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Foreword

Nonstandard methods of analysis consist generally in comparative study of two
interpretations of a mathematical claim or construction given as a formal symbolic
expression by means of two different set-theoretic models: one, a “standard” model
and the other, a “nonstandard” model.

The second half of the 20th century is a period of significant progress in these
methods and their rapid development in a few directions.

The first of the latter appears often under the name minted by its inventor,
A. Robinson. This memorable term nonstandard analysis often swaps places with its
synonymous versions like robinsonian or classical nonstandard analysis, remaining
slightly presumptuous and defiant.

The characteristic feature of robinsonian analysis is a frequent usage of many
controversial concepts appealing to the actual infinitely small and infinitely large
quantities that have resided happily in natural sciences from ancient times but
were strictly forbidden in mathematics for many decades of the 20th century. The
present-day achievements revive the forgotten term infinitesimal analysis which
reminds us expressively of the heroic bygones of the Calculus.

Infinitesimal analysis expands rapidly, bringing about radical reconsideration
of the general conceptual system of mathematics. The principal reasons for this
progress are twofold. Firstly, infinitesimal analysis provides us with a novel un-
derstanding for the method of indivisibles rooted deeply in the mathematical clas-
sics. Secondly, it synthesizes both classical approaches to differential and integral
calculus which belong to the noble inventors of the latter. Infinitesimal analysis
finds newer and newest applications and merges into every section of contemporary
mathematics. Sweeping changes are on the march in nonsmooth analysis, measure
theory, probability, the qualitative theory of differential equations, and mathemat-
ical economics.

The second direction, Boolean valued analysis, distinguishes itself by ample
usage of such terms as the technique of ascending and descending, cyclic envelopes
and mixings, B-sets and representation of objects in V(B). Boolean valued analysis
originated with the famous works by P. J. Cohen on the continuum hypothesis.
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Progress in this direction has evoked radically new ideas and results in many sections
of functional analysis. Among them we list Kantorovich space theory, the theory
of von Neumann algebras, convex analysis, and the theory of vector measures.

The book [1], printed by the Siberian Division of the Nauka Publishers in 1990
and translated into English by Kluwer Academic Publishers in 1994 (see [2]), gave
a first unified treatment of the two disciplines forming the core of the present-day
nonstandard methods of analysis.

The reader’s interest as well as successful research into the field assigns us the
task of updating the book and surveying the state of the art. Implementation of
the task has shown soon that it is impossible to compile new topics and results
in a single book. Therefore, the Sobolev Institute Press decided to launch the
series Nonstandard Methods of Analysis which will consist of monographs on various
aspects of this direction in mathematical research.

The series started with the book [3] whose English edition [4] appeared quite
simultaneously. The second in the series was the collection [5] and its English
counterpart [6]. This book continues the series and addresses infinitesimal analysis.

The antique treasure-trove contains the idea of an infinitesimal or an infinitely
small quantity. Infinitesimals have proliferated for two millennia, enchanting scien-
tists and philosophers but always raising controversy and sometimes despise. After
about half a century of willful neglect, contemporary mathematics starts paying
rapt attention to infinitesimals and related topics.

Infinitely large and infinitely small numbers, alongside the atoms of mathemat-
ics, “indivisibles” or “monads,” resurrect in various publications, becoming part and
parcel of everyday mathematical practice. A turning point in the evolution of in-
finitesimal concepts is associated with an outstanding achievement of A. Robinson,
the creation of nonstandard analysis now called robinsonian and infinitesimal.

Robinsonian analysis was ranked long enough as a rather sophisticated, if not
exotic, logical technique for corroborating the possibility of use of actual infinites
and infinitesimals. This technique has also been evaluated as hardly applicable and
never involving any significant reconsideration of the state-of-the-art.

By the end of the 1970s, the views of the place and role of infinitesimal analysis
had been drastically changed and enriched after publication of the so-called internal
set theory IST by E. Nelson and the external set theories propounded soon after
IST by K. Hrbáček and T. Kawai.

In the light of the new discoveries it became possible to consider nonstandard
elements as indispensable members of all routine mathematical objects rather than
some “imaginary, ideal, or surd entities” we attach to conventional sets by ad hoc
reasons of formal convenience.

This has given rise to a new doctrine claiming that every set is either standard
or nonstandard. Moreover, the standard sets constitute some frame of reference
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“dense” everywhere in the universe of all objects of set-theoretic mathematics,
which guarantees healthy translation of mathematical facts from the collection of
standard sets to the whole universe.

At the same time many familiar objects of infinitesimal analysis turn out to be
“cantorian” sets falling beyond any of the canonical universes in ample supply by
formal set theories. Among these “external” sets we list the monads of filters, the
standard part operations on numbers and vectors, the limited parts of spaces, etc.

The von Neumann universe fails to exhaust the world of classical mathematics:
this motto is one of the most obvious consequences of the new stances of mathe-
matics. Therefore, the traditional views of robinsonian analysis begin to undergo
revision, requiring reconsideration of its backgrounds.

The crucial advantage of new ways to infinitesimals is the opportunity to pursue
an axiomatic approach which makes it possible to master the apparatus of the
modern infinitesimal analysis without learning prerequisites such as the technique
and toolbox of ultraproducts, Boolean valued models, etc.

The suggested axioms are very simple to apply, while admitting comprehensible
motivation at the semantic level within the framework of the “naive” set-theoretic
stance current in analysis. At the same time, they essentially broaden the range of
mathematical objects, open up possibilities of developing a new formal apparatus,
and enable us to diminish significantly the existent dangerous gaps between the
ideas, methodological credenda, and levels of rigor that are in common parlance in
mathematics and its applications to the natural and social sciences.

In other words, the axiomatic set-theoretic foundation of infinitesimal analysis
has a tremendous significance for science in general.

In 1947 K. Gödel wrote: “There might exist axioms so abundant in their verifi-
able consequences, shedding so much light upon the whole discipline and furnishing
such powerful methods for solving given problems (and even solving them, as far as
that is possible, in a constructivistic way), that quite irrespective of their intrinsic
necessity they would have to be assumed at least in the same sense as any well
established physical theory” [129, p. 521]. This prediction of K. Gödel turns out to
be a prophecy.

The purpose of this book is to make new roads to infinitesimal analysis more
accessible. To this end, we start with presenting the semantic qualitative views of
standard and nonstandard objects as well as the relevant apparatus at the “naive”
level of rigor which is absolutely sufficient for effective applications without appeal-
ing to any logical formalism.

We then give a concise reference material pertaining to the modern axiomatic
expositions of infinitesimal analysis within the classical cantorian doctrine. We have
found it appropriate to allot plenty of room to the ideological and historical facets
of our topic, which has determined the plan and style of exposition.
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Chapters 1 and 2 contain the historical signposts alongside the qualitative mo-
tivation of the principles of infinitesimal analysis and discussion of their simplest
implications for differential and integral calculus. This lays the “naive” foundation
of infinitesimal analysis. Formal details of the corresponding apparatus of nonstan-
dard set theory are given in Chapter 3.

The following remarkable words by N. N. Luzin contains a weighty argument
in favor of some concentricity of exposition:

“Mathematical analysis is a science far from the state of ultimate completion
with unbending and immutable principles we are only left to apply, despite com-
mon inclination to view it so. Mathematical analysis differs in no way from any
other science, having its own flux of ideas which is not only translational but also
rotational, returning every now and then to various groups of former ideas and
shedding new light on them” [335, p. 389].

Chapters 4 and 5 set forth the infinitesimal methods of general topology and
subdifferential calculus.

Chapter 6 addresses the problem of approximating infinite-dimensional Banach
spaces and operators between them by finite-dimensional spaces and finite-rank
operators. Naturally, some infinitely large number plays the role of the dimension
or such an approximate space.

The next of kin is Chapter 7 which provides the details of the nonstandard
technique for “hyperapproximation” of locally compact abelian groups and Fourier
transforms over them.

The choice of these topics from the variety of recent applications of infinitesimal
analysis is basically due to the personal preferences of the authors.

Chapter 8 closes exposition, collecting some exercises for drill and better un-
derstanding as well as a few open questions whose complexity varies from nil to
infinity.

We cannot bear residing in the two-element Boolean algebra and indulge oc-
casionally in playing with general Boolean valued models of set theory. For the
reader’s convenience we give preliminaries to these models in the Appendix.

This book is in part intended to submit the authors’ report about the prob-
lems we were deeply engrossed in during the last quarter of the 20th century. We
happily recall the ups and downs of our joint venture full of inspiration and friend-
liness. It seems appropriate to list the latter among the pleasant manifestations
and consequences of the nonstandard methods of analysis.

E. Gordon
A. Kusraev

S. Kutateladze
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Chapter 1

Excursus into the History of Calculus

The ideas of differential and integral calculus are traceable from the remote
ages, intertwining tightly with the most fundamental mathematical concepts.

We admit readily that to present the evolution of views of mathematical objects
and the history of the processes of calculation and measurement which gave an
impetus to the modern theory of infinitesimals requires the Herculean efforts far
beyond the authors’ abilities and intentions.

The matter is significantly aggravated by the fact that the history of mathe-
matics has always fallen victim to the notorious incessant attempts at providing an
apologia for all stylish brand-new conceptions and misconceptions. In particular,
many available expositions of the evolution of calculus could hardly be praised as
complete, fair, and unbiased. One-sided views of the nature of the differential and
the integral, hypertrophy of the role of the limit and neglect of the infinitesimal have
been spread so widely in the recent decades that we cannot ignore their existence.

