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Boolean valued analysis is a general mathematical methaid-é¢ists on a special model-
theoretic technique. This technique consists generalgomparison between the representa-
tions of arbitrary mathematical objects and theorems indifferent set-theoretic models whose
constructions start with principally distinct Boolean etbgas. We usually take as these models
the cosiest Cantorian paradise, the von Neumann univezerofelo—Fraenkel set theory, and
a special universe of Boolean valued “variable” sets tridraed chosen so that the traditional
concepts and facts of mathematics acquire completely @woteg and bizarre interpretations.
The use of two models, one of whichfa@mally nonstandard, is a family featuremdnstandard
analysis For this reason, Boolean valued analysis means an instdmemnstandard analysis
in common parlance. By the way, the teBoolean valued analysisas minted by G. Takeuti.

Proliferation of Boolean valued models is due to P. Cohenal foreakthrough in Hilbert's
Problem Number One. His method of forcing was rather inteiead the inevitable attempts at
simplification gave rise to the Boolean valued models by DtS&. Solovay, and P. Vopénka.

Professor M. Weber had invited us to the Positivity Confeeeat the end of 2004 when we
were completing our book “Introduction to Boolean Valueda#ysis.” The book was recently
published in Russian and so this article is a kind of presiema

Another recent event of relevance to this article is grisvé&@aunders Mac Lane, a cofather
of category theory, passed away in San Francisco on AprR@d5. The power of mathematics
rests heavily on the trick of socializing the objects andopgms under consideration. The
understanding of the social medium of set-theoretic mduokeliengs to category theory.

Topos theory provides a profusion of categories of whicksital set theory is an ordinary
member. Mathematics has thus acquired infinitely many neyveds of freedom. All these
achievements rest on category theory.

“There remains to us, then, the pursuit of truth, by way obfrthe concatenation of those
ideas which fit, and the beauty which results when they doSib.Wrote Saunders Mac Lane, a
great genius, creator, master, and servant of mathem#feseverently dedicate this article to
the memory of this eternal and tragicomical mathematicagjKinof the Sorrowful Figure.
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1 Boolean Requisites

We start with recalling some auxiliary facts about the cardion and treatment of Boolean
valued models.

1.1. Let B be a complete Boolean algebra. Given an ordingdut

V® .= {z:zisafunctionA (33)(8 < a A dom(zx)
c VY A im(z) € B)}.

After this recursive definition thBoolean valued univerS€®) or, in other words, thelass
of B-setsis introduced by

VB .— U V(B

a
a€On

with On standing for the class of all ordinals.

In case of the two element Boolean algeBra= {0, 1} this procedure yields a version of
the classicalon Neumann universg (see 2.1 (2)).

Let ¢ be an arbitrary formula o .FC, Zermelo—Fraenkel set theory with choice. The
Boolean truth valudy] € B is introduced by induction on the length of a formyldy nat-
urally interpreting the propositional connectives andrjiirs in the Boolean algebi& and
taking into consideration the way in which this formula islbup from atomic formulas. The
Boolean truth values of thatomic formulas: € y andz = y, with z, y € V(B are defined by
means of the following recursion schema:

[reyl= \/ w®)Alt=4d]

tedom(y)

[t=yl= \ z@)=[teylrn \/ wt)=][tex]

tedom(x) tedom(y)

The sigh=- symbolizes the implication if3; i.e.,a = b := a* V b wherea* is as usual the
complementf a.

The universéV®) with the Boolean truth value of a formula is a model of set tigeo the
sense that the following statement is fulfilled.

1.2. Transfer Principle. For every theorenp of ZFC, we have[y] = 1, i.e.,  is true
insideV(®),

Enter into the next agreement: dfis an element oV ® andy(-) is a formula ofZFC,
then the phrasea* satisfiesy inside V(®)” or, briefly, “(z) is true insideV(®)” means that
[¢(x)] = 1. This is sometimes written d&8®) = ¢ ().

Givenz € V®) andb ¢ B, define the functiobz : z — bxz(z) (2 € dom(x)). Here we
presume thato := @ for all b € B.

1.3. Mixing Principle. Let (b¢)cc= be apartition of unityin B, i.e.supgcz b = sup B = 1
and¢ # n — bg A'b, = 0. To each family(x¢)cc= in V®) there exists a unique elementn
the separated universe such that= z¢] > b (£ € 2).

This element is called th@ixing of (z¢)¢c= by (b¢)ec= and is denoted by - bee.

1.4. Maximum Principle. If ¢ is a formula oZFC then there is 8-valued set,, satisfying

[Br)p(2)] = [e(zo)]



Boolean Valued Analysis and Positivity 95

2 TheEscher Rules

Boolean valued analysis consists primarily in comparisbthe instances of a mathematical
object or idea in two Boolean valued models. This is impdesiachieve without some dialog
between the univers@s andV(®), In other words, we need a smooth mathematical toolkit for
revealing interplay between the interpretations of onethedsame fact in the two modéels
andV®), The relevanascending-and-descending technigests on the functors of canonical
embedding, descent, and ascent.

