isomorphic to B. In this event we will identify
the Boolean algebras B and B, writing B ⊂ L (X). Say that X is a normed B-
space if B ⊂ L (X) and for every partition of unity (bξ)ξ∈Ξ in B the two conditions
are met:

(1) If bξx = 0 (ξ ∈ Ξ) for some x ∈ X then x = 0;
(2) If bξx = bξxξ (ξ ∈ Ξ) for x ∈ X and a family (xξ)ξ∈Ξ in X then

‖x‖ ≤ sup{‖bξxξ‖ : ξ ∈ Ξ}.
Conditions (1) and (2) amount to the respective conditions (1′) and (2′):

(1′) To each x ∈ X there corresponds the greatest projection b ∈ B
such that bx = 0;

(2′) If x, (xξ), and (bξ) are the same as in (2) then ‖x‖ = sup{‖bξxξ‖ :
ξ ∈ Ξ}.

From (2′) it follows in particular that

∥∥∥∥∥

n∑

k=1

bkx

∥∥∥∥∥ = max
k:=1,...,n

‖bkx‖

for x ∈ X and pairwise disjoint projections b1, . . . , bn in B.
Given a partition of unity (bξ), we refer to x ∈ X such that (∀ ξ) bξx = bξxξ

as a mixing of (xξ) by (bξ). If (1) holds then there is a unique mixing x of (xξ) by
(bξ). In these circumstances we naturally call x the mixing of (xξ) by (bξ).

Condition (2) may be paraphrased as follows: The unit ball UX of X is closed
under mixing.
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5.5.5. Theorem. For a Banach space X the following are equivalent:
(1) X is a decomposable space with mixed norm whose norm lattice is

a K-space of bounded elements;
(2) X is a Banach B-space.

� (1) → (2) Appeal to the appropriate definitions and 5.3.4.
(2) → (1) Suppose that X is a Banach B-space and J : B → B is the cor-

responding isomorphism of B onto the Boolean algebra of projections B. Denote
by E the ideal that is generated by the identity in the universally complete K-
space of all B-valued spectral functions (cf. 5.2.8). Take finite valued element
d :=

∑n
ı=1 λıbı ∈ E, where λ1, . . . , λn ∈ R, the family {b1, . . . , bn} is a partition of

unity in B, and λb stands for the spectral function e : μ �→ e(μ) ∈ B equal to the
zero of B for μ ≤ λ and equal to the unity of B for μ > λ. Put J(α) :=

∑n
i=1 λıJ(bı)

and note that J(α) is a bounded linear operator in X . Calculating the norm of
J(α), obtain

‖J(α)‖ = sup
‖x‖≤1

‖J(α)x‖ = sup
‖x‖≤1

sup
ı=1,...,n

{‖πıx‖ · |λl|}

= sup
ı=1,...,n

sup{‖πıx‖ |λl| : ‖x‖ ≤ 1} = max{|λ1|, . . . , |λn|}.

On the other hand, the norm ‖α‖∞ of a member α of the K-space of bounded
elements E coincides with max{|λ1|, . . . , |λn|} too. Hence, J is a linear isometry of
the subspace E0 of finite valued members of E to the algebra of bounded operators
L (X). It is also clear that J(αβ) = J(α) ◦ J(β) for all α, β ∈ E0. Since E0 is
norm dense in E and L (X) is a Banach algebra; therefore, we may extend J by
continuity to an isometric isomorphism of E onto a closed subalgebra of L (X).
Assigning xα := αx := J(α)x for x ∈ X and α ∈ E, make X into a unital E-module
so that

‖αx‖ ≤ ‖x‖ ‖α‖∞ (α ∈ E, x ∈ X).

Moreover, αUX + βUX ⊂ UX for |α|+ |β| ≤ 1. Define the mapping p : X → E+ by
the formula

p(x) := inf{α ∈ E+ : x ∈ αUX} (x ∈ X),

with the infimum taken in the K-space E. If p(x) = 0 then to ε > 0 there are
a partition of unity (πξ) ⊂ B and a family (αξ) ⊂ E+ such that πξαξ ≤ ε1 and
x ∈ αξUX for all ξ. But then πξx ∈ πξαξUX ⊂ εUX . Since the unit ball UX
is closed under mixing; therefore, x = mix(πξx) ∈ εUX . The arbitrary choice of
ε > 0 implies x = 0. If x ∈ αUX and y ∈ βUX for some α, β ∈ E+, then, putting
γ := α+ β + ε1, we may write down

x+ y = γ (γ−1x+ γ−1y) ∈ γ (γ−1αUX + γ−1βUX) ⊂ γUX .
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Consequently, p(x + y) ≤ α + β + ε1; and taking the infimum over α, β, and ε
yields p(x+ y) ≤ p(x) + p(y). Furthermore, granted π ∈ B and x ∈ X , observe the
equalities

πp(x) = inf{πα : 0 ≤ α ∈ E, x ∈ αUX}
= inf{α ∈ E+ : πx ∈ αUX} = p(πx).

But then, for α =
∑
λıπı, with {π1, . . . , πn} a partition of unity in B, infer that

p(αx) =
∑

πıp(λıx) =
n∑

ı=1

πı|λı|p(x) = |α|p(x).

Hence, p(αx) = |α|p(x) for all α ∈ E. Therefore, (X, p, E) is a decomposable lattice
normed space.

Show now that the norm of X is a mixed norm; i.e., ‖x‖ = ‖p(x)‖∞ for all
x ∈ X . Take 0 �= x ∈ X and put y = x/‖x‖. Then y ∈ UX and p(y) ≤ 1.
Consequently, p(x) ≤ ‖x‖ · 1 or ‖p(x)‖∞ ≤ ‖x‖ · ‖1‖∞ = ‖x‖. Conversely, given
ε > 0, we may find a partition of unity (πξ)ξ∈Ξ in Pr(E) and a family (αξ)ξ ⊂ E+

such that πξαξ ≤ p(x) + ε1 ≤ (‖p(x) :∞ +ε) · 1 and x ∈ αξUX (ξ ∈ Ξ). Whence
πξxξ ∈ πξαξUX ⊂ (‖p(x)‖∞ + ε) · πξ1UX ⊂ (‖p(x)‖∞ + ε)UX . Consequently,
‖πξx‖ ≤ ‖p(x)‖∞ + ε. The arbitrary choice of ε > 0, together with 5.5.4 (2),
implies that ‖x‖ ≤ ‖p(x)‖∞. �

5.5.6. A normed B-space X is B-cyclic if we may find in X a mixing of each
norm bounded family by any partition of unity in B. Considering 5.5.4, note that
X is a B-cyclic normed space if and only if, to a partition of unity (bξ) ⊂ B and a
family (xξ) ⊂ UX , there is a unique element x ∈ UX such that bξx = bξxξ for all ξ.

(1) A Banach B-space X is B-cyclic if and only if X is disjointly com-
plete as a lattice normed space.

� This is evident from the definitions. �
An isometry ı between normed B-spaces is a B-isometry if ı is linear and

commutes with every projection in B. Say that Y is a B-cyclic completion of a
B-space X if Y is B-cyclic and there is a B-isometry ı : X → Y such that every
B-cyclic subspace of Y containing ı(X) coincides with Y .

(2) A normed B-space is a B-cyclic Banach space if and only if the
corresponding lattice normed space is o-complete.

� The claim follows from 5.4.7 and (1) on considering that completeness
in norm amounts to completeness with respect to relative uniform convergence,
cf. 5.5.2. �
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(3) Each Banach B-space possesses a B-cyclic completion unique up to
B-isometry.

� The claim follows from 5.4.5 and (2). �
We are now ready to answer the question of 5.5.4.

5.5.7. Theorem. A Banach space X is linearly isometric to the bounded
descent of some Banach space inside V(B) if and only if X is B-cyclic.

� Apply 5.4.1, 5.4.2, 5.5.5, and 5.5.6 (2). �
Take a normed B-space X . Denote the norm completion of X by X̃ . Note that

X̃ is a Banach B-space, since every projection b ∈ B admits a unique extension to
the whole of X̃ which preserves the norm of b. By 5.5.6 (3), X̃ possesses a cyclic
B-completion which is denoted by X. Applying Theorem 5.5.7, take a Banach
space X inside V(B) whose bounded descent is B-isometric with X. The element
X ∈ V(B) is the Boolean valued representation of X .

5.5.8. Let X and Y be normed spaces such that B ⊂ L (X) and B ⊂ L (Y ).
An operator T : X → Y is B-linear if T commutes with every projection in B; i.e.,
b ◦ T = T ◦ b for all b ∈ B.

Denote by LB(X, Y ) the set of all bounded B-linear operators from X to Y .
In this event W := LB(X, Y ) is a Banach space and B ⊂W . If Y is B-cyclic then
so is W . A projection b ∈ B acts in W by the rule T �→ b ◦ T (T ∈W ).

We call X# := LB(X,B(R)) the B-dual of X . If X# and Y are B-isometric
to each other then we say that Y is a B-dual space and X is a B-predual of Y . In
symbols, X = Y#.

5.5.9. Theorem. Assume that X is a normed B-space and Y is a B-cyclic
Banach space. Let X and Y stand for the Boolean valued representations of X
and Y . The space LB(X, Y ) is B-isometric to the bounded descent of the space
L (X ,Y ) of all bounded linear operators from X to Y inside V(B). Moreover, to
T ∈ LB(X, Y ) there corresponds the member T := T ↑ of V(B) determined from
the formulas [[ T : X → Y ]] = 1 and [[ T ıx = ıTx ]] = 1 for all x ∈ X , where ı
stands for the mapping that embeds X into X ↓ and Y into Y ↓.

� Without loss of generality, assume that X and Y are the bounded descents
of some Banach spaces X and Y (cf. 5.5.6 (3) and 5.5.7). Put X0 := X ↓ and
Y0 := Y ↓. By 5.4.9, the spaces L (X ,Y )↓ and Lb(X0, Y0) are linearly isometric.
Moreover, the restriction of Lb(X0, Y0) relative to B(R) coincides with the bounded
descent of L (X ,Y ). It suffices to note that each member T of Lb(X, Y ) admits
a unique extension which preserves the norm of T . �

5.5.10. Let X ∗ be the dual of X . Denote by � and �B the relations of
isometric isomorphy and isometric B-isomorphy between Banach spaces. Suppose
also that X , Y , X , and Y are the same as in 5.5.9.
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(1) The following equivalence holds: X#�BY ↔ [[ X ∗ � Y ]] = 1.

(2) If X is the B-cyclic completion of X then X# = X
#
.

5.5.11. Comments.

(1) Spaces with mixed norm in the sense of Section 5.5 were studied
in [125]. This article presents various applications of the concept of mixed norm
to Banach space geometry and operator theory. The bounded descent of 5.5.3
appeared in the research by G. Takeuti into von Neumann algebras and C∗-algebras
within Boolean valued models [236, 237] and in the research by M. Ozawa into
Boolean valued interpretation of the theory of Hilbert and Banach spaces [194,
200].

(2) The results of this subsection belong to A. G. Kusraev [125]. Later,
analogous properties were established by M. Ozawa [200] in another statement. The
difference is in the fact that the article [200] deals with Banach spaces possessing
an extra module structure which may be reconstructed in every Banach B-space as
seen from 5.4.8 and 5.5.5.

(3) Presenting Theorem 5.5.7, we slightly touch a rich and beautiful
direction of research: Banach space geometry; cf. [35, 149, 154]. Banach space
with complete Boolean algebra of projections was studied irrespectively of Boolean
valued analysis in [44, 214, 246].



Chapter 6

Boolean Valued Analysis of
Banach Algebras

The theory of Banach algebras is one of the most attractive traditional sections
of functional analysis. This chapter presents the basic results of Boolean valued
analysis of involutive Banach algebras.

The possibility of applying Boolean valued analysis to operator algebras rests
on the following observation: If the center of an algebra is properly qualified and
perfectly located then it becomes a one dimensional subalgebra after immersion in
a suitable Boolean valued universe V(B). This might lead to a simpler algebra. On
the other hand, the transfer principle implies that the scope of the formal theory
of the initial algebra is the same as that of its Boolean valued representation.
Theorems 6.1.5 and 6.1.6 elaborate this claim for a general Banach algebra as well
as a C∗-algebra.

Further exposition focuses on analysis of AW ∗-algebras and AW ∗-modules
which transform into AW ∗-factors and Hilbert spaces in V(B); cf. Theorems 6.2.4
and 6.2.8.

The dimension of a Hilbert space becomes a Boolean valued cardinal referred
naturally to as the Boolean dimension of the AW ∗-module depicting the space.
Here a rather delicate effect reveals itself, the so-called cardinal shift: standard
cardinals may glue together when embedded in V(B). In other words, the bases of
isomorphic AW ∗-modules may differ in power. This also implies that every type I
AW ∗-algebra decomposes into the direct sum of homogeneous subalgebras in many
ways. I. Kaplansky conjectured the fact as far back as in 1953. These results are
set forth in Sections 6.3 and 6.4.

Leaning on the results about the Boolean valued immersion of AW ∗-modules
and AW ∗-algebras, we further derive the function representations of these objects.
To put it more precisely, we prove that every AW ∗-module is unitarily equivalent
to the direct sum of homogeneous AW ∗-modules consisting of continuous vector
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functions ranging in a Hilbert space. An analogous representation holds for an ar-
bitrary type I AW ∗-algebra on replacing continuous vector functions with operator
valued functions continuous in the strong operator topology. The relevant facts are
presented in Section 6.5.

We call an AW ∗-algebra embeddable if it is ∗-isomorphic with the double com-
mutant of some type I AW ∗-algebra. Each embeddable AW ∗-algebra admits a
Boolean valued representation that is a von Neumann algebra or factor. We give
several characterizations for embeddable AW ∗-algebras. In particular, we prove in
Section 6.6 that an AW ∗-algebra A is embeddable if and only if the center valued
normal states of A separate A.

6.1. The Descent of a Banach Algebra

The previous chapter paves a way to Boolean valued representation of Banach
spaces. We now proceed to involutive Banach algebras.

6.1.1. We recall the preliminaries on restricting exposition to complex alge-
bras. Note also that by an algebra we always mean a unital associative algebra.

An involutive algebra or ∗-algebra A is an algebra with involution; i.e., a map-
ping x �→ x∗ (x ∈ A) satisfying the conditions:

(1) x∗∗ = x (x ∈ A);
(2) (x+ y)∗ = x∗ + y∗ (x, y ∈ A);
(3) (λx)∗ = λ∗x∗ (λ ∈ C, x ∈ A);
(4) (xy)∗ = y∗x∗ (x, y ∈ A).

An element x of an involutive algebra is hermitian provided that x∗ = x.
A projection e in A is a hermitian idempotent; i.e., e = e∗ and e2 = e. The symbol
P(A) stands for the set of all projections of an involutive algebra A. Clearly, the
formula

c ≤ e↔ c = ce = ec (c, e ∈ P(X))

specifies some order ≤ on the set of projections. We call projections e and c equiv-
alent and write e ∼ c if there is an element x in A satisfying x∗x = e and xx∗ = c.
In this case x is a partial isometry with initial projection e and final projection c.
The relation ∼ is in fact an equivalence over P(A).

A projection e is a central projection if ex = xe for all x ∈ A. Denote the set
of all central projections by Pc(A).

6.1.2. Granted a nonempty set M ⊂ A, define

M⊥ := {y ∈ A : (∀x ∈M)xy = 0};
⊥M := {x ∈ A : (∀y ∈M)xy = 0}.
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Call M⊥ the right annihilator of M and ⊥M , the left annihilator of M .
General properties of annihilators imply that the inclusion ordered sets of all

right and all left annihilators are Dedekind complete lattices. The mapping K �→
K∗ := {x∗ : x ∈ K} is an isotonic bijection between these lattices since (M⊥)∗ =
⊥(M∗) and (⊥M)∗ = (M∗)⊥.

A Baer ∗-algebra is an involutive algebra A such that, to each nonempty
M ⊂ A, there is some e in P(A) satisfying M⊥ = eA. Clearly, this amounts to
the condition that each left annihilator has the form ⊥M = Ac for an appropriate
projection c. To each left annihilator L in a Baer ∗-algebra there is a unique pro-
jection cL ∈ A such that x = xcL for all x ∈ L and cLy = 0 whenever y ∈ L⊥.
The mapping L �→ cL is an isomorphism between the poset of left annihilators and
the poset of all projections. The inverse isomorphism has the form c �→ ⊥(1 − c),
with c ∈ P(A). An analogous claim is true for right annihilators. This implies
in particular that the poset P(A) is a Dedekind complete lattice. The mapping
e �→ e⊥ := 1− e, with e ∈ P(A), satisfies the conditions:

e⊥⊥ = e, e ∧ e⊥ = 0, e ∨ e⊥ = 1,

(e ∧ c)⊥ = e⊥ ∨ c⊥, (e ∨ c)⊥ = e⊥ ∧ c⊥,
e ≤ c→ e ∨ (e⊥ ∧ c) = c.

In other words, (P(A),∧,∨,⊥) is an orthomodular lattice (cf. [14]).

6.1.3. A norm ‖ · ‖ on an algebra A is submultiplicative if

‖xy‖ ≤ ‖x‖ ‖y‖ (x, y ∈ A).

A Banach algebra A is an algebra furnished with a submultiplicative norm making
A into a Banach space. If A is an involutive Banach algebra satisfying

‖xx∗‖ = ‖x‖2 (x ∈ A)

then A is called a C∗-algebra.
An element x of a C∗-algebra A is positive whenever x = y∗y for some y ∈ A.

