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CREDENDA OF NONSTANDARD ANALYSIS

S. S. Kutateladze

Abstract. The principal set-theoretic credos of nonstandard analysis are presented.
A “naive” justification of the infinitesimal techniques and an overview of the corre-

sponding formal apparatus are provided. The axioms of Nelson’s internal set theory

are discussed as well as those of the external set theories by Hrbaček and Kawai.

The beginning of the sixties was marked with an outstanding achievement of
A. Robinson, the creation of nonstandard analysis. For a long time nonstandard
analysis was considered to be a sophisticated and even exotic logical technique
appropriate mostly for justifying the method of actual infinities. It was also assumed
that this technique has limited applicability and in any case could never lead to a
serious reexamination of the general mathematical ideas. In the late seventies, after
the publication of the Internal Set Theory by E. Nelson [74] (and somewhat later—
of the External Set Theories by K. Hrbaček [62] and T. Kawai [67]) the views of
the place and role of nonstandard analysis in mathematics were radically enriched
and exchanged. In the light of the new conceptions the nonstandard elements may
now be treated as intrinsic parts of all current mathematical objects rather than
some “imaginary, surd and ideal entities” added to the traditional sets for the sake
of formal convenience. The view becomes prevailing that every set is composed
of standard and nonstandard elements. Alongside, the standard sets form a dense
grid in the world of all objects studied in mathematics. It was also discovered
that the objects usually encountered in nonstandard mathematical analysis (the
monads of filters, the standard parts of numbers and vectors, the operator shadows,
etc.) form “Cantorian” sets that cannot be found in any of the canonical pictures
delineated by the conventional formal set theories. The von Neumann universe
does not exhaust the world of classical mathematics—this is obviously the first and
foremost implication of the new theories.

An important advantage of the new approaches lies in their axiomatic character
which makes it possible to pursue them without preliminarily mastering the tech-
niques of ultraproducts, Boolean-valued models or similar devices. The axioms are
simple to use and clearly motivated within the framework of the “naive” set theory
so typical of and attractive to mathematical analysis. At the same time these ax-
ioms considerably expand the world of mathematical objects, open up opportunities
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for developing new formal methods, allow us to substantially reduce the dangerous
gaps between the notions, methodology and levels of rigor current in mathematics
and in the applications of mathematics to the natural and social sciences.

In 1947 K. Gödel remarked: “There might exist axioms so abundant in the verifi-
able consequences, shedding so much light upon the whole discipline and furnishing
such powerful methods for solving given problems (and even solving them, as far as
that is possible, in a constructivistic way), that quite irrespective of their intrinsic
necessity they would have to be assumed at least in the same sense as any well
established theory” [58, p. 521].

The purpose of this survey is to make the new paths to nonstandard analysis
more accessible. In order to achieve this we aim at two specific goals. The first is to
provide an account of qualitative notions of the standard and nonstandard objects
as well as of the principles of nonstandard analysis on a “naive” level quite suffi-
cient for effective application of the technique with no need for appealing to logical
formalisms. The second goal is to supply the reader with a concise but complete
reference to axiomatic foundation of nonstandard analysis in the Cantorian frame-
work, viz. to the theories of E. Nelson, K. Hrbaček and T. Kawai. (Concerning an
alternative approach to nonstandard analysis see the works of P. Vopenka and his
school [9].)

These two tasks determined the plan of this paper. The first few sections con-
tain some historical data as well as qualitative motivations for the principles of
nonstandard analysis and a discussion of their most elementary consequences for
differential and integral calculuses, all forming a “naive” foundation for the infinites-
imal techniques. The formal details of the corresponding nonstandard set-theoretic
machinery are presented in the concluding sections. “Mathematical analysis is not
a completed theory as some people imagine it to be, with stable principles from
which we only have to derive new corollaries. [. . . ] Mathematical analysis is not
different from any other science, with its ideas flowing circularly rather than recti-
linearly so that sometimes we return to the ideas seemingly old but always newly
elucidated [30, p. 389].

The list of references contains, as a rule, only the sources quoted directly in the
text as well as the papers containing extensive bibliographies on the areas. For
example, a comprehensive synopsis of the specific research involving the modern
infinitesimal techniques can be found in [14, 18, 41, 52, 53, 55, 56, 59–61, 64, 68,
69, 72, 73, 75, 76, 78–80].

The principal idea of this paper was conceived in the fall of 1984 under the
influence of the author’s discussions of nonstandard analysis with Academicians
A. D. Alexandrov, Ya. B. Zel′dovich, S. S. Kutateladze, M. A. Styrikovich, and
Yu. G. Reshetnyak (then a Corresponding Member of the Soviet Academy of Sci-
ences). The exposition is based on a transcript [19] of the course that I gave at
the University of Novosibirsk. I am deeply grateful to all of my colleagues whose
interest and critical remarks helped to improve the paper.

AN EXCURSUS INTO THE HISTORY
OF MATHEMATICAL ANALYSIS

1.1. G. W. Leibniz and I. Newton. The differential and integral calculuses
have an ancient name “infinitesimal analysis.” Such was the title of the first text-
book on mathematical analysis published in 1696. The textbook was written by
H. de l’Höpital as a result of his contacts with I. Bernoulli, one of the outstanding
disciples of G. Leibniz.
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“Of all the theoretic feats of knowledge none could be considered as high a tri-
umph of the human spirit as the invention of infinitesimal analysis in the second
half of the 17th century. Were it possible to find somewhere a pure and sole achieve-
ment of the human spirit, this it would be”—this is F. Engels’s appraisal of the
new theory [50, p. 582].

The history of the creation of mathematical analysis, the work and relationships
of its founders have been studied in detail and even scrutinized (cf. [68, 80]). Here
it will be sufficient to turn to the G. W. Leibniz and I. Newton own accounts of
their perception of infinitesimals.

G. W. Leibniz’s paper in the Leipzig journal Acta Eruditorum of 1684 was the
first publication on differential calculus. Here Leibniz gave the following definition
of differential.

Considering a curve Y Y and a tangent at a fixed point Y on the curve which
corresponds to a coordinate X on the axis AX and denoting by D the intersection
point of the tangent and axis, Leibniz wrote: “Now some straight line selected
arbitrarily is called dx while another one whose ratio to dx is the same as of . . . y
. . . to XD will be called . . . dy or difference (differentia) . . . of y . . . .” The essential
details of the picture accompanying this text are reproduced here (see Fig. 1).

Therefore, according to G. W. Leibniz for a function x 7→ y(x) at a point x
for an arbitrary dx we have dy := (Y X/XD)dx, i.e., the differential is defined as
the corresponding linear mapping! It was surely clear to G. W. Leibniz that, in
order to justify this algorithm of differential calculus (the name that he used for
differentiation rules), one should explicate the notion of tangent, he wrote: “. . .
to find the tangent means to draw a line that connects two points on the curve at
the infinitely small distance or the continual side of a polygon with infinitely many
angles which for us takes the place of the curve.” In other words, G. W. Leibniz
had based his calculus on the structure of a curve “in the small.”

At that time there were two accepted views of the status of infinitely small quan-
tities. The first which was closer to Leibniz treated an infinitesimal as smaller than
every “definable” quantity. This conception was accompanied with such images
as actually existing “indivisible” elements of which quantities and figures are com-
posed. For I. Newton, the other founder of analysis, the notion of infinite smallness
was associated primarily with “vanishing” quantities [38, 44]. The famous “method
of prime and ultimate ratios” is formulated in his classical treatise “Principia Math-
ematicae” as follows: “The quantities and the ratios of quantities which in any finite
time converge continuously to equality, and before the end of that time approach
nearer to each other than by any given difference, become ultimately equal” [44,
p. 101]. In the process of developing the ideas that are now firmly associated with
the theory of limits, I. Newton demonstrated foresight and wisdom in evaluation
of the competing views. He wrote: “. . . to institute an analysis after this man-
ner in finite quantities and investigate the prime or ultimate ratios of these finite
quantities when in their nascent or evanescent state is consonant to the geometry
of the ancients, and I was willing to show that in the method of fluxions there is
no necessity of introducing figures infinitely small into geometry. Yet the analysis
may be performed in any kind of figure whether finite or infinitely small, which are
imagined similar to the evanescent figures, as likewise in the figures, which, by the
method of indivisibles, used to be reckoned as infinitely small provided you proceed
with due caution” [38, p. 169].

The views of G. W. Leibniz were just as flexible and dialectical. In his well-known
letter to Varignon [44] he stressed that “it is unnecessary to make mathematical
analysis depend on metaphysical controversies” and pointed out the unity of the
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existing perceptions of the objects of the new formalism: “. . . if any opponent
tries to contradict this propositions it follows from our calculus that the error will
be less than any possible assignable error since it is in our power to make this
incomparably small magnitude small enough for this purpose, in as much as we
can always take a magnitude as small as we wish. Perhaps this is what you mean,
Sir, when you speak on the inexhaustible and the rigorous demonstration of the
infinitesimal calculus which we use. . . . So it can also be said that infinitesimals are
grounded so that everything in geometry and even in nature takes place as if they
were perfect realities. Witness not only our geometrical analysis of transcendental
curves but also by my law of continuity in virtue of which we may consider rest
as infinitely small motion (i.e., as equivalent of a particular instance of its own
contradictory), coincidence as infinitely small distance, equality—as the limit of
inequalities, etc.”

1.2. K. Marx on the mystical differential calculus. Unfortunately, the re-
quirement that the new techniques possess a sound base that was characteristic
for the quoted papers of Leibniz and Newton was not assimilated by their follow-
ers who helped to create an additional mystical aura over the already nontrivial
and abstract ideas. It will be sufficient to note that the mentioned textbook by
l’Höpital declares: “The infinitely small part whereby a variable quantity is con-
tinually increased or decreased is called the differential of that quantity.” Clearly
this is a large step backwards in comparison with the original definition given by
G. Leibniz. It is not accidental that on getting familiar with analysis of the 17th
century K. Marx called it the “mystical differential calculus.” In some interpreta-
tions of Marx’s memoirs [35] his critique of actual infinities is overdramatized. We
will quote verbatim one of the relevant fragments in order to clarify the details.