It has become a truism to say that “the genuine foundations of analysis have
for a long time been surrounded with mystery as a result of unwillingness to admit
that the notion of limit enjoys an exclusive right to be the source of new meth-
ods”(cf. [65]). However, Pontryagin was right to remark: “In a historical sense,
integral and differential calculus had already been among the established areas
of mathematics long before the theory of limits. The latter originated as super-
structure over an existent theory. Many physicists opine that the so-called rigorous
definitions of derivative and integral are in no way necessary for satisfactory compre-
hension of differential and integral calculus. I share this viewpoint” [401, pp. 64–65].

Considering the above, we find it worthwhile to brief the reader about some
turning points and crucial ideas in the evolution of analysis as expressed in the words
of classics. The choice of the corresponding fragments is doomed to be subjective.
We nevertheless hope that our selection will be sufficient for the reader to acquire
a critical attitude to incomplete and misleading delineations of the evolution of
infinitesimal methods.
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1.1. G. W. Leibniz and I. Newton

The ancient name for differential and integral calculus is “infinitesimal analy-
sis.” †

The first textbook on this subject was published as far back as 1696 under
the title Analyse des infiniment petits pour l’intelligence des lignes courbe. The
textbook was compiled by de l’Hôpital as a result of his contacts with J. Bernoulli
(senior), one of the most famous disciples of Leibniz.

The history of creation of mathematical analysis, the scientific legacy of its
founders and their personal relations have been studied in full detail and even
scrutinized. Each fair attempt is welcome at reconstructing the train of thought of
the men of genius and elucidating the ways to new knowledge and keen vision. We
must however bear in mind the principal differences between draft papers and notes,
personal letters to colleagues, and the articles written especially for publication. It is
therefore reasonable to look at the “official” presentation of Leibniz’s and Newton’s
views of infinitesimals.

The first publication on differential calculus was Leibniz’s article “Nova metho-
dus pro maximis et minimis, itemque tangentibus, quae nec fractals nec irrationales
quantitates moratur, et singulare pro illis calculi genus” (see [311]). This article
was published in the Leipzig journal “Acta Eruditorum” more than three centuries
ago in 1684.

Leibniz gave the following definition of differential. Considering a curve Y Y
and a tangent at a fixed point Y on the curve which corresponds to a coordinate
X on the axis AX and denoting by D the intersection point of the tangent and
axis, Leibniz wrote: “Now some straight line selected arbitrarily is called dx and
another line whose ratio to dx is the same as of . . . y . . . to XD is called . . . dy or
difference (differentia) . . . of y . . . .”

The essential details of the picture accompanying this text are reproduced
in Fig. 1.

By Leibniz, given an arbitrary dx and considering the function x �→ y(x) at
a point x, we obtain

dy :=
Y X

XD
dx.

In other words, the differential of a function is defined as the appropriate linear
mapping in the manner fully acceptable to the majority of the today’s teachers of
analysis.

Leibniz was a deep thinker and polymath who believed that “the invention of
the syllogistic form ranks among the most beautiful and even the most important

† This term was used in 1748 by Leonhard Euler in Introductio in Analysin Infinitorum [109]
(cf. [239, p. 324]).
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discoveries of the human mind. This is a sort of universal mathematics whose
significance has not yet been completely comprehended. It can be said to incarnate
the art of faultlessness ... .” [313, pp. 492–493]. Leibniz understood definitely that
the description and substantiation of the algorithm of differential calculus (in that
way he referred to the rules of differentiation) required clarifying the concept of
tangent. He proceeded with explaining that “we have only to keep in mind that to
find a tangent means to draw the line that connects two points of the curve at an
infinitely small distance, or the continued side of a polygon with an infinite number
of angles which for us takes the place of the curve.” We may conclude that Leibniz
rested his calculus on appealing to the structure of a curve “in the small.”

D A X
x

y

Y
Y

dx

Fig. 1

At that time, there were practically two standpoints as regards the status of
infinitesimals. According to one of them, which seemed to be shared by Leibniz,
an infinitely small quantity was thought of as an entity “smaller than any giv-
en or assignable magnitude.” Actual “indivisible” elements comprising numerical
quantities and geometrical figures are the perceptions corresponding to this concept
of the infinitely small. Leibniz did not doubt the existence of “simple substances
incorporated into the structure of complex substances,” i.e., monads. “It is these
monads that are the genuine atoms of nature or, to put it short, elements of things”
[312, p. 413].

For the other founder of analysis, Newton, the concept of infinite smallness
is primarily related to the idea of vanishing quantities [384, 408]. He viewed the
indeterminate quantities “not as made up of indivisible particles but as described
by a continuous motion” but rather “as increasing or decreasing by a perpetual
motion, in their nascent or evanescent state.”

The celebrated “method of prime and ultimate ratios” reads in his classical
treatise Mathematical Principles of Natural Philosophy (1687) as follows: “Quan-
tities, and the ratios of quantities, which in any finite time converge continuously



4 Chapter 1

to equality, and before the end of that time approach nearer to each other than by
any given difference, become ultimately equal” [408, p. 101].

Propounding the ideas which are nowadays attributed to the theory of limits,
Newton exhibited the insight, prudence, caution, and wisdom characteristic of any
great scientist pondering over the concurrent views and opinions.

He wrote: “To institute an analysis after this manner in finite quantities and
investigate the prime or ultimate ratios of these finite quantities when in their
nascent state is consonant to the geometry of the ancients, and I was willing to
show that in the method of fluxions there is no necessity of introducing infinitely
small figures into geometry.

Yet the analysis may be performed in any kind of figure, whether finite or
infinitely small, which are imagined similar to the evanescent figures, as likewise in
the figures, which, by the method of indivisibles, used to be reckoned as infinitely
small provided you proceed with due caution” [384, p. 169].

Leibniz’s views were as much pliable and in-depth dialectic. In his famous letter
to Varignion of February 2, 1702 [408], stressing the idea that “it is unnecessary
to make mathematical analysis depend on metaphysical controversies,” he pointed
out the unity of the concurrent views of the objects of the new calculus:

“If any opponent tries to contradict this proposition, it follows from our calculus
that the error will be less than any possible assignable error, since it is in our power
to make this incomparably small magnitude small enough for this purpose, inasmuch
as we can always take a magnitude as small as we wish. Perhaps this is what you
mean, Sir, when you speak on the inexhaustible, and the rigorous demonstration of
the infinitesimal calculus which we use undoubtedly is to be found here. ...

So it can also be said that infinites and infinitesimals are grounded in such
a way that everything in geometry, and even in nature, takes place as if they were
perfect realities. Witness not only our geometrical analysis of transcendental curves
but also my law of continuity, in virtue of which it is permitted to consider rest as
infinitely small motion (that is, as equivalent to a species of its own contradictory),
and coincidence as infinitely small distance, equality as the last inequality, etc.”

Similar views were expressed by Leibniz in the following quotation whose end
in italics is often cited in works on infinitesimal analysis in the wake of Robinson
[421, pp. 260–261]:

“There is no need to take the infinite here rigorously, but only as when we say
in optics that the rays of the sun come from a point infinitely distant, and thus
are regarded as parallel. And when there are more degrees of infinity, or infinitely
small, it is as the sphere of the earth is regarded as a point in respect to the distance
of the sphere of the fixed stars, and a ball which we hold in the hand is also a point
in comparison with the semidiameter of the sphere of the earth. And then the
distance to the fixed stars is infinitely infinite or an infinity of infinities in relation



Excursus into the History of Calculus 5

to the diameter of the ball. For in place of the infinite or the infinitely small we can
take quantities as great or as small as is necessary in order that the error will be
less than any given error. In this way we only differ from the style of Archimedes
in the expressions, which are more direct in our method and better adapted to the
art of discovery.” [311, p. 190].

1.2. L. Euler

The 18th century is rightfully called the age of Euler in the history of math-
ematical analysis (cf. [45]). Everyone looking through his textbooks [112] will be
staggered by subtle technique and in-depth penetration into the essence of the sub-
ject. It is worth recalling that an outstanding Russian engineer and scientist Krylov
went into raptures at the famous Euler formula eiπ = −1 viewing it as the quintes-
sential symbol of integrity of all branches of mathematics. He noted in particular
that “here 1 presents arithmetic; i, algebra; π, geometry; and e, analysis.”

Euler demonstrated an open-minded approach, which might deserve the epi-
thet “systemic” today, to studying mathematical problems: he applied the most
sophisticated tools of his time. We must observe that part and parcel of his re-
search was the effective and productive use of various infinitesimal concepts, first
of all, infinitely large and infinitely small numbers. Euler thoroughly explained the
methodological background of his technique in the form of the “calculus of zeros.”
It is a popular fixation to claim that nothing is perfect and to enjoy the imaginary
failures and follies of the men of genius (“to look for sun-spots” in the words of
a Russian saying). For many years Euler had been incriminated in the “incorrect”
treatment of divergent series until his ideas were fully accepted at the turn of the
20th century. You may encounter such a phrase in the literature: “As to the prob-
lem of divergent series, Euler was sharing quite an up-to-date point of view.” It
would be more fair to topsy-turvy this phrase and say that the mathematicians of
today have finally caught up with some of Euler’s ideas. As will be shown in the
sections to follow (see 2.2 and 2.3), the opinion that “we cannot admire the way
Euler corroborates his analysis by introducing zeros of various orders” is as self-
assured as the statement that “the giants of science, mainly Euler and Lagrange,
have laid false foundations of analysis.” It stands to reason to admit once and for
ever that Euler was in full possession of analysis and completely aware what he had
created.

