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Boolean valued analysis is a general mathematical method that rests on a special model-
theoretic technique. This technique consists generally incomparison between the representa-
tions of arbitrary mathematical objects and theorems in twodifferent set-theoretic models whose
constructions start with principally distinct Boolean algebras. We usually take as these models
the cosiest Cantorian paradise, the von Neumann universe ofZermelo–Fraenkel set theory, and
a special universe of Boolean valued “variable” sets trimmed and chosen so that the traditional
concepts and facts of mathematics acquire completely unexpected and bizarre interpretations.
The use of two models, one of which isformallynonstandard, is a family feature ofnonstandard
analysis. For this reason, Boolean valued analysis means an instanceof nonstandard analysis
in common parlance. By the way, the termBoolean valued analysiswas minted by G. Takeuti.

Proliferation of Boolean valued models is due to P. Cohen’s final breakthrough in Hilbert’s
Problem Number One. His method of forcing was rather intricate and the inevitable attempts at
simplification gave rise to the Boolean valued models by D. Scott, R. Solovay, and P. Vopěnka.

Professor M. Weber had invited us to the Positivity Conference at the end of 2004 when we
were completing our book “Introduction to Boolean Valued Analysis.” The book was recently
published in Russian and so this article is a kind of presentation.

Another recent event of relevance to this article is grievous. Saunders Mac Lane, a cofather
of category theory, passed away in San Francisco on April 14,2005. The power of mathematics
rests heavily on the trick of socializing the objects and problems under consideration. The
understanding of the social medium of set-theoretic modelsbelongs to category theory.

Topos theory provides a profusion of categories of which classical set theory is an ordinary
member. Mathematics has thus acquired infinitely many new degrees of freedom. All these
achievements rest on category theory.

“There remains to us, then, the pursuit of truth, by way of proof, the concatenation of those
ideas which fit, and the beauty which results when they do fit.”So wrote Saunders Mac Lane, a
great genius, creator, master, and servant of mathematics.We reverently dedicate this article to
the memory of this eternal and tragicomical mathematical Knight of the Sorrowful Figure.
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1 Boolean Requisites

We start with recalling some auxiliary facts about the construction and treatment of Boolean
valued models.

1.1. LetB be a complete Boolean algebra. Given an ordinalα, putV(B)
α

:= {x : x is a function∧ (∃β)(β < α ∧ dom(x)

⊂ V(B)
β

∧ im(x) ⊂ B)}.

After this recursive definition theBoolean valued universeV(B) or, in other words, theclass
ofB-setsis introduced by V(B)

:=

⋃

α∈On

V(B)
α

,

with On standing for the class of all ordinals.
In case of the two element Boolean algebra2 := {0, 1} this procedure yields a version of

the classicalvon Neumann universeV (see 2.1 (2)).
Let ϕ be an arbitrary formula ofZFC, Zermelo–Fraenkel set theory with choice. The

Boolean truth value[[ϕ]] ∈ B is introduced by induction on the length of a formulaϕ by nat-
urally interpreting the propositional connectives and quantifiers in the Boolean algebraB and
taking into consideration the way in which this formula is built up from atomic formulas. The
Boolean truth values of theatomic formulasx ∈ y andx = y, with x, y ∈ V(B), are defined by
means of the following recursion schema:

[[x ∈ y]] =

∨

t∈dom(y)

y(t) ∧ [[t = x]],

[[x = y]] =

∨

t∈dom(x)

x(t) ⇒ [[t ∈ y]] ∧

∨

t∈dom(y)

y(t) ⇒ [[t ∈ x]].

The sign⇒ symbolizes the implication inB; i.e., a ⇒ b := a∗
∨ b wherea∗ is as usual the

complementof a.
The universeV(B) with the Boolean truth value of a formula is a model of set theory in the

sense that the following statement is fulfilled.
1.2. Transfer Principle. For every theoremϕ of ZFC, we have[[ϕ]] = 1; i.e., ϕ is true

insideV(B).
Enter into the next agreement: Ifx is an element ofV(B) andϕ(·) is a formula ofZFC,

then the phrase “x satisfiesϕ insideV(B)” or, briefly, “ϕ(x) is true insideV(B)” means that
[[ϕ(x)]] = 1. This is sometimes written asV(B)

|= ϕ(x).
Givenx ∈ V(B) andb ∈ B, define the functionbx : z 7→ bx(z) (z ∈ dom(x)). Here we

presume thatb∅ := ∅ for all b ∈ B.
1.3. Mixing Principle. Let (bξ)ξ∈Ξ be apartition of unityin B, i.e. supξ∈Ξ bξ = supB = 1

andξ 6= η → bξ ∧ bη = 0. To each family(xξ)ξ∈Ξ in V(B) there exists a unique elementx in
the separated universe such that[[x = xξ]] ≥ bξ (ξ ∈ Ξ).

This element is called themixingof (xξ)ξ∈Ξ by (bξ)ξ∈Ξ and is denoted by
∑

ξ∈Ξ bξxξ.
1.4. Maximum Principle. If ϕ is a formula ofZFC then there is aB-valued setx0 satisfying

[[(∃x)ϕ(x)]] = [[ϕ(x0)]].