2.1. We start with the canonical embedding of the von Neumanneus@l/ .

Givenz € V, we denote by:" the standard namef z in V(®); i.e., the element defined
by the following recursion schem&”" := @, dom(z") :={y" :y € =}, im(z"):= {1}.
Observe some properties of the mapping> =" we need in the sequel.

(1) For an arbitrary: € V and a formulap of ZFC we have

[By € 2") o(w)] = \/[e(z")],
[(Vy € 2") o()] = N\le(z")]-

zZEX

(2) If z andy are elements 0¥ then, by transfinite induction, we establiske y «— V) =
€y, x=y VB 2" =y~ Inother words, the standard name can be considered as
an embedding ot/ into V(®), Moreover, it is beyond a doubt that the standard name s&nds
ontoV®), which fact is demonstrated by the next proposition:

(3) The following holds:(Vu € V@) (3lz € V) VB |z u = 2.

A formula is calledboundedor restricted if each bound variable in it is restricted by
a bounded quantifier; i.e., a quantifier ranging over a padicset. The latter means that each
bound variabler is restricted by a quantifier of the forWz € y) or (3z € y) for somey.

2.2. Restricted Transfer Principle. For each bounded formulaof ZF¥C and every collec-
tionzy,...,x, € V the following holds:p(zy, . .., x,) < V®) = ¢o(21,..., 2)). Henceforth,

working in the separated univer§é(]B), we agree to preserve the symhol for the distin-
guished element of the class corresponding.to
Observe for example that the restricted transfer pringiks:

“® is a correspondence fromto y”
— V® = “d" is a correspondence from to y"”;
"fil‘—>y” (_)W(IB) ):"fA::EA _)y/\n
(moreover,f(a)" = f"(a") for all a € z). Thus, the standard name can be considered as

a covariant functor of the category of sets (or correspooelgninsideV to an appropriate
subcategory oV ® in the separated univer&&™®),

2.3. A set X is finite if X coincides with the image of a function on a finite ordinal. In
symbols, this is expressed &s(.X ); hence,

fin(X) ;= (In)(3 f)(n € wA fisafunction\ dom(f)=nAim(f)=X)
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(as usual :={0,1,2,...}). Obviously, the above formula is not bounded. Neverttstlesre

is a simple transformation rule for the class of finite setdanthe canonical embedding. Denote
by Z4.(X) the class of all finite subsets o&f; i.e., Z;,(X) = {Y € Z(X) : fin(Y)}. For
an arbitrary sef( the following holds:V(®) = 27 (X)" = P, (X").

2.4. Given an arbitrary element of the (separated) Boolean valued univeisé), we
define thedescent:| of v asxz| := {y € V® : [y € 2] = 1}. We list the simplest properties
of descending:

(1) The classz| is a set, i.e.r] € Vforallz € VB, If [z # @] = 1 thenz| is
a nonempty set.

(2) Let z € V®) and[z # @] = 1. Then for every formula of ZFC we have

[(Va € 2) p(@)] = N\ [p(@)],

r€z|

[ € 2)p(@)] = [¢(@)].

r€z|

Moreover, there exists, € z| such thafp(zo)] = [(Fz € 2) p(2)].

(3) Let ® be a correspondence framito Y in V(®), Thus,®, X, andY” are elements ot (®)
and, moreovef® C X x Y] = 1. There is a unique corresponderiegfrom X | to Y| such
that®|(A]) = ®(A)]| for every nonempty subset of X insideV(®). The correspondenck|
from X | to Y| of the above proposition is called tdescenbf the correspondenck from X
toY insideV(®),

(4) The descent of the composite of correspondences ifgilleis the composite of their
descents(Vo ®)| =¥ | o P|.

(5) If ® is a correspondence insid@&®) then(®~!)| = (®])~'.

(6) LetIdx be the identity mapping insideé®) of a setX € V(®). Then(Idy)] = Idy;.

(7) SupposethaX, Y, f € V(® are suchthaltf : X — Y] = 1, i.e.,f isa mapping from¥
toY insideV®). Thenf| is a unique mapping fronX | to Y| satisfying[f|(z) = f(z)] = 1
forallz € X|.

By virtue of (1)—(7), we can consider the descent operatsa tunctor from the category
of B-valued sets and mappings (correspondences) to the catd#gbe usual sets and mappings
(correspondences) (i.e., in the sens&/f

(8) Givenzy,...,z, € V®), denote by(x,,...,x,)" the corresponding orderedtuple
inside V). Assume thatP is ann-ary relation onX insideV®): i.e., X, P € V® and
[P ¢ X""] = 1, wheren € w. Then there exists an-ary relation P’ on X| such that
(r1,...,2,) € P < [(x1,...,2,)® € P] = 1. Slightly abusing notation, we denote the
relation P’ by the same symbdP | and call it thedescenbdf P.