1.3. G. Berkeley

The general ideas of analysis greatly affected the lineaments of the ideological
outlook in the 18th century. The most vivid examples of the depth of penetration
of the notions of infinitely large and infinitely small quantities into the cultural
media of that time are in particular Gulliver’s Travels by Jonathan Swift published
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in 1726 (Lilliput and Brobdingnag) and the celebrated Micromegas 1752 written
by bright and venomous F. M. Arouer, i.e., Voltaire. Of interest is the fact that
as an epigraph for his classical treatise [421], Robinson chose the beginning of the
following speech of Micromegas:

“Now I see clearer than ever that nothing can be judged by its visible magni-
tude. Oh, my God, who granted reason to creatures of such tiny sizes! An infinitely
small thing is equal to an infinitely large one when facing you; if living beings still
smaller than those were possible, they could have reason exceeding the intellect of
those magnificent creatures of yours which I can see in the sky, and one foot of
which could cover the earth” [507, p. 154].

A serious and dramatic impact on the development of infinitesimal analysis
was made in 1734 by Bishop Berkeley, a great cleric and theologian, who published
the pamphlet The Analyst, or a Discourse Addressed to an Infidel Mathematician,
wherein it is examined whether the object, principles and inferences of the modern
analysis are more deduced than religious mysteries and points of faith [34]. By the
way, this Infidel Mathematician was E. Halley, a brilliant astronomer and a young
friend of Newton. The clerical spirit of this article by Berkeley is combined with
aphoristic observations and killing precision of expression. The leitmotif of his
criticism of analysis reads: “Error may bring forth truth, though it cannot bring
forth science.”

Berkeley’s challenge was addressed to all natural sciences: “I have no contro-
versy about your conclusions, but only about your logic and method. How do you
demonstrate? What objects are you conversant with, and whether you conceive
them clearly? What principles you proceed upon; how sound they may be; and
how you apply them?” Berkeley’s invectives could not be left unanswered by the
most progressive representatives of the scientific thought of the 18th century, the
encyclopedists.

1.4. J. D’Alembert and L. Carnot

A turning point in the history of the basic notions of analysis is associated with
the ideas and activities of D’Alembert, one of the initiators and leading authors of
the immortal masterpiece of the thought of the Age of Enlightenment, the French
Encyclopedia or Explanatory Dictionary of Sciences, Arts, and Crafts.

In the article “Differential” he wrote: “Newton never considered differential
calculus to be some calculus of the infinitely small, but he rather viewed it as
the method of prime and ultimate ratios” [408, p. 157]. D’Alembert was the first
mathematician who declared that he had found the proof that the infinitely small
“do exist neither in Nature nor in the assumptions of geometricians” (a quotation
from his article “Infinitesimal” of 1759).
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The D’Alembert standpoint in Encyclopedia contributed much to the formu-
lation by the end of the 18th century of the understanding of an infinitesimal as
a vanishing magnitude.

It seems worthy to recall in this respect the book by Carnot Considerations
on Metaphysics of the Infinitely Small wherein he observed that “the notion of
infinitesimal is less clear than that of limit implying nothing else but the difference
between such a limit and the quantity whose ultimate value it provides.”

1.5. B. Bolzano, A. Cauchy, and K. Weierstrass

The 19th century was the time of building analysis over the theory of limits.
Outstanding contribution to this process belongs to Bolzano, Cauchy, and Weier-
strass whose achievements are mirrored in every traditional textbook on differential
and integral calculus.

The new canon of rigor by Bolzano, the definition by Cauchy of an infinitely
small quantity as a vanishing variable and, finally, the ε-δ-technique by Weierstrass
are indispensable to the history of mathematical thought, becoming part and parcel
of the modern culture.

It is worth observing (see [408]) that, giving a verbal definition of continuity,
both Cauchy and Weierstrass chose practically the same words:

An infinitely small increment given to the variable produces

an infinitely small increment of the function itself.

Cauchy

Infinitely small variations in the arguments correspond

to those of the function.

Weierstrass

This coincidence witnesses the respectful desire of the noble authors to interrelate
the new ideas with the views of their great predecessors.

Speculating about significance of the change of analytical views in the 19th
century, we should always bear in mind the important observation by Severi [439,
p. 113] who wrote: “This reconsideration, close to completion nowadays, has how-
ever no everlasting value most scientists believe in. Rigor itself is, in fact, a function
of the amount of knowledge at each historical period, a function that corresponds
to the manner in which science handles the truth.”

1.6. N. N. Luzin

The beginning of the 20th century in mathematics was marked by a growing
distrust of the concept of infinitesimal. This tendency became prevailing as math-
ematics was reconstructed on the set-theoretic foundation whose proselytes gained
the key strongholds in the 1930s.
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In the first edition of the Great Soviet Encyclopedia in 1934, Luzin wrote: “As
to a constant infinitely small quantity other than zero, the modern mathematical
analysis, without discarding the formal possibility of defining the idea of a constant
infinitesimal (for instance, as a corresponding segment in some non-Archimedean
geometry), views this idea as absolutely fruitless since it turns out impossible to
introduce such an infinitesimal into calculus” [335, pp. 293–294].

The publication of the textbook Fundamentals of Infinitesimal Calculus by
Vygodskĭı became a noticeable event in Russia at that time and gave rise to a serious
and sharp criticism. Vygodskĭı tried to preserve the concept of infinitesimal by
appealing to history and paedeutics.

He wrote in particular: “If it were only the problem of creating some logical
apparatus that could work by itself then, having eliminated infinitesimals from con-
siderations and having driven differentials out of mathematics, one could celebrate
a victory over the difficulties that have been impeded the way of mathematicians
and philosophers during the last two centuries. Infinitesimal analysis originated
however from practical needs, its relations with the natural sciences and technology
(and, later, with social sciences) becoming increasingly strong and fruitful in the
course of time. Complete elimination of infinitesimals would hinder these relations
or even make them impossible” [515, p. 160].

Discussing this textbook by Vygodskĭı, Luzin wrote in the 1940s: “This course,
marked by internal integrity and lit by the great idea the author remains faithful to,
falls beyond the framework of the style in which the modern mathematical analysis
has been developed for 150 years and which is nearing its termination” [335, p. 398].

Luzin’s attitude to infinitesimals deserves special attention as apparent mani-
festation and convincing evidence of the background drama typical of the history of
every profound idea that enchants and inspires the mankind. Luzin had a unique
capability of penetration into the essence of the most intricate mathematical prob-
lems, and he might be said to possess a remarkable gift of foresight [308, 309, 337].

The concept of actual infinitesimals seemed to be extremely appealing to him
psychologically, as he emphasized: “The idea about them has never been success-
fully driven out of my mind. There are obviously some deeply hidden reasons still
unrevealed completely that make our minds inclined to looking at infinitesimals
favorably” [335, p. 396].

In one of his letters to Vygodskĭı which was written in 1934 he predicted that
“infinitesimals will be fully rehabilitated from a perfectly scientific point of view as
kind of ‘mathematical quanta.’ ”

In another of his publications, Luzin sorrowfully remarked: “When the mind
starts acquaintance with analysis, i.e., during the mind’s spring season, it is the
infinitesimals, which deserve to be called the ‘elements’ of quantity, that the mind
begins with. However, surfeiting itself gradually with knowledge, theory, abstrac-
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tion and fatigue, the mind gradually forgets its primary intentions, smiling at their
‘childishness.’ In short, when the mind is in its autumn season, it allows itself to
become convinced of the unique sound foundation by means of limits” [504].

This limit conviction was energetically corroborated by Luzin in his textbook
Differential Calculus wherein he particularly emphasized the idea that “to grasp
the very essence of the matter correctly, the student should first of all made it
clear that each infinitesimal is always a variable quantity by its very definition;
therefore, no constant number, however tiny, is ever infinitely small. The student
should beware of using comparisons or similes of such a kind for instance as ‘One
centimeter is a magnitude infinitely small as compared with the diameter of the
sun.’ This phrase is pretty incorrect. Both magnitudes, i.e., one centimeter and
the diameter of the sun, are constant quantities and so they are finite, one much
smaller than the other, though. Incidentally, one centimeter is not a small length at
all as compared for instance with the ‘thickness of a hair,’ becoming a long distance
for a moving microbe. In order to eliminate any risky comparisons and haphazard
subjective similes, the student must remember that neither constant magnitude is
infinitesimal nor any number, however small these might be. Therefore, it would
be quite appropriate to abandon the term ‘infinitesimal magnitude’ in favor of the
term ‘infinitely vanishing variable,’ as the latter expresses the idea of variability
most vividly” [504, p. 61].

1.7. A. Robinson

The seventh (posthumous) edition of this textbook by Luzin was published in
1961 simultaneously with Robinson’s Nonstandard Analysis which laid a modern
foundation for the calculus of infinitesimals. Robinson based his research on the
local theorem by Mal′tsev, stressing its “fundamental importance for our theory”
[421, p. 13] and giving explicit references to Mal′tsev’s article dated as far back as
1936. Robinson’s discovery elucidates the ideas of the founders of differential and
integral calculus, witnessing the spiral evolution of mathematics.



Chapter 2

Naive Foundations of
Infinitesimal Analysis

The most widely spread prejudice against infinitesimals resides in the opin-
ion that the technique of infinitesimal analysis is extremely difficult to master.
Moreover, it is usually emphasized that the nonstandard methods of analysis rest
on rather sophisticated sections of set theory and mathematical logic. This cir-
cumstance is irrefutable but overrated, hampering in no way comprehension of
infinitesimals.