94 A. G. Kusraev,  S. S. Kutateladze



2 The Escher Rules

Boolean valued analysis consists primarily in comparison of the instances of a mathematical
object or idea in two Boolean valued models. This is impossible to achieve without some dialog
between the universesV andV(B). In other words, we need a smooth mathematical toolkit for
revealing interplay between the interpretations of one andthe same fact in the two modelsV
andV(B). The relevantascending-and-descending techniquerests on the functors of canonical
embedding, descent, and ascent.

2.1. We start with the canonical embedding of the von Neumann universeV.
Givenx ∈ V, we denote byx∧ the standard nameof x in V(B); i.e., the element defined

by the following recursion schema:∅∧

:= ∅, dom(x∧

) := {y∧

: y ∈ x}, im(x∧

) := {1}.
Observe some properties of the mappingx 7→ x∧ we need in the sequel.

(1) For an arbitraryx ∈ V and a formulaϕ of ZFC we have

[[(∃y ∈ x∧

) ϕ(y)]] =

∨

z∈x

[[ϕ(z∧

)]],

[[(∀y ∈ x∧

) ϕ(y)]] =

∧

z∈x

[[ϕ(z∧

)]].

(2) If x andy are elements ofV then, by transfinite induction, we establishx ∈ y ↔ V(B)
|=

x∧

∈ y∧, x = y ↔ V(B)
|= x∧

= y∧. In other words, the standard name can be considered as
an embedding ofV intoV(B). Moreover, it is beyond a doubt that the standard name sendsV
ontoV(2), which fact is demonstrated by the next proposition:

(3) The following holds:(∀u ∈ V(2)
) (∃!x ∈ V) V(B)

|= u = x∧.

A formula is calledboundedor restricted if each bound variable in it is restricted by
a bounded quantifier; i.e., a quantifier ranging over a particular set. The latter means that each
bound variablex is restricted by a quantifier of the form(∀x ∈ y) or (∃x ∈ y) for somey.

2.2. Restricted Transfer Principle. For each bounded formulaϕ of ZFC and every collec-
tion x1, . . . , xn ∈ V the following holds:ϕ(x1, . . . , xn) ↔ V(B)

|= ϕ(x∧

1 , . . . , x
∧

n
). Henceforth,

working in the separated universeV(B), we agree to preserve the symbolx∧ for the distin-
guished element of the class corresponding tox.

Observe for example that the restricted transfer principleyields:

“Φ is a correspondence fromx to y”
↔ V(B)

|= “Φ∧ is a correspondence fromx∧ to y∧”;
“f : x → y” ↔ V(B)

|= “f∧

: x∧

→ y∧”

(moreover,f(a)
∧

= f∧

(a∧

) for all a ∈ x). Thus, the standard name can be considered as
a covariant functor of the category of sets (or correspondences) insideV to an appropriate
subcategory ofV(2) in the separated universeV(B).

2.3. A set X is finite if X coincides with the image of a function on a finite ordinal. In
symbols, this is expressed asfin(X); hence,

fin(X) := (∃n)(∃ f)(n ∈ ω ∧ f is a function∧ dom(f) = n ∧ im(f) = X)
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(as usualω := {0, 1, 2, . . .}). Obviously, the above formula is not bounded. Nevertheless there
is a simple transformation rule for the class of finite sets under the canonical embedding. Denote
by Pfin(X) the class of all finite subsets ofX; i.e.,Pfin(X) := {Y ∈ P(X) : fin(Y )}. For
an arbitrary setX the following holds:V(B)

|= Pfin(X)
∧

= Pfin(X
∧

).

2.4. Given an arbitrary elementx of the (separated) Boolean valued universeV(B), we
define thedescentx↓ of x asx↓ := {y ∈ V(B)

: [[y ∈ x]] = 1}. We list the simplest properties
of descending:

(1) The classx↓ is a set, i.e.,x↓ ∈ V for all x ∈ V(B). If [[x 6= ∅]] = 1 thenx↓ is
a nonempty set.

(2) Let z ∈ V(B) and[[z 6= ∅]] = 1. Then for every formulaϕ of ZFC we have

[[(∀x ∈ z) ϕ(x)]] =

∧

x∈z↓

[[ϕ(x)]],

[[(∃x ∈ z) ϕ(x)]] =

∨

x∈z↓

[[ϕ(x)]].

Moreover, there existsx0 ∈ z↓ such that[[ϕ(x0)]] = [[(∃x ∈ z) ϕ(x)]].
(3) LetΦ be a correspondence fromX toY inV(B). Thus,Φ, X, andY are elements ofV(B)

and, moreover,[[Φ ⊂ X × Y ]] = 1. There is a unique correspondenceΦ↓ from X↓ to Y ↓ such
thatΦ↓(A↓) = Φ(A)↓ for every nonempty subsetA of X insideV(B). The correspondenceΦ↓
from X↓ to Y ↓ of the above proposition is called thedescentof the correspondenceΦ from X

to Y insideV(B).
(4) The descent of the composite of correspondences insideV(B) is the composite of their

descents:(Ψ ◦ Φ)↓ = Ψ↓ ◦ Φ↓.