“Thus there is no choice but to imagine that the increments of the variable h
are infinitely small and possess an independent existence, e.g. in symbols ẋ, ẏ, etc.
or dx, dy [etc.]. But the infinitely small as well as infinitely large quantities are
quantities too (infinitely [small] only means indefinitely small); thus these dy, dx,
etc. or ẋ, ẏ, [etc.] participate in the computations just as ordinary algebraic
quantities, and in the equation

(y + k)− y or k = 2x dx + dx dx

the term dx dx is as valid as 2x dx. But the most remarkable is the reasoning with
the help of which this term is deleted exactly because the notion of infinitely small
is relative; dx dx is deleted because it is infinitely small compared to dx, and thus
to2x dx and 2xẋ. Or: if in

ẏ = u̇z + żu + u̇ż

[the addend] u̇ż is deleted due to its infinite smallness with respect to u̇z or żu,
this could be mathematically justified by recalling that we see u̇z + żu as having an
approximate value that is imagined to be infinitely close to the exact one. Similar
maneuvers can be found in the ordinary algebra. But in this case we witness a still
greater miracle: by using this method we can obtain the values of the derivative
function at x that are not approximate but exact (or at least symbolically correct,
as above), like in the example ẏ = 2xẋ + ẋẋ. After deleting ẋẋ one obtains

ẏ = 2xẋ,

ẏ

ẋ
= 2x
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which is the correct first derivative of x2, as [the theorem on] the binomial has
already proved.

But this miracle is not a miracle at all. On the contrary, it would be a miracle
if the deletion of ẋẋ would not lead to the correct result. Indeed, we are omitting
the computation error that is an unavoidable corollary of the method that allows
to introduce an indefinite increment of the variable, for example, h, immediately
as the differential dx or ẋ, as an operational symbol and thus in a similarly direct
manner obtain the differential calculus as a separate computational technique that
is different from the ordinary algebra” [35, pp. 151–153].

1.3. L. Euler. In the history of mathematical analysis the eighteenth century is
rightfully called the Euler century [5, 22, 23]. Everybody who at least briefly thumbs
through Euler’s textbooks [46–48] will be impressed by his virtuoso technique and
the depth of understanding the subject. We should mention here his systematic
approach to the study of mathematical problems which was characteristic of him, in
his research he utilized every method that has been developed by then. His effective
use of the infinitesimal concepts, and above all, of the actual infinitely large and
infinitely small numbers, should be especially emphasized. L. Euler gave a detailed
account of his methods which were called the “calculus of zeros.” As we intend to
show later (3.3, 4.12, 4.14), the common opinion that L. Euler gave an “incorrect
foundation” for analysis is erroneous.

1.4. G. Berkeley. The ideas of analysis in their general form are tightly woven
into the general atmosphere of the 18th century. The ideas of infinitely small or
infinitely large quantities can be found in the books of that time; e.g., “Travels
of Lemuel Gulliver” (G. Swift, 1726)—Liliputia and Brobdingneg, or the famous
“Micromegas 1752” (F. Voltaire). It is worthy to note that A. Robinson included
a quote from Micromegas ([8, p. 91]) in the epigraph to [76].

In 1734 G. Berkeley published his famous pamphlet “The Analyst or a Discourse
addressed to an infidel mathematician (in fact, to the astronomer E. Galley—S. K.),
wherein it is examined whether the object, principles and inferences of the modern
analysis are more distinctly conceived, or more evidently deduced, than religious
mysteries and points of faith” [3, pp. 396–422]. Despite the antihuman implication
of G. Berkeley’s works they demonstrate finesse of observation as well as murderous
precision of expression. “. . . An error can give birth to a truth although not to
a science”—this is the leitmotif of his critique of calculus.

V. I. Lenin revealed G. Berkeley’s poisonous plans in the following words: “Let
us then assume that the external world, the nature is a ‘combination of sensations’
induced in our mind by the deity. Admit this, refuse to seek the ‘basis’ for these
sensations outside conscience, outside man—and I shall admit (within the frame
of my idealistic theory of cognition) modern natural sciences complete with the
importance and truth of their conclusions. This frame is exactly what I need for
my conclusions in favor of ‘the world and religion.’ This is Berkeley’s position” [26,
p. 22]. G. Berkeley’s challenge could not, of course, be left unanswered by the best
brains of the 18th century.

1.5. J. D’Alembert. A turning-point in the history of the formation of the
basic notions of analysis is related to the ideas and activity of J. D’Alembert.
He was one of the organizers and principal authors of the immortal masterpiece
“The Encyclopedia, or the Lexicon of Sciences, Arts and Trades,” and he wrote in
the entry for “Differential”: “Newton never considered the differential calculus to
be the calculus of infinitesimals, he saw it as the method of prime and ultimate
ratios” [44, p. 157]. J. D’Alembert became the first mathematician who claimed
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the possession of the proof that the infinitesimals exist neither in nature nor in
the mind of geometers. J. D’Alembert’s position reflected in “The Encyclopedia”
may most primarily be blamed for the fact that by the end of the 18th century an
infinitely small quantity was usually perceived as a vanishing variable.

1.6. B. Bolzano, A. Cauchy, and K. Weierstrass. The 19th century became
the time when analysis had been acquiring a firm foundation in the theory of limits.
An important contribution to the process was made by B. Bolzano, A. Cauchy,
and K. Weierstrass. The influence of these scholars is reflected in every course in
differential and integral calculuses. The new canon of rigor proposed by B. Bolzano
[65]; the definition by A. Cauchy of an infinitesimal quantity as a vanishing variable;
finally, the ε-δ-technique of K. Weierstrass are part and parcel of mathematics as
well as the modern culture as a whole.

1.7. N. N. Luzin. The beginning of the 20th century was marked with growing
mistrust of the concept of infinitesimal. The trend became stronger as mathemat-
ics was rebuilt on the set-theoretic foundation which won the key position in the
thirties.

In the first edition of the Soviet Encyclopedia N. N. Luzin wrote: “As far as a con-
stant nonzero infinitely small quantity is concerned, contemporary mathematical
analysis, while not rejecting the formal possibility of defining the idea of a constant
infinitely small quantity (e.g., as a corresponding segment of “non-Archimedean
geometry), considers the idea utterly fruitless since it appears as impossible to
introduce the notion into calculus” [30, pp. 293–294]. N. N. Luzin’s attitude to
infinitesimals is worth special treatment as an important evidence of a dramatic
history usually characteristic of genuinely great ideas. N. N. Luzin had a rare abil-
ity of deep penetration into the core of most sophisticated mathematical problems
as well as the exceptional gift of foresight [23, 28]. Moreover, the idea of infin-
itely small quantities was very appealing to him psychologically. He stressed: “. . .
our consciousness could never be successfully purged of them. There must be some
deeply concealed reasons not fully understood yet which make our mind susceptible
to taking them seriously” [30, p. 396]. In another paper N. N. Luzin remarked with
profound sorrow: “When the mind begins its acquaintance with analysis, in other
words, in its springtime, it begins with the infinitesimals that could be called the
“elemental” quantities. But gradually, step by step, as it accumulates knowledge,
theories, as it is satiated with abstractions and gets tired, the mind begins to forget
the early aspirations and smile down at their “childishness.” In short, when the
autumn comes, the mind allows one to be convinced that the only true foundation is
constructible by means of limits” [7]. N. N. Luzin vigorously defended the last view
in his textbook “Differential calculus,” pointing out that “no constant quantity can
be infinitely small, as well as no number, nor matter how small it is. Hence it would
be much more correct to use the term “infinitely decreasing” instead of “infinitely
small” since the former expresses the idea of variability in a more explicit manner”
[29, p. 61].

1.8. A. Robinson. The seventh (posthumous) edition of the just-mentioned book
by N. N. Luzin was printed in the same year of 1961 when A. Robinson published
his “Nonstandard Analysis” containing a modern foundation for the method of
actual infinitesimals (cf. [39, 76, 77]). A. Robinson’s work was based on the local
theorem of A. I. Mal′tsev. It is this theorem that he characterized as a “result of
fundamental importance for our theory” [76, p. 13], directly citing A. I. Mal′tsev’s
paper [33] which was published in 1936. The discovery of A. Robinson clarifies
the ideas of the founders of differential and integral calculuses and provides a new
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confirmation of the dialectical nature of the development of mathematics.

THE NOTION OF SET IN NONSTANDARD ANALYSIS

2.1. Modern textbooks on mathematical analysis are based on the notion of set.
Nonstandard analysis or, more precisely, nonstandard mathematical analysis is
a part of mathematical analysis. Therefore, it obviously assumes the usual view
of sets (cf., for example, [13]). In other words, nonstandard analysis accepts as sets
exactly those collections that are treated as such in the classical theory. Note that
the converse statement is also true: nonstandard analysis does not accept as sets
those and only those collections that are not accepted as sets in the “standard”
mathematics. At the same time nonstandard analysis uses a refined view of sets,
i.e., it is built within a nonstandard set-theoretic framework.

2.2. The naive set theory is based on the classical perceptions of G. Cantor: set
is “any many which can be thought of as one, that is, every totality of definite
elements which can be united to a whole through a law,” or a set is “every col-
lection into a whole of definite distinct objects of our perception or our thought”
[15, p. 173]. It is now common knowledge that these conceptions are too general.
This fact is circumvented via more precise formulation of the distinctions between
sets and nonsets. For example, the unacceptable, or “too large” collections of sets
are termed “classes,” assuming that a class should not necessarily be a set. In other
words, in the process of formalization of the notions of naive set theory we define
in a more complete and careful fashion the procedures that enable us to introduce
a “Cantorian” set into mathematical usage. All the sets accepted as such in math-
ematics possess equal rights. Of course, this does not mean that all sets are equal
or have no distinctions. They only that they are of the same type and have the
same status—they are the “elements of the class of all sets.”
2.3. The decisively new principal assumption underlying the nonstandard set
theory is extremely simple: sets can be different: standard or nonstandard. There-
fore it is more correct to speak the theory of standard and nonstandard sets rather
than of the nonstandard set theory. The intuitive interpretation of the phrase “set
A is standard” is that A is clearly and unambiguously described and has thus be-
come an “artefact” of the human cognitive activity. This notion of “standardness”
draws a separating line between the objects determined via explicit mathemati-
cal constructions (for example, existence and uniqueness theorems),—they are the
standard sets, and the objects that arise in the course of study in an implicit way,
the nonstandard sets.