The purpose of this chapter is to corroborate the above statement by presenting
the methodology of infinitesimal analysis at the routine level of rigor which is offered
by the modern system of mathematical education invoking the naive set-theoretic
stance that stems from Cantor. Alongside with elucidating the basic concepts of
nonstandard set theory and its principles of transfer, idealization, and standard-
ization, we pay attention also to comparing the new views of the basic concepts of
analysis with those of the reverent inventors of the past. We hope so to witness the
continual evolution and immortality of the ideas of differential and integral calculus
which infinitesimal analysis in a today’s disguise shed new light upon.

2.1. The Concept of Set in Infinitesimal Analysis

In this section we will set forth a fragment of the foundations of infinitesimal
analysis at the level of rigor close to the current practice of teaching calculus.

2.1.1. Contemporary courses in mathematical analysis rest usually on the con-
cept of set.

2.1.2. Examples.

(1) L. Schwartz, Analysis:
“A set is a collection of objects.
Examples: the set of all alumni of a school;
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the set of points on a plane;
the set of nondegenerate surfaces

of second-order in three-dimensional space;
the set N of positive integers;
the set Z of integers;
the set Q of rational numbers;
the set R of real numbers;
the set C of complex numbers” [436].

(2) V. A. Il ′in, V. A. Sadovnichĭı, and Bl. Kh. Sendov, Mathematical
Analysis:

“The concept of set was of importance when we have studied reals. We em-
phasize that we view a set as a basic concept indeterminate from the others.

In this section we will study sets of an arbitrary nature which are also called
abstract sets. This implies that the objects comprising such a set which we call
the elements of this set are not necessarily some real numbers. For instance, the
arbitrary functions, letters of an alphabet, planar figures, etc. may serve as elements
of an abstract set [189, p. 69].

(3) Yu. G. Reshetnyak, A Course in Mathematical Analysis:
“A set for us will be one of the basic mathematical concepts inexpressible in the

other mathematical concepts. Uttering the word ‘set,’ we usually imply a collection
of objects of an arbitrary nature which we will treat as a whole. Alongside this term,
set, we will use its synonyms like totality, system, assembly, and so on. We may
speak for instance about the set of solutions to an equation, about the collection of
pictures in a museum, the totality of points of a circle and so on.

The objects, comprising a set, are the elements of this set.
We assume a set given if, granted whatever object, we can determine whether

or not it is an element of the set in question” [413, p. 12].
(4) V. A. Zorich, Mathematical Analysis:

“The basic hypotheses of cantorian set theory (called ‘naive’ in common par-
lance) are as follows:

1◦ each set may consists of arbitrary distinct objects;
2◦ each set is uniquely determined by the collection of objects comprising it;
3◦ each property determines a set of objects enjoying this property.
If x is an object, P is a property, with P (x) signifying that x enjoys P , then

we let {x | P (x)} stand for the class of objects possessing P .
The objects comprising a class or a set are the elements of the class or the set.
The words ‘class,’ ‘family,’ ‘totality,’ and ‘collection’ are viewed as synonyms

of the noun ‘set’ within the naive set theory.
The following examples demonstrate the application of this terminology:

the set of letters ‘a’ in the word ‘I’;
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the set of Adam’s wives;
the collection of ten digits;
the family of Leguminosae;
the set of grains of sand on the Earth;
the totality of the points on a plane equidistant from two given points;
a family of sets;
the set of all sets.

The degree of certainty of definition varies greatly from set to set. This prompts
us the conclusion that the concept of set is not as simple and harmless as it might
seem. For example, the definition of the set of all sets leads in fact to an outright
contradiction” [541, pp. 17–18].

2.1.3. Infinitesimal or nonstandard analysis belongs in mathematical analysis.
Therefore, this discipline fully shares the above views of sets. Consequently, infini-
tesimal analysis considers as sets those and only those collections that are admitted
into the classical “standard” theory.

It is worth observing that the last statement may be reformulated as follows:
Infinitesimal analysis refuses to view as sets those and only those collections that are
rejected by the present-day mathematics. At the same time, infinitesimal analysis
rests on refining views of sets. To put it otherwise, infinitesimal analysis resides
within the realm of nonstandard set theory.

2.1.4. The naive set theory starts with the celebrated definitions by Cantor:
“A set is any many which can be thought of as one, that is every totality of definite
elements which can be united to a whole through a law,” and a set is “every
collection into a whole M of definite and distinct objects m of our perception
or our thought” [52, p. 173].

Such concepts are well known to be rather broad, this drawback bypassed by
elaborating distinction between sets and nonsets. For instance, the term “class” is
in common parlance for nominating “exceedingly huge” inappropriate collections,
implying that a class is not necessarily a set. In other words, formalization of the
concepts of the naive set theory rests on clarifying and elaborating the procedures
that introduce sets into the practice of mathematics. All sets we admit into math-
ematics enjoy the same rights. This in no way implies that all sets are equal or
bear no distinctions but means simply that all sets are akin, maintaining the same
status of an ordinary member of the “universe of sets.”

2.1.5. The cornerstone of nonstandard set theory is the following perfectly
transparent underlying principle: The sets differ from each other: every set is
either standard or nonstandard. In a way, it would be more correct to speak of the
theory of sets, standard and nonstandard, rather than nonstandard set theory.

The phrase “A is a standard set” conveys the intuitive idea that A admits
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description in accurate and unambiguous terms. We may even say that such an A
becomes an “artifact” of the cognition activities of human beings. The concept of
standardness draws a borderline between the objects resulting from explicit math-
ematical constructions, primarily, by the theorems of unique existence, which are
standard sets, and the objects originating in research in implicit, indirect manner,
which are nonstandard sets.

Such objects as the numbers π, e, and sin 81 are determined uniquely in much
the same way as the set of natural numbers N and the set R of real numbers also
called the reals. These are standard objects. On the other hand, an arbitrary
“abstract” real number arises implicitly on assuming the set-theoretic stance of
mathematics. Such an “abstract” real number is by definition just a member of
the standard set R, the reals. This is a routine method of introducing objects into
mathematical practice: a vector is an element of a vector space; a filter is a set of
some subsets of a given set which enjoy a few specific properties; etc.

Therefore, there are standard reals and nonstandard reals; there are standard
vectors and nonstandard vectors; there are standard filters and nonstandard filters;
etc. In general, there are standard sets and nonstandard sets.

By way of example, let us consider the set of grains of sand on the Earth.
Archimedes wrote in his classical treatise Psammiths, the Sand-Reckoner, that:

“. . . of the numbers named by me and given in the work which I sent to Zeuxippes
some exceed not only the number of the grains of sand equal in magnitude to the
Earth filled up in the way described but also that of a mass equal in magnitude to
the universe ” [2, p. 358].

Therefore, the number of the grains of sand on the Earth presents a particular
natural number. However, nobody can either determine or nominate this number
precisely, since it is absolutely impossible to implement any sequential count of all
grains of sand. Hence, the number of the grains of sand on the Earth is expressed
by an “inassignable,” “indeterminate”—nonstandard—natural number and so the
set of the grains of sand is nonstandard.

It goes without saying that the above views of distinction between standard
and nonstandard sets are auxiliaries for mastering the rules of handling these sets
in practice. We encounter a complete analogy with the situation in geometry where
the intuitive visualizations of spatial forms help in elaborating the skills of using
the axioms of geometry which, in the long run, are the only source of the rigorous
definitions of points, straight lines, planes, and other geometrical objects. Following
Alexandrov, we must observe that “axioms themselves need substantiation since
they only summarize the available data, while starting the logical construction of
a theory” [7, p. 51]. Therefore, we are impelled to precede the formal introduction
of the axioms of nonstandard set theory by discussing them qualitatively.

As we already know, any nonstandard set theory begins with the primary obser-
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vation that we distinguish two types of sets: standard and nonstandard. Moreover,
we accept another three postulates or, to be more exact, versions of the principles
of infinitesimal analysis.

2.1.6. Transfer Principle. Each mathematical proposition claiming the ex-
istence of some set simultaneously determines a standard set.

In other words, the unique existence theorems of mathematics provide the
direct and explicit definitions of new mathematical entities. An equivalent refor-
mulation of this principle, elucidating the reasons behind its official title, reads:
In order to validate some claim about all sets, it suffices to demonstrate the claim
in the case of standard sets. Intuitive substantiation of the transfer principle lies
with the evident fact that, making every judgement about arbitrary sets, we actu-
ally deal only with the already available sets we have defined uniquely, i.e., with
standard sets.

Pondering over the meaning of the transfer principle, we see that it contains
two aspects of the views of standard entities. The first proclaims that new standard
objects result from those already available by descriptions similar to the theorems
of unique existence, which postulates the possibility of defining standard objects
by recursion. This circumstance may be rephrased as the conclusion that each
nonempty standard set contains a standard element and each entity is standard
that results from standard elements by some unique construction or definition.

The second aspect of views of standardness, as expressed by the transfer prin-
ciple is interwoven with the first, and means representativeness of the standard
universe, i.e. the class of standard sets is sufficiently large for reflecting all features
of the universe of sets. In other words, this postulates the possibility of studying
arbitrary sets by induction starting from actually available standard entities, i.e.,
cognizability of ideal constructions of set theory.

2.1.7. Idealization Principle. Each infinite set contains a nonstandard ele-
ment.

This postulate conforms perfectly with the most general views of infinity. The
idealization principle will appear often in stronger forms reflecting the inexhaustible
variety of ideal objects. For instance, one of the popular nonstandard axioms
reads: All standard sets are members of some finite set. The number of elements
of such a “universal” set is huge and, which is most important, “inassignable,”
“inexpressible,” and “unrealizable.” In other words, the size of a universal set is
nonstandard and so it is no surprise that every universal set is nonstandard either.