25. Letz € Vandz ¢ V®); je., letz be some set composed Bfvalued sets or, in
other words,y € Z2(V®), Puta?l := @ anddom(x1) := z, im(27) := {1}if z # @.
The element:] (of the separated univerSé®), i.e., the distinguished representative of the
class{y € V(®) : [y = 27] = 1}) is called theascentof z.
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(1) Forallz €¢ 22(V(®)) and every formula we have the following:

[(Vz € 21) o(2)] = NleW)],
[(3z € 21) ()] = \/[eW)]-

yex

Introducing the ascent of a correspondefice X x Y, we have to bear in mind a possible
distinction between the domain of departufeand the domaiklom(®) := {z € X : &(x) #
@}. This circumstance is immaterial for the sequel; therefspeaking of ascents, we always
imply total correspondences; i.dgm(®P) = X.

(2) Let X,Y,® € V®) and letd be a correspondence fromto Y. There exists a unique
correspondence? from X1 to Y1 insideV(®) such thatb](AT) = ®(A)1 is valid for every
subsetA of dom(®) if and only if ¢ is extensionali.e., satisfies the condition € ®(x;) —
[z1 = x5] < \/yzeq)(m)[[yl = yo] for x1, xo € dom(®). In this eventd] = @', whered’ :=
{(x,9)® : (z,y) € ®}. The elemen®1 is called theascentof the initial correspondence.

(3) The composite of extensional correspondences is extalsibtoreover, the ascent of
a composite is equal to the composite of the ascents ifigile On assuming thatom (V) >
im(®) we haveV®) £ (U o0 )1 = U1 o d7.

Note that if® and®~! are extensional the®()~! = (®~!)1. However, in general, the
extensionality ofb in no way guarantees the extensionalityfof!.

(4) Itis worth mentioning that if an extensional correspondefics a function fromX to Y
then the ascent? of f is a function fromX 1 to Y'T. Moreover, the extensionality property can
be stated as followqz; = z3] < [f(x1) = f(xq)] for all zy, x5 € X.

2.6. Given a setX c V(®), we denote by the symbehix(X) the set of all mixings of
the formmix(bez¢ ), where(xze) C X and(be) is an arbitrary partition of unity. The following
propositions are referred to as taow cancellation rule®r ascending-and-descending rules
There are many good reasons to call them simplyBbeher rules

(1) Let X and X’ be subsets oV(®) and letf : X — X’ be an extensional mapping.
Suppose that,Y’,g € V® are suchthafY # @] = [¢g: Y — Y'] = 1. ThenXT| =
mix(X),Y |1 =Y, f1| = f, andg|T = g.

(2) From 2.3 (8) we easily infer the useful relatiof?;, (X 1) = {07 : 0 € P, (X)}].

Suppose thalX € V, X # &, i.e., X is a nonempty set. Let the letterdenote the
standard name embedding— z* (z € X). Then/(X)! = X" andX = /~!}(X"]). Using
the above relations, we may extend the descent and asceawtiops to the case in which
is a correspondence frod to Y| and [V is a correspondence frodki* to Y] = 1, where
Y € V®. Namely, we putb] := (® o )T and¥] := ¥| o« In this cased] is called
the modified ascenof ® and V| is called themodified descerdf V. (If the context excludes
ambiguity then we briefly speak of ascents and descents asimge arrows.) It is easy to see
that ¥'] is a unique correspondence insitié®) satisfying the relatiof®](z") = ®(x)1] =
1 (z € X). Similarly, U] is a unique correspondence frakhto Y| satisfying the equality
Ul(z) =¥(2")| (z € X).If ®:= fand¥ := g are functions then these relations take the
form [f1(z") = f(z)] = L andg](z) = g(z") forall z € X.

2.7. Various function spaces reside in functional analysis, smthe problem is natural of
replacing an abstract Boolean valued system by some fumspace analog, a model whose ele-
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ments are functions and in which the basic logical operataye calculated “pointwise.” An ex-
ample of such a model is given by the cld$S of all functions defined on a fixed nonempty
set( and acting intoV. The truth values oiV% are various subsets ¢f: The truth value
[o(us, ... u,)] of o(ty,...,t,) atfunctionsu,, ..., u, € V@ is calculated as follows:

[o(ur, ... u,)] = {q €qQ: go(ul(q), . ,un(q))}

A. G. Gutman and G. A. Losenkov solved the above problem bygdineept of continuous
polyverse which is a continuous bundle of models of set theliris shown that the class of
continuous sections of a continuous polyverse is a Booledued system satisfying all basic
principles of Boolean valued analysis and, converselyh &uamolean valued algebraic system
can be represented as the class of sections of a suitablawamnd polyverse. More details are
collected in [15, Chapter 6].

2.8. Every Boolean valued universe has the collection of mathieai®@bjects in full supply:
available in plenty are all sets with extra structure: ggyumgs, algebras, normed spaces, etc.
An abstract Boolean satr set withB-structureis a pair(X, d), whereX € V, X # &,
andd is a mapping fromX x X to B such thatd(xz,y) = 0 < = = y; d(x,y) = d(y,x);

d(xz,y) <d(z,z)Vd(z,y)alzy z e X.
To obtain an easy example of an abstfBeset, givena # X ¢ V® put

d(z,y) = [z #y] = -z = ¥]

forz, y € X.