The numbers π, e, sin 81 are defined directly and unambiguously; the sets of nat-
ural and real numbers are described in a concrete and clear fashion. These objects
are standard. On the other hand, an arbitrary “abstract” real number is defined
implicitly as an element of the already-introduced set of all real numbers. This pro-
cedure of defining new objects is very common: a vector is an element of a vector
space, a filter is a set of subsets of the given set possessing certain properties, etc.
Thus there are standard and nonstandard real numbers, standard and nonstandard
vectors or filters, and, generally speaking, standard and nonstandard sets.

Consider the example of all grains of sand on Earth. Archimedes in his classical
treatise Psammiths, the Sand-Reckoner said that: “. . . the numbers named by me
and given in the work which I sent to Zeuxippes some exceed not only the number
of the grains of sand equal in magnitude to the earth filled up in the way described
but also that of a mass equal in magnitude to the universe” [2, p. 358].
2.4. Of course, this view of the difference between the standard and nonstandard
sets is of an auxiliary importance if all we want to learn is how to work with them.
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This is similar to the situation in geometry where the distinctive and intuitive
notions of spatial forms help us in developing the skills of using the axioms that
eventually present the rigorous definitions of points, lines, planes, etc. Following
A. D. Alexandrov, we should note that “all axioms themselves need a meaningful
foundation, they are only a summary of other knowledge and a starting point for the
logical construction of a theory” [1, p. 51]. Therefore, before formal introduction of
the axioms of nonstandard set theory we are to discuss them on a qualitative level.
2.5. As we already know, nonstandard set theory begins with the primary observa-
tion that sets may be viewed as different, standard or nonstandard. Furthermore,
we assume the following postulates (more precisely, some variants of the following
postulates).

2.6. The transfer principle. Each ordinary statement proving existence of a set
at the same time defines some standard set.

In other words, the existence and uniqueness theorems of classical mathemat-
ics are considered as direct and explicit definitions of mathematical objects. An
equivalent formulation of this principle which also explains its name is as follows:
in order to prove a statement for all sets we should only prove it for all standard
sets. The transfer principle has an intuitive foundation in the obvious fact that we
usually make statements on arbitrary sets while dealing only with already-described
or standard sets.

2.7. The idealization principle. Each infinite set contains a nonstandard ele-
ment.

This statement agrees obviously with the conventional understanding of infinity.
The idealization principle will often appear in stronger forms that reflect the concept
of the infinite profusion of ideal objects. For example, sometimes all standard sets
are assumed to be elements of a certain finite set. The number of elements of this
“universal” set is enormous and, which is more important, unrealizable, thus—
nonstandard. It is not surprising that the universal set itself is also nonstandard.

Note that caution should be used with caution exercised with these two postulates
(like with anything else, although). By transfer a standard set is unambiguously
defined by its standard elements in an environment consisting of standard sets only.
But this set is not generally reducible to the collection of its standard elements.
There can exist other, nonstandard, sets that contain all standard elements of the
original set and no other standard elements. One should also use prudently the no-
tion of statement. The transfer principle is valid for the mathematical propositions
that do not appeal to the new property of sets—to be or not to be standard. Oth-
erwise we would be able to state that all sets are standard (since all standard sets
are standard), which contradicts the idealization principle. Therefore, a sentence
saying that a set is standard is not an “ordinary statement.”

2.8. The standardization principle. Each standard set and each property define
a new standard set, the subset of the original set such that all its standard elements
possess the given property.

Let A be the standard set and ϕ, a property. The standardization principle
claims that there exists a standard set, usually denoted ∗{x ∈ A : ϕ(x)}, such that

y ∈ ∗{x ∈ A : ϕ(x) } ⇔ y ∈ {x ∈ A : ϕ(x)} ⇔ y ∈ A & ϕ(y)

for each standard y. The set ∗{x ∈ A : ϕ(x)} is often referred to as standardization
and the parameters used in its definition are often omitted. An intuitive foundation
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for the standardization principle is as follows: if we have explicit descriptions of
mathematical objects, we can also work with the new sets constructed from the
given objects by using some procedures. Standardization supplements the conven-
tional manner of indicating subsets by selecting elements with an a priori given
property. When reflecting on the standardization principle it is useful to observe
that it says nothing of the nonstandard elements of the new set. This is not ac-
cidental: such elements need not possess the property. It should also be observes
that care must be exercised in applying the standardization principle. An attempt
to arbitrarily standardize the universal set that contains all standard sets leads to
a contradiction immediate.
2.9. These postulates are placed as the ground for the axiomatic presentations
of nonstandard set theory. We shall treat them in more detail in Sections 5–7.
Right now we will discuss the properties of the elementary objects of mathematical
analysis within the above-presented “naive” framework.

SIMPLE PROPERTIES OF STANDARD
AND NONSTANDARD REAL NUMBERS

3.1. For a set A we write a ∈ ◦A instead of the proposition “a is a standard
element of A.”

3.2. The following statements are true:
(1) the induction principle is valid for the standard natural numbers, i.e., if A

is a set such that 1 ∈ A and for n ∈ ◦N it is true that n ∈ A ⇒ n + 1 ∈ A, then
A contains all standard natural numbers; symbolically, ◦N ⊂ A;

(2) all elements of a standard finite set are standard;
(3) if all elements of a set are standard then the set is standard and finite;
(4) a natural number N is nonstandard if and only if N is greater than each

standard natural number;
(5) for an infinite standard A the symbol ◦A does not denote a set.

/ Let us prove (1) and (5) since other statements are easier to verify.
(1) The following standard set can be formed on using the standardization prin-

ciple: B := ∗{n ∈ N : n /∈ A}. Suppose that B 6= ∅. Then B contains (by the
transfer principle) the smallest standard element m. By assumption m 6= 1 (since
1 ∈ A). Besides, m /∈ A; therefore, m− 1 /∈ A.

Since m − 1 ∈ ◦N, we have m − 1 ∈ B, and the false inequality m − 1 = m
appears.

Therefore, B = ∅; i.e., (∀n ∈ ◦N) n ∈ A.
(5) Suppose that ◦A is a set. Then it follows from (3) that ◦A is finite and

standard; therefore, A = ◦A by the transfer principle and A is finite, contradicting
the assumption. .
3.3. Due to 3.2 (4) the nonstandard natural numbers are called infinitely large or
simply infinite. As L. Euler pointed out, “. . . an infinite number and a number
greater than each definable number are synonymous” [47] (cf. [6]). The infinitude
of a number N is denoted by the symbol N ≈ ∞.

3.4. The following facts are true:
(1) (N ≈ ∞ M ≈ ∞) ⇒ (N + M ≈ ∞, NM ≈ ∞);
(2) (N ≈ ∞, n ∈ ◦N) ⇒ (N + n ≈ ∞, N −n ≈ ∞, nN ≈ ∞); (N ≈ ∞, M ≥

N) ⇒ M ≈ ∞;
(3) “. . . if 1/0 denotes an infinite number, then since 2/0 is of course only

doubled 1/0 (by definition!—S. K.) then clearly every number, even an infinite
number, can become two or several times greater” (L. Euler [35, p. 620]).
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3.5. Let R := R∪{±∞} be the extended real line. The element t ∈ R is called finite
or limited (denoted t ∈ ≈R) if there exists a standard n ∈ ◦N such that |t| ≤ n.
For t /∈ ≈R such that t > 0 we use the notation t ≈ +∞; t ≈ −∞ is interpreted in
a similar manner. The following convention is often used for the infinite numbers:
t ≈ +∞⇔ t ∈ µ(+∞), or in a verbal form: the “element t belongs to the monad of
+∞.” The number t ∈ R is called (actually) infinitely small, or simply infinitesimal,
if |t| is less than any strictly positive standard number, in other words, if |t| ≤ 1/n
for every n ∈ ◦N. In this case we say that t belongs to the monad of zero (denoted
as t ≈ 0 or t ∈ µ(R). (The symbol µ(R) is used interchangeably with µ(0), stressing
the obvious connection with the unique separated vector topology on R.) The term
monad [[µoναζ]] has a long history and is traditionally translated in the classical
texts as “unit,” which is not quite correct. By the definition of Euclid, a monad
“is [that] through which a magnitude is considered as a whole” [37, p. 9].

3.6. The following assertions hold:
(1) (s ≈ 0, t ≈ 0) ⇒ s + t ≈ 0;
(2) (s ∈ ≈R, t ≈ 0) ⇒ st ≈ 0;
(3) z ≈ 0 ⇔ 1/z ≈ +∞ (for z > 0)

“. . . if z becomes a quantity that is less than any quantity that can be given, i.e.,
infinitely small, then the ratio 1/z should become greater than any quantity that can
be given, i.e., infinitely large” (L. Euler [47, p. 93]);

(4) (t ≈ 0 and t is standard) ⇒ t = 0.

/ (1) Suppose that n ∈ ◦N. Then obviously |s | ≤ 1/2n and |t| ≤ 1/2n. Hence
|s + t| ≤ |s|+ |t| ≤ 1/2n + 1/2n = 1/n, i.e., s + t is infinitely small.

The other statements are verified just as easily. .

3.7. The monad µ(R) is not a set.

/ If the statement is false then µ(R) is a subset of R. For any t > 0, t ∈ ◦R we
have t > µ(R). Therefore, t = s := supµ(R). The number s is of course infinitely
small and positive, besides, 2s ≤ s. The latter is impossible. .
3.8. If s − t ≈ 0 for s, t ∈ R, it is denoted as s ≈ t and we say that s and
t are infinitely close. The founders of mathematical analysis if necessary did not
distinguish between the numbers such that their difference is infinitesimal. L. Euler
expressed this in the following words: “. . . an infinitesimal quantity is exactly zero”
[47, p. 91].
3.9. A useful observation: the relation of infinite closeness of numbers cannot be
called a subset of R×R. Indeed, otherwise the image of the zero element under the
relation, i.e. the monad µ(R) would also be a set. Note also that the monad µ(R)
is “indivisible,” i.e., for each standard n it is true that 1/nµ(R) = µ(R). While
reflecting on the role of the monad µ(R) in the construction of integers we can turn
to the Euclid definition: “Number is a set that is produced by monads” (cf. [37,
p. 9]). Similarly, the whole “nonstandard” extended real line R̄ and even its finite
part ≈R are sets of monads. A more rigorous formulation of this statement is based
on the following fundamental fact.