It is worth observing that care must be exercised in handling the above postu-
lates as on the other occasions by the way. Indeed, every standard set is uniquely
determined from its standard elements in the standard environment—in the com-
munity of its next of kin, other standard sets. However, an infinite standard set
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never reduces to its standard elements since it always contains some nonstandard
element. There are many nonstandard sets containing each standard element of the
original set and having no other standard elements.

Another circumstance is very important to mention: the term “proposition”
in the transfer principle deserves extreme caution in much the same way as in the
conventional set theory although. Transfer is fully legitimate inasmuch as we apply
it to the common mathematical proposition not involving the property of a set
to be or not to be standard which we have introduced at a semantic level in the
capacity of another indeterminate basic concept of nonstandard set theory. Indeed,
were it otherwise, we would apply transfer to the claim that every set is standard,
arguing as follows: Since every standard set is standard, every set is standard by
transfer. This would yield a contradiction with idealization. Therefore, transfer
is not applicable to the claim that every set is standard and so the standardness
predicate is a property inexpressible in the naive set theory.

2.1.8. Standardization Principle. To each standard set and each property
there corresponds a new standard set comprising precisely those standard elements
of the original set that possess the property under study.

In symbols, let A be a standard set, and let P be an arbitrary property which
may involve the standardness predicate in its formulation. The standardization
principle claims that there is a standard set which is usually denoted by ∗{x ∈ A :
P (x)} and maintains the relation

y ∈ ∗{x ∈ A : P (x)} ↔ y ∈ {x ∈ A : P (x)}

for all standard y. The set ∗{x ∈ A : P (x)} is often referred to as the standardiza-
tion of A or even briefer. We write ∗A, omitting the parameters that participate in
the definition of the standardization of A. The intuitive idea behind the standard-
ization principle reflects the experience showing that if some explicit descriptions of
mathematical objects are available then we may use any definite rules for assigning
new entities of further mathematical research. Standardization extends the conven-
tional comprehension principle of set formation which allows us to deal with a new
subset of a given set by collecting the elements with some prescribed property.

Thinking over the standardization principle, it is worth noting that nothing
is claimed about the nonstandard elements of the result of standardization. This
is not by chance. The point is that the two possibilities are open: a nonstandard
element can enjoy the property we use in standardization or it may fail to possess
this property.

The standardization principle must be used with the same care as elsewhere:
Attempts at standardizing some “universal” set that contains all standard sets
would result in a blatant contradiction.
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2.1.9. The above postulates give grounds for axiomatic presentations of non-
standard set theory. We will discussed these in more detail in Chapter 3. Mean-
while, we may proceed along the lines of the Zorich textbook and remark: “As
a whole, each of the available axiomatics is such that, on the one hand, it elimi-
nates the known contradictions of the naive theory and, on the other hand, it ensures
freedom of operation with concrete sets residing in various sections of mathematics
and, before all, in mathematical analysis understood in a broad sense of the word”
[541, pp. 18–19].

2.2. Preliminaries on Standard and Nonstandard Reals

We now start an acquaintanceship with the surprising features of the classical
real axis which are disclosed by the principles of infinitesimal analysis.

2.2.1. Given a set A, we will write a ∈ ◦A to abbreviate the expression “a is
a standard member of A.”

2.2.2. The following hold:
(1) If A is a set satisfying 1 ∈ A and such that n ∈ ◦N implies n ∈ A →

n + 1 ∈ A then A contains all standard natural numbers: ◦N ⊂ A
(= the induction principle on standard naturals);

(2) Every finite set (i.e., a set admitting no injective mappings onto any
of its proper subsets), consisting of standard elements, is standard
itself;

(3) Every finite standard set has only standard elements;
(4) If a set contains only standard members then it is finite;
(5) The totality ◦A is not a set for every infinite (= not finite) set A.

� (1): By standardization, it is possible to consider the following standard
subset of N, the set of natural numbers:

B := ∗{n ∈ N : n /∈ A}.

Assuming that B �= ∅, observe that B has the least element m which is standard
by transfer. By hypothesis, m �= 1 since 1 ∈ A. Moreover, m /∈ A and so m−1 /∈ A.
By transfer, m − 1 ∈ ◦

N, i.e., m − 1 ∈ B. It follows that m − 1 ≥ m, which is
a contradiction. Hence, B = ∅, i.e., (∀n ∈ ◦

N)(n ∈ A), implying the inclusion
◦
N ⊂ A.

(2): This is immediate by transfer.
(3): Each standard singleton contains a unique and, hence, standard element.

The size, i.e. the number of elements, of a finite standard set A is also standard by
transfer. Moreover, A = (A− {a}) ∪ {a} for all a ∈ A. The number of elements of
A− {a} is also standard, and we are done by the induction principle (1).
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(4): This is straightforward by idealization.
(5): Assume that ◦A is a set. The set ◦A is finite by (4) and standard by (2).

By transfer, A = A◦ and so A is finite, which is a contradiction. �

2.2.3. A natural number N is nonstandard (i.e., inassignable) if and only if N
is greater than every standard natural number. In symbols,

N ∈ N − ◦N ↔ (∀n ∈ ◦N)(N > n).

� It suffices to note that if n ∈ N is standard and N ∈ N is less than or equal
to n then N is standard for instance by 2.2.2, i.e., N ∈ ◦N. �

2.2.4. In view of 2.2.3, a nonstandard natural number is called unlimited,
illimited, actually infinite, or even infinite, which abuses the language.

It is a widely-spread opinion that “Euler claimed rather light-mindedly that
1/0 is infinite, although he never found it worthwhile to define what infinity is; he
just invented the notation ∞.” This opinion is clearly false since Euler pointed out
explicitly in [110, p. 89] that “an infinite number and a number greater than any
assignable number are synonyms.”

The fact that N is an unlimited number is expressed symbolically as N ≈ ∞
or, in more detail, N ≈ +∞.

We must mention that the epithet “infinite” for an unlimited number N leads
to confusion. Indeed, if we strictly pursue the set-theoretic stance then we view N
primarily as a set and this set N is clearly finite in the rigorous set-theoretic sense
(cf. 2.2.2(2)). The phrase “N is an infinite number” suggests misleadingly that N
is an infinite set. In actuality, N is a finite set whose size is nonstandard. Only this
meaning is implied in the concept of an infinitely large natural number N within
the set-theoretic credo of contemporary mathematics.

2.2.5. The following hold:
(1) (N ≈ +∞ and M ≈ +∞) → (N +M ≈ +∞ and NM ≈ +∞);
(2) (N ≈ +∞ and n ∈ ◦

N) → (N + n ≈ +∞, N − n ≈ +∞, and
nN ≈ +∞);

(3) N ≈ +∞ ↔ Nn ≈ +∞ for all n ∈ ◦N;
(4) Each composite unlimited number has unlimited divisors;
(5) (N ≈ +∞ and M ≥ N) → M ≈ +∞;
(6) “If 1

0
denotes some infinitely large number then, since 2

0
is undoubt-

edly the doubled 1
0 , it is clear that every number, even infinitely

large, can be made still two or several times greater” (Euler, [109,
p. 620]);

(7) Let t be a positive real. The integral part of t is unlimited if and
only if so is t, i.e., t is greater than every standard real;
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(8) Let ψ : N → N be a strictly increasing standard function. Then

N ≈ +∞ ↔ ψ(N) ≈ +∞

for N ∈ N.

� We will demonstrate only (7) and (8), since the other claims are easier to
check.

(7): If the integral part s of a real t is unlimited and, nevertheless, (∃ r ∈ ◦R)
(t ≤ r) then t ≤ n for some n ∈ ◦

N. Hence, n + 2 ≤ s ≤ t ≤ n, which is
a contradiction. Therefore, t ≈ +∞.

Conversely, if t ≈ +∞ then s+ 1 ≥ t, where s is the integral part of t. Hence,
s+ 1 ≈ +∞, which yields s ≈ +∞ by 2.2.5(2).

(8): ←: Assume first that ψ(N) ≈ +∞ and n ∈ ◦N. Then ψ(n) is standard
by transfer, i.e., ψ(n) ∈ ◦N. Therefore, ψ(N) > ψ(n). Since ψ increases strictly, it
follows that N > n, i.e., N ≈ +∞.

→: Assume now that N ≈ +∞. Then N > n for all n ∈ ◦N. Hence, ψ(N) >
ψ(n) ≥ n. Thus, ψ(N) ≈ +∞. �

2.2.6. Let R stand for the extended reals, i.e., R := R ∪ {−∞,+∞} with +∞
and −∞ the greatest and least elements appended to R formally. It is convenient
to call ∞ := {+∞,−∞} the (symbolic) potential infinity and to speak of +∞ or
−∞ as about the positive or negative (symbolic) infinity.

A real t ∈ R is limited provided that there is a standard number n ∈ ◦
N

satisfying |t| ≤ n. We write t ∈ ltd(R) or t ∈ ≈R whenever t is a limited element
of R. A member of R that fails to be limited is unlimited or actually large. We also
write t ≈ +∞ for t /∈ ≈R and t > 0. The records t ≈ −∞ and t ≈ ∞ are understood
by analogy. It is a common practice to agree that t ≈ +∞ ↔ t ∈ μ(+∞), using
the expressions like “t lies in the monad of the point at infinity or the monad of the
plus-infinity.”

An element t in R is infinitesimal or, amply, infinitely small provided that
|t| ≤ 1/n for all n ∈ ◦N. In this event we write t ≈ 0 or t ∈ μ(R) and say that t
belongs to the monad of zero. (The symbol μ(R) is common alongside the notation
μ(0) which signifies a close relationship with the unique separated vector topology
on R.) Infinitesimals are also referred to as actual infinitely small quantities; the
unsuccessful term “differentials” have little room.