(5) If Φ is a correspondence insideV(B) then(Φ
−1

)↓ = (Φ↓)
−1.

(6) Let IdX be the identity mapping insideV(B) of a setX ∈ V(B). Then(IdX)↓ = IdX↓.

(7) Suppose thatX, Y, f ∈ V(B) are such that[[f : X → Y ]] = 1, i.e.,f is a mapping fromX
to Y insideV(B). Thenf↓ is a unique mapping fromX↓ to Y ↓ satisfying[[f↓(x) = f(x)]] = 1
for all x ∈ X↓.

By virtue of (1)–(7), we can consider the descent operation as a functor from the category
ofB-valued sets and mappings (correspondences) to the category of the usual sets and mappings
(correspondences) (i.e., in the sense ofV).

(8) Givenx1, . . . , xn ∈ V(B), denote by(x1, . . . , xn)
B the corresponding orderedn-tuple

insideV(B). Assume thatP is ann-ary relation onX insideV(B); i.e., X, P ∈ V(B) and
[[P ⊂ Xn∧

]] = 1, wheren ∈ ω. Then there exists ann-ary relationP ′ on X↓ such that
(x1, . . . , xn) ∈ P ′

↔ [[(x1, . . . , xn)
B

∈ P ]] = 1. Slightly abusing notation, we denote the
relationP ′ by the same symbolP↓ and call it thedescentof P .

2.5. Let x ∈ V andx ⊂ V(B); i.e., letx be some set composed ofB-valued sets or, in
other words,x ∈ P(V(B)

). Put∅↑ := ∅ anddom(x↑) := x, im(x↑) := {1} if x 6= ∅.
The elementx↑ (of the separated universeV(B), i.e., the distinguished representative of the
class{y ∈ V(B)

: [[y = x↑]] = 1}) is called theascentof x.
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(1) For allx ∈ P(V(B)
) and every formulaϕ we have the following:

[[(∀z ∈ x↑) ϕ(z)]] =

∧

y∈x

[[ϕ(y)]],

[[(∃z ∈ x↑) ϕ(z)]] =

∨

y∈x

[[ϕ(y)]].

Introducing the ascent of a correspondenceΦ ⊂ X × Y , we have to bear in mind a possible
distinction between the domain of departureX and the domaindom(Φ) := {x ∈ X : Φ(x) 6=

∅}. This circumstance is immaterial for the sequel; therefore, speaking of ascents, we always
imply total correspondences; i.e.,dom(Φ) = X.

(2) Let X, Y, Φ ∈ V(B), and letΦ be a correspondence fromX to Y . There exists a unique
correspondenceΦ↑ from X↑ to Y ↑ insideV(B) such thatΦ↑(A↑) = Φ(A)↑ is valid for every
subsetA of dom(Φ) if and only if Φ is extensional; i.e., satisfies the conditiony1 ∈ Φ(x1) →

[[x1 = x2]] ≤
∨

y2∈Φ(x2)[[y1 = y2]] for x1, x2 ∈ dom(Φ). In this event,Φ↑ = Φ
′
↑, whereΦ

′
:=

{(x, y)
B

: (x, y) ∈ Φ}. The elementΦ↑ is called theascentof the initial correspondenceΦ.
(3) The composite of extensional correspondences is extensional. Moreover, the ascent of

a composite is equal to the composite of the ascents insideV(B): On assuming thatdom(Ψ) ⊃

im(Φ) we haveV(B) � (Ψ ◦ Φ)↑ = Ψ↑ ◦ Φ↑.

Note that ifΦ andΦ
−1 are extensional then(Φ↑)−1

= (Φ
−1

)↑. However, in general, the
extensionality ofΦ in no way guarantees the extensionality ofΦ

−1.
(4) It is worth mentioning that if an extensional correspondencef is a function fromX to Y

then the ascentf↑ of f is a function fromX↑ to Y ↑. Moreover, the extensionality property can
be stated as follows:[[x1 = x2]] ≤ [[f(x1) = f(x2)]] for all x1, x2 ∈ X.

2.6. Given a setX ⊂ V(B), we denote by the symbolmix(X) the set of all mixings of
the formmix(bξxξ), where(xξ) ⊂ X and(bξ) is an arbitrary partition of unity. The following
propositions are referred to as thearrow cancellation rulesor ascending-and-descending rules.
There are many good reasons to call them simply theEscher rules.

(1) Let X andX ′ be subsets ofV(B) and letf : X → X ′ be an extensional mapping.
Suppose thatY, Y ′, g ∈ V(B) are such that[[ Y 6= ∅]] = [[ g : Y → Y ′

]] = 1. ThenX↑↓ =

mix(X), Y ↓↑ = Y, f↑↓ = f, andg↓↑ = g.

(2) From 2.3 (8) we easily infer the useful relation:Pfin(X↑) = {θ↑ : θ ∈ Pfin(X)}↑.