3.10. To each finite number there is a unique standard number infinitely close to
it.

/ By the standardization principle for a given t ∈ ≈R we can construct the
standard set A := ∗{a ∈ R : a ≤ t}. Clearly A 6= ∅ and A ≤ n where the standard
number n ∈ ◦N is such that −n ≤ t ≤ n. By the transfer principle we can conclude
that A ≤ n. Due to completeness of R it is true that s := supA ∈ R. Obviously s
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is standard. Let us show that s ≈ t. Otherwise for a standard ε > 0 we would get
|s − t| > ε. If s ≥ t then s ≥ t + ε, i.e., s ≥ a + ε for any standard a ∈ A. But
in that case s ≥ s + ε which is not true. The other possibility s < t leads to an
equally quick contradiction: we would have t > s + ε and again s ≥ s + ε. .
3.11. A standard number that is infinitely close to a finite number t ∈ ≈R is called
the standard part of t and denoted st(t), or ◦t. It is assumed that ◦t := ±∞, if
t ≈ ±∞.
3.12. Thus the extended line of reals in nonstandard analysis should be thought
of in connection with the following schema (Fig. 2). When we point out a (finite)
number t at the axis, we draw a blob t, the monad µ(t) := t+µ(R), the “indivisible
faithful image of ◦t.” If we examine a neighborhood of t under a powerful micro-
scope, we shall see a cloud with fuzzy edges which represents the image of µ(t). If
we use more powerful lenses, the visual portion of the “point-monad” will appear
in more detail with part of it outside of the field of observation. But we shall still
be dealing with the same standard real number that is in a way described by this
process of “studying the microstructure of the physical line.”

3.13. The following statements are true:
(1) for s, t ∈ ◦R it is true that

◦(s + t) = ◦s + ◦t, ◦(st) = (◦s)(◦t),

s ≤ t ⇒ ◦s ≤ ◦t;

(2) The law of transition from a standard number to its standard part is not
a set (and, in particular, a function).

/ Prove, for example, (2). If the law t 7→ ◦t were a set then the monad µ(R)
would be a set too since t ∈ µ(R ⇔ ◦t = 0. What is now left is to apply 3.7. .

DISCUSSION OF THE INITIAL NOTIONS
OF ANALYSIS ON THE REAL LINE

4.1. The nonstandard criteria for limits. For a standard sequence (an) and a
standard number a ∈ R the following assertions hold:

(1) the number a is a partial limit of (an) if and only if a = st(aN ) for an
infinitely large N .

(2) the number a is the limit of (an) if and only if aN is infinitely close to A for
all infinitely large N , i.e. a = lim an ⇔ (∀N ≈ +∞) aN ≈ a.

/ Let us verify, for example, (2). Suppose first that an → a and a ∈ R. By
assumption for each positive number ε > 0 and some n ∈ N we have |aN − a| ≤ ε
whenever N ∈ N and N = n. Therefore, it follows from the transfer principle that
for any standard ε > 0 there exists a standard n with the same property. Each
infinitely large N is larger than n; i.e., aN ≈ a.

Assume now that for N ≈ +∞ a is known to belong to µ(a). Suppose that
a = −∞ and n ∈ ◦N. From 3.4 (2) and the definition of monad we conclude that
if N ≥ M , where M is an infinite number, then aN ≤ −n. Thus we have proved
“something” for any standard n, namely (∃M)(∀N ≥ M)aN ≤ −n. By transfer
this “something” is valid for arbitrary n ∈ N, i.e., an → −∞. .
4.2. Criteria 4.1 possess the following merits. We have seen that the partial
limits of a standard sequence are the definable numbers corresponding to all infinite
indexes. In other words a partial limits is the observable value of an infinitely far
member of the sequence. This statement has a clear intuitive content and differs
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drastically from the conventional definition (an instructive discussion of the latter
by N. N. Luzin can be found in [31, pp. 98–99]).

Criterion 4.1 (2) remarkably grasps the dynamic nature of the limit which is su-
perbly described by R. Courant [20, pp. 66–67] who asserted however that it does
not accept an exact mathematical formulation. At the same time, the nonstandard
criterion for limit is applicable to standard sequences only (if an := N/n, where
N ≈ +∞, then an → 0 and aN = 1). In other words 4.1 complements the classical
notions of limit but does not reject them. Furthermore, by pointing out all conver-
gent standard sequences we at the same time automatically define the standard set
of all convergent sequences by the standardization principle. Thus, the traditional
ε-N -constructions and the nonstandard formula are closely related.

It is useful to stress that in specific applications (e.g., in physics) we encounter
“real,” explicitly defined, i.e., standard sequences. Moreover, in such situations
the “infinite” has a clear (physical) meaning—the corresponding scales and bounds
are indicated directly. Keeping in mind additionally that the existence problems
are solved in practice by turning to meaningful arguments (if there is no physical
velocity then we need not look for it), one encounters the problem of recognizing
the limit that is known to exist. Nonstandard analysis offers a simple prescription:
“take an entry in your sequence with an (arbitrary) infinite index; the number
defined by this element is the sought limit.” This also makes clearer the foundations
of the infinitesimal methods employed by the forefathers of differential and integral
calculuses who sought answers to questions on exact numerical values of standard
quantities: the areas of specific figures, the equations of tangents to curves, the
integrals of explicitly given analytic expressions, etc.
4.3. An important new contribution of nonstandard analysis is the notion of the
limit of a finite sequence a[N ] := (a1, . . . , aN ), where N is an infinitely large nat-
ural number. The following definition is based on an intuitive idea that agrees
nicely with the practical procedures for obtaining numerical characteristics of un-
observable discrete collections: the thermodynamic parameters of a fluid or gas,
the estimates for the population demand, etc.
4.4. A number a is called the microlimit of a sequence a[N ] if aM ≈ a for all infinite
M less than N . Let us demonstrate how this notion relates to the conventional
notion of convergence.

4.5. Let (an) be a standard (countable) sequence, N ≈ +∞ and a ∈ ≈R. Then the
following statements are equivalent:

(1) ◦a is the microlimit of a[N ];
(2) the sequence (an) converges to ◦a.

/ The implication (2) ⇒ (1) is contained in 4.1 (2). In order to prove (1) ⇒ (2)
choose an arbitrary standard ε > 0 and consider the set A := {m ∈ N : (∀n)(m ≤
n ≤ N) ⇒ | an − ◦a | ≤ ε }. The set A is nonempty since N ∈ A. Therefore A
contains the least element m. If m ≈ +∞ then m − 1 ≈ +∞ and by assumption
m− 1 ∈ A, with m thus being standard. Besides, if n ≥ m and n is standard then
n ≤ N and | an−◦a | ≤ ε. Thus, (∀ε ∈ ◦R, ε > 0)(∃m ∈ ◦N)n ≥ m ⇒ |an−◦a | ≤ ε,
and we can conclude from the transfer principle that (an) converges to ◦a. .

4.6. The nonstandard criterion for continuity. Let f be a standard real-
valued function and x, a standard point in its standard domain. The following
statements are equivalent:

(1) f is continuous at x;
(2) f maps the points that are infinitely close to x into points infinitely close to

f (x); i.e., f is microcontinuous in x.
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4.7. In discussing this nonstandard criterion the argument of 4.2 can be repeated.
Following R. Courant one can also note that “as in the case of the limit of a sequence,
the definition by Cauchy is based, so to speak, on reversing the intuitively accept-
able order in which the variables are considered” [20, p. 73]. Nonstandard analysis
liberates us from the unpleasant necessity of reversing quantifiers for all available
(standard) functions and points. At the same time the complete ε-δ-definition can
be restored only implicitly from microcontinuity at a point by standardization. The
following statements will help us to achieve a deeper understanding of microconti-
nuity (cf. [11, 53, 75]).

4.8. A standard function f is microcontinuous at every (possibly nonstandard)
point if and only if f is uniformly continuous.

4.9. A standard set consists of functions microcontinuous at every point if and only
if the set is (uniformly) equicontinuous.

4.10. Let y be a standard function defined in a neighborhood of a standard point
x and differentiable at this point. Furthermore, let dx be an arbitrary nonzero
infinitely small number. Following G. W. Leibniz, we denote by dy the differential
of the function y at the point x, which is applied to the element dx.

4.11. The following relationships hold:

dy ≈ 0, dy ≈ y(x + dx)− y(x),

dy

dx
≈ y(x + dx)− y(x)

dx
.

4.12. The nonstandard relationships of 4.11 supplement the following remark of
L. Euler: “As for the differential calculus, I have already noted that the problem of
finding differentials should be understood in a relative rather than absolute sense;
this means that if y is a function of x, we need to find not the differential itself
but its ratio to the differential dx. Indeed, since all differentials are equal to zero,
dy = 0 for any function y of the quantity x; thus we cannot hope to find more in
the absolute sense. The correct formulation of the question is as follows: x receives
an infinitely small, i.e., vanishing increment dx; we should find the ratio of the
corresponding increment of the function y to dx. Although both increments = 0,
there is a certain relation between them that is found in differential calculus” [48,
p. 9].

Note that L. Euler uses the symbol = where we write ≈ (cf. 3.8), and is looking
for the derivative that he assumes to exist while working with specific differentiable
functions. Under these conditions it is perfectly legitimate to use an arbitrarily
chosen infinitesimal dx. Repeating F. Engels’s maxim, one could say: “. . . dx is
infinitely small but active and produces everything” [50, p. 580].

4.13. The nonstandard representation of the Riemann integral. Let f :
[a, b] → R be a standard continuous function and a = x1 < x2 < · · · < xN <
xN+1 = b, a partition of [a, b], ξk ∈ [xk, xk+1], and xk ≈ xk+1 for k := 1, . . . , N .
Then

b∫
a

f(x)dx = ◦

(
N∑

k=1

f(ξk)(xk+1 − xk)

)
.

/ Observe that N is infinitely large and use the definition of integral and the
nonstandard criteria 4.1 (2) and 4.8. .
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4.14. Proposition 4.13 provides a formal base for the understanding of integration
as a specific variant of the conventional summation. Indeed, it turns out that in
order to find the integral of a standard continuous function one should compute
the exact value (= the standard part) of just one finite sum of an infinitely large
number of infinitely small summands. We recall the definition of integral (with
“variable upper limit”) given by L. Euler:

“Integration is usually defined in the following manner: one says that it is the
summation of all values of the differential expression X dx when x assumes all
values differing by the increment dx, beginning from a given value up to x; the
increment dx should be assumed infinitely small . . . . It is clear that the proposed
method at least enables us to obtain integration from summation with arbitrary
precision; the exact value can be computed only if one assumes that the increments
are infinitely small, i.e., zeros” [48, p. 163].