The set A+ of all positive elements is an ordering cone and so (A,A+) is an ordered
vector space. Treating a C∗-algebra as an ordered vector space, we always imply
the order that is conventionally induced by A+.

6.1.4. A Banach algebra A is B-cyclic with respect to a complete Boolean
algebra B of projections of A provided that A is a B-cyclic Banach space in the
sense of 5.5.6 and every member of B is a multiplicative projection, i.e.

π(xy) = π(x)π(y) = xπy = π(x)y (x, y ∈ A, π ∈ B).
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The definition of B-cyclic involutive algebra appears on requiring additionally that
every member of B is ∗-preserving, i.e.

π(x∗) = (πx)∗ (x ∈ A, π ∈ B).

Finally, the definition of B-cyclic C∗-algebra is evident.
Recall that we consider only unital algebras. With this in mind, let 1 be the

unity of A and identify each projection b ∈ B with the element b1. If A is involutive
then b1 is a central projection of A in the sense of 6.1.1. In this event we write
B ⊂ Pc(A). The record B � A means that A is a B-cyclic Banach algebra. Note
that a C∗-algebra A is B-cyclic whenever to every partition of unity (bξ)ξ∈Ξ and
to every bounded family (xξ)ξ∈Ξ ⊂ A there is a unique x ∈ A satisfying bξx = bξxξ
for all ξ ∈ Ξ.

Each complex K-space of bounded elements with base B and fixed unity ex-
hibits an example of a B-cyclic C∗-algebra (cf. 5.1.3 and 5.2.5 (5)). This algebra is
clearly unique up to ∗-isomorphism. We denote this algebra by B(C). We will often
identify B(C) with the bounded part of the descent C ↓ of the field C of complex
numbers inside V(B). The algebra B(C) is also referred to as the Stone algebra
with base B denoted sometimes by S (B).

Take B-cyclic algebras A1 and A2. A bounded operator Φ : A1 → A2 is a B-
homomorphism whenever Φ is B-linear in the sense of 5.5.8 and multiplicative:
Φ(xy) = Φ(x) · Φ(y) for all x, y ∈ A. If A1 and A2 are involutive algebras and
some B-homomorphism Φ is ∗-preserving, i.e., Φ(x∗) = Φ(x)∗ for all x ∈ A1; then
Φ is a ∗-B-homomorphism. Hence, A1 and A2 are B-isomorphic whenever there
is an isomorphism acting from A1 to A2 and commuting with projections in B. If
a B-isomorphism is ∗-preserving then we call it a ∗-B-isomorphism.

6.1.5. Theorem. The bounded descent of a Banach algebra inside V(B) is
a B-cyclic Banach algebra. Conversely, to each B-cyclic Banach algebra A there is
a Banach algebra A inside V(B) such that A is isometrically B-isomorphic to the
bounded descent of A . Moreover, this algebra A is unique up to isomorphism.

� Take a B-cyclic Banach algebra A. By Theorem 5.5.7 there is a Banach
space A in V(B) whose bounded descent A0 is a B-cyclic Banach space admit-
ting an isometric B-isomorphism with A. Without loss of generality, assume that
A0 = A. Multiplication on A is extensional. Indeed, if b ≤ [[ x = u ]]∧ [[ y = v ]] with
x, y, u, v ∈ A then, by item (b) of 5.4.1 (2),

0 = xχ(b)(y − v) + χ(b)(x− u)v
→ χ(b)(xy − uv) = 0 → χ(b)(xy) = χ(b)uv → b ≤ [[ xy = uv ]].

Let # stand for the ascent of the multiplication · on A. It is easy that # is a binary
operation on A and the space A with the operation # is an algebra. If p is the
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vector norm of the space A then ‖a‖ = ‖p(a)‖∞ and [[ p(a) = ρ(a) ]] = 1 for all
a ∈ A where ρ is the norm of A (cf. 5.5.5). Show that p is a submultiplicative
norm, i.e. p(xy) ≤ p(x)p(y). To this end, recall (cf. 5.4.1 (2) and 5.5.5) that
A is a Banach module over the ring B(R), with B(R) the bounded part of R ↓.
Furthermore, p maintains the equality

p(x) = inf{α ∈ E+ : x ∈ αUA} (x ∈ A).

Hence, submultiplicativity of p follows from the fact that the unit ball UA is closed
under multiplication; i.e., the containments x, y ∈ UA imply xy ∈ UA. Therefore,
p ◦ (·) ≤ (·) ◦ (p× p). Using the rules for ascending mappings (cf. 3.3.11), we see
that [[ ρ ◦ # ≤ # ◦ (ρ × ρ) ]] = 1, i.e., [[ ρ is a submultiplicative norm ]] = 1. We
finally infer that A is a Banach algebra inside V(B). To show uniqueness of A
argue as follows: Assume that A1 and A2 are Banach algebras inside V(B). Let g
be an isometric isomorphism between the bounded descents of A1 and A2. Then g
is an extensional mapping and ψ := g↑, the ascent of g, is a linear isometry between
the Banach spaces A1 and A2. Multiplicativity of ψ follows from the formulas

ψ ◦ # = g↑ ◦ (·)↑= (g ◦ (·))↑= ((·) ◦ (g × g))↑=(·)↑ ◦ (g↑ ×g↑) = # ◦ (ψ × ψ)

with # standing for the operations of multiplication on A1 and A2 and (·) symbol-
izing the operations of multiplication in the bounded descents of A1 and A2.

Assume now that A is a Banach algebra inside V(B) and A is the bounded
descent of A . We know that A is a B-cyclic Banach space (cf. 5.5.11). If χ is the
canonical isomorphism of B onto the base E(E) then b ≤ [[ x = 0 ]] ↔ χ(b)x = 0 for
all x ∈ A (cf. 5.4.1 (2)). Considering the definition of χ and the obvious implication

χ(b) = 0 ∨ χ(b) = 1 → (∀x ∈ A)(∀ y ∈ A)(χ(b)xy = (χ(b)x)y = x (χ(b)y)),

take arbitrary x, y ∈ A and deduce that

[[χ(b)xy = xχ(b)y = (χ(b)x)y ]]≥ [[χ(b) = 1 ]] ∨ [[χ(b) = 0 ]] = b ∨ b∗ = 1.

This shows that the projection πb : x �→ χ(b)x, with x ∈ A, enjoys the needed
property: πbxy = (πbx)y = x (πby) for all x, y ∈ A. Thus, A is a B-cyclic algebra. �

6.1.6. Theorem. The bounded descent of a C∗-algebra inside V(B) is a B-
cyclic C∗-algebra. Conversely, to each B-cyclic C∗-algebra A there is a C∗-algebra
A inside V(B) such that the bounded descent of A is ∗-B-isomorphic with A.
Moreover, this C∗-algebra A is unique up to ∗-isomorphism.
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� If A is a B-cyclic C∗-algebra then the structure of a Banach S (B)-module
on A possesses the additional property that (αx)∗ = αx∗ for all α ∈ B(R) and
x ∈ A. As before, B(R) stands for the real part of the complex Banach algebra
S (B). Indeed, if α :=

∑n
k=1 λkπk with λ1, . . . , λn ∈ R and π1, . . . , πn ∈ E(S (B)),

then

(αx)∗ =
n∑

k=1

λk (πkx)∗ =
n∑

k=1

λkπkx
∗ = αx∗.

Involution is an isometry on every C∗-algebra and so U∗
A = UA. We may conclude

that
x ∈ αUA ↔ xx∗ ∈ α2UA (x ∈ A, α ∈ S (B)).

Hence, p(xx∗) = p(x)2. In particular, the involution on A is an isometry with
respect to the vector norm p, i.e. p(x∗) = p(x) for all x ∈ A. Note also that if
(A , ρ) is a Banach algebra inside V(B), A is the bounded descent of A , and p is the
restriction of ρ↓ to A; then the descent of the involution on A obeys the conditions
[[ (∀x ∈ A )ρ(xx∗) = ρ(x)2 ]] = 1 if and only if p(xx∗) = p(x)2 for all x ∈ A. It
suffices to appeal to Theorem 6.1.5 and offer some elementary arguments. �

6.1.7. Theorem. Let A be a B-cyclic Banach algebra such that every element
x ∈ A, satisfying the condition (∀b ∈ B)(bx = 0 → b = 0), is invertible. Then A is
isometrically B-isomorphic to the Stone algebra with base B.

� By Theorem 6.1.5 we may treat A as the bounded descent of some Banach
algebra A ∈ V(B). By hypothesis, every nonzero element of A is invertible. Indeed,
we may calculate the following Boolean truth value:

c := [[ (∀x)(x ∈ A ∧ x �= 0 → (∃z)(z = x−1)) ]]

=
∧

{[[ (∃z)(z = x−1) ]] : x ∈ A, [[ x �= 0 ]] = 1}.

By 5.4.1 (2) (c), the equality [[x �= 0 ]] = 1 amounts to the condition χ(b)x = 0 ↔
b = 0. Hence, if [[ x �= 0 ]] = 1 then we may find the inverse x−1 of x in A
and [[ (∃z)(z = x−1) ]] = 1. Consequently, c = 1. Applying the Gelfand–Mazur
Theorem inside V(B), note that the algebra A is isometrically isomorphic to the
field of complex numbers C inside V(B). But then A is isometrically B-isomorphic
with the bounded descent of C which is the Stone algebra with base B (cf. 6.1.4). �

6.1.8. Theorem. Assume that A is a B-cyclic Banach algebra, S (B) is the
Stone algebra with base B, and Φ : A → S (B) is a B-linear operator. Assume
further that Φ(1) = 1 and eΦ(x) = 1 for every invertible element x ∈ A. Then Φ is
multiplicative, i.e., Φ(xy) = Φ(x)Φ(y) for all x, y ∈ A.
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� Arguing like in 6.1.7, let ϕ := Φ↑. Then [[ϕ : A → C is a linear functional ]] =
1. Moreover, [[ϕ(x) �= 0 for every invertible x ∈ A ]] = 1. By the Gleason–Želazko–
Kahane Theorem [[ϕ is a multiplicative functional ]] = 1. This implies multiplicativ-
ity for Φ in much the same way as we use in 6.1.5 while proving submultiplicativity
for the norm p. �

6.1.9. Theorem. Assume that A is a B-cyclic commutative Banach algebra
with involution, S (B) is the Stone algebra with base B, and Φ : A→ S (B) is a B-
linear operator. Assume further that K is the set of all positive B-linear operators
Ψ : A→ S (B) satisfying Ψ(1) ≤ 1. If Φ ∈ K then the following are equivalent:

(1) Φ(xy) = Φ(x)Φ(y) (x, y ∈ A);
(2) Φ(xx∗) = Φ(x)Φ(x∗) (x ∈ A);
(3) Φ ∈ ext(K), where ext(K) denotes the set of extreme points of K.

� With the notation of the proof of Theorem 6.1.8, we may assert that [[ A
is a commutative Banach algebra with involution, and ϕ : A → C is a positive
functional satisfying ϕ(1) ≤ 1 ]] = 1. Let K consist of all positive linear functionals
ψ on A satisfying ψ(1) ≤ 1. It is evident that ψ �→ (ψ↓) � A is an affine bijection λ
between the convex sets K ↓ and K := {Ψ↑: Ψ ∈ K}. Moreover, [[ψ ∈ ext(K ) ]] =
1 ↔ λψ ∈ ext(K). We are left with applying the scalar version (in which case
S (B) = C ) of the claim inside V(B). This ends the proof. �

6.1.10. We agree to let B-Hom(A1, A2) stand for the set comprising B-homo-
morphisms from A1 to A2. We also agree that HomB(A1,A2) symbolizes the ele-
ment of V(B) which depicts the set of all homomorphisms from A1 to A2.

(1) Assume that A1 and A2 are Banach algebras inside V(B) and A1

and A2 are their respective bounded descents. If Φ ∈ B-HomB(A1, A2) and ϕ := Φ↑
then [[ϕ ∈ HomB(A1,A2) ]] = 1 and [[ ‖ϕ‖ ≤ C ]] = 1 for some C ∈ R. The mapping
Φ �→ ϕ is an isometric bijection between B-Hom(A1, A2) and HomB(A1,A2)↓∞.

� All claims with the exception of multiplicativity ensue from 5.4.9. The fact
that ϕ and Φ are multiplicative may be justified in much the same way as in the
proof of uniqueness in 6.1.5. �

(2) Assume that A1 andA2 are involutive Banach algebras insideV(B),
while Φ ∈ B-Hom(A1, A2) and ϕ∈HomB(A1, A2) correspond to one another under
the bijection of (1). Then the equality [[ϕ is ∗-preserving ]] = 1 holds if and only if
Φ is ∗-preserving.

� Appealing to 5.5.4 and 6.1.6 completes the proof. �
6.1.11. Assume that A is an involutive Banach algebra inside V(B) and A

is the bounded descent of A . Then x ∈ A is a hermitian element or a positive
(central) projection if and only if [[ x is a hermitian element or a positive (central)
projection) ]] = 1.
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� This is obvious. �
6.1.12. Comments.

(1) J. von Neumann started the study of involutive operator algebras,
inspired by the mathematical problems of quantum mechanics, cf. [177, 178]. This
traditional connection with theoretical physics is still alive (cf., for instance, [19]).
However, the present-day theory of involutive topological algebras contains several
rather abstract and esoteric fields of research, raising many subtle mathematical
problems. To enter this field, the reader may consult [6, 38, 40, 95, 151, 174, 207,
211, 224, 229, 230, 257].

The study of C∗-algebras was originated by I. M. Gelfand and M. A. Năımark
in 1943. The principal structural properties of C∗-algebra are connected with pos-
itivity. As regards the preliminaries of involutive algebras, consult [12]. See [6, 38,
39, 146, 173] for the details of C∗-algebras and [40, 211, 230], for the details of von
Neumann algebras.

(2) G. Takeuti started studying C∗-algebras and von Neumann algebras
by using Boolean valued models with [236, 237]. Theorem 6.1.6 belongs to him.
Theorems 6.1.7 and 6.1.8 are Boolean valued interpretations of the Gelfand–Mazur
Theorem and the Gleason–Želazko–Kahane Theorem, ranking as classical facts of
functional analysis (see, for instance, [146, 210]).

Note also the monograph [33] which deals with applications of Boolean valued
models to independence problem in the related section of analysis.

6.2. AW ∗-Algebras and AW ∗-Modules

In this section we present results on Boolean valued representation of the ob-
jects indicated in the title.

6.2.1. An AW ∗-algebra is a C∗-algebra presenting a Baer ∗-algebra. More
explicitly, an AW ∗-algebra is a C∗-algebra whose every right annihilator has the
form eA with e a projection. By the way, we note that a better term for an AW ∗-
algebra is a Baer C∗-algebra.

A C∗-algebra A is an AW ∗-algebra if and only if the following conditions are
satisfied:

(1) Every orthogonal family in P(A) has a supremum;
(2) Every maximal commutative ∗-subalgebra A0 of A is a complex

K-space of bounded elements.

The space L (H) of all bounded linear endomorphisms of a complex Hilbert
space H exhibits an example of an AW ∗-algebra. Recall that the structure of
a Banach algebra in L (H) results from the conventional addition and composition
of operators and the routine operator norm. The involution in L (H) is the taking of
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the adjoint of an operator. Observe that every commutative AW ∗-algebra, referred
also to as a Stone algebra, is a complex K-space of bounded elements with the unity
of multiplication serving as a strong order unit.

6.2.2. Spectral Theorem. To each hermitian element A of an AW ∗-algebra
A there is a unique resolution of identity λ �→ eλ, with λ ∈ R, in P(A) such that

a =

‖a‖∫

−‖a‖

λ deλ.

Moreover, an element x ∈ A commutes with a if and only if xeλ = eλx for all λ ∈ R.

� Recall that the term “resolution of identity” in P(A) means the same as
in the case of a Boolean algebra; i.e., we call so every function λ �→ eλ that sat-
isfies 5.2.6 (1–3) (cf. 5.2.8). Every maximal commutative ∗-subalgebra of A which
contains a is a complex K-space by 6.2.1 (2). Hence, the sought representation
ensues from the Freudenthal Theorem 5.2.14. The claim about commuting follows
from the fact that the element a and the set {eλ : λ ∈ R} generate the same
maximal ∗-subalgebra. �

6.2.3. Theorem. An AW ∗-algebra A is a B-cyclic C∗-algebra for every order
closed subalgebra B of the complete Boolean algebra Pc (A).

� Let U denote the unit ball of A. It suffices to demonstrate that to every
partition of unity (bξ)ξ∈Ξ ⊂ B and every family (aξ)ξ∈Ξ ⊂ U there is a unique
element a in U satisfying bξaξ = bξa for all ξ ∈ Ξ. Assume first that aξ is hermitian
for all ξ ∈ Ξ. Then the family (bξaξ) consists of pairwise commuting hermitian
elements since (bξaξ) · (bηaη) = (bξbη) · (aξaη) for ξ �= η.

Denote by A0 the maximal commutative ∗-subalgebra of A that includes (bξaξ).
By 6.2.1 (2), A0 is a complex K-space of bounded elements. Hence, A0 contains the
element a = o-

∑
ξ∈Ξ bξaξ, where o-summation is done in A0. Clearly, bξaξ = bξa

for all ξ ∈ Ξ. On the other hand, −1 ≤ aξ ≤ 1 implies that −1 ≤ a ≤ 1, and so
‖a‖ ≤ 1.