Suppose thatX ∈ V, X 6= ∅; i.e., X is a nonempty set. Let the letterι denote the
standard name embeddingx 7→ x∧

(x ∈ X). Thenι(X)↑ = X∧ andX = ι−1
(X∧

↓). Using
the above relations, we may extend the descent and ascent operations to the case in whichΦ
is a correspondence fromX to Y ↓ and [[Ψ is a correspondence fromX∧ to Y ]] = 1, where
Y ∈ V(B). Namely, we putΦ↑ := (Φ ◦ ι)↑ andΨ↓ := Ψ↓ ◦ ι. In this case,Φ↑ is called
themodified ascentof Φ andΨ↓ is called themodified descentof Ψ. (If the context excludes
ambiguity then we briefly speak of ascents and descents usingsimple arrows.) It is easy to see
that Ψ↑ is a unique correspondence insideV(B) satisfying the relation[[Φ↑(x∧

) = Φ(x)↑]] =1 (x ∈ X). Similarly, Ψ↓ is a unique correspondence fromX to Y ↓ satisfying the equality
Ψ↓(x) = Ψ(x∧

)↓ (x ∈ X). If Φ := f andΨ := g are functions then these relations take the
form [[f↑(x∧

) = f(x)]] = 1 andg↓(x) = g(x∧

) for all x ∈ X.
2.7. Various function spaces reside in functional analysis, andso the problem is natural of

replacing an abstract Boolean valued system by some function-space analog, a model whose ele-

Boolean Valued Analysis and Positivity 97



ments are functions and in which the basic logical operations are calculated “pointwise.” An ex-
ample of such a model is given by the classVQ of all functions defined on a fixed nonempty
setQ and acting intoV. The truth values onVQ are various subsets ofQ: The truth value
[[ϕ(u1, . . . , un)]] of ϕ(t1, . . . , tn) at functionsu1, . . . , un ∈ VQ is calculated as follows:

[[ϕ(u1, . . . , un)]] =
{
q ∈ Q : ϕ

(
u1(q), . . . , un(q)

)}
.

A. G. Gutman and G. A. Losenkov solved the above problem by theconcept of continuous
polyverse which is a continuous bundle of models of set theory. It is shown that the class of
continuous sections of a continuous polyverse is a Boolean valued system satisfying all basic
principles of Boolean valued analysis and, conversely, each Boolean valued algebraic system
can be represented as the class of sections of a suitable continuous polyverse. More details are
collected in [15, Chapter 6].

2.8. Every Boolean valued universe has the collection of mathematical objects in full supply:
available in plenty are all sets with extra structure: groups, rings, algebras, normed spaces, etc.

An abstract Boolean setor set withB-structureis a pair(X, d), whereX ∈ V, X 6= ∅,
andd is a mapping fromX × X to B such thatd(x, y) = 0 ↔ x = y; d(x, y) = d(y, x);
d(x, y) ≤ d(x, z) ∨ d(z, y) all x, y, z ∈ X.

To obtain an easy example of an abstractB-set, given∅ 6= X ⊂ V(B) put

d(x, y) := [[x 6= y]] = ¬[[x = y]]

for x, y ∈ X.
Another easy example is a nonemptyX with the discreteB-metricd; i.e., d(x, y) = 1 if

x 6= y andd(x, y) = 0 if x = y.
Let (X, d) be some abstractB-set. There exist an elementX ∈ V(B) and an injectionι :

X → X ′
:= X ↓ such thatd(x, y) = [[ιx 6= ιy]] for all x, y ∈ X and every elementx′

∈ X ′

admits the representationx′
= mixξ∈Ξ(bξιxξ), where(xξ)ξ∈Ξ ⊂ X and(bξ)ξ∈Ξ is a partition of

unity inB. The elementX ∈ V(B) is referred to as theBoolean valued realizationof X.
If X is a discrete abstractB-set thenX = X∧ andιx = x∧ for all x ∈ X. If X ⊂ V(B)

thenι↑ is an injection fromX↑ toX (insideV(B)). A mappingf from aB-set(X, d) to aB-set
(X ′, d′

) is said to becontractiveif d(x, y) ≥ d′
(f(x), f(y)) for all x, y ∈ X.

We see that an abstractB-setX embeds in the Boolean valued universeV(B) so that the
Boolean distance between the members ofX becomes the Boolean truth value of the negation
of their equality. The corresponding element ofV(B) is, by definition, theBoolean valued
representationof X.

In case aB-setX has some a priori structure we may try to furnish the Boolean valued
representation ofX with an analogous structure, so as to apply the technique of ascending
and descending to the study of the original structure ofX. Consequently, the above questions
may be treated as instances of the unique problem of searching a well-qualified Boolean valued
representation of aB-set with some additional structure.

We call these objectsalgebraicB-systems. Located at the epicenter of exposition, the notion
of an algebraicB-system refers to a nonemptyB-set endowed with a few contractive operations
andB-predicates, the latter meaningB-valued contractive mappings.

The Boolean valued representation of an algebraicB-system appears to be a conventional
two valued algebraic system of the same type. This means thatan appropriate completion of
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each algebraicB-system coincides with the descent of some two valued algebraic system insideV(B).
On the other hand, each two valued algebraic system may be transformed into an algebraicB-system on distinguishing a complete Boolean algebra of congruences of the original system.

In this event, the task is in order of finding the formulas holding true in direct or reverse tran-
sition from aB-system to a two valued system. In other words, we have to seekhere for some
versions of the transfer or identity preservation principle of long standing in some branches of
mathematics.