Another easy example is a nonemptywith the discreteB-metricd; i.e., d(z,y) = 1 if
x #yandd(z,y) =0if z = y.

Let (X, d) be some abstrads-set. There exist an elemef ¢ V®) and an injection :

X — X' := 2| such thati(z,y) = [tz # wy] for all z,y € X and every element’ € X’
admits the representation = mixecz(betxe ), Where(zg)eez C X and(be)ees is a partition of
unity in B. The element2” € V(®) is referred to as thBoolean valued realizatioaf X .

If X is a discrete abstra@-set then?” = X" andwz = 2" forallz € X. If X ¢ V(B
then.7 is an injection fromX | to 2" (insideV(®)). A mappingf from aB-set(X, d) to aB-set
(X', d’) is said to becontractiveif d(z,y) > d'(f(x), f(y)) forall z,y € X.

We see that an abstraBt-set X embeds in the Boolean valued univefg€®) so that the
Boolean distance between the memberXdbecomes the Boolean truth value of the negation
of their equality. The corresponding element6f® is, by definition, theBoolean valued
representatiorof X.

In case aB-set X has some a priori structure we may try to furnish the Boolesined
representation o with an analogous structure, so as to apply the techniquesagnaling
and descending to the study of the original structur&’ofConsequently, the above questions
may be treated as instances of the unique problem of segrahirell-qualified Boolean valued
representation of B-set with some additional structure.

We call these objectgebraicB-systemsLocated at the epicenter of exposition, the notion
of an algebraid@-system refers to a nonempBrset endowed with a few contractive operations
andB-predicates, the latter meanifigyvalued contractive mappings.

The Boolean valued representation of an algebRagystem appears to be a conventional
two valued algebraic system of the same type. This meanathappropriate completion of
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each algebraif3-system coincides with the descent of some two valued adgebystem inside
V®),

On the other hand, each two valued algebraic system may h&fdraned into an algebraic
B-system on distinguishing a complete Boolean algebra ofjiexences of the original system.
In this event, the task is in order of finding the formulas haddrue in direct or reverse tran-
sition from aB-system to a two valued system. In other words, we have tolseekior some
versions of the transfer or identity preservation prireipf long standing in some branches of
mathematics.

3 Boolean Valued Numbers

Boolean valued analysis stems from the fact that each aitéahtd of reals of a Boolean valued
model descends into a universally complete Kantorovichep@hus, a remarkable opportunity
opens up to expand and enrich the treasure-trove of matleankhowledge by translating
information about the reals to the language of other nobteli@s of functional analysis. We
will elaborate upon the matter in this section.

3.1. Recall a few definitions. Two elementsandy of a vector latticeF are calleddisjoint
(in symbolsz L y) if |z| A |[y| = 0. A bandof E is defined as thelisjoint complement
Mt:={re E: (Vye M)z L y} ofanonempty set/ C E.

The inclusion-ordered s@(E) of all bands inE is a complete Boolean algebra with the
Boolean operations:

LANK=LNK, LVK=(LUK)*, L*=L* (L ,Kc9B(E)).

The Boolean algebr2s () is often referred as to tHeaseof E.

A band projectionin F is a linear idempotent operator in: £ — FE satisfying the in-
equalities) < 7z < zforall0 < x € E. The set3(£) of all band projections ordered by
m < p <= mwop=7is aBoolean algebra with the Boolean operations:

TAp=mop, wVp=m+p—mop, 7w =Ig—7 (mpé€(F)).

Letu € E, ande A (u — e) = 0 for some0 < e € E. Thene is afragmentor component
of u. The set®(u) of all fragments of: with the order induced by is a Boolean algebra where
the lattice operations are taken frathand the Boolean complement has the ferm= u — e.

3.2. A Dedekind complete vector lattice is also calledantorovich spacer K-space for
short. A K-spaceF is universally completd every family of pairwise disjoint elements @f
is order bounded.

(1) Theorem. Let E be an arbitrary< -space. Then the correspondence- ©(E) deter-
mines an isomorphism of the Boolean algebyd$”) and®B(E). If there is an order unity
in E then the mappings — =1 fromB(E) into &(E) ande — {e}** from &(F) intoB(E)
are isomorphisms of Boolean algebras too.

(2) Theorem. Each universally complet& -spaceFE with order unityl can be uniquely
endowed by multiplication so as to makeinto a faithful f-algebra and into a ring unity. In
this f-algebra each band projectiarc ‘B(F) is the operator of multiplication by(1).



100 A. G. Kusraev, S. S. Kutateladze

3.3. By afield of realswe mean every algebraic system that satisfies the axiomsAufcéi
medean ordered field (with distinct zero and unity) and enjbg axiom of completeness. The
same object can be defined as a one-dimensi@rsbace.