If x ≤ y and the difference between x and y fails to be infinitesimal then we
write x � y. Since t ∈ ≈R ↔ (∀N ≈ +∞)(|t| � N); therefore, we let the record
|t| � +∞ symbolize the fact that t ∈ R is a limited real.

2.2.7. The term monad (Móναζ) dates from antiquity. It is traditionally
translated as one or unit with no sufficient ground for that. By Definition 1 of
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Book VII of Euclid’s Elements, a monad “is 〈that〉 by virtue of which each of the
things that exist is called one” [108, p. 9].

We now exhibit some qualitative observations about the structure of a monad
as expressed by Sextus Empiricus:

“Pythagoras said that the origin of the things that exist is a monad by virtue
of which each of the things that exist is called one” [440, p. 361];

“A point is structured as a monad; indeed, a monad is a certain origin of
numbers and likewise a point is a certain origin of lines” [440, p. 364];

“A whole as such is indivisible and a monad, since it is a monad, is not divisible.
Or, if it splits into many pieces it becomes a union of many monads rather than
a [simple] monad” [440, p. 367].

We will study the status and structure of monads in great detail later. We
now start with considering the basic properties of the collection of infinitesimals or,
which is the same, the monad comprising all infinitely small reals.

2.2.8. The following are valid:
(1) (s ≈ 0 and t ≈ 0) → s+ t ≈ 0;
(2) (t ≈ 0 and s ∈ ≈R) → st ≈ 0;
(3) z ≈ 0 ↔ 1/z ≈ ∞ (for z �= 0):

“If z becomes a magnitude less than every assignable magnitude
whatever, i.e., infinitely small, then the value of the fraction 1

z
must

become greater than every assignable magnitude, i.e., an infinitely
large magnitude” (Euler [110, p. 93]).

(4) If t ≈ 0 and t is standard then t = 0.

� (1): Take n ∈ ◦N. Clearly, |s| ≤ (2n)−1 and |t| ≤ (2n)−1. Hence, |s + t| ≤
|s| + |t| ≤ (2n)−1 + (2n)−1 = n−1, and so s+ t is infinitesimal.

(2): Assume that s ∈ ≈R and s �= 0 (otherwise there is nothing left to prove).
Take n ∈ ◦N. By hypothesis, |s| ≤ m for some m ∈ ◦N. Therefore, |t| ≤ (nm)−1.
It follows that |st| ≤ |s| |t| ≤ m(nm)−1 = n−1, i.e., st ≈ 0.

(3): Let z be a limited nonzero real; i.e., 0 < |z| ≤ |n|, where n ∈ ◦N. Obviously,
|1/z| ≥ 1/n, i.e., 1/z is not infinitesimal. Conversely, if z ≈ ∞ then |z| ≥ n for
every limited n, which implies z−1 ≈ 0.

(4): Note that |t| ≤ 2−1|t| provided that t is standard, which is impossible for
|t| > 0. Hence, t = 0. �

2.2.9. The monad μ(R) is not a set.

� Assume the contrary. Then μ(R) is a subset of R. Moreover, t ≥ μ(R)
for all t > 0, t ∈ ◦

R. Hence, t ≥ s := supμ(R). Obviously, s is a nonzero
infinitesimal. However, 2s ≥ s → s = 0, which contradicts the existence of nonzero
infinitesimals. �
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2.2.10. When we deal with reals, it is convenient to distinguish various cases
of their interlocation.

Given s, t, r ∈ R, we write s = rt or s ≈ t(mod r) provided that (s − t)/r ≈ 0
(here r �= 0). In this event we say that s and t are r-close or infinitely close
modulo r. In case r = 1, we simply write s ≈ t and call s and t infinitely close.

The founders of infinitesimal analysis often made no distinction between the re-
als infinitely close to a given real and this real itself. Euler expressed this as follows:
“An infinitely small quantity is exactly equal to zero” (or, in another translation,
“an infinitely small quantity actually will be = 0”) [110, p. 92]. This explains the
record x = y for x ∈ R and y ∈ ◦R satisfying x ≈ y. In this respect Leibniz re-
marked: “I think that those things are equal not only whose difference is absolutely
nothing but also whose difference is incomparably small” [311, p. 188], empha-
sizing that “the error is inassignable and cannot be found by means of whatever
construction” [534, p. 195].

Given s, t ∈ R, we write s = O(t) for s/t ∈ ≈R. In case s = O(t) and t = O(s)
we then say that s and t have the same order. If s/t ≈ 0 then we write s = o(t)
and say that s is of higher order than t. Finally, if s − t = o(t) and s − t = o(s)
then we call s and t equivalent and write s ∼ t.

Presenting his views on higher order infinitesimals, Leibniz wrote: “I would
like to add one more remark in order to prevent all arguments against the reality
of differences of any orders, and, namely, that they can always be expressed in
proportional finite straight lines... . I have already explained how to express first-
order differences with conventional finite straight lines when first presenting the
elements of this calculus in ‘Acta’ in October 1684” (see [534, pp. 188–190], cf. 1.1).

2.2.11. Given s, t ∈ R, put

s ∈ O := O(t) ↔ s = O(t); s ∈ o := o(t) ↔ s = o(t).

The Landau rules hold:

O +O ⊂ O; O + o ⊂ O; o+ o ⊂ o;
Oo ⊂ o; OO ⊂ O; oo ⊂ o.

� For definiteness, demonstrate the relation O + o ⊂ O. To this end, assume
that s := O(t) and r := o(t). Then s/t ∈ ≈R and r/t ≈ 0. Hence, (s+ r)/t ∈ ≈R,
i.e., s+ r = O(t). �

2.2.12. Given s, t ∈ R, the following are equivalent:
(1) s ∼ t;
(2) s− t = o(t) or t− s = o(s);
(3) s/t ≈ 1 or t/s ≈ 1;
(4) s/t ≈ 1 and t/s ≈ 1.
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� It is clear that (1) → (2). If, for instance, t − s = o(s) then (t − s)/s ≈ 0;
i.e., t/s − 1 ≈ 0. Hence, 1 − ε ≤ t/s ≤ 1 + ε for ε > 0 and ε ∈ ◦

R. Therefore,
(1 − ε)−1 ≥ s/t ≥ (1 + ε)−1 and ε/(1 − ε) ≥ s/t− 1 ≥ ε/(1 + ε), i.e., s/t ≈ 1. We
have thus demonstrated that (2) → (3) → (4), while the implication (4) → (1) is
obvious. �

2.2.13. Given N ∈ N, assume that αk, βk ∈ o(1) are infinitesimals satisfying
αk ∼ βk for k := 1, . . . , N . Then

(1)
∑N

k=1 αk ∼ ∑N
k=1 βk for αk, βk ≥ 0;

(2) If
∑N
k=1 |αk| = O(1) then

N∑

k=1

αk ≈
N∑

k=1

βk.

� To prove, note that 2.2.12 yields −εαk + αk ≤ βk ≤ αk + εαk for every
standard ε > 0, which implies (1). Moreover, if t :=

∑N
k=1 |αk| ∈ ≈R then

∣
∣
∣
∣

N∑

k=1

(αk − βk)
∣
∣
∣
∣ ≤

N∑

k=1

|αk − βk| ≤ ε

n

N∑

k=1

|αk| ≤ ε

provided that n ∈ ◦N satisfies |t| ≤ n. �
2.2.14. There is a natural number N such that for each standard real t in R

the product Nt is infinitely close to some natural number.

� Consider some finite subset {x1, . . . , xn} of R that contains all standard reals,
and take some positive infinitesimal ε > 0, ε ≈ 0. The Dirichlet principle of number
theory reads: To all ε > 0 and x1, . . . , xn ∈ R there is an integer N ∈ N such that
each of the products Nx1, . . . , Nxn differs from some integers by at most ε. We are
done on to apply this theorem with the chosen parameters. �

2.2.15. It is worth observing that the infinite proximity (as well as equivalence)
of reals is not a subset of the cartesian square R × R. Were it otherwise, the image
of zero under this relation, which is the monad μ(R), would be a set which is
impossible by 2.2.9. Note also that the monad μ(R) is indivisible in the following
implicit sense: n−1μ(R) = μ(R) for every standard n.

Pondering over the role of the monad μ(R) in the construction of the system
of integers, it stands to reason to reconsider Definition 2 of Book VII of Euclid’s
Elements which ends as follows: “... and a number is a magnitude composed of
monads” [108, p. 9].

Inspecting the “nonstandard” extended reals R, we see this set and, which is
most nontrivial, its limited part ≈R to be the collection of monads about stan-
dard points. A more rigorous formulation of this statement rests on the following
fundamental fact whose proof leans essentially on the standardization principle.
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2.2.16. To each limited real t there corresponds a unique standard real infin-
itely close to t.

� Given t ∈ ≈R, use standardization and find the standard set A := ∗{a ∈
R : a ≤ t}. Obviously, A �= ∅ and A ≤ n whenever n ∈ ◦N satisfies −n ≤ t ≤ n.
Indeed, a ≤ t ≤ n for every standard a ∈ A and so A ≤ n by transfer. Since R is
complete; therefore, A has a unique least upper bound, s := supA ∈ R. Obviously,
s is standard by transfer. We will demonstrate that s ≈ t. If not, we would have
|s− t| > ε for some standard ε > 0. If s > t then s > t+ε and so s ≥ a+ε for every
standard a in A. Hence s ≥ s + ε, which is impossible. The remaining possibility
s < t also leads to a contradiction since then we would find that t > s + ε and,
again, s ≥ s+ ε. �

2.2.17. The standard real infinitely close to a limited real t ∈ ≈R is the stan-
dard part or shadow of t. The standard part of t is denoted by st(t) or ◦t.