3 Boolean Valued Numbers

Boolean valued analysis stems from the fact that each internal field of reals of a Boolean valued
model descends into a universally complete Kantorovich space. Thus, a remarkable opportunity
opens up to expand and enrich the treasure-trove of mathematical knowledge by translating
information about the reals to the language of other noble families of functional analysis. We
will elaborate upon the matter in this section.

3.1. Recall a few definitions. Two elementsx andy of a vector latticeE are calleddisjoint
(in symbolsx ⊥ y) if |x| ∧ |y| = 0. A band of E is defined as thedisjoint complement
M⊥

:= {x ∈ E : (∀y ∈ M) x ⊥ y} of a nonempty setM ⊂ E.
The inclusion-ordered setB(E) of all bands inE is a complete Boolean algebra with the

Boolean operations:

L ∧ K = L ∩ K, L ∨ K = (L ∪ K)
⊥⊥, L∗

= L⊥
(L, K ∈ B(E)).

The Boolean algebraB(E) is often referred as to thebaseof E.
A band projectionin E is a linear idempotent operator inπ : E → E satisfying the in-

equalities0 ≤ πx ≤ x for all 0 ≤ x ∈ E. The setP(E) of all band projections ordered by
π ≤ ρ ⇐⇒ π ◦ ρ = π is a Boolean algebra with the Boolean operations:

π ∧ ρ = π ◦ ρ, π ∨ ρ = π + ρ − π ◦ ρ, π∗
= IE − π (π, ρ ∈ (E)).

Let u ∈ E+ ande ∧ (u − e) = 0 for some0 ≤ e ∈ E. Thene is a fragmentor component
of u. The setE(u) of all fragments ofu with the order induced byE is a Boolean algebra where
the lattice operations are taken fromE and the Boolean complement has the forme∗ := u − e.

3.2. A Dedekind complete vector lattice is also called aKantorovich spaceor K-space, for
short. AK-spaceE is universally completeif every family of pairwise disjoint elements ofE
is order bounded.

(1) Theorem. Let E be an arbitraryK-space. Then the correspondenceπ 7→ π(E) deter-
mines an isomorphism of the Boolean algebrasP(E) andB(E). If there is an order unity1
in E then the mappingsπ 7→ π1 from P(E) into E(E) ande 7→ {e}⊥⊥ from E(E) into B(E)

are isomorphisms of Boolean algebras too.
(2) Theorem. Each universally completeK-spaceE with order unity1 can be uniquely

endowed by multiplication so as to makeE into a faithfulf -algebra and1 into a ring unity. In
thisf -algebra each band projectionπ ∈ P(E) is the operator of multiplication byπ(1).
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3.3. By afield of realswe mean every algebraic system that satisfies the axioms of anArchi-
medean ordered field (with distinct zero and unity) and enjoys the axiom of completeness. The
same object can be defined as a one-dimensionalK-space.

Recall the well-known assertion ofZFC: There exists a field of realsR that is unique up to
isomorphism.

Successively applying the transfer and maximum principles, we find an elementR ∈ V(B)

for which [[ R is a field of reals]] = 1. Moreover, if an arbitraryR ′
∈ V(B) satisfies the condi-

tion [[R ′ is a field of reals]] = 1 then[[ the ordered fieldsR andR ′ are isomorphic]] = 1. In
other words, there exists an internal field of realsR ∈ V(B) which is unique up to isomorphism.

By the same reasons there exists an internal field of complex numbersC ∈ V(B) which is
unique up to isomorphism. Moreover,V(B)

|= C = R ⊕ iR. We callR andC the internal
realsandinternal complexesinV(B).

3.4. Consider another well-known assertion ofZFC: If P is an Archimedean ordered field
then there is an isomorphic embeddingh of the fieldP into R such that the imageh(P) is
a subfield ofR containing the subfield of rational numbers. In particular,h(P) is dense inR.

Note also thatϕ(x), presenting the conjunction of the axioms of an Archimedeanordered
field x, is bounded; therefore,[[ ϕ(R∧

) ]] = 1, i.e., [[R∧ is an Archimedean ordered field]] = 1.
“Pulling” 3.2 (2) through the transfer principle, we conclude that[[R∧ is isomorphic to a dense
subfield ofR ]] = 1. We further assume thatR∧ is a dense subfield ofR andC∧ is a dense
subfield ofC . It is easy to note that the elements0

∧ and1
∧ are the zero and unity ofR.

Observe that the equalitiesR = R∧ andC = C∧ are not valid in general. Indeed, the axiom
of completeness forR is not a bounded formula and so it may thus fail forR∧ insideV(B).

3.5. Look now at the descentR↓ of the algebraic systemR. In other words, consider the
descent of the underlying set of the systemR together with descended operations and order.
For simplicity, we denote the operations and order inR andR↓ by the same symbols+, · , and
≤. In more detail, we introduce addition, multiplication, and order inR↓ by the formulas

z = x + y ↔ [[ z = x + y ]] = 1,
z = x · y ↔ [[ z = x · y ]] = 1,

x ≤ y ↔ [[ x ≤ y ]] = 1 (x, y, z ∈ R↓).