Recall the well-known assertion @t'C: There exists a field of reals that is unique up to
isomorphism.

Successively applying the transfer and maximum princjplesfind an elemen# ¢ V(®)
for which [ Z is a field of real§ = 1. Moreover, if an arbitrary?’ € V(®) satisfies the condi-
tion [#' is a field of real§ = 1 then[the ordered fields? and% ' are isomorphi¢ = 1. In
other words, there exists an internal field of re&ls V(®) which is unique up to isomorphism.

By the same reasons there exists an internal field of complmbersg ¢ V(®) which is
unique up to isomorphism. Moreovér,(®) = ¢ = # @ i%. We callZ and¥ theinternal
realsandinternal complexes V(®),

3.4. Consider another well-known assertionZdfC: If IP is an Archimedean ordered field
then there is an isomorphic embeddingf the fieldP into R such that the imagk(P) is
a subfield ofR containing the subfield of rational numbers. In particlér) is dense irR.

Note also thaty(z), presenting the conjunction of the axioms of an Archimedzaered
field z, is bounded; thereforg,po(R") ] = 1, i.e.,[R" is an Archimedean ordered figld= 1.
“Pulling” 3.2 (2) through the transfer principle, we condtuthat] R” is isomorphic to a dense
subfield ofZ ] = 1. We further assume th&" is a dense subfield o# andC" is a dense
subfield of#’. It is easy to note that the elementsand1” are the zero and unity o.

Observe that the equalitied = R" and% = C" are not valid in general. Indeed, the axiom
of completeness faR is not a bounded formula and so it may thus fail Ror insideV(®),

3.5. Look now at the descern® | of the algebraic syste®. In other words, consider the
descent of the underlying set of the systéfrtogether with descended operations and order.
For simplicity, we denote the operations and orde#iandZ# | by the same symbols, -, and
<. In more detail, we introduce addition, multiplicationdaorder inZ | by the formulas

z=x+y—lz=x+y] =1,
z=z-y—lz=x-y] =1,
r<ye[z<y]l=1 (2,y,2z€Z]).

Also, we may introduce multiplication by the usual real4t by the rule
y= X [Ne=y]=1 (NeR, z,y<Z]).

The fundamental result of Boolean valued analysis is Gdsdbheorem which reads as
follows: Each universally complete Kantorovich space is an inteagion of the reals in an ap-
propriate Boolean valued modé&iormally, we have the following

3.6. Gordon Theorem. Let % be the reals insid& ®). Then%|, (with the descended
operations and order, is a universally complBEtespace with order unity. Moreover, there
exists an isomorphism of B ontoS3(#] ) such that

x(b)r=x0)y —b<[r=y], xOb)z<xOby—b<[z<y]

forall x,y € #| andb € B.
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The converse is also true: Each Archimedean vector lattiteeds in a Boolean valued
model, becoming a vector sublattice of the reals (viewediak sver some dense subfield of
the reals).

3.7. Theorem. Let E be an Archimedean vector lattice, i&tbe the reals insid®®), and
let 3 be an isomorphism d8 ontoB(E). Then there is ¢ V(®) such that

(1) & is a vector sublattice o® overR" insideV®);

(2) £':= &] is a vector sublattice o | invariant under every band projectigfb) (b € B)
and such that each set of positive pairwise disjoint setishas a supremum;

(3) there is am-continuous lattice isomorphism: E — E' such that(FE) is a coinitial
sublattice of# | ;

(4) for everyb € B the band projection igZ| onto{.(;(b))}*+ coincides withy (b).

Note also tha” andZ coincide if and only if£' is Dedekind complete. Thus, each theorem
about the reals within Zermelo—Fraenkel set theory has afognn an arbitary Kantorovich
space. Translation of theorems is carried out by apprapgeaneral functors of Boolean valued
analysis. In particular, the most important structuralpgmies of vector lattices such as the
functional representation, spectral theorem, etc. argliosts of some properties of the reals
in an appropriate Boolean valued model. More details areteates are collected in [15].

3.8. The theory of vector lattices with a vast field of applicatas thoroughly covered
in many monographs (for instance, see [19, 23]). The credifihding the most important
instance among ordered vector spaces, an order compldtw \estice or K-space, is due to
L. V. Kantorovich. This notion appeared in Kantorovich'sfiarticle on this topic, where he
wrote: “In this note, | define a new type of space that | call misedered linear space. The
introduction of such a space allows us to study linear opmratof one abstract class (those
with values in such a space) as linear functionals.”

Thus theheuristic transfer principlavas stated for<-spaces which becomes the Ariadna
thread of many subsequent studies. The depth and unitgresbKantorovich’s principle are
explained within Boolean valued analysis.