Note that the technique described in 4.13 is not generally applicable to arbitrary
nonstandard functions. In other words, in this case we discover again that the
nonstandard theories of the objects of mathematical analysis extend and refine their
classical analogs rather than expel them.
4.15. Due to the listed reasons it can be said that nonstandard analysis is a
direct descendant from infinitesimal calculus. This is why the term “infinitesimal
analysis” has been gaining acceptance. It is worth to note that the concept of
infinitely large or infinitely small numbers has never disappeared from the tool-kit
of natural sciences but only was absent from mathematics during the last thirty
years. Therefore we need not dwell on applications and importance of nonstandard
analysis in more detail.

NELSON’S INTERNAL SET THEORY

5.1. After having discussed on a “naive” level the distinctions between the stan-
dard or definable and nonstandard or implicit ways of introducing objects we are
now able to fill the concepts that we propose under the founders of mathematical
analysis with an intuitively clear meaning and so to acquire a deeper understanding
of their mode of reasoning. At the same time we encounter serious problems even
in the simplest situations. First of all, it is still not clear how to distinguish be-
tween standard and nonstandard sets; therefore, we must be aware of the danger of
incorrect application of the principles of nonstandard analysis. We are increasingly
disturbed by the appearance of objects formed in a manner seemingly acceptable
although these objects might not be considered as ordinary sets. These are vari-
ous monads, collections of standard elements, the objects ≈,≈R, etc. Even more
annoying is the fact that the “mathematical law” x 7→ st(x) acting from R to R
is not a function. Incidentally, the notion of function has formed long before the
set-theoretic approach was taken. As early as in 1774 L. Euler wrote: “When cer-
tain quantities depend on other quantities in such a manner that after changing
the latter they themselves are changed—the former quantities are called functions
of the latter. The scope of this name is very wide; it encompasses all procedures
determining how one quantity is determined from certain others. Thus . . . all
quantities that depend on x in any way, i.e., are determined by the x, are called
functions of it” [47, p. 38]. This dynamic concept of transforming one object into
another is not adequately expressed in the presently prevailing stationary view of
a function as a set. The last view is a “formal set-theoretic model for the intuitive
idea of function—the model which reflects only one aspect of this idea but not
its general meaning” [10, p. 32]. The reader recalls that for s, t ∈ [0, 1] we have:
◦(s + t) = ◦s + ◦t, ◦0 = 0, ◦1 = 1 and also st(x) = 0 in an interval [0, h], where h
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is a positive number (an arbitrary actual infinitely small number). The existence
of such a “numerical function” is an indication of the presence of antinomies. All
these circumstances call for immediate and explicit refinement of the concepts and
constructs used as well as for description of their foundation.
5.2. We have already noted that nonstandard analysis is grounded on the set-
theoretic principles. In other words, the naive nonstandard set theory can be based
on the same foundation as the current Cantorian theory [15], or, to be precise, the
axiomatic set theories that “approximate it from below” (cf. [16, 18, 21, 34, 45,
71]).

Note that analysis is the “science of the infinite” (according to G. W. Leibniz)
or the “mathematics of the infinite” (according to F. Engels) and is thus firmly tied
to set theory (via the notion of infinity). Nevertheless, we should not forget that
the classical works of G. Cantor appeared 200 years after differential calculus was
discovered. The most essential parts of the modern mathematics rest on set theory.
To be more precise, now there is a set-theoretic foundation laid under its “living
quarters.” Only time will show what is to happen. Instantly we are to state that
the construction of the mathematical edifice continues, causing an endless quest for
new ideas and severe clashes of opinions (cf. [4, 9, 17, 40, 57, 66, 70]). It should be
noted here that only when one realizes the unfeasibility of a final and “absolute”
foundation of nonstandard analysis it should he or she launches into studying the
implementation of the project.
5.3. Axiomatic theories carefully describe correct procedures for set formation.
Qualitatively speaking, they describe worlds, or universes, of sets that are expected
to adequately reflect our intuitive perception of the “Cantor paradise,” the universe
of naive set theory.
5.4. The Zermelo-Fraenkel theory is mostly often used in analysis (cf. [16, 18, 43,
45, 71]). We shall now briefly discuss some of its notions accentuating the necessary
details. The discussion will be continued on the same current and common level
of rigor (which is inevitable), in particular, we shall use the assignment operator
definor, := for introducing abbreviations and skip the accompanying subtler points.
5.5. The alphabet of Zermelo-Fraenkel theory (abbreviated as ZF or ZFC) consists
of: symbols of variables; letters; the parentheses; the propositional connectives
&,¬,⇒,⇔,∧; the quantifiers ∀,∃, the sign of equality = and the special binary
predicate of “containment” ∈. The domain of values for the variables of ZF is
thought of as the world of sets. In other words, sets are the only objects in the
universe of ZF. The relation ∈(x, y) is usually written as x ∈ y and pronounced “x
is an element of y. ”
5.6. The formulas of ZF are defined in a usual manner, i.e., as the finite texts
formed from the atomic formulae x = y and x ∈ y (where x and y are ZF variables)
by using parentheses, quantifiers and connectives. The terms free and bound vari-
ables (or, equivalently, the scope of a quantifier) retain their usual meaning. Here-
after if we want to stress that the variables x1, . . . , xn (and only these variables)
are free in the formula ϕ, we shall write ϕ = ϕ(x1, . . . , xn) or just ϕ(x1, . . . , xn).
5.7. Let ϕ = ϕ(x) be a formula of ZF. We write y ∈ {x : ϕ(x)} instead of ϕ(y),
i.e., y ∈ {x : ϕ(x)} := ϕ(y). In this case we say that y possesses the property ϕ or
y lies in the class {x : ϕ(x)}. In this sense the concepts of property, formula and
class are equivalent in ZF. Note that the classification symbols {and} do not belong
to the alphabet of ZF. The following abbreviations are often used within ZF:

V := {x : x = x}—the class of all sets;

{x : ϕ(x)} ∈ V := (∃z)(∀y)ϕ(y) ⇔ y ∈ z;
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∅ := {x : x 6= x}—the empty class;

x ⊂ y := (∀z)z ∈ x ⇒ z ∈ y := x is a subset of y;

P(x) := {z : z ⊂ x}—the class of all subsets of x;

f : x → y := f—a function from x into y.

5.8. The axioms of ZF include the usual logical principles of a first-order preposi-
tional calculus with equality and the following special postulates:

(1) the axiom of extensionality—

(∀x)(∀y)(x ⊂ y & y ⊂ x) ⇒ x = y;

(2) the axiom of union—
(∀x) ∪ x ∈ V ;

(3) the axiom of powerset—

(∀x)P(x) ∈ V ;

(4) the axiom schema of replacement—

(∀x)(((∀y)(∀z)(∀w)ϕ(y, z) ∈ ϕ(y, w) ⇒ z = w) ⇒ {v : (∃ y ∈ x)ϕ(y, v)} ∈ V )

for every formula ϕ;
(5) the axiom of foundation—

(∀x 6= ∅)(∃y ∈ x)y ∩ x = ∅;

(6) the axiom of infinity—

(∃ω)(∅ ∈ ω & (∀x ∈ ω)x ∪ {x} ∈ ω);

(7) the axiom of choice—
(∀F )(∀x)(∀y)

((x 6= ∅) & F : x → P(y)) ⇒ ((∃f)(f : x → y & (∀z ∈ x)f(z) ∈ F (z)))).

5.9. On the basis of these axioms we can form a precise understanding of the
class of all sets V as of the “von Neumann universe.” The initial object in the
construction is the empty set. An elementary step in the introduction of the new
sets is to form the union of powersets of the existing sets. The transfinite repetition
of such steps provides the world of sets V , i.e.,

V =
⋃

α∈Od

Vα,

Vα := {x : (∃β ∈ α)x ∈ P(Vβ)},

where Od is the class of all ordinals. We can view an arbitrary class as an object
external to V , a collection of elements of the von Neumann universe that possess a
fixed set-theoretic property defined by a ZF formula. Therefore a class consisting
of some elements of a set is (by the axiom of replacement) a set too. There exists
an extension of ZF, the Gödel-Bernays theory, which provides formal means for
working with classes. It should be stressed that any set in this theory is introduced
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as an element of a class. Therefore, neither ZF nor the Gödel-Bernays theory
contain monads as objects.
5.10. This discussion of the properties of standard and nonstandard sets showed
that the von Neumann universe can accommodate all infinitely small numbers but
not the whole collection of them. Therefore, neither the world of Zermelo-Fraenkel
sets, nor the world of Gödel-Bernays classes do exhaust the universe of “naive”
sets. In other words each of these theories (intended for description of the objects
of classical mathematics) defines a proper part of the “Cantorian paradise.” In order
to stress this important fact the nonstandard set theory calls the elements of the
von Neumann universe internal sets. Thus an internal set is synonymous to a ZF
set. A convenient formal foundation for nonstandard analysis is offered by Internal
Set Theory—IST, developed by E. Nelson in [74].
5.11. The alphabet of IST consists of the alphabet of ZF with one additional
symbol for the unary predicate St expressing the property “to be a standard set.”
In other words, the texts of IST can contain fragments like St(x), or more verbosely
“x is a standard set.” Thus, the domain of the variables of IST is the von Neumann
universe separated into standard and nonstandard sets.
5.12. The formulas of IST are defined via the usual procedure. The atomic
formulae may include the texts like St(x) where x is a variable. Each formula of ZF
is also a formula of IST; in symbols: ϕ ∈ (ZF) ⇒ ϕ ∈ (IST). The formulae of ZF
are called internal, while the formulae of IST that are not formulae of ZF—external
(or strictly external). This distinction leads naturally to the notions of internal
and external classes. So if ϕ is an external formula of IST then the text ϕ(y) is
described as: “y is an element of the external class {x : ϕ(x)}.” The external
classes of elements of an internal set are called external sets or external subsets of
the set. Note that an internal class composed of elements of an internal set is an
internal set too.