We also agree for the sake of uniformity and convenience that ◦t = st(t) = +∞
whenever t ≈ +∞ and ◦t = st(t) = −∞ whenever t ≈ −∞ (on assuming as usual
that +∞ ≈ +∞ and −∞ ≈ −∞). Therefore, to each (standard) t ∈ R we put into
correspondence the monad μ(t) of t comprising the elements s of R for which s ≈ t.

− ∞
M≈ − ∞ t∈≈IR °t∈°IR 0 N≈ + ∞

+ ∞μ(t) μ(IR)

μ(− ∞) ≈IR μ(+ ∞)
Fig. 2

We may summarize the above as follows: Infinitesimal analysis imagines the
extended reals as shown in Fig. 2. Distinguishing a standard number ◦t on the axis
R, we draw a big dot, a blob, to symbolize the monad μ(◦t) which is the “indivisible
and explicit” image of ◦t. Observing the region about t with a strong microscope,
we will see in the eyepiece a blurred and dispersed cloud with unclear frontiers
which is a visualization of μ(t).

Under greater magnification, the portion of the “point-monad” we are looking
at will enlarge, revealing extra details whereas disappearing partially from sight.
However, we are still inspecting the same standard real which you might prefer to
percept as described by this process of “studying the microstructure of a physical
straight line.”

2.2.18. The following hold:
(1) If s ∈ R and t ∈ ≈R then

st(s+ t) = st(s) + st(t); st(st) = st(s) st(t);
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(2) If s, t ∈ R and s ≤ t then ◦s ≤ ◦t;
(3) If s, t ∈ R then

(∃ t′ ≈ t)(t′ ≥ s) ↔ ◦s ≤ ◦t ↔ (∀ ε > 0, ε ∈ ◦R)(s ≤ ◦t+ ε);

(∀ t′ ≈ t)(t′ ≥ s) ↔ ◦s < t (◦t ∈ ◦R);

(4) The standard part operation over the reals is not a set (hence, nor
a function).

� (1): Prove by way of illustration that the standard part operation is mul-
tiplicative. Clearly, s ≈ st(s) → ts ≈ t st(s). Moreover, t ≈ st(t) → st(s)t ≈
st(t) st(s) which yields, st ≈ st(s) st(t). We are done on recalling that the product
of standard reals is standard too.

(2): Assume that s < t (otherwise everything is obvious). If s ≈ t then st(s) =
st(t). Were this otherwise, the monads μ(s) and μ(t) would be disjoint. Hence,
◦s < ◦t.

(3): In the initial equivalence, the implication to the right is obvious, while the
reverse ensues from the fact that s ≤ ◦t+ s− ◦s for s ≤ ◦t. Moreover, s < t+ ε →
st(s) ≤ st(t) + st(ε) = ◦t+ ε for every ε > 0, ε ∈ ◦R. This implies by transfer that
◦s ≤ ◦t+ ε for all positive ε. Hence, ◦s ≤ ◦t.

Assume conversely that ◦s < ◦t. Since the monads μ◦(s) and μ(◦t) are disjoint;
therefore, s < ◦t+ ε for all ε > 0, ε ∈ ◦R.

To check the arrow to the right in the lower equivalence, note that s does not
belong to the monad μ(t) of t. Hence, the whole of the monad of s lies to the left
from the monad of t; in symbols, μ(s) < μ(t). Therefore, ◦s < ◦t. To prove the
remaining implication, observe finally that μ(t) > ◦s or t ∈ ≈R whenever ◦s = −∞.
If ◦s ∈ ◦R then μ(◦s) < ◦t. Hence, t′ ≥ s whenever t′ ≈ t.

(4): If the law t �→ st(t) were a set then the monad μ(R) would also be a set
(since t ∈ μ(R) ↔ ◦t = 0). It suffices to appeal to 2.2.9. �

2.3. Basics of Calculus on the Real Axis

We now discuss the fundamental notions of differential and integral calculus
for functions in a single real variable.

2.3.1. Theorem. If (an) is a standard sequence and a ∈ R is a standard real
then

(1) a is a partial limit of (an) if and only if a = ◦aN for some unlimited
natural N ;

(2) a is the limit of (an) if and only if aN is infinitely close to a for all
unlimited naturals N ; in symbols,

a = lim an ↔ (∀N ≈ +∞)(aN ≈ a).
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� These claims are demonstrated similarly. Therefore, we prove one of them,
for instance, (2).

Assume for the sake of definiteness that an → a and a ∈ R (the cases a = +∞
and a = −∞ are settled by the same scheme). To each ε > 0 there is some n ∈ N

such that |aN − a| ≤ ε whenever N ∈ N and n ≤ N . By transfer, to each standard
ε > 0 there is some standard n with the same property. Every unlimited N is
greater than n and so |aN − a| ≤ ε. Since ε is arbitrary, it follows that aN ≈ a.

Assume conversely that ◦aN = a for all N ≈ +∞ and, for the sake of defi-
niteness and diversity, a := −∞. Take an arbitrary standard number n ∈ ◦N. If
N ≥ M with M unlimited then aN ≤ −n. Given an arbitrary standard n, we have
thus proved “something” (namely, “something” = (∃M)(∀N ≥ M)(aN ≤ −n)).
By transfer, this “something” holds for all n ∈ N, which means clearly that
an → −∞. �

2.3.2. We proudly note the merits of the above tests. We have demonstrated
that the partial limits of a standard sequence are exactly those “assignable” reals
that correspond to unlimited indices. In other words, each partial limit of (an) is the
“observable” value of some remote entry of (an). The tests of Theorem 2.3.1 in the
standard environment have a clear intuitive meaning in contract to the conventional
definitions of partial limit as the limit of some subsequence of (an) or as such a point
of the real axis whose every neighborhood intersects with every “tail” of (an).

It is illuminative to look at the explanation of the concept of a partial limit
of a [generalized] sequence with which Luzin furnished the formulation of the usual
definition (see [334, pp. 98–99]): “The reader will undoubtedly find this definition
cumbersome and abstract at the first glance. However, the feeling of obscurity will
vanish if the reader invokes the concepts of ‘variable’ and ‘time’ which he or she is
grown accustomed to.

Indeed, what does this definition intend to convey if translated into the lan-
guage of ‘variable’ and ‘time’? To grasp this, let us consider a variable x that
ranges over a given numerical sequence M , shifting from the preceding indices to
the succeeding ones ... in the language of a variable and time this definition means
that a ([partial]) limit of a numerical sequence M is such a real number a that the
variable x cannot leave for ever, since the values of x become however ‘close to a’
from time to time.”

Using the same language in infinitesimal analysis, we may express this defini-
tion in the most lucid and comprehensible manner: “If the variable x is infinitely
close to a at some remote moment of time then a is a [partial] limit of M .”

Continuing the discussion of the tests of Theorem 2.3.1, we recall the following
directions by Courant:

“Motivation of the rigorous definition of limit. It is no wonder that
anyone who first hears the abstract definition of the limit of a sequence will fail to
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comprehend it completely from the very beginning. This definition of limit arranges
a game between two persons, A and B: A demands that a constant quantity a
be approximately presented by some entry an so that the deviation be less than
an arbitrary bound ε = ε1 imposed exclusively by A. B meets this demand by
proving the existence of such an integer N = N1 that all an satisfy the demand
of ε1 from some aN on.

Then A wants to demand a new smaller bound, ε = ε2, while B, in turn, meets
this demand by finding a new integer N = N2 (possibly, much greater), and so on.
If B manages always to meet the demand by A of a however small bound then we
have the situation that is symbolically expressed as an → a.

Undoubtedly, there is a psychological difficulty in mastering this rigorous def-
inition of passage to the limit. Our mental apprehension imposes upon us the ‘dy-
namical’ idea of passage to the limit as a result of motion: we ‘run’ through the
sequence of numbers 1, 2, 3, . . . , n, . . . and observe the behavior of the sequence an.
We harbor the feeling that approximation must be visible during our ‘run.’ This
‘natural’ formulation, however, does not allow a rigorous mathematical rephrasal.

To arrive at the rigorous definition, the order of consideration should be re-
versed: Instead of starting with the argument n and proceeding further with the
dependent variable an corresponding to n, we base our definition on the steps that
enable us to validate the statement an → a successively.

Pursuing this inspection, we must start with choosing arbitrarily small interval
about a, and then to check whether the condition of hitting the interval is fulfilled
by assuming the variable n sufficiently large. It is in this way that we come to the
rigorous definition of limit, assigning to the expressions ‘arbitrarily small bound’
and ‘sufficiently large’ n the symbolic denotations ε and N” [64, pp. 66–67].

Compare this with the infinitesimal limit test 2.3.1(2) which reads: “If the
general entry aN is indistinguishable from a standard number a for all infinitely
large N then a is declared (and, in fact, is) the limit of (an).” It is beyond a doubt
that the above chant successfully expresses the dynamical idea of passage to the
limit.

Using the tests of Theorem 2.3.1 in the standard environment, we should always
bear in mind that they apply only to standard sequences, failing in general for
nonstandard “inassignable” sequences. For instance if we define the general entry
as an := N/n, with N ≈ +∞, then an → 0 whereas aN = 1.