3.9. Applications of Boolean valued models to functional anislgtem from the works by
E. l. Gordon and G. Takeuti. IB in 3.6 is the algebra gi-measurable sets moduylenegligible
sets therZ | is isomorphic to the universally complefé-spacel’(y) of measurable functions.
This fact (for the Lebesgue measure on an interval) wasdyjrkaown to D. Scott and R. Solo-
vay (see [15]). IfB is a complete Boolean algebra of projections in a HilberteghenZ | is
isomorphic to the space of selfadjoint operattif®). These two particular cases of Gordon’s
Theorem were intensively and fruitfully exploited by G. €ali (see the bibliography in [15]).
The objectZ | for general Boolean algebras was also studied by T. JecA [®&orem 3.7 was
obtained by A. G. Kusraev [10]. A close result (in other teymsspresented in T. Jech’s arti-
cle [8] where some Boolean valued interpretation is revkafehe theory of linearly ordered
sets. More details can be found in [15].

4 Band Preserving Operators

This section deals with the class of band preserving opexateimplicity of these operators
notwithstanding, the question about their order boundssirsefar from trivial.
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4.1. Recall that a compleX’-space is the complexificatidi := G @ iG of a real K-space
G. Alinear operatofl’ : G — G is band preservingr contractiveor astabilizerif, for all
f,g € Gg, from f L gitfollowsthatT f L g. Disjointness in7¢ is defined just as id (see
3.1), wherea$:|:= sup{Re(e?2) : 0 <0 < 7} forz € Ge.

(1) Let Endy(G) stand for the set of all band preserving linear operator§ dn with
G := Z|. Clearly, Endy(G¢) is a complex vector space. Moreovémndy(G¢) becomes
a faithful unitary module over the ring ¢ if we definegT asgT : © — g - Tz forall z € G.
This follows from the fact that multiplication by a member@f; is a band preserving operator
and the composite of band preserving operators is bandrpnege¢oo.

(2) Denote byEnden (%) the element ol (®) representing the space of all*-linear map-
pings from% to . ThenEnd~ (%) is a vector space ovér” insideV®), andEnden (%)] is
a faithful unitary module ovef .

4.2. Following [11] it is easy to prove that a linear operafom the K-spaceG is band
preserving if and only iff" is extensional. Since each extensional mapping has anta%cen
Endy(Gg) has the ascent:= 77 which is a unique internal functional frof# to " such that
[7(x) = Tx] = 1 (x € G¢). We thus arrive at the following assertion:

The moduledind y(G¢) andEnden (%) | are isomorphic by sending each band preserving
operator to its ascent.

By Gordon’s Theorem this assertion means that the problefimadihg a band preserving
operator inG' amounts to solving (for : € — %) insideV(®) the Cauchy functional equation
T(x+y) =7(x) +7(y) (z,y € €) under the subsidiary conditionA\z) = Ar(z) (z €
C,\e Ch).

As another subsidiary condition we may considentbibniz ruler(zy) = 7(z)y+z7(y)(in
which caser is called aC"-derivatior) or multiplicativity 7(zy) = 7(x)7(y). These situations
are addressed in 4.5.

4.3. An elementg € G™ is locally constantwith respect tof € G if g = /.2 Aeme f
for some numeric family\¢).c= and a family(7¢)cc= Of pairwise disjoint band projections.
A universally completd(-space’ is calledlocally one-dimensionaf all elements ofG+ are
locally constant with respect to some order unitybfand hence each of them). Clearlyka
spacel ¢ is locally one-dimensional if eache G may be presented gs= o-zgeg Aemel f
with some family(\¢)¢ez C € and partition of unity(7¢ )ecz C P(G).

4.4. A o-complete Boolean algebiia is calledo-distributiveif

VA bm= AV buow

neN meN peNN neN

for every double sequen¢g, ., ), men in B. As an example of a-distributive Boolean algebra
we may take a complete atomic Boolean algebra, i.e., theebaaf a nonempty set. Itis worth
observing that there are nonatomiaistributive complete Boolean algebras (see [12, 5.1.8])

We now address the problem which is often referred to in teediure asVickstead’s prob-
lem Characterize the universally complete vector latticessp in which every band preserving
linear operator is order bounded.

According to 4.2, Boolean valued analysis reduces Wickidegaroblem to that of order
boundedness of the endomorphisms of the fi€lgdiewed as a vector space and algebra over
the fieldC".
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45. Theorem. Let P be an algebraically closed and topologically dense sub&iéltie
field of complexe&”. The following are equivalent:

QP =C;

(2) everyP-linear function onC is order bounded;

(3) there are no nontrividP-derivations onC;

(4) eachP-linear endomorphism ot is the zero or identity function;

(5) there is ndP-linear automorphism oft other than the identity.

The equivalence (14~ (2) is checked by using a Hamel basis of the vector spaogerP.
The remaining equivalences rest on replacing a Hamel bagisartranscendence basis (for
details see [13]).

Recall that a linear operat® : G — G¢ is aC-derivationif D(fg) = D(f)g + fD(g)
forall f, g € G¢. It can be easily checked that evéryderivation is band preserving.