Uniqueness is now in order. Assume that for some hermitian element d ∈ A
we have bξd = 0 for all ξ ∈ Ξ. By 5.2.6 (10),

e
bξd
λ = b⊥ξ ∨ edλ = 1 = e1λ (λ ∈ R, λ > 0),

e
bξd
λ = bξ ∧ edλ = 0 = e0λ (λ ∈ R, λ ≤ 0).

The equalities b⊥ξ ∨ edλ = 1 and bξ ∧ edλ = 0 are equivalent with the respective
inequalities edλ ≥ bξ and edλ ≤ b⊥ξ . Therefore, edλ = 1 for λ > 0 and edλ = 0 for λ ≤ 0;
i.e. the spectral function of d is that of the zero element. Consequently, d = 0.
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In the general case of arbitrary aξ ∈ U , use the presentation aξ = uξ + ivξ,
where i stands for the imaginary unity, and uξ and vξ are uniquely determined
hermitian elements of U . The above shows that there are hermitian elements u, v ∈
U satisfying bξu = bξuξ and bξv = bξvξ for all ξ ∈ Ξ. Observe that a = u + iv
is a sought element. Indeed, bξa = bξaξ for all ξ ∈ Ξ. Moreover, the hermitian
elements a∗ξaξ belong to U , and bξa

∗a = bξa
∗
ξaξ for all ξ ∈ Ξ. Only one element

meets these conditions. Since a∗a fits in, we see that a∗a ∈ U . Whence a ∈ U for
‖a‖2 = ‖a∗a‖ ≤ 1. �

6.2.4. Theorem. Assume that A is an AW ∗-algebra inside V(B) and A is
the bounded descent of A . Then A is also an AW ∗-algebra and, moreover, Pc(A)
has an order closed subalgebra isomorphic with B. Conversely, let A be an AW ∗-
algebra such that B is an order closed subalgebra of the Boolean algebra Pc(A).
Then there is an AW ∗-algebra A inV(B) whose bounded descent is ∗-B-isomorphic
with A. This algebra A is unique up to isomorphism inside V(B).

� By Theorems 6.1.6 and 6.2.3 we only need to prove that the C∗-algebras
A and A are Baer. The last claim is immediate on using 6.1.11 and the rules for
ascending and descending polars which are annihilators in our case (cf. 3.2.13 (2)
and 3.3.12 (6)). �

6.2.5. The center of an AW ∗-algebra A is the set Z (A) comprising z in A,
that commute with every member of A; i.e. Z (A) := {z ∈ A : (∀x ∈ A) xz = zx}.
Clearly, Z (A) is a commutative AW ∗-subalgebra of A, with λ1 ∈ Z (A) for all
λ ∈ C. If Z (A) = {λ1 : λ ∈ C} then the AW ∗-algebra A is an AW ∗-factor.

Theorem. If A is an AW ∗-factor inside V(B) then the bounded descent A of
A is an AW ∗-algebra whose Boolean algebra of central projections is isomorphic
with B. Conversely, if A is an AW ∗-algebra and B := Pc(A) then there is an
AW ∗-factor A in V(B) whose bounded descent is isomorphic with A. This factor
is unique up to ∗-isomorphism inside V(B).

� Apply 6.2.4 and recall that the descent of the two-element Boolean algebra
{0, 1} is isomorphic with B (cf. 4.2.2). �

6.2.6. Suppose that Λ is a commutative AW ∗-algebra and B is a complete
Boolean algebra of projections of Λ. Consider a unital Λ-module X . The mapping
〈· | ·〉 : X ×X → Λ is a Λ-valued inner product if for all x, y, z ∈ X and a ∈ Λ the
following conditions are satisfied

(1) 〈x | x〉 ≥ 0; 〈x | x〉 = 0 ↔ x = 0;
(2) 〈x | y〉 = 〈y, x〉∗;
(3) 〈ax | y〉 = a〈x | y〉;
(4) 〈x+ y | z〉 = 〈x | z〉 + 〈y | z〉.

Using a Λ-valued inner product, we may introduce the norm in X by the
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formula

(5) |||x||| := √‖〈x | x〉‖ (x ∈ X),

and the vector norm

(6) x :=
√〈x | x〉 (x ∈ X).

In this event |||x||| = ‖ x ‖ for all x ∈ X , since ‖a‖ = ‖(
√
a)2‖ = ‖√a‖2 for every

positive a ∈ Λ. Therefore, the formula (5) defines a mixed norm on X (cf. 5.5.1).

6.2.7. Theorem. The pair (X, ||| · |||) is a B-cyclic Banach space if and only
if (X, · ) is a Banach–Kantorovich space.

� Note that 6.2.6 (6) gives a decomposable norm since bx = b x for all x ∈ X
and b ∈ B according to 6.2.6 (3). By Theorem 5.5.2, the normed space (X, ‖| · ‖|)
is complete if and only if (X, · ) is r-complete. Furthermore, it is clear that the
B-cyclicity of (X, ||| · |||) amounts to the disjoint completeness of (X, · ). The above
remarks justify 5.4.7, so completing the proof. �

An AW ∗-module over Λ is a unital Λ-module equipped with a Λ-valued inner
product and possessing each of the properties whose equivalence is stated in

6.2.8. Theorem. The bounded descent of an arbitrary Hilbert space in V(B)

is an AW ∗-module over the Stone algebra S (B). Conversely, if X is an AW ∗-
module over S (B), then there is a Hilbert spaceX inV(B) whose bounded descent
is unitarily equivalent with X . This space is unique to within unitary equivalence
inside V(B).

� Without loss of generality, we may assume that S (B) ⊂ C↓. Suppose that
X is a Hilbert space inside V(B) and X is the bounded descent of X . Then the
pair (X, · ), with · the descent of the norm of X , is a Banach–Kantorovich space
and the pair (X, ||| · |||), with |||x||| = ‖ x ‖ for all x ∈ X , is a B-cyclic Banach
space (cf. 5.5.7). In particular, X is a unital module over S (B). Suppose that
(· | ·) ∈ V(B) is the inner product in X and 〈· | ·〉 is the descent of (· | ·). It is
easy to check that 〈· | ·〉 satisfies 6.2.6 (1–4) for all x, y, z ∈ X ↓ and a ∈ C ↓.
If x, y ∈ X then [[ |(x | y)| ≤ ‖x‖ · ‖y‖ ]] = 1. Hence, |〈x | y〉| ≤ x · y . Since
x , y ∈ S (B); therefore, 〈x | y〉 ∈ S (B). Thus, the restriction of 〈· | ·〉 to X ×X ,

denoted by the same symbol, is a S (B)-valued inner product on X . It suffices
to note that x =

√〈x | x〉, since [[ ‖x‖ =
√

(x | x) ]] = 1 and the descent of the
function √ : R+ → R+ depicts the square root in S (B).

Now, consider an AW ∗-module X over S (B). By Theorem 5.4.2, the Boolean
valued representation X ∈ V(B) of the Banach–Kantorovich space (X, · ,S (B))
is a Banach space inside V(B). We may thus assume that X ⊂ X ↓. Let (· | ·) stand
for the ascent of the S (B)-valued inner product 〈· | ·〉 in X . Then (· | ·) is an inner



262 Chapter 6

product on X inside V(B). Arguing as above, we see that [[ ‖x‖ =
√

(x | x) for all
x ∈ X ]] = 1, since x =

√〈x | x〉 for all x ∈ X .
Suppose that Y is another Hilbert space inside V(B) and the bounded descent

Y of Y is unitarily equivalent with X . If U : X → Y is a unitary isomorphism
then u := U ↑ is a linear bijection from X to Y . Since U enjoys the property
〈· | ·〉 ◦ (U × U) = 〈· | ·〉, note inside V(B) that

(· | ·) ◦ (u× u) = 〈· | ·〉 ↑ ◦ (U↑ ×U↑) = (〈· | ·〉 ◦ (U × U))↑= 〈· | ·〉↑= (· | ·).

Hence, u is a unitary equivalence between X and Y . This ends the proof. �
As usual, we call X the Boolean valued representation of an AW ∗-module X .
Suppose that L B(X ,Y ) is the space of bounded linear operators from X

to Y inside V(B) (cf. 5.4.9). Let Hom(X, Y ) stand for the space of all bounded
Λ-linear operators from X to Y where X and Y are AW ∗-modules over the commu-
tative AW ∗-algebra S (B). As before, we let S (B) stand for the bounded descent
of the field C. It is easy that Hom(X, Y ) = LB(X, Y ) (cf. 5.5.9).

6.2.9. Theorem. Suppose thatX and Y are Hilbert spaces inside V(B). Let
X and Y stand for the bounded descents of X and Y . For every bounded Λ-linear
operator Φ : X → Y the element ϕ := Φ↑ is a bounded linear operator from X
to Y inside V(B). Moreover, [[ ‖ϕ‖ ≤ c∧ ]] = 1 for some c ∈ R. The mapping
Φ �→ ϕ is a B-linear isometry between the B-cyclic Banach spaces Hom(X, Y ) and
L B(X ,Y )↓∞.

� Appealing to 5.4.9 and 5.5.9 completes the proof. �
6.2.10. We now state some corollaries.

(1) Denote by AW ∗-mod-S (B) the category of AW ∗-modules over the
Stone algebra S (B) and bounded S (B)-linear operators. Also, consider the cate-
gory Hilbert(B)

∞ whose objects are Hilbert spaces inside V(B) and whose morphisms
are bounded linear operators f : X → Y inside V(B) satisfying [[ ‖f‖ ≤ c∧ ]] for
some c ∈ R. Theorems 6.2.8 and 6.2.9 may be paraphrased as follows:

Theorem. The bounded descent and immersion functors establish equivalence

of the categories Hilbert(B)
∞ and AW ∗-mod-S (B).

(2) Put End(X) := Hom(X,X) and L (X ) := L B(X ,X ). From 6.2.9
it follows that End(X) and L (X )↓∞ are isometrically B-isomorphic. Since the
space of all bounded operators L (X ) is an AW ∗-factor inside V(B) then L (X)↓∞
is an AW ∗-algebra (cf. 6.2.5). An isometric B-isomorphism between End(X) and
L (X )↓∞ is an isomorphism between algebras provided that the multiplication of
End(X) is the composition of operators and the adjoint of an operator T in End(X)
is defined by the rule 〈Tx | y〉 = 〈x | T ∗y〉 for all x, y ∈ X .
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Theorem. The space End(X), furnished with above operations, is an AW ∗-
algebra.

6.2.11. We will now demonstrate that immersion in a Boolean valued universe
preserves the type of an AW ∗-algebra. The type of such an algebra A is determined
from the structure of the lattice of projections in A. Consequently, we have to
trace changes with the qualification of a projection which happens in the process
of Boolean valued representation.

Recall the relevant definitions. Take an AW ∗-algebra A. A projection π ∈ A
is called: (a) abelian if the algebra πAπ is commutative; (b) finite, if for every
projection ρ ∈ A from π ∼ ρ ≤ π it follows that ρ = π; (c) infinite, if π is not finite;
(d) purely infinite, if π does not contain nonzero finite projections. As usual, the
phrase “a projection π contains a projection ρ” stands for the inequality ρ ≤ π.

An algebra A has type I if each nonzero projection in A contains nonzero
abelian projection. An algebra A has type II if A does not contain nonzero abelian
projections and each nonzero projection in A contains a nonzero finite projection.
An algebra A has type III if the unity of A is a purely infinite projection. An algebra
A is finite if the unity of A is a finite projection.

6.2.12. Theorem. Suppose that A is an AW ∗-algebra inside V(B) and A is
the bounded descent of A . For every projection π ∈ P(A) the following hold:

(1) π is abelian ↔ [[ π is abelian ]] = 1;
(2) π is finite ↔ [[ π is finite ]] = 1;
(3) π is purely infinite ↔ [[ π is purely infinite ]] = 1.

� The claim of (1) is obvious. Furthermore, note that for π, ρ ∈ P(A) the
formulas π ∼ ρ, π ≤ ρ, and π 	 ρ may be rewritten as algebraic identities (cf. 6.1.1):

π ∼ ρ↔ xx∗ = π ∧ x∗x = ρ,

π ≤ ρ↔ πρ = ρπ = π,

π 	 ρ↔ π ∼ π0 ∧ π0 ≤ ρ.

Multiplication, involution, and equality in A appear as the descents of the
corresponding objects in A . Therefore,

π ∼ ρ↔ [[ π ∼ ρ ]] = 1,

π ≤ ρ↔ [[π ≤ ρ ]] = 1,

π 	 ρ↔ [[ π 	 ρ ]] = 1.

To prove (2), recall the formula

[[ (∀x ∈ A )ϕ(x) → ψ(x) ]] =
∧

{[[ψ(x) ]] : x ∈ A ↓, [[ϕ(x) ]] = 1},
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and the equality P(A )↓= P(A). Then, write down the chain of equivalences:

[[ π is finite ]] = 1

↔ [[ (∀ρ ∈ P(A ))π ∼ ρ ≤ π → π = ρ ]] = 1

↔ (∀ρ ∈ P(A))[[ π ∼ ρ ≤ π ]] = 1 → [[ π = ρ ]] = 1

↔ (∀ρ ∈ P(A))π ∼ ρ ≤ π → π = ρ.

We arrive at (3) similarly, thus completing the proof. �
6.2.13. Theorem. Suppose that algebras A and A are the same as in 6.2.12.

Then the following hold:
(1) A is finite ↔ [[ A is finite ]] = 1;
(2) A has type I ↔ [[ A has type I ]] = 1;
(3) A has type II ↔ [[ A has type II ]] = 1;
(4) A has type III ↔ [[ A has type III ]] = 1.

� All claims are immediate from 6.2.12 and definitions. �
6.2.14. Comments.

(1) The modern structural theory of AW ∗-algebras and AW ∗-modules
originates with the articles [105–107] by I. Kaplansky. These objects appear natu-
rally by way of algebraization of the theory of von Neumann operator algebras.

(2) The main results of the current section, Theorems 6.2.4, 6.2.8, and
6.2.9, belong to M. Ozawa [194–200]. Our exposition is somewhat different as basing
on the representation theorems of Chapter 5. Theorems 6.2.12 and 6.2.13 must be
attributed to G. Takeuti [236].

(3) JB-algebras serve as real nonassociative analogs of C∗-algebras and
von Neumann operator algebras. The theory of JB-algebras stems from the article
[92] by P. Jordan, J. von Neumann and E. Wigner. This theory is an established
section of functional analysis from the mid sixties. The articles [2] and [243] re-
flect the stages of progress in JB-algebras. This theory flourishes and expands its
applications. Among the main directions of research we may list a few: structural
properties and general classification of JB-algebras, nonassociative integration and
quantum probability, geometry of states of JB-algebras, etc. (cf. [7, 8, 75, 213] and
the bibliography therein).

(4) We now state a typical result on Boolean valued representation of
JB-algebras by analogy with Theorem 6.2.4. Assume that B is a subalgebra of
the Boolean algebra of central idempotents of a JB-algebra A. We call A a B-
JB-algebra provided that to every partition of unity (eξ)ξ∈Ξ in B and every family
(xξ)ξ∈Ξ there is a unique B-mixing x := mixξ∈Ξ (eξxξ) in A. The following result
is available on Boolean valued representation of a JB-algebra (cf. [127]).



Boolean Valued Analysis of Banach Algebras 265

Theorem. The bounded descent of a JB-algebra inside V(B) is a B-JB-
algebra. Conversely, for each B-JB-algebra A there is a JB-algebra A whose
bounded descent is B-isomorphic with A. This algebra A is unique up to isomor-
phism inside V(B). Moreover, [[ A is a JB-factor ]] = 1 if and only if the bounded
part of the descent R↓ coincides with Z (A).

6.3. The Boolean Dimension of an AW ∗-Module

To each AW ∗-module A we may uniquely assign some nonstandard cardinal,
the Hilbert dimension of the Boolean valued representation of A. The external
deciphering of this leads to the concept of Boolean dimension.

6.3.1. Suppose that X is a unital AW ∗-module over a commutative AW ∗-al-
gebra Λ. A subset E of X is a basis for X provided that

(1) 〈x | y〉 = 0 for all distinct x, y ∈ E ;

(2) 〈x | x〉 = 1 for every x ∈ E ;

(3) the condition (∀e ∈ E )〈x | e〉 = 0 implies x = 0.
We say that an AW ∗-module X is λ-homogeneous if λ is a cardinal and X has
a basis of cardinality λ.

Granted 0 �= b ∈ B, denote by κ(b) the least cardinal γ such that an AW ∗-
module bX is γ-homogeneous. If X is homogeneous then κ(b) is defined for all
0 �= b ∈ B. Hence, κ is a mapping of B+ := {b ∈ B : b �= 0} to some set of
cardinals. We can demonstrate that κ is a multiplicity function; i.e., κ(sup(bξ)) =
sup(κ(bξ)) for every family (bξ) ⊂ B. We shall say that an AW ∗-module X is
strictly γ-homogeneous if X is homogeneous and γ = κ(b) for all nonzero b ∈ B. If
γ is a finite cardinal then the properties of γ-homogenuity and strict γ-homogenuity
of an AW ∗-module are equivalent. It is convenient to assume that κ(0) = 0.

Denote by |M | the cardinality of M ; i.e., a cardinal bijective with M . The
record [[ dim(X ) = λ ]] = 1 signifies that V(B) |= “the cardinality of every or-
thonormal basis for a space X equals λ.” We now present the Boolean valued
interpretation of homogenuity and strict homogenuity.