IST uses some additional conventions together with the conventional abbrevia-
tions of ZF. Here follow some of them:

V St := {x : St(x)}—the class of standard sets;

x ∈ V St := x is standard := (∃y)St(y) & y = x;

(∀Stx)ϕ := (∀x)(x is standard ⇒ ϕ);

(∃Stx)ϕ := (∃x)(x is standard & ϕ);

(∀Stfinx)ϕ := (∀Stx)(x is finite ⇒ ϕ);

(∃Stfinx)ϕ := (∃Stx)(x is finite & ϕ);

5.13. The axioms of IST contain the postulates of ZF plus the three new schemata
that are called the principles of nonstandard set theory;

(1) the transfer principle—

(∀Stx1) . . . (∀Stxn)((∀Stx)ϕ(x, x1, . . . , xn) ⇒ (∀x)ϕ(x, x1, . . . , xn))

for each internal formula ϕ;
(2) the idealization principle—

(∀x1) . . . (∀xn)((∀Stfinx ⊂ z)(∀y ∈ z)ϕ(x, x1, . . . , xn) ⇔
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⇔ (∃x)(∀Sty)ϕ(x, x1, . . . , xn)),

(3) the standardization principle—

(∀x1) . . . (∀xn)((∀Stx)(∃Sty)(∀Stz)z ∈ y ⇔ z ∈ x & ϕ(z, x1, . . . , xn))

for each formula ϕ.
It should be noted that when applying these principles of nonstandard analy-

sis one is required to strictly follow our convention of listing all free variables in
a formula (cf. 5.7).

5.14. The Powell theorem [74]. The theory IST is conservative over ZF.

5.15. This assertion means that the internal theorems of IST are theorems of
Zermelo-Fraenkel theory. In other words, when we are proving “standard” theorems
on sets in the von Neumann universe, the formalism of IST can be used with the
same degree of reliability as that we used to in ZF. At the same time one should not
forget that the ultimate foundation of ZF is the absence of revealed contradictions
and the existence of meaningful justifications. You can find more on the relationship
between ZF and nonstandard analysis in [61].
5.16. While reflecting on the meaning of the formal axioms of IST one immediately
notices that the idealization principle looks slightly cumbersome. Therefore, now
we shall verify that 5.13 (2) guarantees existence for nonstandard elements.

5.17. There is a finite internal set that containing every standard set among its
elements.

/ Let ϕ := (x is finite & y ∈ x). Then ϕ ∈ (ZF). For each standard finite z we
can find an x such that for all y ∈ z we shall have ϕ(x, y) (e.g., z itself). Now we
only have to apply 5.13 (2). .
5.18. A useful observation: standard finite sets are exactly those sets consisting
only of standard elements. This was proved in 3.2 but now we shall give another
instructive proof based on 5.13 (2).

5.19. For an internal set A

A = ◦A ⇔ (A is standard & A is finite).

/ Let ϕ := (x ∈ A & x 6= y). Then it follows from 5.13 (2) that

(∀Stfinz)(∃x)(∀y ∈ z)ϕ(x, y, A) ⇔ (∃x)(∀Sty)(x ∈ A & x 6= y) ⇔

⇔ (∃x ∈ A)x is nonstandard ⇔ A \ ◦A 6= ∅.

In other words,

A = ◦A ⇔ (∃Stz)(∀x)(∃y ∈ z)x /∈ A ∧ x = y ⇔

⇔ (∃Stz)(∀x /∈ A)(∃y ∈ z)x = y ⇔ (∃Stz)A ⊂ z. .



CREDENDA OF NONSTANDARD ANALYSIS 127

5.20. Let X, Y be standard sets and ϕ = ϕ(x, y, z)—a formula of IST. Then the
following rule for introduction of standard functions is correct:

(∀Stx)(∃Sty)x ∈ X ⇒ y ∈ Y & ϕ(x, y, z) ⇔

⇔ (∃Sty(·))(∀Stx)(y(·) is a function from X to Y &

& x ∈ X ⇒ ϕ(x, y(x), z)).

/ Consider the standardization F (x) := ∗{y ∈ Y : ϕ(x, y, z)}. We can use 5.13
(3) again to form a standard set

F := ∗{(x,A) ∈ X × P(Y ) : F (x) = A}.

By assumption we have (∀Stx ∈ X)F (x) 6= ∅. At the same time F (x) = F (x)
by the definition of F . Therefore,

(∀Stx ∈ A)F (x) 6== ∅ ⇒ (∀x ∈ X)F (x) 6= ∅

by 5.13 (1). Now we conclude with the help of the axiom of choice:

(∃y(·))(y(·) is a function from X to Y ) & (∀x ∈ X)y(x) ∈ F (x).

Using 5.13 (1) again we can deduce that there exists a standard function y(·) with
domain in X and values in Y such that y(x) ∈ F (x) for all x ∈ X. .
5.21. These rules allow us to translate many (but not all of course) concepts and
statements of nonstandard analysis into equivalent definitions and theorems free
from the notion of “standardness.” In other words, the formulae of IST express-
ing “something unusual” about standard objects can be translated into equivalent
formulae of ZF which are conventional mathematical expressions. The procedure,
yielding this result, is called the Nelson algorithm or the reduction algorithm. The
essence of the “decoding” algorithm is in using standard functions, idealization and
transposition of quantifiers for reducting an expression to the form more suitable
for transfer. The translation is ultimately equivalent to elimination of the external
notion of standardness. In every case when the relations of 5.13 or 5.20 are used
we should ensure the validity of their application.
5.22. The Nelson algorithm consists of the following steps:

(1) a theorem of nonstandard analysis is rewritten as a formula of IST, i.e. all
abbreviations are decoded;

(2) the formula of IST is reduced to the prenex normal form

(Q1x1) . . . (Qnxn)ϕ(x1, . . . , xn),

where ϕ ∈ (ZF) and Qk ∈ {∀,∃,∀St,∃St} for k = 1, . . . , n;
(3) if Qn is an “internal” quantifier, i.e. either ∀ or ∃, then we assign ϕ :=

(Qnxn)ϕ(x1, . . . , xn) and return to the step (2);
(4) if Qn is an “external” quantifier, i.e., ∀St or ∃St, then the quantifier prefix is

searched from left to right until the first internal quantifier is found;
(5) if no internal quantifiers were found in step (4) then the quantifier Qn is

replaced by the corresponding internal quantifier (according to 5.13 (1)) and we
return to step (2) (i.e., we delete all superscripts St) in right-to-left order);
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(6) let Qm be the first internal quantifier. Suppose that Qm + 1 is an external
quantifier of the same kind as Qm. Transpose the quantifiers and go back to (2);

(7) if all quantifiers Qm+1, . . . , Qn are of the same type, apply 5.13 (2) and go
back to step (2);

(8) if the type of quantifiers changes, i.e., Qp+1 and Qm are of the same type,
and the type of all quantifiers Qm+1, . . . , Qp is of the other type, then use 5.20 and
start again with (2).

5.23. Note that an assertion is expressible in different forms, some of which
can be absolutely incomprehensible. Hence in practical applications of the Nelson
algorithm one should look for possibilities of accelerating procedures of “extracting
the external quantifiers.” In particular, sometimes it is not necessary to complete
Step 5.22 (2), i.e., to reduce the formula to the prenex normal form. For example,
decoding 3.6 (1) yields

(∀s ∈ R)(∀t ∈ R)s ≈ 0 & t ≈ 0 ⇒ s + t ≈ 0 ⇔

⇔ (∀Stε > 0)(∀s ∈ R)(∀t ∈ R)s ≈ 0 & t ≈ 0 ⇒ |s + t| ≤ ε ⇔ . . .

· · · ⇔ (∀ε > 0)(∃δ > 0)(∀s ∈ R)(∀t ∈ R)|s| ≤ δ & |t| ≤ δ ⇒ | s + t | ≤ ε,

i.e., as we might expect, we arrive at the usual ε-δ-definition of the continuity of
addition at the origin.

EXTERNAL SET THEORIES

6.1. Credenda of nonstandard analysis can be adequately expressed in the language
of the formal machinery of Nelson’s internal set theory. The Powell theorem en-
ables us to view IST as a technique for studying the von Neumann universe. At the
same time the existence of external objects completely undermines a common be-
lief that Zermelo-Fraenkel theory provides the sufficient freedom of operation from
the viewpoint of naive set theory. Within the framework of IST we cannot, for
example, even ask the following question: “Is it possible to select some numbers so
that each element of R could be represented as their linear combination with stan-
dard coefficients (since R can obviously be considered as a vector space over ◦R)?”
The number of these illegitimate although mathematically meaningful questions is
so large that the need to extend the limits of IST becomes a must. A practical
solution of the problem of returning to the “Cantorian paradise” is, in particular,
in designing a formalism that would allow us to use the conventional means for
working with sets that are external to the von Neumann universe. We shall now
review the axiomatic approaches to study of external sets. The first variant of the
corresponding formalism was proposed by K. Hrbaček [62, 63]. A similar version,
the theory NST, was constructed by T. Kawai [67]. These nonstandard set theories
demonstrate that from the Philistine pragmatic point of view the world of external
sets is at least as good as the universe of naive sets, since it admits the classic set-
theoretic operations including selection of subsets with the help of properties (the
axioms of comprehension) and well-ordering of arbitrary sets (the axiom of choice).
At the same time the external sets include the complete collection of standard and
nonstandard internal sets satisfying some variants of the transfer, idealization and
standardization principles close to their intuitive formulations. More strictly, we
can say that internal sets are included in the world of external sets by definition.