Also, we may introduce multiplication by the usual reals inR↓ by the rule

y = λx ↔ [[ λ∧x = y ]] = 1 (λ ∈ R, x, y ∈ R↓).

The fundamental result of Boolean valued analysis is Gordon’s Theorem which reads as
follows: Each universally complete Kantorovich space is an interpretation of the reals in an ap-
propriate Boolean valued model. Formally, we have the following

3.6. Gordon Theorem. Let R be the reals insideV(B). ThenR↓, (with the descended
operations and order, is a universally completeK-space with order unity1. Moreover, there
exists an isomorphismχ of B ontoP(R↓) such that

χ(b)x = χ(b)y ↔ b ≤ [[ x = y ]], χ(b)x ≤ χ(b)y ↔ b ≤ [[ x ≤ y ]]

for all x, y ∈ R↓ andb ∈ B.
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The converse is also true: Each Archimedean vector lattice embeds in a Boolean valued
model, becoming a vector sublattice of the reals (viewed as such over some dense subfield of
the reals).

3.7. Theorem. Let E be an Archimedean vector lattice, letR be the reals insideV(B), and
let  be an isomorphism ofB ontoB(E). Then there isE ∈ V(B) such that

(1) E is a vector sublattice ofR overR∧ insideV(B);
(2) E ′

:= E ↓ is a vector sublattice ofR↓ invariant under every band projectionχ(b) (b ∈ B)

and such that each set of positive pairwise disjoint sets in it has a supremum;
(3) there is ano-continuous lattice isomorphismι : E → E ′ such thatι(E) is a coinitial

sublattice ofR↓;
(4) for everyb ∈ B the band projection inR↓ onto{ι((b))}⊥⊥ coincides withχ(b).
Note also thatE andR coincide if and only ifE is Dedekind complete. Thus, each theorem

about the reals within Zermelo–Fraenkel set theory has an analog in an arbitary Kantorovich
space. Translation of theorems is carried out by appropriate general functors of Boolean valued
analysis. In particular, the most important structural properties of vector lattices such as the
functional representation, spectral theorem, etc. are theghosts of some properties of the reals
in an appropriate Boolean valued model. More details and references are collected in [15].

3.8. The theory of vector lattices with a vast field of applications is thoroughly covered
in many monographs (for instance, see [19, 23]). The credit for finding the most important
instance among ordered vector spaces, an order complete vector lattice orK-space, is due to
L. V. Kantorovich. This notion appeared in Kantorovich’s first article on this topic, where he
wrote: “In this note, I define a new type of space that I call a semiordered linear space. The
introduction of such a space allows us to study linear operations of one abstract class (those
with values in such a space) as linear functionals.”

Thus theheuristic transfer principlewas stated forK-spaces which becomes the Ariadna
thread of many subsequent studies. The depth and universality of Kantorovich’s principle are
explained within Boolean valued analysis.

3.9. Applications of Boolean valued models to functional analysis stem from the works by
E. I. Gordon and G. Takeuti. IfB in 3.6 is the algebra ofµ-measurable sets moduloµ-negligible
sets thenR↓ is isomorphic to the universally completeK-spaceL0

(µ) of measurable functions.
This fact (for the Lebesgue measure on an interval) was already known to D. Scott and R. Solo-
vay (see [15]). IfB is a complete Boolean algebra of projections in a Hilbert space thenR↓ is
isomorphic to the space of selfadjoint operatorsA(B). These two particular cases of Gordon’s
Theorem were intensively and fruitfully exploited by G. Takeuti (see the bibliography in [15]).
The objectR↓ for general Boolean algebras was also studied by T. Jech [8].Theorem 3.7 was
obtained by A. G. Kusraev [10]. A close result (in other terms) is presented in T. Jech’s arti-
cle [8] where some Boolean valued interpretation is revealed of the theory of linearly ordered
sets. More details can be found in [15].

4 Band Preserving Operators

This section deals with the class of band preserving operators. Simplicity of these operators
notwithstanding, the question about their order boundedness is far from trivial.
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4.1. Recall that a complexK-space is the complexificationGC := G⊕ iG of a realK-space
G. A linear operatorT : GC → GC is band preservingor contractiveor astabilizerif, for all
f, g ∈ GC, from f ⊥ g it follows thatTf ⊥ g. Disjointness inGC is defined just as inG (see
3.1), whereas|z| := sup{Re(eiθz) : 0 ≤ θ ≤ π} for z ∈ GC.

(1) Let EndN(GC) stand for the set of all band preserving linear operators inGC, with
G := R↓. Clearly, EndN(GC) is a complex vector space. Moreover,EndN(GC) becomes
a faithful unitary module over the ringGC if we definegT asgT : x 7→ g · Tx for all x ∈ G.
This follows from the fact that multiplication by a member ofGC is a band preserving operator
and the composite of band preserving operators is band preserving too.

(2) Denote byEndC∧(C ) the element ofV(B) representing the space of allC∧-linear map-
pings fromC to C . ThenEndC∧(C ) is a vector space overC∧ insideV(B), andEndC∧(C )↓ is
a faithful unitary module overGC.