6.3.2. Theorem. For an AW ∗-module X to be λ-homogeneous it is necessary
and sufficient that [[ dim(X ) = |λ∧| ]] = 1.

� By Theorem 5.4.2, assume that X ⊂ X ↓. The mapping 〈· | ·〉 and the descent
of the form (· | ·) agree on X×X . Therefore, for all x, y ∈ X and a ∈ Λ, the following
are equivalent: 〈x | y〉 = a and [[ (x | y) = a ]] = 1. We thus see that the orthogonality
relation on X is the restriction to X of the descent of the orthogonality relation
on X . From these observations it follows that a subset E of X is orthonormal if
and only if [[ E ↑ is an orthonormal set in X ]] = 1. Applying the descent rules for
polars to orthogonal complements in X and X , infer (E ↑)⊥↓= (E ↑↓)⊥. Observe
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also that E ⊥ = (E↑↓)⊥. Hence, E ⊥↑= (E ↑)⊥. In particular, E ⊥ = 0 if and only
if [[ (E ↑)⊥ = {0} ]] = 1. Hence, E is a basis for X only on condition that [[ E is
a basis for X ]] = 1. If |E | = λ and ϕ : λ → E are bijections then the modified
ascent ϕ↑ is a bijection of λ∧ to E ↑. Conversely, suppose that D is a basis for
X and [[ψ : λ∧ → D is a bijection ]] = 1 for some cardinal λ. In this case the
modified descent ϕ := ψ↓ : λ → D↓ is injective. Consequently, the set E := im(ϕ)
has cardinality λ. Moreover, as shown above, E is orthonormal. We are left with
observing that D↓= mix(E ) = E ↑↓, i.e., [[ E ↑= D ]] = 1. Finally, E is a basis for
X , which completes the proof. �

6.3.3. Theorem. For an AW ∗-module X to be strictly λ-homogeneous it is
necessary and sufficient that [[ dim(X ) = λ∧ ]] = 1.

� Suppose that X is a strictly λ-homogeneous module. By Theorem 6.3.2
[[ dim(X ) = |λ∧| ]] = 1. On the other hand, there is a partition of unity (bα)α<β in
the Boolean algebra B such that |λ∧| = mixα<β(bαα∧). Since bα ≤ [[ X = bαX ]];
therefore, bα ≤ [[ dim(bαX ) = α∧ ]]. Consider the set Bα := [0, bα] := {b′ ∈ B : b′ ≤
bα}. If bα �= 0 then Bα is a complete Boolean algebra. In the respective universe
V(Bα) we observe that V(Bα) |= “bαX is a Hilbert space and α∧ = dim(bαX ).”
The space bαX is the bounded descent of the Hilbert space bαX inside V(Bα).
Consequently, bαX is an α-homogeneous AW ∗-module. Furthermore, V(Bα) |= “α∧

is a cardinal” and so α is a cardinal too. By the definition of strict homogeneity,
λ ≤ α. Hence, bα = 0 for α < λ. Therefore, [[λ∧ ≤ |λ∧| ]] = 1. Thus, [[λ∧ = |λ∧| ]] =
1; since the formula [[ |λ∧| ≤ λ∧ ]] = 1 holds by the definition of cardinality. We
may now conclude that [[ dim(X ) = λ∧ ]] = 1.

Assume the last equality holding. Note that λ is a cardinal, since λ∧ is a car-
dinal inside V(B). By 6.3.2 X is λ-homogeneous. If X is γ-homogeneous for
some γ then, appealing to 6.3.2 again, we obtain [[ dim(X ) = |γ∧| ]] = 1. Hence,
[[λ∧ = |γ∧| ≤ γ∧ ]] = 1 and so λ ≤ γ. The same arguments will apply to every
AW ∗-algebra bX with 0 �= b ∈ B provided that we substitute V([0,b]) for V(B).
Thus, X is a strictly λ-homogeneous AW ∗-module. �

6.3.4. We now introduce the main concept of the current section. We call a
partition of unity (bγ)γ∈Γ in B the B-dimension of an AW ∗-module X provided
that Γ is a nonempty set of cardinals, bγ �= 0 for all γ ∈ Γ, and bγX is a strictly
γ-homogeneous AW ∗-module for every γ ∈ Γ. In this event we write B-dim(X) =
(bγ)γ∈Γ. Note that the members of the B-dimension of an AW ∗-module are pairwise
distinct by the definition of strict homogenuity. We say that the B-dimension of
X equals γ (in symbols, B-dim(X) = γ) if Γ = {γ} and bγ = 1. The equality
B-dim(X) = γ means evidently that X is strictly γ-homogeneous. We may define
the multiplicity function κ of 6.3.1 in the case of an arbitrary AW ∗-module X
by the formula κ(b) = sup

{
κ(b′) : b′ ≤ b, b′ ∈ hb

}
, where the set hb comprises
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b′ ≤ b such that b′X is homogeneous. Clearly, if B-dim(X) = (bγ)γ∈Γ then κ(b) =
sup {γ ∈ Γ : b ∧ bγ �= 0}.

6.3.5. Theorem. Suppose that (bγ)γ∈Γ is a partition of unity in B, with
bγ �= 0 (γ ∈ Γ) and Γ a set of cardinals. Then B-dimX = (bγ)γ∈Γ if and only if
[[ dim(X ) = mixγ∈Γ(bγγ∧) ]] = 1.

� As was noted above, we may identify bγX with the bounded descent of
the Hilbert space bγX inside V(Bγ) where Bγ := [0, bγ]. By virtue of 6.3.4
γ-homogenuity for bγX amounts to the formula bγ = [[ dim(bγX ) = γ∧ ]]Bγ ≤
[[ dim(X ) = γ∧ ]]B. But then the equality B-dim(X) = (bγ)γ∈Γ holds if and on-
ly if bγ ≤ [[ dim(X ) = γ∧ ]] (γ ∈ Γ), since bγ ≤ [[ X = bγX ]] = [[ dim(X ) =
dim(bγX ) ]]. In turn, the last formulas imply that [[ dim (X) = mixγ∈Γ(bγγ∧) ]] = 1.
This ends the proof. �

6.3.6. We will now find which partition of unity may serve as the B-dimension
of an AW ∗-module. Take some cardinal λ. Granted b ∈ B and β ∈ On, denote by
b(β) the set of all partitions of b having the form (bα)α∈β. Define the [0, b]-valued
metric d on b(β) by the formula

d(u, v) :=
( ∨

α∈β
uα ∧ vα

)∗(
u = (uα), v = (vα) ∈ b(β)

)
.

Observe that
(
b(β), d

)
is a Boolean set. Granted γ ∈ On, write b(β) � b(γ) if there

is a bijection between b(β) and b(γ) which preserves the Boolean metric; i.e., there
is a B-isometry between these B-sets. We call the Boolean algebra B and its Stone
space λ-stable provided that λ ≤ α for all nonzero b ∈ B and each ordinal α in
b(λ) � b(α). A nonzero element b ∈ B is λ-stable by definition whenever [0, b] is
a λ-stable Boolean algebra.

6.3.7. Theorem. A partition of unity (bγ)γ∈Γ in a complete Boolean algebra
B, which consists of pairwise distinct elements serves as the B-dimension of some
AW ∗-module if and only if Γ consists of cardinals and bγ is a γ-stable element for
every γ ∈ Γ.

� Put λ := mixγ∈Γ(bγγ∧). Inside V(B) we may find a Hilbert space X ,
satisfying [[ dim(X ) = |λ| ]] = 1. By 6.3.5, B-dim(X) = (bγ)γ∈Γ if and only if
[[ |λ| = λ ]] = 1. The last relation amounts to the estimates

bγ ≤ [[ |γ∧| = γ∧ ]] (γ ∈ Γ).

The inequality bγ ≤ [[ |γ∧| = γ∧ ]] for a nonzero bγ means that V([0,bγ ]) |= γ∧ = |γ∧|.
Consequently, it remains to demonstrate that the γ-stability of the Boolean algebra
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B0 = [0, b] and the formula V(B0) |= γ∧ = |γ∧| hold or fail simultaneously. Note
that

[[ γ∧ = |γ∧| ]] = [[ (∀α ∈ On) (γ∧ ∼ α→ γ∧ ≤ α) ]]

=
∧{

[[ γ∧ ∼ α∧ ]] ⇒ [[ γ∧ ≤ α ]] : α ∈ On
}
.

Clearly, [[ γ∧ = |γ∧| ]] = 1 if and only if c := [[ γ∧ ∼ α∧ ]] ≤ [[ γ∧ ≤ α∧ ]] for every
ordinal α. If c �= 0 then γ ≤ α. Furthermore, the inequality c ≤ [[ γ∧ ∼ α∧ ]] means
that c(γ) � c(α). Thus, the equality [[ γ∧ = |γ∧| ]] = 1 amounts to the γ-stability of
the Boolean algebra B0. �

6.3.8. Comments.
A. G. Kusraev studied the Boolean dimension of anAW ∗-module in [126], using

the same definition as in 6.3.4. Prior to this research, M. Ozawa had defined the
Boolean dimension of an AW ∗-module as the dimension of any Hilbert space serving
as a Boolean valued representation of the module in question, i.e., as an internal
object of a Boolean valued universe [195]. So, the definition of B-dimension in 6.3.4
is an external decoding of the definition by M. Ozawa. Theorems 6.3.2 and 6.3.3
are demonstrated in [126] and [195]. Theorem 6.3.7 may be found in [126, 195].

6.4. Representation of an AW ∗-Module

In this section we prove that every AW ∗-module may be represented as the
direct sum of a family of modules of continuous vector functions. Moreover, this rep-
resentation is unique in a definite sense. Denote by C#(Q,H) the part of C∞(Q,H)
that consists of vector functions z satisfying z ∈ C(Q) (cf. 5.3.7 (5)).

6.4.1. Suppose that Q is an extremally disconnected compact space, and H
is a Hilbert space of dimension λ. The space C#(Q,H) is a λ-homogeneous AW ∗-
module over the algebra Λ:= C(Q,C).

� Let (· | ·) stand for the inner product of H. Introduce some Λ-valued inner
product in C#(Q,H) as follows. Take continuous vector functions u : dom(u) → H
and v : dom(v) → H. The function q �→ 〈 u(q)|v(q) 〉, with q ∈ dom(u) ∩ dom(v),
is continuous and admits a unique continuation z ∈ C(Q) to the whole of Q. If x
and y are the cosets containing vector functions u and v then assign (x | y) := z.
Clearly, (· | ·) is a Λ-valued inner product and x =

√
(x | x) for all x ∈ C#(Q,H).

Since C#(Q,H) is a Banach–Kantorovich space; therefore, C#(Q,H) is disjointly
complete. Moreover, C#(Q,H) is a Banach space whose norm satisfies the equalities

‖x‖ = ‖ x ‖∞ =
√
‖(x | x)‖∞ (x ∈ C#(Q,H)).

Suppose that E is a basis for H. Given e ∈ E , introduce the vector function
ē : q �→ e, with q ∈ Q, and put E := {ē : e ∈ E }. It is easy to note that E is
a basis for C#(Q,H). Summarizing, conclude that C#(Q,H) is a λ-homogeneous
AW ∗-module, with λ = dim(H). �
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6.4.2. We need another auxiliary fact. Denote by P-lin(A) the set of all linear
combinations of the members of A with coefficients in P.

Suppose that X is a vector space over F and P is a subfield of F. Then X∧ is
a vector space over the field F

∧ and (P-lin(A))∧ = P
∧-lin(A∧) for every A ⊂ X .

� The first claim is evident, since the proposition “X is a vector space over
F ” presents a bounded formula. By the same reason, (P-lin(A))∧ is a P

∧-linear
subspace in X∧ which contains A∧. Therefore, P

∧-lin(A∧) ⊂ (P-lin(A))∧. Con-
versely, suppose that an element x in X has the form

∑
k∈n α(k) u(k), where

n ∈ N, α : n → P, and u : n → A. Then α∧ : n∧ → P
∧, u∧ : n∧ → A∧,

and x∧ =
∑

k∈n∧ α∧(k)u∧(k). Consequently, x∧ ∈ P
∧-lin(A∧), which proves the

inclusion (P-lin(A))∧ ⊂ P
∧-lin(A∧). �

6.4.3. Theorem. Suppose that H is a Hilbert space and λ = dim(H). Sup-
pose further that H is the completion of the metric space H∧ inside V(B). Then
[[ H is a Hilbert space and dim(H ) = |λ∧| ]] = 1.

� By definition, H is a Banach space. If b(· , ·) is the inner product on H
then b∧ : H∧ × H∧ → C

∧ is a uniformly continuous function admitting a unique
continuation on the whole of H × H . We let (· | ·) stand for this continuation.
Clearly, (· | ·) is an inner product on H and

V(B) |= ‖x‖ =
√

(x | x) (x ∈ H ).

Hence, [[ H is a Hilbert space ]] = 1. Suppose that E is a Hilbert basis for H. Show
that [[ E ∧ is a basis for H ]] = 1. Orthonormality for E ∧ ensues from the definition
of inner product on H . Indeed, this is seen from the following calculations:

[[ (∀x ∈ E ∧) (x | x) = 1 ]] =
∧

x∈E

[[ (x∧|x∧) = 1 ]] =
∧

x∈E

[[ b(x, x)∧ = 1∧ ]] = 1;

[[ (∀x, y ∈ E ∧) (x �= y → (x | y) = 0) ]] =
∧

x,y∈E

[[ x∧ �= y∧ ]]

⇒ [[ (x∧|y∧) = 0 ]] =
∧

x,y∈E
x�=y

[[ b∧(x∧, y∧) = 0 ]] =
∧

x,y∈E
x�=y

[[ b(x, y)∧ = 0∧ ]] = 1.

Since H∧ is dense in H and C
∧-lin(E ∧) ⊂ C -lin(E ∧); therefore, we are left

with showing only that C
∧-lin(E ∧) is dense in H∧. Take x ∈ H and ε > 0. Since E

is a basis for H, there is xε ∈ C-lin(E ) satisfying ‖x−xε‖ < ε. Hence, [[ ‖x∧−xε∧‖ <
ε∧ ]] = 1 and [[x∧

ε ∈ (C -lin(E ))∧ ]] = 1. Recalling 6.4.2, conclude that the formula

(∀x ∈ H) (∀0 < ε ∈ R
∧) (∃xε ∈ C

∧- lin(E ∧) (‖x− xε‖ < ε)
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is satisfied inside V(B); i.e., [[ C
∧-lin(E ∧) is dense in H∧ ]] = 1. It remains to note

that if ϕ is a bijection between the set E and the cardinal λ then ϕ∧ is a bijection
between E ∧ and λ∧ inside V(B). This ends the proof. �

We list a few corollaries.

6.4.4. In the hypotheses of Theorem 6.4.3 the bounded descent of a Hilbert
space H inside V(B) is unitarily equivalent to the AW ∗-module C#(St(B), H),
where St(B) is the Stone space of B.

� This ensues for 5.4.10 and 6.4.1. �
6.4.5. Let M be a nonempty set. The bounded descent of the Hilbert space

l2(M∧) inside V(B) is unitarily equivalent to the AW ∗-module C#(St(B), l2(M)),
where St(B) is the Stone space of B.

� Assign H = l2(M) in Theorem 6.4.3 and recall the formula [[ dim(H ) =
|M∧| ]] = 1. We now see that [[ H and l2(M∧) are unitarily equivalent ]] = 1. This
completes the proof. �

6.4.6. Suppose that λ = dim(H) is an infinite cardinal. The AW ∗-module
C#(Q,H) is strictly λ-homogeneous if and only if Q is a λ-stable compact space.

� Apply 6.3.3, 6.3.7, and 6.4.3 to complete the proof. �
6.4.7. To an arbitrary infinitely dimensional Hilbert spacesH1 andH2, there is

an extremally disconnected compact space Q so that the AW ∗-modules C#(Q, H1)
and C#(Q,H2) are unitarily equivalent.

� Put λk := dim(Hk) (k = 1, 2). There exists a complete Boolean algebra B
such that the ordinals λ

∧
1 and λ

∧
2 have the same cardinality inside V(B) (cf. [11,

83]). The claim follows from 6.4.3 and 6.4.4. �
6.4.8. Let k = 1, 2. Suppose that Hk is a Hilbert space and λk := dim(Hk) ≥

ω. Suppose further that the AW ∗-module C#(Q, Hk) is strictly λk-homogeneous.
If the modules C#(Q,H1) and C#(Q,H2) are unitarily equivalent then the Hilbert
spaces H1 and H2 are unitarily equivalent too.

� From 6.3.3, 6.4.3, and 6.4.4 we see that [[λ
∧
1 = |λ∧

1 | = |λ∧
2 | = λ

∧
2 ]] = 1.

Therefore, λ1 = λ2. �
6.4.9. An AW ∗-module X is B-separable if there is a sequence (xn) ⊂ X

such that the AW ∗-submodule of X , generated by the set {bxn : n ∈ N, b ∈ B},
coincides with X . Obviously, if H is a B-separable Hilbert space then the AW ∗-
module C#(Q,H) is B-separable.

6.4.10. To every infinitely dimensional Hilbert space H, there exists an ex-
tremally disconnected compact space Q such that the AW ∗-module C#(Q,H) is
B-separable, with B standing for the Boolean algebra of the characteristic functions
of clopen subsets of Q.
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� Put H1 := l2(ω) and H2 := H in 6.4.7 and use the separability of l2(ω) to
complete the proof. �

6.4.11. Theorem. To each AW ∗-module X there is a family of nonempty
extremally disconnected compact spaces (Qγ)γ∈Γ, with Γ a set of cardinals, such
that Qγ is γ-stable for all γ ∈ Γ and the following unitary equivalence holds:

X �
∑

γ∈Γ

⊕
C#

(
Qγ , l2(γ)

)
.