Interpreting Theorem 4.5 i (®), we arrive at

4.6. Theorem. If B is a complete Boolean algebra then the following are eqemtal

(1) € = C" insideV®);

(2) every band preserving linear operator is order boundectisaeimplex vector lattice | ;

(3) there is no nontrivial-derivation in the compleX-algebrdt | ;

(4) each band preserving endomorphism is a band projectiéfijin

(5) there is no band preserving automorphism other than theitgéns | .

(6) the K -spaceZ | is locally one-dimensional;

(7) B iso-distributive.

4.7. The question was raised by A. W. Wickstead in [22] whethemewand preserv-
ing linear operator in a universally complete vector |a&tis automatically order bounded.
The first example of an unbounded band preserving linearatgewas suggested by Yu. A.
Abramovich, A. I. Veksler, and A. V. Koldunov in [1, 2]. The eigalence (1)} (6) is trivial,
whereas (2)— (6) combines a result of Yu. A. Abramovich, A. I. Veksler, aladV. Koldunov
[1, Theorem 2.1] and that of P. T. N. McPolin and A. W. Wickstg¢al, Theorem 3.2]. The
equivalence (6}~ (7) was obtained by A. E. Gutman who also found an example afralyp
nonatomic locally one-dimensional Dedekind complete metzdttice (see [7]). The equiva-
lences (1) (3) < (4) <« (5) belong to A. G. Kusraev [13].

5 Boolean Valued Positive Functionals

A linear functional on a vector space is determined up to éasdeom its zero hyperplane.
In contrast, a linear operator is recovered from its kerpelcua simple multiplier on a rather
special occasion. Fortunately, Boolean valued analysispts us that some operator analog
of the functional case is valid for each operator with tamétantorovich space, a Dedekind
complete vector lattice. We now proceed along the linesisfréther promising approach.

5.1. Let F be a vector lattice, and |t be aK-space with base a complete Boolean alge-
braB. By 3.2, we may assume thatis a nonzero space embedded as an order dense ideal in
the universally complete Kantorovich spaed which is the descent of the reald inside the
separated Boolean valued univefsé) overB.

An operator? is F-discreteif [0,7] = [0,1r] o T i.e., forall0 < S < T there is some
0 < a < Ip satisfyingS = aoT. Let L>(E, F) be the band in.~(E, F) spanned byF-
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discrete operators antly (£, F) := Ly (E, F)*. By analogy we definé5*~), and (E"~),.
The members oL} (E, F') are usually called”-diffuse

5.2. As usual, we let?” stand for the standard name Bfin V(B). Clearly, " is a vector
lattice overR” insideV(®). Denote byr := 71 the ascent of to V(®). Clearly,r acts fromE"
to the ascenf'T = Z of F inside the Boolean valued universé®). Therefore(2") = Tx
inside V(® for all z € E, which means in terms of truth values tfat: £ — #] = 1 and
(Vo € E) [r(z") =Tx] = 1.

Let £~ stand for the space of all order bound®d-linear functionals fromE” to Z.
Clearly, E"~:= L~(E", %) is aK-space insid&/(®), The descent"~| of E"~ is a K-space.
GivenS,T € L™~ (E, F), putt:= T ando := ST.

5.3. Theorem. For eacHl’ € L~ (E, F) the ascent’| of T is an order boundeR"-linear
functional onE" insideV®); je., [TT € E*] = 1. The mappingl' — T7 is a lattice
isomorphism of.™~(E, F') andE"~ |. Moreover, the following hold:

WMDT >0 [r>0]=1;

(2) Sisafragmentof’ — [o is afragmentof | = 1;

(3) T is a lattice homomorphism if and only if soisnsideV ®);

(4) T is F-diffuse « [ is diffuse] = 1;

BT e Ly (EF) « [Te(E™).]=1;

BT eLy(E,F) < [te(E")] =1
Sincer, the ascent of an order bounded operdipis defined up to a scalar froker(7), we
infer the following analog of the Sard Theorem.

5.4. Theorem. LetS andT be linear operators frorfi to F'. Thenker(bS) D ker(bT") for
allb € B if and only if there is an orthomorphismof F' such thatS = oT'.

We see that a linear operatbris, in a sense, determined up to an orthomorphism from the
family of the kernels of thetratab7” of T'. This remark opens a possibility of studying some
properties ofl" in terms of the kernels of the strata’bf

5.5. Theorem. An order bounded operatdr from E to F may be presented as the dif-
ference of some lattice homomorphisms if and only if the &éof each stratunhT of T' is
a vector sublattice of for all b € B.

Straightforward calculations of truth values show that = 7, and7_1 = 7_ insideV(®),
Moreover, [ker(7) is a vector sublattice of"] = 1 whenever so arger(bT') for all b € B.
Since the ascent of a sum is the sum of the ascents of the sudsmaa reduce the proof of
Theorem 5.5 to the case of the functionals on using 5.3 (3).

5.6. Recall that a subspadeé of a vector latticeF is a G-spaceor Grothendieck subspace
(cp. [6, 18]) provided that! enjoys the following property:

(Ve,ye H) (tVyVO+axzAyA0 € H).