4.2. Following [11] it is easy to prove that a linear operatorT in theK-spaceGC is band
preserving if and only ifT is extensional. Since each extensional mapping has an ascent, T ∈

EndN(GC) has the ascentτ := T↑ which is a unique internal functional fromC to C such that
[[τ(x) = Tx]] = 1 (x ∈ GC). We thus arrive at the following assertion:

The modulesEndN(GC) andEndC∧(C )↓ are isomorphic by sending each band preserving
operator to its ascent.

By Gordon’s Theorem this assertion means that the problem offinding a band preserving
operator inG amounts to solving (forτ : C → C ) insideV(B) theCauchy functional equation:
τ(x + y) = τ(x) + τ(y) (x, y ∈ C ) under the subsidiary conditionτ(λx) = λτ(x) (x ∈

C , λ ∈ C∧

).
As another subsidiary condition we may consider theLeibniz ruleτ(xy) = τ(x)y+xτ(y)(in

which caseτ is called aC∧-derivation) or multiplicativity τ(xy) = τ(x)τ(y). These situations
are addressed in 4.5.

4.3. An elementg ∈ G+ is locally constantwith respect tof ∈ G+ if g =
∨

ξ∈Ξ λξπξf

for some numeric family(λξ)ξ∈Ξ and a family(πξ)ξ∈Ξ of pairwise disjoint band projections.
A universally completeK-spaceGC is calledlocally one-dimensionalif all elements ofG+ are
locally constant with respect to some order unity ofG (and hence each of them). Clearly, aK-
spaceGC is locally one-dimensional if eachg ∈ GC may be presented asg = o-

∑
ξ∈Ξ λξπξ1f

with some family(λξ)ξ∈Ξ ⊂ C and partition of unity(πξ)ξ∈Ξ ⊂ P(G).
4.4. A σ-complete Boolean algebraB is calledσ-distributiveif

∨

n∈N ∧

m∈N bn,m =

∧

ϕ∈NN ∨

n∈N bn,ϕ(n).

for every double sequence(bn,m)n,m∈N inB. As an example of aσ-distributive Boolean algebra
we may take a complete atomic Boolean algebra, i.e., the boolean of a nonempty set. It is worth
observing that there are nonatomicσ-distributive complete Boolean algebras (see [12, 5.1.8]).

We now address the problem which is often referred to in the literature asWickstead’s prob-
lem: Characterize the universally complete vector lattices spaces in which every band preserving
linear operator is order bounded.

According to 4.2, Boolean valued analysis reduces Wickstead’s problem to that of order
boundedness of the endomorphisms of the fieldC viewed as a vector space and algebra over
the fieldC∧.

102 A. G. Kusraev,  S. S. Kutateladze



4.5. Theorem. Let P be an algebraically closed and topologically dense subfieldof the
field of complexesC. The following are equivalent:

(1) P = C;
(2) everyP-linear function onC is order bounded;
(3) there are no nontrivialP-derivations onC;
(4) eachP-linear endomorphism onC is the zero or identity function;
(5) there is noP-linear automorphism onC other than the identity.
The equivalence (1)↔ (2) is checked by using a Hamel basis of the vector spaceC overP.

The remaining equivalences rest on replacing a Hamel basis with a transcendence basis (for
details see [13]).

Recall that a linear operatorD : GC → GC is aC-derivationif D(fg) = D(f)g + fD(g)

for all f, g ∈ GC. It can be easily checked that everyC-derivation is band preserving.
Interpreting Theorem 4.5 inV(B), we arrive at
4.6. Theorem. If B is a complete Boolean algebra then the following are equivalent:
(1) C = C∧ insideV(B);
(2) every band preserving linear operator is order bounded in the complex vector latticeC ↓;
(3) there is no nontrivialC-derivation in the complexf -algebraC ↓;
(4) each band preserving endomorphism is a band projection inC ↓;
(5) there is no band preserving automorphism other than the identity in C ↓.
(6) theK-spaceR↓ is locally one-dimensional;
(7) B is σ-distributive.
4.7. The question was raised by A. W. Wickstead in [22] whether every band preserv-

ing linear operator in a universally complete vector lattice is automatically order bounded.
The first example of an unbounded band preserving linear operator was suggested by Yu. A.
Abramovich, A. I. Veksler, and A. V. Koldunov in [1, 2]. The equivalence (1)↔ (6) is trivial,
whereas (2)↔ (6) combines a result of Yu. A. Abramovich, A. I. Veksler, andA. V. Koldunov
[1, Theorem 2.1] and that of P. T. N. McPolin and A. W. Wickstead [21, Theorem 3.2]. The
equivalence (6)↔ (7) was obtained by A. E. Gutman who also found an example of a purely
nonatomic locally one-dimensional Dedekind complete vector lattice (see [7]). The equiva-
lences (1)↔ (3) ↔ (4)↔ (5) belong to A. G. Kusraev [13].

5 Boolean Valued Positive Functionals

A linear functional on a vector space is determined up to a scalar from its zero hyperplane.
In contrast, a linear operator is recovered from its kernel up to a simple multiplier on a rather
special occasion. Fortunately, Boolean valued analysis prompts us that some operator analog
of the functional case is valid for each operator with targeta Kantorovich space, a Dedekind
complete vector lattice. We now proceed along the lines of this rather promising approach.