If some family (Pδ)δ∈Δ of extremally disconnected compact spaces satisfies the
above conditions then Γ = Δ, and Pγ is homeomorphic with Qγ for all γ ∈ Γ.

� By Theorem 6.2.8 we may assume that X is the bounded descent of a Hilbert
space X inside V(B). Suppose further that B-dim(X) = (bγ)γ∈Γ and Qγ is the
clopen subset of the Stone space of B which corresponds to bγ ∈ B; i.e., the
support of b. We make use of the fact that X is the direct sum of the spaces of the
form bγX , with bγX unitarily equivalent to the bounded descent of the space bγX
inside V(Bγ), where Bγ = [0, bγ]. By 6.3.5, note that bγ ≤ [[ dim(bγX ) = γ∧ ]].
Consequently, given a nonzero bγ , conclude that V(Bγ) |= “bγX is a Hilbert space
of dimension γ∧ .” Appealing to the transfer principle, infer that V(Bγ) |= “ bγX
is unitarily equivalent to l2(γ∧).” By virtue of 6.4.5, the bounded descent of l2(γ∧)
in V(Bγ) is unitarily equivalent to the AW ∗-module C#(Qγ, l2(γ)). Suppose that
uγ ∈ V(Bγ) is a unitary isomorphism from bγX onto l2(γ∧) inside V(Bγ), and Uγ
is the bounded descent of uγ . Then Uγ establishes unitary equivalence between the
AW ∗-modules bγX and C#(Qγ, l2(γ)). By definition, the element bγ ∈ B, together
with the compact space Qγ , is γ-stable.

Assume now that some family of extremally disconnected compact spaces
(Pδ)δ∈Δ obeys the same conditions as (Qγ)γ∈Γ. Then Pδ is homeomorphic with
some clopen subset P ′

δ of the Stone space of B. Moreover, P ′
δ is δ-stable. If

Pδγ := P ′
δ ∩Qγ and bγδ is the corresponding element of B then the AW ∗-modules

C#(Pδγ, l2(δ)) and C#(Pδγ, l2(γ)) are unitarily equivalent to the same member
bδγX . Furthermore, the compact space Pδγ must be δ- and γ-stable simultane-
ously. According to 6.4.6 and 6.4.8, Pδγ = ∅ or l2(δ) ∼ l2(γ), implying δ = γ.
Therefore, P ′

γ = Qγ (γ ∈ Γ). �

6.4.12. Comments.

All results of the current section are taken from [126]. Propositions 6.4.7 and
6.4.11 show that for infinite cardinals α < β there is a AW ∗-module that is γ-
homogeneous for all α ≤ γ ≤ β. The last fact was established by M. Ozawa [195,
197].
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6.5. Representation of a Type I AW ∗-Algebra

Using the results of the preceding section, we now obtain a function represen-
tation of a type I AW ∗-algebra. Throughout this section we assume that A stands
for an arbitrary type I AW ∗-algebra, Λ denotes the center of A, and B is a complete
Boolean algebra of central idempotents of A so that B ⊂ Λ ⊂ A.

6.5.1. Suppose that Bh is the set comprising b ∈ B such that bA is a ho-
mogeneous algebra. Given b ∈ Bh, denote by κ(b) the least cardinal λ for which
bA is a λ-homogeneous AW ∗-algebra. Granted an arbitrary b ∈ B, put κ(b) :=
sup{κ(b′) : b′ ≤ b, b′ ∈ Bh}. We thus define some function κ on B that takes
values in a set of cardinals. Call κ the multiplicity function of A. An element
b ∈ B, as well as the algebra bA, are called strictly λ-homogeneous provided that
κ(b′) = λ for 0 �= b′ ≤ b. We also say that b and bA are of strict multiplicity λ.
There exists a unique mapping κ : Γ → B such that Γ is some set of cardinals
each of which is at most κ(1), the family (κ(γ))γ∈Γ is a partition of unity in B,
and the element κ(γ) has strict multiplicity γ for all γ ∈ Γ. This partition of
unity (κ(γ))γ∈Γ is a strict decomposition series of an AW ∗-algebra A. It is easy
to note that if A = End(X) for an AW ∗-module X , then the strict decomposition
series of A coincides with B-dim(X), and κ coincides with the multiplicity function
of 6.4.1. The multiplicity functions κ and κ

′ on the Boolean algebras B and B′,
together with the corresponding partitions of unity κ and κ′, are referred to as
congruent if there is an isomorphism π of B onto B′ such that κ

′ ◦ π = κ. As we
see, the congruency between κ and κ′ implies that these functions have the same
domain. Moreover, π ◦ κ = κ′.

6.5.2. Suppose that Q is some extremally disconnected compact space, H is
a Hilbert space, and L (H) is the space of bounded linear endomorphisms of H.

Denote by C(Q,L (H)) the set of all operator functions u : dom(u) → L (H)
defined on the comeager sets dom(u) ⊂ Q and continuous in the strong operator
topology.

If u ∈ C(Q,L (H)) and h ∈ H, then the vector function uh : q �→ u(q)h, with
q ∈ dom(u), is continuous thus determining a unique element ũh ∈ C∞(Q,H) from
the condition uh ∈ ũh (cf. 5.3.7 (5)). Introduce an equivalence on C(Q,L (H)) by
putting u ∼ v if and only if u and v agree on dom(u) ∩ dom(v). If ũ is a coset of
the operator function u : dom(u) → L (H) then ũh := ũh (h ∈ H) by definition.

Denote by SC∞(Q,L (H)) the set of all cosets ũ such that u ∈ C(Q,L (H))
and the set { ũh : ‖h‖ ≤ 1} is bounded in C∞(Q).

Since ũh agrees with the function q �→ ‖u(q)h‖ on some comeager set; the
containment ũ ∈ SC∞(Q,L (H)) means that the function q �→ ‖u(q)‖, with q ∈
dom(u), is continuous on a comeager set. Hence, there are an element ũ ∈ C∞(Q)
and a comeager set Q0 ⊂ Q satisfying ũ (q) = ‖u(q)‖ for all q ∈ Q0. Moreover,



Boolean Valued Analysis of Banach Algebras 273

ũ = sup{ ũh : ‖h‖ ≤ 1}, where the supremum is taken over C∞(Q). We naturally
equip SC∞(Q,L (H)) with the structure of a ∗-algebra and a unital C∞(Q)-module
by means of the operations

(u+ v)(q) := u(q) + v(q) (q ∈ dom(u) ∩ dom(v)),
(uv)(q) := u(q) ◦ v(q) (q ∈ dom(u) ∩ dom(v)),
(av)(q) := a(q)v(q) (q ∈ dom(a) ∩ dom(v)),

u∗(q) := u(q)∗ (q ∈ dom(u)),

with u, v ∈ C(Q,L (H)) and a ∈ C∞(Q). Furthermore, we note the following

ũ+ ṽ ≤ ũ + ṽ ,

ũṽ ≤ ũ · ṽ ,
aṽ = |a| ṽ , ũ · ũ∗ = ũ

2
.

If ũ ∈ SC∞(Q,L (H)) and the element x̃ ∈ C∞(Q,H) is determined by a continu-
ous vector function x : dom(x) → H then we can define ũx̃ := ũx ∈ C∞(Q,H), with
ux : q �→ u(q)x(q) where q ∈ dom(u)∩dom(x), since the last function is continuous.
We also have

ũx ≤ ũ · x (x ∈ C∞(Q,H)).

It follows in particular that

ũ = sup { ũx : x ∈ C∞(Q,H), x ≤ 1} .
Denote the operator x �→ ũx by Sũ.

We now introduce the following normed ∗-algebra

SC#(Q,L (H)) := {v ∈ SC∞(Q,L (H)) : v ∈ C(Q)},
‖v‖ = ‖ v ‖∞ (v ∈ SC#(Q,L (H))).

6.5.3. Theorem. To each operator U ∈ End(C#(Q,H)) there is a unique
element u ∈ SC#(Q,L (H)) satisfying U = Su. The mapping U �→ u is a ∗-
B-isomorphism of End(C#(Q,H)) onto A := SC#(Q,L (H)). In particular, A is
a λ-homogeneous algebra. Moreover, if Q is a λ-stable compact space then A is
a strictly λ-homogeneous AW ∗-algebra, with λ = dim(H).

� First of all note that the operator Su obeys the inequality Sux ≤ u · x
for all x ∈ C#(Q,H). Consequently, given u ∈ SC#(Q,L (H)), we see that Su acts
in C#(Q,H) as a bounded linear operator. Moreover,

‖Su‖ = sup
‖x‖≤1

‖ Sux ‖∞ = sup sup
x ≤1 q∈Q

ux (q) = sup
q∈Q

u (q) = ‖u‖.
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Clearly, Su∗ = Su
∗ for all u ∈ SC#(Q,L (H)). Therefore, the mapping u �→ Su is

a ∗-B-isomorphic embedding of SC#(Q,L (H)) into End(C#(Q,H)). Prove that
this embedding is surjective. The mapping U ∈ End(C#(Q,H)) is a dominated
operator; i.e., U obeys the inequality Ux ≤ f · x for all x ∈ C#(Q,H), where
f := sup { Ux : x ≤ 1} ∈ C(Q). By Theorem 5.3.13 there is an operator function
u : dom(u) → L (H) satisfying the conditions: (1) the function q �→ 〈u(q)h|g〉 is
continuous for all g, h ∈ H; (2) there is a function ϕ ∈ C∞(Q) such that ‖u(q)‖ ≤
ϕ(q) for all q ∈ dom(u); (3) Ux = ũx for all x ∈ C#(Q,H) and u = f . Thus,
U = Sũ and we are left with justifying only that u is continuous in the strong
operator topology. Recalling the definition of the least upper bound of a set in the
K-space C∞(Q), we may observe that ‖u(q)‖ = u (q) for all q ∈ Q0 where Q0 is
some comeager subset of Q. Therefore, substituting Q0∩dom(u) for dom(u) if need
be, we may assume that q �→ ‖u(q)‖ is a continuous function. Together with the
above condition (1), this implies the continuity of u in the strong operator topology;
i.e., u ∈ SC#(Q,L (H)). The rest of the theorem ensues from 5.3.4 (3). �

We say that the families of nonempty compact sets (Qγ)γ∈Γ and (Pδ)δ∈Δ are
congruent provided that Γ = Δ, and Qγ and Pγ are homeomorphic to one another
for all γ ∈ Γ.

6.5.4. Theorem. To each type I AW ∗-algebra A there is a family of nonempty
extremally disconnected compact spaces (Qγ)γ∈Γ such that the following conditions
are met:

(1) Γ is a set of cardinals and Qγ is γ-stable for each γ ∈ Γ;
(2) There is a ∗-isomorphism:

A �
∑

γ∈Γ

⊕
SC#(Qγ ,L (l2(γ))).

This family is unique up to congruence.

� By Theorem 6.2.5 we can assume that A is the bounded descent of an AW ∗-
factor A in V(B). In this event A has type I, and so A � B(X ) where X is a Hilbert
space inside V(B). Hence, we see that A is ∗-isomorphic with End(X), where X
stands for the bounded descent of X . Suppose that B-dim(X) = (bγ)γ∈Γ, and Qγ
is the clopen subset of the Stone space of the Boolean algebra B which corresponds
to bγ ∈ B. By virtue of 6.3.7, Qγ is a γ-stable compact space. So (1) holds.
Theorem 6.4.11 yields the following unitary equivalence X � ∑⊕

γ∈Γ C#(Qγ , l2(γ)).
Hence, note the next ∗-isomorphism of AW ∗-algebras:

End(X) �
∑

γ∈Γ

⊕
End(C#(Qγ, l2(γ))).

Appealing to Theorem 6.5.3, we arrive at the sought condition (2).
Uniqueness ensues from 6.4.11. �
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6.5.5. Corollary. The following hold:
(1) Every type I AW ∗-algebra splits into the direct sum of strictly

homogeneous components. This decomposition is unique up to ∗-
isomorphism;

(2) Two type I AW ∗-algebras are ∗-isomorphic to one another if and
only if they have congruent multiplicity functions or, which is the
same, congruent strict decomposition series.

� This assertion ensues from (1) on observing that in the representation of
6.5.4 the dimension of A is congruent to the partition of unity (χγ)γ∈Γ, with χγ
the characteristic function of the set Qγ in the disjoint sum of the family (Qγ). �

(3) Suppose that Γ is a set of cardinals and (bγ) is a partition of unity
in B which consists of nonzero pairwise distinct elements. Then (bγ)γ∈Γ is a strict
decomposition series of some AW ∗-algebra if and only if bγ is γ-stable for all γ ∈ Γ.

� This ensues from 6.3.7 and 6.5.3. �

6.5.6. Comments.

(1) The main results on function representation, Theorems 6.4.11 and
6.5.4, were established by A. G. Kusraev in [62]. M. Ozawa had classified the
type I AW ∗-algebras in somewhat different form in [195] (cf. 6.5.5 (2)). The true
distinction lies in the fact that the invariant, characterizing a type I AW ∗-algebra
to within ∗-isomorphism in the M. Ozawa research, is a Boolean valued cardinal;
i.e., an internal object of the Boolean valued universe in question. The definition
of 6.5.1 does not appeal to the construction of the Boolean valued universe.

(2) Observe that 6.4.8 and 6.5.5 (2) imply a negative solution to the
I. Kaplansky problem of unique decomposition of a type I AW ∗-algebra into the
direct sum of homogeneous components. M. Ozawa gave this solution in [196,
197]. As we can see from 6.4.8, the failure of uniqueness is tied with the effect of
the cardinal shift that may happens during immersion into V(B) (cf. 3.1.13 (1)).
The cardinal shift is impossible in the case when the Boolean algebra of central
idempotents B under study satisfies the countable chain condition (cf. 3.1.13 (2))
and so the decomposition in question is unique. I. Kaplansky established uniqueness
of the decomposition on assuming that B satisfies the countable chain condition and
conjectured that uniqueness fails in general [107].

6.6. Embeddable C∗-Algebras

Type I algebras have the simplest structure in the class of all AW ∗-algebras.
Most attractive is an algebra that may be presented as the double commutant of
a type I AW ∗-algebra. Such an algebra is called embeddable. Moreover, as we
may deduce from the results of Section 6.2, an embeddable algebra transforms into
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a von Neumann algebra if embedded in a suitable Boolean valued universe. That
is how a possibility opens up of translating the facts of von Neumann algebras
into the corresponding results about embeddable algebras. The current section
demonstrates this technique by a few examples.

6.6.1. We give the necessary definitions and facts.
(1) Assume that H is again a Hilbert space, and L (H) is the space of

bounded endomorphisms of H. Granted M ⊂ L (H), recall that the commutant
M ′ of M is the set of all members of L (H) commuting with every element of M
(cf. 6.2.5). The double commutant or bicommutant of M is the set M ′′ := (M ′)′.
Clearly, M ′ is a Banach operator algebra with unity the identity operator 1 := IH .
A von Neumann algebra over H is a ∗-subalgebra A′ of L (H) coinciding with the
double commutant of itself, i.e. A = A′′. The center of a von Neumann algebra A
is the set Z (A) := A ∩ A′. A von Neumann algebra A is a factor provided that
the center of A is trivial; i.e., in the case when Z (A) = C · 1 := {x · IH : λ ∈ C}.

(2) Double Commutant Theorem. Let A be an involutive operator
algebra over a Hilbert space H and IH ∈ A. Then A coincides with the double
commutant A′′ of A if and only if A is closed with respect to the strong operator
topology of L (H) or, which is the same, closed with respect to the weak operator
topology of L (H).

(3) Sakai Theorem. A C∗-algebra A is ∗-isomorphic with a von Neu-
mann algebra if and only if A is the dual of some Banach space.

(4) A C∗-algebra A is B-embeddable if there are a type I AW ∗-algebra
N and a ∗-monomorphism ı : A→ N such that B = Pc(N) and ı(A) = ı(A)′′, with
ı(A)′′ standing for the double commutant of ı(A) in N . Note that in this event
A is an AW ∗-algebra and B is a regular subalgebra of Pc(A). In particular, A is
a B-cyclic algebra (cf. 6.2.3). If B = Pc(A) and A is B-embeddable, then A is
called centrally embeddable. Granted a C∗-algebra A, say that another C∗-algebra
A is embeddable if A is B-embeddable, with B some regular subalgebra of Pc(A).

Recall that we always assume that each of the C∗-algebras under study is
unital. Also, the record B � A means that A is a B-cyclic algebra.

6.6.2. Theorem. Suppose that A is a C∗-algebra inside V(B) and A is the
bounded descent of A . Then A is a B-embeddable AW ∗-algebra if and only if A
is a von Neumann algebra inside V(B). Moreover, A is centrally embeddable if and
only if A is a factor inside V(B).

� Suppose that A coincides with the double commutant of A in a type I
AW ∗-algebra N and, moreover, Pc(N) = B. By 6.2.5 and 6.2.13, we may assume
that N is the bounded descent of some type I AW ∗-factor N inside V(B). Since
A′′ ⊂ N and A′′ = A; therefore, we clearly see that [[ A = A↑⊂ N ]] = 1 and
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[[ A ′′ = (A↑)′′ = A′′ ↑= A ]] = 1. Hence, A is the double commutant of A in
N . It remains to note that every type I AW ∗-factor of N is isomorphic with the
algebra B(H ) for some Hilbert space H .