By simple calculations of truth values we infer thHer(7) is a Grothendieck subspace
of E*] = 1 if and only if the kernel of each stratuti’ is a Grothendieck subspace Bf We
may now assert that the following appears as a result of &ebng” its scalar analog.

5.7. Theorem. The modulus of an order bounded operdtor E — F' is the sum of some
pair of lattice homomorphisms if and only if the kernel of eatratumbT of T withb € B is
a Grothendieck subspace of the ambient vector latice
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To prove the relevant scalar versions of Theorems 5.5 andv& ise one of the formulas
of subdifferential calculus (cp. [14]):

5.8. Theorems 5.5 and 5.7 were obtained by S. S. Kutateladze inlL[Z]6 Note that the
sums of lattice homomorphisms were first described by S. thd@e C. B. Huijsmans, and
B. de Pagter in terms oi-disjoint operators in [3]. A survey of some conceptuallysd results
onn-disjoint operators is given in [12].

References

[1] Abramovich Yu. A., Veksler A. I., and Koldunov A. V., “Onisfointness preserving oper-
ators,” Dokl. Akad. Nauk SSSR39, No. 5, 1033-1036 (1979).

[2] Abramovich Yu. A., Veksler A. |., and Koldunov A. V., “Djsintness preserving opera-
tors, their continuity, and multiplicative representatioin: Linear Operators and Their
Applications [in Russian], Leningrad: Leningrad Ped. Ink881.

[3] Bernau S. J., Huijsmans C. B., and de Pagter B., “Sumsti¢éshomomorphisms,” Proc.
Amer. Math. Soc.115, No. 1, 51-156 (1992).

[4] Gordon E. |, “Real numbers in Boolean valued models offseory andi-spaces,” Dokl.
Akad. Nauk SSSR237, No. 4, 773—-775 (1977).

[5] Gordon E. I., “K-spaces in Boolean valued models of set theory,” Dokl. Akdauk
SSSR258, No. 4, 777-780 (1981).

[6] Grothendieck A., “Une caractérisation vectoriell&imque des espacds',” Canad. J.
Math.,4, 552-561 (1955).

[7] Gutman A. E., “Locally one-dimension&l -spaces and-distributive Boolean algebras,”
Siberian Adv. Math.5, No. 2, 99-121 (1995).

[8] Jech T. J., “Boolean-linear spaces,” Adv. in Ma®1, No. 2, 117-197 (1990).

[9] Jech T.Lectures in Set Theory with Particular Emphasis on the Metbfd-orcing Berlin:
Springer-Verlag, 1971.

[10] Kusraev A. G., “Numeric systems in Boolean valued med#lset theory,” in: Proceed-
ings of the VIII All-Union Conference in Mathematical LogiMoscow), Moscow, 1986,
p. 99.

[11] Kusraev A. G., “On band preserving operators,” Vladkaz Math. J.6, No. 3, 48-58
(2004).

[12] Kusraev A. G.Dominated OperatorDordrecht: Kluwer Academic Publishers, 2000.

[13] Kusraev A. G., “Automorphisms and derivations in exted complex f-algebras,”
Siberian Math. J. 46, No. 6 (2005).



106 A. G. Kusraev, S. S. Kutateladze

[14] Kusraev A. G. and Kutateladze S. Sybdifferentials: Theory and Applicatigridovosi-
birk: Nauka, 1992; Dordrecht: Kluwer Academic Publish&&95.

[15] Kusraev A. G. and Kutateladze S. $iroduction to Boolean Valued Analydis Rus-
sian], Moscow: Nauka, 2005.

[16] Kutateladze S. S., “On differences of Riesz homomampis,” Siberian Math. 316, No. 2,
305-307 (2005).

[17] Kutateladze S. S., “On Grothendieck subspaces,” &ibéviath. J. 46, No. 3, 489-493
(2005).

[18] Lindenstrauss J. and Wulbert D. E., “On the classifaawf the Banach spaces whose
duals arel;-spaces,” J. Funct. Anal4, No. 3, 322-249 (1969).

[19] Luxemburg W. A. J. and Zaanen A. Rjesz Spacedol. 1, Amsterdam; London: North-
Holland, 1971.

[20] Maharam D., “On positive operators,” Contemporary Mg26, 263—-277 (1984).

[21] McPolin P. T. N. and Wickstead A. W., “The order boundesi of band preserving op-
erators on uniformly complete vector lattices,” Math. Préambridge Philos. Soc97,
No. 3, 481-487 (1985).

[22] Wickstead A. W., “Representation and duality of multption operators on Archimedean
Riesz spaces,” Compositio Matl85, No. 3, 225-238 (1977).

[23] Zaanen A. C.Riesz Space¥/ol. 2, Amsterdam etc.: North-Holland, 1983.

Anatoly Kusraev
Institute of Applied Mathematics and Informatics
Vladikavkaz, Russia

Semen Kutateladze
Sobolev Institute
Novosibirsk, Russia