5.1. Let E be a vector lattice, and letF be aK-space with base a complete Boolean alge-
braB. By 3.2, we may assume thatF is a nonzero space embedded as an order dense ideal in
the universally complete Kantorovich spaceR↓ which is the descent of the realsR inside the
separated Boolean valued universeV(B) overB.

An operatorT is F -discreteif [0, T ] = [0, IF ] ◦ T ; i.e., for all 0 ≤ S ≤ T there is some
0 ≤ α ≤ IF satisfyingS = α ◦ T . Let L∼

a
(E, F ) be the band inL∼

(E, F ) spanned byF -
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discrete operators andL∼

d
(E, F ) := L∼

a
(E, F )

⊥. By analogy we define(E∧∼

)a and (E∧∼

)d.
The members ofL∼

d
(E, F ) are usually calledF -diffuse.

5.2. As usual, we letE∧ stand for the standard name ofE in V(B). Clearly,E∧ is a vector
lattice overR∧ insideV(B). Denote byτ := T↑ the ascent ofT toV(B). Clearly,τ acts fromE∧

to the ascentF↑ = R of F inside the Boolean valued universeV(B). Therefore,τ(x∧

) = Tx

insideV(B) for all x ∈ E, which means in terms of truth values that[[τ : E∧

→ R]] = 1 and
(∀x ∈ E) [[τ(x∧

) = Tx]] = 1.
Let E∧∼ stand for the space of all order boundedR∧-linear functionals fromE∧ to R.

Clearly,E∧∼

:= L∼
(E∧, R) is aK-space insideV(B). The descentE∧∼

↓ of E∧∼ is aK-space.
GivenS, T ∈ L∼

(E, F ), putτ := T↑ andσ := S↑.
5.3. Theorem. For eachT ∈ L∼

(E, F ) the ascentT↑ of T is an order boundedR∧-linear
functional onE∧ insideV(B); i.e., [[T↑ ∈ E∧∼

]] = 1. The mappingT 7→ T↑ is a lattice
isomorphism ofL∼

(E, F ) andE∧∼

↓. Moreover, the following hold:
(1) T ≥ 0 ↔ [[ τ ≥ 0 ]] = 1;
(2) S is a fragment ofT ↔ [[ σ is a fragment ofτ ]] = 1;
(3) T is a lattice homomorphism if and only if so isτ insideV(B);
(4) T is F -diffuse ↔ [[ τ is diffuse]] = 1;
(5) T ∈ L∼

a
(E, F ) ↔ [[ τ ∈ (E∧∼

)a ]] = 1;
(6) T ∈ L∼

d
(E, F ) ↔ [[ τ ∈ (E∧∼

)d ]] = 1.
Sinceτ , the ascent of an order bounded operatorT , is defined up to a scalar fromker(τ), we
infer the following analog of the Sard Theorem.

5.4. Theorem. Let S andT be linear operators fromE to F . Thenker(bS) ⊃ ker(bT ) for
all b ∈ B if and only if there is an orthomorphismα of F such thatS = αT .

We see that a linear operatorT is, in a sense, determined up to an orthomorphism from the
family of the kernels of thestratabT of T . This remark opens a possibility of studying some
properties ofT in terms of the kernels of the strata ofT .

5.5. Theorem. An order bounded operatorT from E to F may be presented as the dif-
ference of some lattice homomorphisms if and only if the kernel of each stratumbT of T is
a vector sublattice ofE for all b ∈ B.

Straightforward calculations of truth values show thatT+↑ = τ+ andT−↑ = τ− insideV(B).
Moreover,[[ker(τ) is a vector sublattice ofE∧

]] = 1 whenever so areker(bT ) for all b ∈ B.
Since the ascent of a sum is the sum of the ascents of the summands, we reduce the proof of
Theorem 5.5 to the case of the functionals on using 5.3 (3).

5.6. Recall that a subspaceH of a vector latticeE is aG-spaceor Grothendieck subspace
(cp. [6, 18]) provided thatH enjoys the following property:

(∀x, y ∈ H) (x ∨ y ∨ 0 + x ∧ y ∧ 0 ∈ H).

By simple calculations of truth values we infer that[[ker(τ) is a Grothendieck subspace
of E∧

]] = 1 if and only if the kernel of each stratumbT is a Grothendieck subspace ofE. We
may now assert that the following appears as a result of “descending” its scalar analog.

5.7. Theorem. The modulus of an order bounded operatorT : E → F is the sum of some
pair of lattice homomorphisms if and only if the kernel of each stratumbT of T with b ∈ B is
a Grothendieck subspace of the ambient vector latticeE.
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To prove the relevant scalar versions of Theorems 5.5 and 5.7, we use one of the formulas
of subdifferential calculus (cp. [14]):

5.8. Theorems 5.5 and 5.7 were obtained by S. S. Kutateladze in [16, 17]. Note that the
sums of lattice homomorphisms were first described by S. J. Bernau, C. B. Huijsmans, and
B. de Pagter in terms ofn-disjoint operators in [3]. A survey of some conceptually close results
onn-disjoint operators is given in [12].
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