Conversely, suppose that [[ A is a von Neumann algebra ]] = 1. This means
that [[ A is the double commutant of A in the endomorphism space L (H ) of
H ]] = 1 for some Hilbert space H inside V(B). Let N stand for the bounded
descent of L (H ). Then N is a type I AW ∗-algebra, cf. 6.2.13 (2). Moreover, A
is the double commutant of A in N and Pc(N) = B, cf. 6.2.5. The second claim
follows from Theorem 6.2.5 which reads that A is a factor inside V(B) if and only
if Pc(A) = B. �

6.6.3. We now characterize an embeddable C∗-algebra. Recall that, given
a normed B-space, we denote by X# the B-dual of X (cf. 5.5.8). Say that a C∗-
algebra A is B-dual if A includes a Boolean algebra B of central projections and A
is B-isometric with the B-dual X# of some normed B-space X . In this event, say
that X is B-predual to A and write A# = X .

6.6.4. Theorem. A C∗algebra is B-embeddable if and only if A is B-dual.
Every B-predual space is unique to within B-isometry in the class of B-cyclic
Banach spaces.

� Suppose that A is a C∗-algebra and B � Pc(A). By Theorem 6.1.6, we may
assume that A coincides with the bounded descent of some C∗-algebra A in V(B).

Using the Sakai Theorem inside V(B) and applying the transfer principle, ob-
serve that [[ A is a von Neumann algebra ]] = [[ A is linearly isometric with the dual
X ′ of some Banach space X ]]. If X is the bounded descent of the Banach space
X then X# is B-linearly isometric with the bounded descent of X ′ (cf. 5.5.10).
By Theorem 6.6.2 note now that if A is B-embeddable then A is also a B-dual
algebra. Moreover, A# = X is a B-cyclic space.

Conversely, assume that A is B-dual and A# = X0 for some normed B-space
X0. If X is the B-cyclic completion of X0 then X#

0 = X#, which implies A# = X .
Denote by X the Boolean valued representation of X . Then A � X #. By
Theorem 6.6.2, A is a B-embeddable algebra.

Suppose now that each of the B-cyclic spaces X and Y serves as B-predual
of A. Denote by X and Y the representations of X and Y in V(B). Observe that
[[ X and Y are predual to A ]] = 1. A predual of a von Neumann algebra is unique
up to linear isometry. Consequently, [[ X and Y are linearly isometric ]] = 1. Since
X and Y coincide with the bounded descents of X and Y respectively, conclude
that X and Y are B-isometric. �

6.6.5. Theorem. Assume that N is some type I AW ∗-algebra and A is an
AW ∗-subalgebra of N including the center Z (N) of N . Then the algebra A and
the commutant A′ of A in N are of the same type I, II, or III.
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� According to 6.2.5 and 6.2.13 we may suppose that N and A are the bounded
descents of some algebras N and A inside V(B), where B = Pc(N), [[ N = L (H )
for some Hilbert space H ]] = 1 and [[ A is an AW ∗-subalgebra of N ]] = 1. Thus,
A is a von Neumann algebra inside V(B). The claims in question hold for every
von Neumann algebra (cf. [211]); i.e., A and A ′ have the same type I, II, or III.
Furthermore, A′ coincides with the bounded descent of A ′ since A ′↓ = (A ↓)◦

where (·)◦ is the taking of the commutant of a subset of the algebra N ↓. We
complete the proof by appealing to Theorem 6.2.13 again. �

6.6.6. Theorem. Suppose that a C∗-algebra A is B0-embeddable for some
regular subalgebra B0 of Pc(A). Then A is B-embeddable for every regular subal-
gebra B0 of Pc(A).

� Suppose that A is the double commutant in a type I AW ∗-algebra N and
Pc(N) = B0. Suppose that B is a regular subalgebra of the Boolean algebra Pc(A)
and, moreover, B0 ⊂ B. Denote by C (B) the C∗-algebra that is generated by B.
Since B is a regular subalgebra, C (B) is an AW ∗-subalgebra in N (cf. 6.2.1 (1, 2)).
Furthermore, C (B) includes the center of N since B0 = Pc(N). By Theorem 6.6.4,
the commutant C (B)′ = B′ of the algebra C (B) in N has the same type as C (B).
But C (B) is a commutative AW ∗-algebra. Hence, C (B)′ is a type I algebra. Since
C (B) is commutative, we see that the center of C (B)′ coincides with C (B). Since
C (B) lies in the center of A; therefore, the commutant A′ of A, calculated in N , is
included in C (B)′. Consequently, the double commutant of A in C (B)′ coincides
with the double commutant of A in N ; i.e., A is a double commutant in C (B).
Whence A is a B-embeddable algebra. �

6.6.7. Corollary. The following hold:
(1) A C∗-algebra A is embeddable if and only if A is centrally embed-

dable;
(2) A von Neumann algebra A is B-embeddable for every regular sub-

algebra B of Pc(A).

6.6.8. Suppose that A is a C∗-algebra and B � A. A linear operator T : A→
B(C) is positive if T (x∗x) ≥ 0 for all x ∈ A. A positive B-linear operator T is
a state if ‖T‖ = 1. We call a state T normal if T (sup(xα)) = sup(T (xα)) for every
increasing net (xα) of hermitian operators which has a supremum. The set of all
B(C)-valued states of A separates A if the positivity of x ∈ A amounts to the fact
that Tx ≥ 0 for every B(C)-valued normal state T . We call a B(C)-valued state
a center valued state when this leads to no confusion.

Monotone completeness of a C∗-algebra A means that every upper bounded
increasing net of hermitian elements of A has a least upper bound. It is an easy
matter to check that A is monotone complete whenever so is the Boolean valued
representation of A.
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6.6.9. Theorem. Assume that A is a C∗-algebra inside V(B) and A is the
bounded descent of A . Given a B(C)-valued state Φ on A, note that [[ϕ := Φ↑
is a state on A ]] = 1. Every state on A has the form Φ ↑, where Φ is some
B(C)-valued state on A. Moreover, a state Φ is normal if and only if [[ϕ := Φ↑
is a normal state ]] = 1.

� The first part of the theorem follows from 5.5.9. Suffice it to say that the
mapping Φ �→ ϕ := Φ↑ preserves positivity since Φ(A+)↑= ϕ(A+↑) = ϕ(A+). The
claim about normal states is easy on recalling the rules for ascending and descending
polars (cf. 5.2.13 and 5.3.12). �

6.6.10. Theorem. For a B-cyclic C∗-algebra A the following are equivalent:
(1) A is a B-embeddable algebra;
(2) A is monotone complete and the set of all B(C)-valued states on A

separates A.

� By Theorem 6.1.6, we may assume that A is the bounded descent of a C∗-
algebra A inside V(B). By Theorem 6.6.2 A is B-embeddable if and only if [[ A is
a von Neumann algebra ]] = 1. Now we make use of the following fact: a C∗-algebra
A is a von Neumann algebra if and only if A is monotone complete and the normal
states of A separate A. Omitting a few details, we expatiate upon existence of
normal states. Suppose that Sn(A ) is the set comprising the normal states of the
algebra A inside V(B) and Sn(A , B) is the set comprising all normal B(C)-valued
states on A. The mapping Φ �→ ϕ := Φ ↑ is a bijection between Sn(A ) ↓ and
Sn(A,B) (cf. 6.6.9).

Assume that Sn(A,B) separates A. Granted a nonzero x ∈ A, find Φ0 ∈
Sn(A,B) satisfying Φ0x �= 0. Since Φ is B-linear; therefore, [[ 0 �= x ]] ≤ [[ Φ0(x) �=
0 ]]. Recalling the rules for calculating Boolean truth values, write

[[ Sn(A ) separates A ]]
= [[ (∀x ∈ A ) (x �= 0 → (∃ϕ ∈ Sn(A )) ϕ(x) �= 0) ]]

=
∧

x∈A
[[ x �= 0 ]] ⇒

∨

Φ∈Sn(A,B)

[[ Φ↑(x) �= 0 ]]

≥
∧

x∈A
[[ x �= 0 ]] ⇒ [[ Φ0↑(x) �= 0 ]] = 1.

Consequently, Sn(A ) separates A inside V(B).
Conversely, assume the last assertion true. Given x ∈ A, note that b := [[ x �=

0 ]] > 0. By the maximum principle, there is some ϕ in Sn(A )↓ such that b ≤
[[ϕ(x) �= 0 ]]. Suppose that Φ is the restriction to A ⊂ A ↓ of the operator ϕ↓.
Then Φ ∈ Sn(A,B) and b ≤ [[ Φ(x) �= 0 ]]. Consequently, the trace eΦ(x) of Φ(x) is
greater than or equal to b (cf. 5.2.3 (5)). Hence, Φ(x) �= 0. �
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6.6.11. Theorem. For an AW ∗-algebra A the following are equivalent:
(1) A is embeddable;
(2) A is centrally embeddable;
(3) The center valued normal states of A separate A;
(4) A is a Pc(A)-dual space.

� Appeal to 6.6.4, 6.6.7 (1), and 6.6.10. �
6.6.12. Comments.

(1) All results of this section belong to M. Ozawa [196, 199, 200].
(2) There exist other various classes of ordered and involutive algebras

to which we may apply the technique of Sections 6.2–6.6 (see [28, 213]). Among
the most important of them we mention the class of JB-algebras.

(3) By way of illustration, we state a simple Jordan analog of Theo-
rem 6.6.10 which was established in [127].

Theorem. Let A be a B-JB-algebra. Then A is B-dual if and only if A is
monotone complete and the B(C)-valued normal states on A separate A.
Moreover, if A is B-dual then the B-predual of A is the part of the B-dual A#

of A which consists of order continuous operators.

(4) Regarding other applications of Boolean valued analysis which are
close to the topic of the current chapter, consult [93, 112, 134–136, 179, 180, 183–
190, 194–200, 236, 237].

Other applications of Boolean valued analysis are reflected also in [67, 68, 117,
121, 123–126, 128–137, 143–145].
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This Appendix contains some preliminaries to set theory and category theory.

A.1. The Language of Set Theory

Axiomatic set theories prescribe the bylaws of sound set formation. In evoca-
tive words, every axiomatics of set theory describes a world or universe that con-
sists of all sets we need for adequate expression of our intuitive conception of the
treasure-trove of the “Cantorian paradise,” the all-embracing universe of naive set
theory. Present-day mathematics customarily expounds and studies any attractive
axiomatics as a formal theory. We readily acknowledge that a formal approach has
proven itself to be exceptionally productive and successful in spite of its obvious
limitations stemming from the fact that mathematics reduces only in part to the
syntax of mathematical texts. This success is in many respects due to the paucity
of formal means since the semiotic aspects, if properly distinguished, invoke the
insurmountable problem of meaning. The list of achievements of the formal ap-
proach contains the celebrated Gödel completeness and incompleteness theorems,
independence of the continuum hypothesis and of the axiom of choice, Boolean
valued analysis, etc.

The cornerstone of a formal theory is its language. Intending to give the latter
an exact description and to study the properties of the theory, we are impelled to use
another language that differs in general from the original language. It is in common
parlance to call this extra language the metalanguage of our theory. The metalan-
guage mostly presents a collection of fragments of natural languages trimmed and
formalized slightly but heavily enriched with numerous technical terms. The tools
of the metalanguage of a theory are of utmost importance for metamathematics.
Since we are interested in applicable rather than metamathematical aspects of an
axiomatic set theory, we never impose extremely stringent constraints on the meta-
language of the theory. In particular, we use the expressive means and level of rigor
that are common to every-day mathematics.
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A.1.1. Each axiomatic set theory is a formal system. The ingredients of the
latter are its alphabet, formulas, axioms, and rules of inference. The alphabet of a
formal theory is a fixed set A of symbols of an arbitrary nature, i.e., a Cantorian
set of letters. Finite sequences of letters of A, possibly with blanks, are called ex-
pressions, or records, or texts. If we somehow choose the set of Φ(A) of the so-called
“well formed” expressions by giving detailed prescriptions, algorithms, etc.; then
we declare given a language with alphabet A and call the chosen expressions well
formed formulas. The next step consists in selection of some finite (or infinite) fami-
lies of formulas called axioms in company with explicit description of the admissible
rules of inference which might be viewed as abstract relations on Φ(A). A theorem
is a formula that results from axioms by successively using finitely many rules of
inference. Using common parlance, we express this in a freer and cozier fashion as
follows: the theorems of a formal theory comprise the least set of formulas which
contains all axioms and is closed under the rules of inference of the theory.

A.1.2. Of primary interest for us is a special formal language called a first-
order language of predicate calculus.

Recall that the signature σ of a language is a 3-tuple (F, P, a), where F and
P are some sets called the set of function or operation symbols and the set of
predicate symbols, respectively, while a is a mapping of F ∪P into the set of natural
numbers. Say that u ∈ F ∪ P is an n-ary symbol or n-place symbol whenever
a(u) = n. Regarding the alphabet of a first-order language of signature σ, we
usually distinguish

(1) the set of symbols of signature σ, i.e., the set F ∪ P ;
(2) the set of variables composed of lower case or upper case Latin

letters possibly with indices;
(3) the set of propositional connectives: ∧, conjunction; ∨, disjunction;

→, implication; and ¬, negation;
(4) the set of the symbols of quantifiers: ∀, the symbol of a universal

quantifier, and ∃, the symbol of an existential quantifier;
(5) the sign of equality =;
(6) the set of auxiliary symbols: (, which is the opening parenthesis; ),

which is the closing parenthesis; and , which is a comma.

A.1.3. In the language of set theory we distinguish terms and formulas.
(1) A term of signature σ is an element of the least set of expressions

of the language (of the same signature σ) obeying the following conditions:
(a) Each variable is a term;
(b) Each nullary function symbol is a term;
(c) If f ∈ F , a(f) = n, and t1, . . . , tn are terms then f(t1, . . . , tn)

is a term.
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(2) An atomic formula of signature σ is an expression of the kind

t1 = t2, p(y1, . . . , yn), q,

where t1, t2, y1, . . . , yn are terms of signature σ, the letter p stands for some n-ary
predicate symbol, and q is a nullary predicate symbol.

(3) Formulas of signature σ constitute the least set of records obeying
the following conditions:

(a) Each atomic formula of signature σ is a formula of signature σ;

(b) If ϕ and ψ are formulas of signature σ then (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ→ ψ), and ¬ϕ are formulas of signature σ, too;

(c) If ϕ is a formula of signature σ and x is a variable then (∀x)ϕ
and (∃x)ϕ are formulas of signature σ too.

A variable x is bound in some formula ϕ or belongs to the domain of a quantifier
provided that x appears in a subformula of ϕ of the kind (∀x)ψ or (∃x)ϕ. In the
opposite case, x is free in ϕ. We also speak about free or bound occurrence of a
variable in a formula. Intending to stress that only the variables x1, . . . , xn are free
in the formula ϕ, we write ϕ = ϕ(x1, . . . , xn), or simply ϕ(x1, . . . , xn). The words
“proposition” and “statement” are informally treated as synonyms of “formula.”
A formula with no free variables is a sentence. Speaking about verity or falsity of
ϕ, we imply the universal closure of ϕ which results from generalization of ϕ by
every free variable of ϕ. It is also worth observing that quantification is admissible
only by variables. In fact, the words “first-order” distinguish this syntactic feature
of the formal languages we discuss.

A.1.4. The language of set theory is a first-order language whose signature
contains only one binary predicate symbol ∈ and so it has neither predicates other
than ∈ nor any function symbols. So, set theory is a simple instance of the abstract
first-order theories. We agree to write x ∈ y instead of ∈ (x, y) and say that x
is an element of y or a member of y. It is also in common parlance to speak of
membership or containment. As usual, a formula of set theory is a formal text
resulting from the atomic formulas like x ∈ y and x = y by appropriate usage of
propositional connectives and quantifiers.

Set theory (or strictly speaking, the set theory we profess in this book) bases
upon the laws of classical logic. In other words, set theory uses the common logical
axioms and rules of inference of predicate calculus which are listed in nearly every
manual on mathematical logic (see, for instance, [48, 108, 217]). Note also that the
instance of predicate calculus we use in this book appears often with some of the
epithets classical, or lower, or narrow, or first-order and is formally addressed as
the first-order classical predicate calculus with equality. In addition, a particular set
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theory contains some special nonlogical axioms that legitimize the conceptions of
sets and classes we want to explicate. By reasonably varying the special axioms, we
may come to axiomatic set theories that differ in the power of expression. This ap-
pendix describes one of the most popular axiomatic set theories, Zermelo–Fraenkel
theory symbolized as ZF or ZFC if the axiom of choice is available.

A.1.5. Among the best conveniences of any metalanguage we must mention
abbreviations. The point is that formalization of the simplest fragments of workable
mathematics leads to bulky texts whose recording and playing back is problematic
for both physical and psychological reasons. This is why we must introduce many
abbreviations, building a more convenient abridged dialect of the initial symbolic
language. Naturally, this is reasonable only if we ensure a principal possibility of
unambiguous translation from the dialect to the original and vise versa. In accord
with our intentions, we will not expatiate on the exact technique of abbreviation
and translation and adhere to every-day practice of doing Math. For instance, we
use the assignment operator or definor := throughout the book, with no fuss about
accompanying formal subtleties.