As regards the actual demands of modern mathematical analysis (standard as
well as nonstandard) both theories, EXT and NST provide almost equivalent oppor-
tunities that are quite sufficient for safe by founding the usage of common analytic
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constructs. It is of course necessary to study carefully the details of the axiomatic
theories in order to avoid the illusions accompanying the euphoria of universal
permissiveness. Thus, it is worth noting that the world of external sets does not
coincide win to the von Neumann universe (the absence of the axiom of foundation
is essential). Besides, the exact expressions of the principles of nonstandard anal-
ysis in EXT are different from their analogs in IST. Therefore, although EXT is a
conservative extension of ZF, it does not contain all of Nelson’s theory IST. This
gap was bridged by T. Kawai, whose theory NST enriched the formal techniques
of IST while providing, along with EXT and IST, new reliable means for studying
ZF.
6.2. The alphabet of the formal theory EXT consists of the alphabet of IST and
some new symbol for the unary predicate Int expressing the property of “being
an internal set.” In other words, we accept for consideration the texts containing
Int(x), or, in a more verbose form, “x is an internal set.” Intuitively: the range of
the variables of EXT is the universe of all external sets V Ext := {x : x = x} which
includes the world of standard sets V St := {x ∈ V Ext : St(x)} as well as the world
of internal sets V Int := {x ∈ V Ext : Int(x)}.
6.3. The conventions of EXT are similar to those of ZF and IST. In particular,
we shall of course continue using the “classifiers”—the curly brackets—in EXT
(cf. 5.7) and the traditional notation for the operations on classes of external sets.
Using the previous patterns, we shall write for a formula ϕ of EXT (in notation:
ϕ ∈ (EXT)):

(∀Stx)ϕ := (∀x)St(x) ⇒ ϕ; (∃Intx)ϕ := (∃x)Int(x) & ϕ.

Similar rules, easily understood from context, will be hereupon used without ex-
planations. Further, we shall need the following concepts.

Let ϕ ∈ (ZF) be a formula of EXT that is also a formula of ZF (i.e., does not
contain the symbols St and Int). Let us replace each quantifier Q in the text of ϕ
by QSt. This formula is denoted ϕSt and called the standardization of ϕ or the
relativization of ϕ on V St. Similarly the substitute QInt for Q will yield a formula
ϕInt that is called the internalization of ϕ or the relativization of ϕ on V St. Note
that nothing happens to the free variables of ϕ. Finally, we shall say that the
external set A is of standard size (symbolically: A ∈ V size, if there exist a standard
set a and an external function f such that (∀X)(X ∈ A ⇔ (∃Stx ∈ a)X = f(x)).
6.4. The special axioms of EXT can be divided into three groups: (i) the rules
for formation of external sets, (ii) the axioms describing connections between the
universes V St, V Int and V Ext, (iii) the transfer, idealization and standardization
principles.
6.5. The laws of Zermelo’s set theory Z are valid in EXT, i.e. the following axioms
for construction of external sets are assumed:

(1) the axiom of extensionality—

(∀A)(∀B)A ⊂ B & B ⊂ A ⇔ A = B;

(2) the axiom of pairing—

(∀A)(∀B){A,B} ∈ V Ext;

(3) the axiom of union—

(∀A) ∪A ∈ V Ext;
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(4) the axiom of powerset—

(∀A)P(A) ∈ V Ext;

(5) the axiom schema of comprehension—

(∀A)(∀X1) . . . (∀Xn){X ∈ A : ϕ(X, X1, . . . , Xn)} ∈ V Ext.

(6) the axiom of well-ordering—each external set can be well-ordered.
The last property (also known as the Zermelo theorem) implies the axiom of

choice in the conventional multiplicative form or in the form of the Kuratowski-
Zorn lemma. Note also that the theory Z usually contains the axiom of infinity
which will appear in EXT later.
6.6. The second group of axioms of EXT contains the following statements:

(1) the modeling principle— the world of internal sets V Int is the von Neumann
universe, i.e. for each axiom ϕ of the Zermelo-Fraenkel theory its internalization
ϕInt is an axiom of EXT;

(2) the axiom of transitivity—

(∀x ∈ V Int)x ⊂ V Int,

i.e. all internal sets are composed of internal elements only;
(3) the axiom of immersion—

V St ⊂ V Int,

i.e., all standard sets are internal.
6.7. The third group of axioms of EXT consists of the postulates of nonstandard
analysis:

(1) the transfer principle—

(∀Stx1) . . . (∀Stxn)ϕSt(x1, . . . , xn) ⇔ ϕInt(x1, . . . , xn)

for any formula ϕ ∈ (ZF).
(2) the idealization principle—

(∀Intx1) . . . (∀Intxn)((∀A ∈ V size)((∀finz ⊂ A)(∃Intx)

(∀y ∈ z)ϕInt(x, y, x1, . . . , xn)) ⇒ (∃Intx)(∀Inty ∈ A)ϕInt(x, y, x1, . . . , xn))
for arbitrary formula ϕ ∈ (ZF).

(3) the standardization principle—

(∀A)(∃St∗A)(∀Stx)x ∈ ∗A ⇔ x ∈ A,

in other words, given an external set A, there exists its standardization ∗A.

6.8. The Hrbaček theorem [62]. The theory EXT is conservative over ZF, i.e.,
for a ϕ ∈ (ZF)

ϕ is a theorem of ZF ⇔ ϕInt is a theorem of EXT ⇔ ϕSt is a theorem of EXT.

6.9. When reflecting on these axioms it is useful to realize that EXT is not an
extension of IST. In other words, the universe V Int is not a model for the Nelson
theory of internal sets, since the idealization and standardization principles are
worded differently in EXT and IST. The conditions for standardization in V Int are
considerably less restrictive than in IST. Thus, for ϕ ∈ (IST) and A ∈ V Int we can
define the set ∗{x ∈ A : ϕ(x)}, since {x ∈ A : ϕ(x) is an external subset of A.
In IST this is possible only when A is standard—a set that contains all standard
elements cannot be standardized in IST. In EXT the collection of all standard
elements is not contained in any external (or internal) set.
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6.10. There is no such external set, i.e., an element of V Ext, that contains as
elements all standard sets.

/ Suppose the converse is true, i.e. V St ⊂ X for a X ∈ V Ext. Applying the
axiom of comprehension 6.5 (5) to the formula ϕ := St(x), we conclude that V St

is an external set. The standardization ∗V St turns out to be a standard finite set
containing every standard set, which is certainly impossible. .
6.11. This statement shows that the idealization principle in EXT (relativized on
V Int) differs from its analog in IST not only in form but also in essence. At the
same time the importance of these differences should not be exaggerated.

6.12. The following statements are true:
(1) the external natural numbers are the same as the standard natural numbers;
(2) a finite external set is standard if and only if all its elements are standard;
(3) if A is an arbitrary external set then the size of its standard core ◦A = {a ∈

A : St(a)} is standard;
(4) each infinite internal set has a nonstandard element.

/ (1) By the principle of induction on the standard natural numbers (which is
obviously true in EXT—cf. 3.2 (1)) for the set of external natural numbers we have
◦N ⊂ NExt. Moreover, it is clear that ∗∅ = ∅ and ∗1 = ∗{∅} = {∅} = 1. Therefore,
by the principle of induction on external natural numbers we have NExt ⊂ ◦N.

(2) A standard set is internal. Therefore, due to 6.6 (2) we can use 3.2.
(3) Let ∗A be the standardization of A. Let f(a) := a for a ∈ ◦A. It is obvious

that (∀X)X ∈ ◦A ⇔ (∀Stx ∈ ∗A)f(x) = X.
(4) Let A denote an internal set. By (3) the size of ◦A is standard. Therefore

we can apply 6.7 (2) with ϕ := x = y & x ∈ A. For each finite z ⊂ ◦A it is
true, of course, that (∃x ∈ A)(∀y ∈ z)x 6= y, since the set A is infinite. Finally,
(∃x ∈ A)(∀y ∈ ◦A)x 6= y. .
6.13. In relation to 6.12 and 6.8 it is convenient to distinguish a variant of the
theory of internal sets INT that is a conservative extension of ZF so that EXT be
conservative over INT. This theory differs from IST in the form of the idealization
and standardization principles:

(1)
(∀A)(∀x1) . . . (∀xn)((∀Stfinz ⊂ A)(∃x)(∀y ∈ z)

ϕ(x, y, x1, . . . , xn) ⇔ (∃x)(∀Sty ∈ A)ϕ(x, y, x1, . . . , xn))

for any ϕ ∈ (ZF);
(2) (∀A)(∃St∗A)(∀Stx)x ∈ ∗A ⇔ x ∈ A & ϕ(x)

for arbitrary ϕ ∈ (INT).
6.14. We now describe the theory NST in a variant that is closest to EXT and
IST (T. Kawai has in fact constructed a slightly different system that permits one
to consider Gödel-Bernays classes as external sets).
6.15. The alphabet and conventions of NST are exactly the same as those of EXT.
Furthermore, NST includes all axioms for constructing external sets, all axioms on
inter between the worlds of sets and the transfer principle from EXT. The principal
differences between NST and EXT lie in the formulations of the standardization
and idealization principles and in the following additional postulate.
6.16. The axiom of acceptability— V St ∈ V Ext, i.e., the world of standard sets of
Kawai’s theory is an external set. According to the axiom an external set A in NST
is said to be of acceptable size (written as A ∈ V acs), if there exists an external
function F that maps V St onto A. Note that the size of V St is acceptable. The
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notation acfin(A) will hereafter mean that there is a bijective external mapping of
A onto a standard finite set.
6.17 The standardization principle in NST says that:

(∀A)((∃StX)X ⊃ A ⇒ (∃St∗A)(∀Stx)x ∈ ∗A ⇔ x ∈ A).

In other words, it is possible in NST to standardize external subsets of standard
sets (but not arbitrary external sets like in EXT).
6.18. The idealization principle in NST means that

(∀Intx1) . . . (∀Intxn)(∀A ∈ V acs)(((∀z)

z ⊂ A & acfin(z) ⇒ (∃Intx)(∀y ∈ z)ϕInt(x, y, x1, . . . , xn)) ⇒
⇒ (∃Intx)(∀Inty ∈ A)ϕInt(x, y, x1, . . . , xn)) ⇒

for any formula ϕ ∈ (ZF).

6.19. The Kawai theorem [67]. NST is conservative over ZF.

6.20. We recall that the world of internal sets V Int in the universe of NST with
relativized standardization, idealization and transfer principles is a model of IST.
In other words, the techniques that NST offers for working with the external sets
arising in IST can be safely utilized for proving the statements of the “standard”
mathematics. Note also that the proof of the theorem of Kawai as well as of the
theorems of Hrbaček and Powell is based on using suitable analogs of the local
Mal′tsev’s theorem or, more precisely, on the techniques of ultraproducts and ul-
tralimits [49, 53, 54, 79].
6.21. Let V E denote the universe of external sets (without specifying one of the
two theories NST or EXT). Similarly, we shall use the notation V I (or V S) when
referring to the world of internal (or standard) sets. Repeating the construction of
the von Neumann universe, i.e. iterating the operations of union and taking the
collection of all external subsets of the set, we can grow from the empty set the
world V C , the universe of “classic” sets. More precisely, one assumes

V C :=
⋃

α ∈Od St

V C
α ,

V C
α := {x : (∃Stβ ∈ α) x ∈ P(V C

β )},

where Od St is the class of all standard ordinals. Thus the empty set is “classic”
and each “classic” set is composed only of “classic” elements. Now using recursion,
“walking the floors” of the universe of “classic” sets, we can define the Robinson
standardization or ∗-mapping.
6.22. The standard set ∗A is called the Robinson standardization or the ∗-image
of a “classic” set A if and only if each standard element of ∗A is an ∗-image of an
element of A. Symbolically: ∗∅ := ∅, ∗A := ∗{∗a : a ∈ A}.