A.1.6. We now give some examples of abbreviated texts in the language of
set theory. These examples rely to intuition of naive set theory. We start with the
most customary instances. Here they are

(∃! x) ϕ(x) := (∃x)ϕ(x) ∧ (∀x)(∀ y)(ϕ(x) ∧ ϕ(y) → x = y);
(∃x ∈ y)ϕ := (∃x) (x ∈ y ∧ ϕ);
(∀x ∈ y)ϕ := (∀x) (x ∈ y → ϕ),

with ϕ a formula. As usual, we put x �= y := ¬(x = y) and x /∈ y := ¬(x ∈ y). Also,
we use the routine conventions about the traditional operations on sets:

x ⊂ y := (∀ z)(z ∈ x→ z ∈ y);
u = ∪x = ∪(x) := (∀ z)(z ∈ u↔ (∃ y ∈ x)z ∈ y);
u = ∩x = ∩(x) := (∀ z)(z ∈ u↔ (∀ y ∈ x)z ∈ y);

u = y − x = y \ x := (∀ z)(z ∈ u↔ (z ∈ y ∧ z /∈ x)).

Given a formula ϕ, we introduce the collection Pϕ(x) of all subsets of x which
satisfies ϕ as follows

u = Pϕ(x) := (∀ z)(z ∈ u↔ (z ⊂ x) ∧ ϕ(z)).

We call a set u empty and denote it by ∅ if u contains no elements. In other words,

u = ∅ := (∀x)(x ∈ u↔ x �= x).
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An empty set is unique practically in every set theory and so we refer to ∅ as the
empty set.

These examples use one of the commonest methods of abbreviation, namely,
omission of some parentheses.

A.1.7. The statement that x is the unordered pair of elements y and z is
formalized as follows:

(∀u)(u ∈ x↔ u = y ∨ u = z).

In this event we put {y, z} := x and speak about the pair {y, z}. Note that braces
do not belong to the original alphabet and so they are metasymbols, i.e. symbols
of metalanguage.

An ordered pair and an ordered n-tuple result from the Kuratowski trick:

(x, y) := 〈x, y〉 := {{x}, {x, y}};
(x1, . . . , xn) := 〈x1, . . . , xn〉 := 〈〈x1, . . . , xn−1〉, xn〉,

where {x} := {x, x}. Observe the overuse of parentheses. This is inevitable and
must never be regarded as pretext for introducing new symbols.

The agreements we made enable us to ascribe a formal meaning to the ex-
pression “X is the Cartesian product Y × Z of Y and Z.” Namely, we assign
X := {(y, z) : y ∈ Y, z ∈ Z}. Note also that the nickname “product” is in common
parlance for “Cartesian product.”

A.1.8. Consider the following propositions:
(1) Rel (X);
(2) Y = dom(X);
(3) Z = im(X).

Putting these formally, find
(1′) (∀u) (u ∈ X → (∃ v)(∃w) u = (v, w));
(2′) (∀u) (u ∈ Y ↔ (∃ v)(∃w) w = (u, v) ∧ w ∈ X);
(3′) (∀u) (u ∈ Z ↔ (∃ v)(∃w) w = (v, u) ∧ w ∈ X).

In other words, we state in (1)–(3) that the members of X are ordered pairs,
Y is the collection of the first coordinates of the members of X , and Z comprises
the second coordinates of the members of X . It is in common parlance to say that
Y is the domain of X , and Z is the range or image of X . In this event we refer to
X as an abstract relation.

We express the fact that X is single-valued or Un (X) by the formula

Un (X) := (∀u)(∀ v1)(∀ v2)((u, v1) ∈ X ∧ (u, v2) ∈ X → v1 = v2).
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We put Fnc (X) := Func (X) := Un (x)∧Rel (X). In case Fnc (X) is valid, we have
many obvious reasons to call X a function or even a class-function. Paraphrasing
the membership (u, v) ∈ X , we write v = X(u), X : u �→ v, etc. We say that F is
a mapping or function from X to Y , implying that every member of F belongs to
X × Y , while F is single-valued, and the domain of F coincides with X ; that is,

F : X → Y := F ⊂ X × Y ∧ Fnc (F ) ∧ dom(F ) = X.

The term class-function is also applied to F if we want to stress that F is a class.
The restriction of X to U is by definition X ∩ (U×Z). We denote it by X � U .

If there is a unique z satisfying (y, z) ∈ X then we put X ‘y := z. We finally let
X“Y := im(X � Y ). Instead of X“{y} we write X(y) or even Xy when this does
not lead to misunderstanding. It is worth emphasizing that we always exercise
a liberal view on placing and removing parentheses. In other words, we insert or
eliminate parentheses, influenced as a rule by what is convenient or needed for a
formal presentation of a record we discuss.

Abstract relations deserve special attention. Relevant details follow.
A correspondence Φ from X to Y is an ordered 3-tuple Φ := (F,X, Y ), where

F is some subset of the product X × Y . Clearly, Rel (F ) holds. It is in common
parlance to say that F is the graph of Φ, in symbols, Gr(Φ) = F ; while X is the
domain of departure and Y is the domain of arrival or target of Φ. Recall that a
relation or a binary relation on X is a correspondence whose domain of departure
and target are the same set X .

The image of A ⊂ X under Φ is the projection of (A × Y ) ∩ F to Y . The
image of A under F is denoted by Φ(A) or simply F (A). Thus,

Φ(A) := F (A) := {y ∈ Y : (∃x ∈ A)((x, y) ∈ F )}.

To define a correspondence Φ amounts to describing the mapping

Φ̃ : x �→ Φ({x}) ∈ P(Y ) (x ∈ X),

where P(Y ) stands for the powerset of Y which is the collection of all subsets of Y .
This enables us to identify a correspondence Φ with the mapping Φ̃. Abusing the
language, we often identify the mapping Φ̃, the correspondence Φ, and the graph
of Φ, denoting these three objects by the same letter.

The domain of definition or simply domain of Φ is the domain of the graph
of Φ. In other words,

dom(Φ):= {x ∈ X : Φ(x) �= ∅}.

By analogy, the image of a correspondence is the image of its graph.
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A.1.9. Assume that X and Y are abstract relations; i.e., Rel (X) and Rel (Y ).
We may arrange the composition of X and Y , denoted by the symbol Y ◦ X , by
collecting all ordered pairs (x, z) such that (x, y) ∈ X and (y, z) ∈ Y for some y:

(∀u)(u ∈ Y ◦X ↔ (∃x)(∃ y)(∃ z)(x, y) ∈ X ∧ (y, z) ∈ Y ∧ u = (x, z)).

The inverse of X , in symbols X−1, is defined as

(∀u)(u ∈ X−1 ↔ (∃x)(∃ y)(x, y) ∈ X ∧ u = (y, x)).

The symbol IX denotes the identity relation or the identity mapping on X , i.e.,

(∀u)(u ∈ IX ↔ (∃x)(x ∈ X ∧ u = (x, x))).

We elaborate the above for correspondences.
So, assume that Φ := (F,X, Y ) is a correspondence from X to Y . Assign

F−1 := {(y, x) ∈ Y × X : (x, y) ∈ F}. The correspondence Φ−1 := (F−1, Y,X) is
the inverse of Φ. Consider another correspondence Ψ := (G, Y, Z). Denote by H
the image of (F × Z) ∩ (X ×G) under the mapping (x, y, z) �→ (x, z). Clearly,

H = {(x, z) ∈ X × Z : (∃ y ∈ Y )((x, y) ∈ F ∧ (y, z) ∈ G)}.
Hence, H coincides with the composition G ◦F of the graphs G and F . The corre-
spondence Ψ ◦Φ:= (G ◦ F,X, Z) is the composition, or composite, or superposition
of Φ and Ψ. We have the following obvious equalities:

(Ψ ◦ Φ)−1 = Φ−1 ◦ Ψ−1, Θ ◦ (Ψ ◦ Φ) = (Θ ◦ Ψ) ◦ Φ.

A few words about another abbreviation related to correspondences: Consider
Φ := (F,X, Y ). The polar πΦ(A) of A ⊂ X under Φ is the collection of all y ∈ Y
satisfying A× {y} ⊂ F . In other words,

πΦ(A) := πF (A) := {y ∈ Y : (∀x ∈ A) ((x, y) ∈ F )}.
If Φ is fixed then we abbreviate πΦ(A) to π(A) and πΦ−1(A) to π−1(A).

The simplest properties of polars are as follows:
(1) If A ⊂ B ⊂ X then π(A) ⊃ π(B);
(2) For every A ⊂ X the inclusions hold:

A ⊂ π−1(π(A)); A× π(A) ⊂ F ;

(3) If A×B ⊂ F then B ⊂ π(A) and A ⊂ π−1(B);
(4) If (Aξ)ξ∈Ξ is a nonempty family of subsets of X then π(

⋃
ξ∈ΞAξ) =⋂

ξ∈Ξ π(Aξ);
(5) If A ⊂ X and B ⊂ Y then π(A) = π(π−1(π(A))) and π−1(B) =

π−1(π(π−1(B))).
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A.1.10. Provided that Rel (X) ∧ ((X ∩ Y 2) ◦ (X ∩ Y 2) ⊂ X), we call X
a transitive relation on Y . A relation X is reflexive (over Y ) if Rel (X)∧ (IY ⊂ X).
A relation X is symmetric if X = X−1. Finally, we say that “X is an antisymmetric
relation on Y ” if Rel (X)∧((X∩X−1)∩Y 2 ⊂ IY ). As usual, we use the conventional
abbreviation Y 2 := Y × Y .

A reflexive and transitive relation on Y is a preorder on Y . An antisymmetric
preorder on Y is an order or ordering on Y . A symmetric preorder is an equivalence.

Other terms are also applied that are now in common parlance. Recall in
particular that an order X on Y is total or linear, while Y itself is called a chain
(relative to X) whenever Y 2 ⊂ X ∪X−1. If each nonempty subset of the set Y has
a least element (relative to the order of X) then we say that X well orders Y or
that Y is well ordered with respect to the order of X .

A.1.11. Quantifiers are bounded if they appear in the text as (∀x ∈ y) or
(∃x ∈ y). The formulas of set theory (and, generally speaking, of every first-order
theory) are classified according to how they use bounded and unbounded quantifiers.

Of especial importance to our exposition are the class of bounded formulas or
Σ0-formulas and the class of the so-called Σ1-formulas. Recall that a formula ϕ is
bounded provided that each quantifier in ϕ is bounded. Say that ϕ is of class Σ1 or
a Σ1-formula if ϕ results from atomic formulas and their negations by using only
the logical operations ∧, ∨, (∀x ∈ y), and (∃x).

Clearly, every bounded formula is of class σ1. However, it is false that every
σ1-formula is bounded. Moreover, there are formulas not belonging to the class σ1.
The corresponding examples follow. We start with bounded formulas.

A.1.12. The proposition z = {x, y} amounts to the bounded formula

x ∈ z ∧ y ∈ z ∧ (∀u ∈ z)(u = x ∨ u = y).

So, the definition of ordered pair is a bounded formula. The same holds for the
definition of product since we may rewrite Z = X × Y as

(∀ z ∈ Z)(∃x ∈ X)(∃ y ∈ Y )(z = (x, y))
∧(∀x ∈ X)(∀ y ∈ Y )) (∃ z ∈ Z) (z = (x, y)).

Another bounded formula reads “a mapping F from X to Y ” (see A.1.8). Indeed,
the above shows that F ⊂ X × Y is a bounded formula. Moreover, bounded are
the expressions dom(F ) = X and Un (F ), equivalent to the respective formulas

(∀x ∈ X)(∃ y ∈ Y )(∃ z ∈ F )(z = (x, y));
(∀ z1 ∈ F )(∀ z2 ∈ F )(∀x ∈ X)(∀ y1 ∈ Y )(∀ y2 ∈ Y )
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(z1 = (x, y1) ∧ z2 = (x, y2) → y1 = y2).

A.1.13. The statements, that x and y are equipollent, or equipotent, or x and
y have the same cardinality (symbolically, x � y), each implying that there is
a bijection between x and y, are all equivalent to the following Σ1-formula:

(∃ f)(f : x→ y ∧ im(f) = y ∧ Un (f−1)).

However, this fact is not expressible by a bounded formula. The notion of abstract
relation gives another Σ1-formula:

Rel (X) := (∀u ∈ X)(∃ v)(∃w)(u = (v, w)).

Out of the class σ1 lies the following formula stating that a set y is equipollent to
none of its members:

(∀x ∈ y) ¬(x � y).

A.1.14. Comments.

(1) It goes without saying that we may vary not only the special axioms
of a first-order theory (see A.1.4) but also its logical part, i.e., the logical axioms
and rules of inference. The collections of the so-resulting theorems may essentially
differ from each other. For instance, eliminating the law of the excluded middle
from the axioms of propositional calculus, we arrive at intuitionistic propositional
calculus. Intuitionistic predicate calculus (see [60, 90]) appears in a similar way.

(2) The modern formal logic was grown in the course of the evolution
of philosophical and mathematical thought with immense difficulties. The classical
predicate calculus originates with the Aristotle syllogistic whereas the origin of
intuitionistic logic belongs elsewhere. Other logical systems, different essentially
from the two systems, were invented in various times for various purposes. For
instance, an ancient Indian logic had three types of negation, expressing the ideas:
something has never exist and cannot happen now, something was but is absent
now, and something happens now but will disappear soon.

(3) As is seen from A.1.6 and A.1.7, abbreviations may appear in for-
mulas, in other abbreviations, in abbreviations of abbreviations, etc. Invention of
abbreviating symbols is an art in its own right, and as such it can never be for-
malized completely. Nevertheless, systematization and codification of the rules for
abbreviation is at the request of both theory and practice. Some of these systems
of rules (exact descriptions, introduction of function letters, etc.) can be found in
the literature [29, 77, 108].
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A.2. Zermelo–Fraenkel Set Theory

As has been noted in A.1.4, the axioms of set theory include the general logical
axioms of predicate calculus which fix the classical rules for logical inference. Below
we list the special axioms of set theory, ZF1–ZF6 and AC. The theory, proclaim-
ing ZF1–ZF6 as special axioms, is called Zermelo–Fraenkel set theory and denoted
by ZF. Enriching ZF with the axiom of choice AC, we come to a wider theory
denoted by ZFC and still called Zermelo–Fraenkel set theory. Note that we supply
the formal axioms below with their verbal statements in the wake of Cantor’s ideas
of sets.

A.2.1. We often encounter the terms “property” and “class” dealing with ZFC.
We now elucidate their formal status. Consider a formula ϕ = ϕ(x) of ZFC (in
symbols, ϕ ∈ (ZFC)). Instead of the text ϕ(y) we write y ∈ {x : ϕ(x)}. In other
words, we use the so-called Church schema for classification:

y ∈ {x : ϕ(x)} := ϕ(y).

The expression y ∈ {x : ϕ(x)} means in the language of ZFC that y has the
property ϕ or, in other words, y belongs to the class {x : ϕ(x)}. Bearing this in
mind, we say that a property, a formula, and a class mean the same in ZFC. We
has already applied the Church schema in A.1.6 and A.1.7. Working with ZFC, we
conveniently use many current abbreviations:

U := {x : x = x} is the universe of discourse or the class of all sets;
{x : ϕ(x)} ∈ U := (∃ z)(∀ y)ϕ(y) ↔ y ∈ z;
{x : ϕ(x), ψ(x)} := {x : ϕ(x)} ∩ {x : ψ(x)};
x ∪ y := ∪{x, y}, x ∩ y ∩ z := ∩{x, y, z} . . . .

We are now ready to formulate the special axioms of ZFC.

A.2.2. Axiom of Extensionality ZF1. Two sets are equal if and only if
they consist of the same elements:

(∀x)(∀ y)(∀ z)((z ∈ x↔ z ∈ y) ↔ x = y).

Note that we may replace the last equivalence by → without loss of scope, since
the reverse implication is a theorem of predicate calculus.

A.2.3. Axiom of Union ZF2. The union of a set of sets is also a set:

(∀x)(∃ y)(∀ z)(∃u)((u ∈ z ∧ z ∈ x) ↔ z ∈ y).
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With the abbreviations of A.1.6 and A.2.1, ZF2 takes the form

(∀x) ∪ x ∈ U.

A.2.4. Axiom of Powerset ZF3. All subsets of every set comprise a new
set:

(∀x)(∃ y)(∀ z)(z ∈ y ↔ (∀u)(u ∈ z → u ∈ x)).

In short,
(∀x)P(x) ∈ U.

This axiom is also referred to as the axiom of powers.

A.2.5. Axiom of Replacement ZF4ϕ. The image of a set under every bi-
jective mapping is a set again:

(∀x)(∀ y)(∀ z)(ϕ(x, y))∧ ϕ(x, z) → y = z)
→ (∀ a)(∃ b)((∃ s ∈ x)(∃ t)ϕ(s, t) ↔ t ∈ y).

In short,

(∀x)(∀ y)(∀ z)(ϕ(x, y)∧ ϕ(x, z) → y = z)
→ (∀ a)({v : (∃u ∈ a)ϕ(u, v)} ∈ U).

Here ϕ is a formula of ZFC containing no free occurrences of a. Note that ZF4ϕ

is a schema for infinitely many axioms since a separate axiom appears with an
arbitrary choice of ϕ ∈ (ZFC). Bearing in mind this peculiarity, we often abstain
from using a more precise term “axiom-schema” and continue speaking about the
axiom of replacement for the sake of brevity and uniformity.

Note a few useful corollaries of ZF4ϕ .

A.2.6. Let ψ = ψ(z) be a formula of ZFC. Given a set x, we may arrange
a subset of x by selecting the members of x with the property ψ, namely,

(∀x){z ∈ x : ψ(x)} ∈ U.

Our claim is ZF4ϕ , with ψ(u)∧(u = v) playing the role of ϕ. This particular form of
the axiom of replacement is often called the axiom of separation or comprehension.

A.2.7. Applying ZF4ϕ with the formula

ϕ(u, v) := (u = ∅ → v = x) ∧ (u �= ∅ → v = y)

to the set z := P(P(∅)), we deduce that the unordered pair {x, y} of two sets (cf.
A.1.7) is also a set. This assertion is often referred to as the axiom of pairing.
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A.2.8. Axiom of Infinity ZF5. There is at least one infinite set:

(∃x)(∅ ∈ x ∧ (∀ y)(y ∈ x→ y ∪ {y} ∈ x)).

In other words, there is a set x such that ∅ ∈ x, {∅} ∈ x, {∅, {∅}} ∈ x,
{∅, {∅}, {∅, {∅}}} ∈ x, etc. The cute reader will observe a tiny gap between
formal and informal statements of the axiom of infinity. The vigilant reader might
suspect the abuse of the term “infinity.” In fact, the axiom of infinity belongs to
the basic Cantorian doctrines and so some mystery is inevitable and welcome in
this respect.

A.2.9. Axiom of Regularity ZF6. Each nonempty set x has a member
having no common elements with x:

(∀x)(x �= ∅ → (∃ y) (y ∈ x ∧ y ∩ x = ∅)).

Another name for the axiom of regularity is the axiom of foundation.
Applying ZF6 to a singleton, i.e., a one-point set x := {y}, we see that y /∈ y.

Speaking a bit prematurely, we may note, on taking x := {x1, . . . , xn}, that there
are no infinitely decreasing ∈-sequences x1 % x2 % . . . % xn % . . . .

A.2.10. Axiom of Choice AC. To each set x there is a choice function on x;
i.e., a single-valued correspondence assigning an element of X to each nonempty
member of X ; i.e.,

(∀x)(∃ f)(Fnc (f) ∧ x ⊂ dom(f)) ∧ (∀ y ∈ x)y �= ∅ → f(y) ∈ y.

Set theory has many propositions equivalent to AC (cf. [84]). We recall the
two most popular among them.

Zermelo Theorem (the well-ordering principle). Every set may be well or-
dered.

Kuratowski–Zorn Lemma (the maximality principle). LetM be a (partial-
ly) ordered set whose every chain has an upper bound. Then to every x ∈M there
is a maximal element m ∈M such that m ≥ x.

A.2.11. The axiomatics of ZFC enables us to find a concrete presentation for
the class of all sets in the form of the “von Neumann universe.” The starting point
of our construction is the empty set. An elementary step consists in forming the
union of sets of the subsets of available sets, thus making new sets from those avail-
able. Transfinite repetition of these steps exhausts the class of all sets. Classes
(in a “Platonic” sense) may be viewed as external objects lying beyond the von
Neumann universe. Pursuing this approach, we consider a class as a family of sets
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obeying a set-theoretic property given by a formula of Zermelo–Fraenkel theory.
Therefore, the class consisting of some members of a certain set is a set itself (by
the axiom of replacement). A formally sound definition of the von Neumann uni-
verse requires preliminary acquaintance with the notions of ordinal and cumulative
hierarchy. Below we give a minimum of information on these objects sufficient for
a “naive” definition. A more explicit presentation is given in Section 1.5.

A.2.12. A set x is transitive if every member of x is a subset of x. A set x
is an ordinal if x is transitive and totally ordered by the membership relation ∈.
These definitions look in symbolic form as follows:

Tr (x) := (∀ y ∈ x)(y ⊂ x) := “x is a transitive set”;
Ord (x) := Tr (x) ∧ (∀ y ∈ x)(∀ z ∈ x)

(y ∈ z ∨ z ∈ y ∨ z = y) := “x is an ordinal.”

We commonly denote ordinals by lower case Greek letters. Every ordinal is endowed
with the natural order by membership: given β, γ ∈ α, we put

γ ≤ β ↔ γ ∈ β ∨ γ = β.

The class of all ordinals is denoted by On. So, On:= {α : Ord (α)}.
An ordinal is a well ordered set; i.e., it is totally ordered and its every subset

has the least element (which is ensured by the axiom of regularity). We can easily
see that

α ∈ On∧β ∈ On → α ∈ β ∨ α = β ∨ β ∈ α;
α ∈ On∧β ∈ α→ β ∈ On;
α ∈ On → α ∪ {α} ∈ On;

Ord (∅).

The ordinal α+1:= α∪{α} is called the successor of α or the son of α. A nonzero
ordinal other than a successor is a limit ordinal. The following notation is common:

KI := {α ∈ On : (∃β) Ord (β) ∧ α = β + 1 ∨ α = ∅};
KII := {α ∈ On : α is a limit ordinal};
0 := ∅, 1:= 0 + 1, 2:= 1 + 1, . . . ,

ω := {0, 1, 2, . . .}.

This is a right place to recall that the continuum we talk about so much in this
book is simply the powerset of ω.
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A.2.13. It is worth observing that ZFC enables us to prove the properties
of ordinals well known at a naive level. In particular, ZFC legitimizes transfinite
induction and recursion. We now define the von Neumann universe, purposefully
omitting formalities.

Given an ordinal α, put

Vα :=
⋃

β<α

P(Vβ),

i.e., Vα = {x : (∃β) (β ∈ α ∧ x ⊂ Vβ)}. More explicitly,

V0 := ∅;
Vα+1 := P(Vα);

Vβ :=
⋃

α<β

Vα, if β ∈ KII.

Assign
V :=

⋃

α∈On

Vα.

Of principal importance is the following theorem, ensuing from the axiom of
regularity:

(∀x) (∃α) (Ord (α) ∧ x ∈ Vα).

In shorter symbols,
U = V.

Alternatively, we express this fact as follows: “The class of all sets is the von
Neumann universe,” or “every set is well founded.”

The von Neumann universe V, also called the sets, is customarily viewed as
a pyramid “upside down,” that is, a pyramid standing on its vertex which is the
empty set. It is helpful to look at a few “lower floors” of the von Neumann universe:

V0 = ∅, V1 = {∅}, V2 = {∅, {∅}}, . . . ,
Vω = {∅, {∅}, {∅, {∅}}, . . .}, . . . .

A.2.14. The representation of the von Neumann universe V as the “cumula-
tive hierarchy” of (Vα)α∈On makes it possible to introduce the concept of the ordinal
rank or simply the rank of a set. Namely, given a set x, put

rank(x) := a least ordinal α such that x ∈ Vα+1.
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It is easy to prove that

a ∈ b→ rank(a) < rank(b);
Ord (α) → rank(α) = α;

(∀x)(∀ y) rank(y) < rank(x) → (ϕ(y) → ϕ(x)) → (∀x)ϕ(x),

where ϕ is a formula of ZFC. The preceding theorem (or, more precisely, the schema
of theorems) is called the principle of induction on rank.

A.2.15. Comments.

(1) E. Zermelo suggested in 1908 an axiomatics that coincides practical-
ly with ZF1–ZF3, ZF5, A.2.5, and A.2.6. This system, together with the B. Russel
theory of types, is among the first formal axiomatics for set theory.

The axioms of extensionality ZF1 and union ZF2 were proposed earlier by
G. Frege (1883) and G. Cantor (1899). The idea of the axiom of infinity ZF5

belongs to J. W. R. Dedekind.
(2) The axiom of choice AC seems to be in use implicitly for a long time

before it was distinguished by G. Peano in 1890 and B. Levy in 1902. This axiom
was formally introduced by E. Zermelo in 1904 and remained most disputable for
many years. The axiom of choice is part and parcel of the most vital fragments
of modern mathematics. So, it is no wonder that AC is accepted by the working
majority of present-day mathematicians. Discussions of the place and role of the
axiom of choice may be found elsewhere [30, 55, 59, 84, 153].

(3) The axiomatics of ZFC was completely elaborated at the beginning
of the 1920s. By that time the formalization of the set-theoretic language had
been completed, which made it possible to clarify the vague description of the type
of properties admissible in the axiom of comprehension. On the other hand, the
Zermelo axioms do not yield the Cantor claim that each bijective image of a set
is a set. This drawback was eliminated by A. Fraenkel in 1922 and T. Scolem in
1923 who suggested variations of the axiom of replacement. This moment seems to
pinpoint the birth of ZFC.

(4) The axiom of foundation ZF6 was in fact suggested by von Neumann
in 1925. This axiom is independent of the other axioms of ZFC.

(5) The system of the axioms of ZFC is infinite as noted in A.2.4.
Absence of finite axiomatizability for ZFC was proven by R. Montague in 1960 (see
[55, 73, 153, 254]).

A.3. Categories and Functors

Category theory, alongside set theory, provides a universal language for contem-
porary mathematics. The present book uses categories and functors as convenient
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tools for treating various mathematical constructions and arguments in a uniform
manner when we formulate general properties of mathematical structures. We just
sketch the basic concepts of category theory. Details may be found elsewhere; e.g.,
[21, 163, 244].

A.3.1. A category K consists of the classes Ob K , Mor K , and Com, called
the class of objects, class of morphisms, and law of composition of K and satisfying
the conditions:

(1) There are mappings D and R from Mor K to Ob K such that the
class

HK (a, b) := {α ∈ Mor K : D(α) = a,R(α) = b},

called the class of morphisms from a to b, is a set for all a, b ∈
Ob K ;

(2) Com is an associative partial binary operation on Mor K satisfying

dom(Com) =
{

(α, β) ∈ (Mor K ) × (Mor K ) : D(β) = R(α)
}

;

(3) To each object a ∈ Ob K , there is a morphism 1a called the iden-
tity morphism of a such that D(1a) = a = R(1a) and, moreover,
Com(1a, α) = α for R(α) = a and Com(β, 1a) = β for D(β) = a.

Clearly, the class Mor K is the union of the sets HK (a, b), where a and b range
over Ob K , and the sets HK (a, b) and HK (c, d) are disjoint for (a, b) �= (c, d).
Given α, β ∈ Mor K , we usually write β ◦ α or βα instead of Com(α, β). The
containment α ∈ HK (a, b) is often written down as α : a → b; in words,“α is a
morphism from a to b.”

A category H is a subcategory of a category K if the following are satisfied:
(1) Ob H ⊂ Ob K and HH (a, b) ⊂ HK (a, b) for every pair a, b ∈

Ob H ;
(2) the composition of H is the restriction of the composition of K to

the class (Mor H )×(Mor H ). In this event the identity morphism
of each object a ∈ Ob H coincides with the identity morphism of
this object in the category K .

A subcategory H of a category K is full provided that HK (a, b) = HH (a, b)
for all a, b ∈ Ob H .

The product H × K of categories H and K is defined by the formulas:

Ob H × K := (Ob H ) × (Ob K );
HH ×K ((a, b), (a′, b′)) := HH (a, a′) ×HK (b, b′),

(α′, β′) ◦ (α, β) := (α′α, β′β),
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where a, a′ ∈ Ob H ; b, b′ ∈ Ob K ; α, α′ ∈ Mor H , and β, β′ ∈ Mor K .
The dual category K ◦ of an arbitrary category K has the same objects and

morphisms as K . The law of composition Com◦ of the category K ◦ is defined by
the rule

(α, β, γ) ∈ Com ◦ ↔ (β, α, γ) ∈ Com .

In applications the classes of objects and morphisms of a category may and usually
do intersect. However, we lose no generality in assuming that these classes are
disjoint in every category. Indeed, we may mark every object with some extra
label, thus distinguishing objects from morphisms. We presume this agreement
effective throughout.

A.3.3. Consider two categories H and K . A covariant functor F : H → K
from H to K is a mapping whose domain comprises all objects and morphisms of
K and which satisfies the conditions:

(1) If α : a→ b is a morphism of H then F (α) : F (a) → F (b);
(2) If α : a → b and β : b → c are morphisms of H then F (βα) =

F (β)F (α);
(3) If a ∈ Ob H then F (1a) = 1F(a).

Hence, given a pair of objects a, b ∈ Ob H , a functor F defines the mapping
Fa,b : HH (a, b) → HK (a, b). If Fa,b is injective (surjective) for all a and b then
F is a faithful (full) functor. A covariant functor from H ◦ to K (or from H to
K ◦) is a contravariant functor from H to K .

A.3.4. Let H and K be categories. Assume given covariant functors F :
H → K and G : H → K . A natural transformation of F to G , in symbols
ϕ : F → G , is a mapping ϕ : Ob H → Mor K such that

(1) ϕa := ϕ(a) ∈ HK (F (a),F (b)) for all a ∈ Ob H ;
(2) for each morphism α : a→ b of H the following diagram commutes

F (a)
ϕa−−−−→ G (a)

F(α)

⏐⏐�
⏐⏐�G (α)

F (b) −−−−→
ϕb

G (b)

In other words, G (α)ϕa = ϕbF (α). In this event, ϕ is also called a functor mor-
phism.

A natural transformation ϕ : F → G is a natural equivalence of F and G , or
a functor equivalence, or a functor isomorphism between F and G provided that
ϕa is an isomorphism in K for every a ∈ Ob H . The mappings ϕ−1

a give rise
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to the natural transformation of G to F which is denoted by ϕ−1. Recall that a
morphism α : a → b is an isomorphism if there is a morphism β : b → a satisfying
αβ = 1b and βα = 1a.

A.3.5. Categories H and K are equivalent if there are functors F : H → K
and G : K → H such that the functor FG is naturally equivalent to the identity
functor IH , while the functor G F is naturally equivalent to the identity functor IK .
Say that each of the functors F and G implements equivalence or is an equivalence
between H and K ; the latter usage slightly abuses the language, of course.

The equivalence relation between categories is reflexive, symmetric, and tran-
sitive.

A.3.6. Categories H and K are equivalent if and only if there is a full and
faithful functor F from H to K such that, to each object b ∈ Ob K , there
corresponds an isomorphic object of the type F (a), where a ∈ Ob H .

A.3.7. Consider two functors F : H → K and G : K → H . Assign
to these functors another two functors HF and HG from the category H ◦ × K
to the category of sets and mappings. Namely, given a ∈ Ob H , b ∈ Ob K ,
α ∈ HH (a, a′), and β ∈ HK (b, b′), put

HF (a, b) := HK (F (a), b), HG (a, b) := HH (a,G (b)),

HF (α, β) : f → βfF (α), HG (α, β) : g → G (β)gα,

where f ∈ HK (F (α), b) and g ∈ HH (a,G (b)).
Say that the functors F and G are an adjoint pair if the functors HF and HG

are isomorphic. In this event, F is left adjoint to G , and G is right adjoint to F .
Two left adjoints of F are naturally equivalent. This enables us to speak about

the left adjoint of F . The same relates to right adjoints.
The isomorphism ϕ : HF → HG is referred to as adjunction; while the inverse

isomorphism ϕ−1, as coadjunction.

A.3.8. Let K be a subcategory of a category H . An object b ∈ Ob K is a
K -reflector of an object a ∈ Ob H provided that there is a morphism ϕ : a → b,
such that each morphism α : a→ c, where c ∈ Ob K , has the form α = ϕβ with a
uniquely determined morphism β : b → c. Say that K is reflective if each object
of H possesses a K -reflector.

A.3.9. A subcategory K of a category H is reflective if and only if the
inclusion functor K → H has a right adjoint R : H → K .

The functor R is called the K -reflector of H .
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A.3.10. By way of example, we consider Sets, the category of sets. The objects
of Sets are all sets, while the morphisms of Sets are arbitrary mappings. Compo-
sition of morphisms in Sets is the routine composition of mappings. Clearly, given
f ∈ Mor Sets we see that D(f) and R(f) are the domain and target of f . The
morphism 1a is the identity mapping of a.

Various examples of categories appear as subcategories of structured sets. The
objects of such a subcategory are sets furnished with some structure σ (which might
include algebraic operations, relations, norms, topologies, etc.). The morphisms in
this event are mappings that preserve the structure σ at least partly. Evidently,
Sets is a category of structured sets with the empty structure.

A.3.11. It also stands to reason to consider a wider category of sets and cor-
respondences Sets∗. The classes of objects of Sets and Sets∗ are the same, whereas
the morphisms of Sets∗ are all available correspondences. The identity morphism
on a set in Sets∗ is the identity relation on A. Clearly, Sets∗ is a category while
Sets is a subcategory of Sets.

A.3.11. Comments.
Categories and functors were suggested by S. MacLane and S. Eilenberg in

1945 in connection with their research into homological algebra. In the subsequent
decades, category theory expanded far beyond the limits of algebraic topology and
began to play a visible role in various branches of mathematics. Our exposition
deals with the minimum minimorum of categories and functors we need in Boolean
valued analysis. More details about categories and functors may be found, for
instance, in [21, 60, 244].
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University, Gor′kĭı (1991).
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221. Sikorskĭı M. R., “Some applications of Boolean-valued models to study oper-

ators on polynormed spaces,” Sov. Math., 33, No. 2, 106–110 (1989).
222. Smith K., “Commutative regular rings and Boolean-valued fields,” J. Sym-

bolic Logic, 49, No. 1, 281–297 (1984).
223. Sobolev V. I., “On a poset valued measure of a set, measurable functions, and

some abstract integrals,” Dokl. Akad. Nauk SSSR, 91, No. 1, 23–26 (1953).
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