Note that using the ordinary standardization is undoubtedly legal within EXT.
The possibility of using this operation in the construction of Robinson’s standard-
ization follows from the construction of V C . A similar reasoning, the “transfinite
induction on rank,” shows that the ∗-mapping bijectively identifies the worlds V C

and V S . Moreover, the transfer principle is ensured:

(∀A1 ∈ V C) . . . (∀An ∈ V C)ϕC(A1, . . . , An) ⇔ ϕS(∗A1, . . . , ∗An)

for an arbitrary formula ϕ of Zermelo-Fraenkel theory (as usual, ϕC and ϕS are the
relativizations of ϕ on V C and V S respectively).
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THE SET-THEORETIC FOUNDATIONS
OF NONSTANDARD ANALYSIS

7.1. The discussion of the previous sections enriched and extended the initial
“naive” notions of sets utilized in nonstandard analysis. From the conventional
von Neumann universe V we came to the world V I of the theory of internal sets
with reference points, the standard sets forming the class V S (Fig. 3). Further
analysis showed that V I lies in a new class V E , the universe of external sets that
compose the Zermelo world. In V E we have selected the universe of “classical”
sets V C , another realization of the world of standard sets, and constructed the
corresponding Robinson’s ∗-mapping that is a bijection from V C to V S . Due to
the transfer principles V C ,V S and V I might be considered as hypostases of the von
Neumann universe (Fig. 4).
7.2. This picture along with other known relations between the worlds V E , V I ,
V S and V C leads us to formulating three general set-theoretic approaches to non-
standard analysis. These approaches, or stances, or credos, they are called classic,
neoclassic and radical—fix certain notions of the object and method of study. The
acceptance of one of the credos determines, for example, the manner of presentation
of the mathematical results obtained by use made of nonstandard methods. Thus
familiarity with these approaches should be considered as absolute necessity.
7.3. The classic credo of nonstandard analysis relates to the techniques used by
its founder A. Robinson, and the corresponding formalism is mostly common at
present (cf., for example, [11]). In this approach the principal object of research is
the world of classical mathematics that is identified with the universe of the classical
sets V C . The latter is considered to be the “standard universe” (in practice one
usually deals with a sufficiently large part of V C which contains the specific objects
to study, with a so-called “superstructure”). The main technique for the study of
the initial “standard universe” is the “nonstandard universe” of internal sets V I (or
a suitable part of it) and the ∗-mapping that glues together the usual “standard”
sets and their images in the nonstandard universe. It is useful to note here a specific
usage of the words “standard” and “nonstandard.” The Robinson standardizations,
as elements of the universe V S , are viewed as “nonstandard” objects. A “standard”
set is an arbitrary representative of the world of “classical” sets V C , a member of
the “standard” universe. It is said that the ∗-mapping usually adds new “ideal”
elements to the set. Here one assumes that ∗A = {∗a : a ∈ A} only if the “classic,”
or “standard,” set A is finite. For example, if we place R into V C and study its
∗-image ∗R, we shall see that ∗R plays the role of the field of real numbers in the
sense of the universe of internal sets. At the same time ∗R is not equal to the
set of its standard elements: ◦(∗R) = {∗t : t ∈ R}. Considering that ∗R is the
“internal set of real numbers R,” and ◦(∗R) is its standard core, one sometimes
takes the liberty of writing ◦R := {∗t : t ∈ R} and even R := {∗t : t ∈ R}. The
presence of new elements in ∗R is expressed as ∗R \ R 6= ∅, and we talk of the
system of “hyperreal numbers” ∗R that extends the ordinary field of reals R. A
similar policy is pursued when considering an arbitrary classical set X; namely,
one assumes that X := {∗x : x ∈ X} and, therefore, X ⊂ ∗X. If X is infinite,
∗X \X 6= ∅. In other words, the Robinson standardization adds new elements to
all infinite sets. Furthermore, there is a considerable number of these additional
“ideal” numbers since the idealization principle is valid in V I (this principle in the
presented approach is also called the technique of concurrence or saturation.
7.4. Let U be an arbitrary correspondence, whereas A and B, sets. Then U is said
to be concurrent or directed (from A to B) if for each nonempty finite subset A0 of
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A there is an element b ∈ B such that (a0, b0) ∈ U for all a0 ∈ A0.

7.5. The concurrence principle. For a correspondence U directed from A to B
there is an element b ∈ ∗B such that (∗a, b) ∈ ∗U for each a ∈ A.

7.6. Sometimes one uses the forms of this principle which ensure additional pos-
sibilities of introducting new elements and are more adequate to the idealization
principle in more precise forms.

The strong concurrence principle. Let a correspondence U be such that ∗U
is directed from A to ∗B. Then there exists an element b ∈ ∗B such that for all
a ∈ A it holds (∗a, b) ∈ ∗U .

7.8. The saturation principle. Let A1 ⊃ A2 ⊃ . . . be a decreasing sequence of
nonempty internal sets. Then

⋂
n∈N An 6= ∅.

7.9. Note that in the “extended” or “nonstandard” world, in the universe of in-
ternal sets V I , the transfer principle is valid; namely, in terms of the Robinson
standardization

(∀x1 ∈ V C) . . . (∀xn ∈ V C)ϕC(x1, . . . , xn) ⇔ ϕI(∗x1, . . . , ∗xn)

for each formula ϕ of the Zermelo-Fraenkel set theory. This form of the transfer
principle is often called the Leibniz principle.
7.10. The so-called “technique of internal sets” is sometimes specially emphasized
in study of the nonstandard universe. By this one usually means the method of
proof which is based on the fact that all external sets defined “in a conventional
way” are internal. An illustration is readily available:

7.11. Let A be an infinite set. For each set-theoretic property ϕ it is false that
{x : ϕI(x)} = ∗A \A.

/ Suppose the contrary. Then the class {x : ϕI(x)} is an internal subset of ∗A.
Therefore, A is an internal set. But for an infinite A the external set ∗A \A is not
internal by 6.12. .
7.12. Concluding the discussion, we can say that in confessing the classical credo
one works with the two universes, standard and nonstandard. There is a formal
possibility of linking the properties of standard and nonstandard objects with the
help of the ∗-mapping. At the same time one can freely translate statements about
objects of one world into those about their images in the other world; i.e., the
Leibniz principle is valid. The nonstandard world is abundant in “ideal” elements;
various transfinite constructs are realizable in it because of the concurrence prin-
ciple. The sets falling beyond the nonstandard universe are called external (this
is a peculiarity of the terminology: the internal sets are not considered external in
this approach). The technique of internal sets is very useful.

The principal advantage of the classic approach is the availability of the ∗-map-
ping making it possible to apply the machinery of nonstandard analysis to arbitrary
ordinary sets. For example, we can assert that a function f : [a, b] → R is uniformly
continuous if and only if ∗f : ∗[a, b] → ∗R is microcontinuous; i.e., if ∗f preserves the
infinite proximity between the “hyperreal” numbers. The principal complication in
absorbing these notions lies in the necessity of imagining the enormous number
of the new “ideal” objects inserted into the ordinary sets. Considerable problems
are caused by the natural desire to work (at least in the beginning) with two sets
of variables that correspond to the two universes. (When we are constructing the
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internalization ϕI of a formula ϕ we implicitly assume the existence of such a proce-
dure.) Thus, the integral attributes of the classical approach, its “bilingual” nature
and the Robinson standardization, determine all of its peculiarities, advantages and
disadvantages of the formal apparatus.
7.13. The neoclassic credo of nonstandard analysis corresponds to the ideas devel-
oped by E. Nelson. In this approach the principal object of study is the world of
mathematics considered as the universe V I that lies in the environment of external
sets, the elements of V E . The “classic” sets are not used for analysis separately.
The standard and nonstandard elements are demonstrated in the ordinary objects,
the internal sets composing V I . Thus, the field of real numbers is R from the world
V I that is, of course, the same as ∗R the field of hyperreal numbers—the “ideal” ob-
ject of the classic theory. The views presented in the Sections 2–4 correspond to the
neoclassic credo. Its advantages are determined by the possibility of studying the
already-known sets with the goal of finding something new in their structure. The
shortcomings of the neoclassic approach are caused by the necessity of implicitly
transferring definitions and properties from the standard objects to their internal
ones (on use made of standardization). We have encountered the phenomenon in
Section 4.
7.14. The radical credo of nonstandard analysis assumes that the object of mathe-
matical research is the universe of external sets in all completeness and complexity
of its intrinsic structure. The classical and neoclassical stances on nonstandard
analysis as a technique for study of mathematics (based on the Zermelo-Fraenkel
formalism) are declared “parochial” or “shy” and discarded. At a first glance this
approach cannot be accepted earnestly and must be dismissed as overextremist;
but upon reflection these accusations of the radical credo should be rejected. This
is an illusory, superficial “extremism.” A widely-accepted view of mathematics as a
science of forms and relations considered separately from their content and even the
considerably less restrictive classical set-theoretic credo (originated with G. Can-
tor) certainly contain the “extreme” thoughts of the object of nonstandard analysis.
Therefore, the most “radical” views of sets that resulted from laborious studies ulti-
mately merge into the original theory, extending and enriching it. Observe that we
started with a “modest” statement that nonstandard analysis operates on exactly
the same sets as the rest of mathematics (cf. 2.1). Here it is appropriate to recall
the V. I. Lenin observations that refer to the dynamics of cognition:

“Each shade of thought = a circle on the great circle (spiral) of the development
of human thought” [27, p. 221].

The “Human cognition is not (respective does not follow) a straight line, but a
curve that infinitely approximates a series of circles, a spiral” [27, p. 322].
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