In other words, the tests of Theorem 2.3.1 supplement the contemporary views
of limits rather than refuting or neglecting them. We may elaborate this claim as
follows: Defining the concept of a convergent standard sequence, by standardization
we give birth to the standard set of all convergent sequences. All in all, the con-
ventional ε-N -definition and the nonstandard definition with actual infinites and
infinitesimals coexist in a rock-solid unity.
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It is also worth emphasizing that the particular applications in practice (for
instance in physics) often supply us with some “actual,” “assignable”—standard—
sequences. Moreover, these particular applications provide a definite “rigorous”
meaning for an infinitely large quantity by overtly invoking or even specifying some
horizon, i.e., an upper bound beyond which the numbers are proclaimed indis-
cernible. The problems of existence are also solved in practice on some semantic
basis: were a physically meaningful speed absent, we would have no reasons to
seek for it. Therefore, we encounter the problem of recognizing the limit of some
“assignable”—standard—sequence.

Infinitesimal analysis gives an easy receipt: “Take a general entry of your se-
quence with whatever (no matter which) infinitely large index; recognize the value
of this entry up to infinitesimal and, surprise, here goes the limit.” This let us
comprehend better the reasons behind the infinitesimal methods of the founders
of differential and integral calculus who were seeking the answers to the problems
about the exact values of particular “standard” objects: areas of figures, equations
of tangents to “named” curves, integrals of explicitly written analytical expres-
sions, etc.

2.3.3. Among the most important new contribution of infinitesimal analysis
we should indicate the definition of limit for a finite sequence a[N ] := (a1, . . . , aN),
with N an infinitely large natural number. The intuitive idea behind the definition
to follow happily reflects the practical tools for finding various numerical character-
istics of the huge totalities of distinct entities such as thermodynamic parameters
of fluid media, estimates for societal demand, etc.

2.3.4. The real a is a microlimit or nearlimit value of a finite sequence a[N ]
provided that aM ≈ a for all infinitely large M less than N . In this event we also
say that a[N ] is nearly convergent to a.

If a is a limited real then the standard part ◦a of a is the limit or S-limit of
a[N ]. In this event we write either ◦a = ≈ lim a[N ] or ◦a = S-limn≤N an. So,

◦a = ≈ lim a[N ] ↔ a ∈ ≈R ∧ (∀M ≈ +∞,M ≤ N)(aM ≈ a).

2.3.5. Assume that (an) is a standard sequence, N ≈ +∞, and a ∈ ≈R. Then
the following are equivalent:

(1) a is a microlimit of a[N ];
(2) (an) converges to ◦a.

� The implication (2) → (1) follows from 2.3.1(2). To prove (1) → (2), take
an arbitrary standard ε > 0 and put

A := {m ∈ N : (∀n)((m ≤ n ≤ N) → |an − ◦a| ≤ ε)}.
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The set A is nonempty since N ∈ A. Hence, A contains the least element m. If
m ≈ +∞ then m − 1 ≈ +∞ and m − 1 ∈ A by hypothesis. It follows that m is
standard. Moreover, if n ≥ m and n is standard, then n ≤ N and |an − ◦a| ≤ ε.
Hence, (∀ ε ∈ ◦R, ε > 0)(∃m ∈ ◦N)(∀n ∈ ◦N)(n ≥ m → |an−◦a| ≤ ε). By transfer,
we conclude that (an) converges to ◦a. �

2.3.6. The above proposition rigorously corroborates the heuristic “granted
horizon principle” which prompts us to select some “physically” or “economically”
actual infinite as a measure of presentability as well as a natural bound for the
samples under study.

2.3.7. Examples.

(1) limn→∞ n−1
n

= 1.
� Take an infinitely large ı and note that ◦

(
ı−1
ı

)
= ◦ (1 − 1

ı

)
= 1. In more

detail, Euler wrote: “Since ı is an infinitely large number; therefore, ı−1
i = 1.

Indeed, it is clear that the greater number substitute for ı, the closer the magnitude
of ı−1

ı
will become to one; if ı is greater than any assignable number then the fraction

ı−1
ı will become equal to one” [109, p. 116]. �

(2) limn→∞ n
2n = 0.

� If N is infinitely large then 2N = (1 + 1)N ≥ N(N − 1)/2, i.e., 0 ≤ N/2N ≤
2/(N − 1) ≈ 0. Hence, N/2N ≈ 0. �

(3) limn→∞ sin(2πn!e) = 0.
� Given a natural n, note that

0 < e−
n∑

k=1

1
k!
<

3
(k + 1)!

.

Hence,

0 ≤ N !
(

e−
N∑

k=1

1
k!

)

≤ 3N !
(N + 1)!

=
3

N + 1
≈ 0

for all unlimited N . Put x := 2πN !e and y := 2πN !
∑N
k=1 1/k!. It follows that

x ≈ y and so sin y = 0. Obviously,

| sinx− sin y| = 2
∣
∣
∣
∣cos

x+ y

2
sin

x− y

2

∣
∣
∣
∣ ≤ |x− y|,

which implies that sinx ≈ y. �
(4) Let (an) be a sequence such that the sequences (a2n), (a2n+1),

and (a3n) are convergent. Then (an) is convergent too.
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� By transfer, we may assume (an) standard. Given an infinitely large N ,
observe that 2N ≈ +∞, 2N + 1 ≈ +∞, and 3N ≈ +∞. Consequently, a2N ≈ a,
a2N+1 ≈ b, and a3N ≈ c for some standard numbers a, b, and c. In particular,
a6N ≈ a ≈ c and a6N+1 ≈ b ≈ c. Hence, a = b = c, which completes the proof. �

(5) If (an) is a vanishing sequence then

lim
n→∞

a1 + · · · + an
n

= 0.

� By transfer, we may assume (an) standard. Take N ≈ +∞ and let M
stand for the integral part of

√
N . Clearly, M is infinitely large. By hypothesis,

|aN | ≤ n−1 for all n ∈ ◦N and so

sN :=
∣
∣
∣
∣
a1 + · · · + aN

N

∣
∣
∣
∣ ≤

∣
∣
∣
∣
a1 + · · · + aM

N

∣
∣
∣
∣+
∣
∣
∣
∣
aM+1 + · · · + aN

N

∣
∣
∣
∣

≤ M

N
sup
n∈N

|an| +
1
n

N −M − 1
N

.

Since 1/N ≈ 0 and supn∈N |an| ∈ ◦R; therefore, sN is infinitely small. �
(6) The space l∞ := l∞(N,R) of bounded sequences admits a Banach

limit; i.e., there is a continuous linear functional l on l∞ such that

(∃ lim an) → l(a) = lim an;
lim inf an ≤ l(a) ≤ lim sup an;
(′a)(n) := an+1 → l(a) = l(′a)

for all members a := (an) of l∞.
� To prove, take some infinitely large natural number N . Given a standard

member a = (ak) of l∞, observe that

f(a) :=
1
N

2N−1∑

k=N

ak

is limited. Indeed, since a is standard; therefore, so is the real ‖a‖∞ := supn∈N |an|.
Moreover,

|f(a)| ≤ 1
N

2N−1∑

k=N

|ak| ≤ 1
N

2N−1∑

k=N

‖a‖∞ ≤ ‖a‖∞.

Considering that l∞ × R is a standard set, apply the standardization principle to
obtain the set

l := ∗{(a, t) ∈ l∞ × R : t = ◦f(a)}.
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Demonstrate that l is a sought Banach limit. To this end, check first that l is
a function. In particular, we have to show that

(∀ a ∈ l∞)(∀ t1, t2 ∈ R)((a, t1) ∈ l ∧ (a, t2) ∈ l → t1 = t2).

By transfer, we may assume a, t1, and t2 standard. In this event t1 = ◦f(a) and
t2 = ◦f(a) by the definition of standardization. We are done on recalling that the
standard part of a real is defined uniquely by 2.2.16.

The linearity of l may be proven in much the same way. It is also obvious that
a ≥ 0 → l(a) ≥ 0; in other words, l is a positive linear functional.

Let a be a standard sequence converging to ā. Given a standard ε > 0, we
then infer from 2.3.1(2) that |aN − ā| ≤ ε, . . . , |a2N−1 − ā| ≤ ε since aM is infinitely
close to ā for all M ≥ N . Hence,

|f(a) − ā| =
∣
∣
∣
∣

1
N

2N−1∑

k=N

(ak − ā)
∣
∣
∣
∣ ≤ ε,

i.e., ā = ◦f(a). This, together with the positivity of l, provides the sought estimates.
We are left with establishing that l is shift-invariant, i.e., l(′a) = l(a) for all

a ∈ l∞. To this end, we again assume a standard, which implies that so is ′a and,
consequently,

l(′a) =
◦( 1

N

2N−1∑

k=N

ak+1

)

st
(
N−1(aN+1 + aN+2 + · · · + a2N)

)

= st
(

1
N

2N−1∑

k=N

ak +
1
N
a2N − 1

N
aN

)

= ◦
(
f(a) +N−1a2N −N−1aN

)

= ◦f(a) + (N−1a2N ) − ◦(N−1aN ) = ◦f(a) = l(a).

The above derivation uses the fact that a2N/N and aN/N are limited as well as
the properties of the standard part operation (cf. 2.2.18). �

2.3.8. Theorem. Let f be a standard real function and let x be a standard
point of dom(f), the domain of f . Then the following are equivalent:

(1) f is continuous at x;
(2) f sends each point infinitely close to x to some point infinitely close

to f(x); in symbols,

x′ ≈ x, x′ ∈ dom(f) → f(x′) ≈ f(x).
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� (1) → (2): Let ε > 0 be a standard real. There is some δ > 0 such that
|f(x′) − f(x)| ≤ ε whenever |x′ − x| ≤ δ and x′ ∈ dom(f). By transfer, there is
a standard δ enjoying the same property. If x′ ≈ x and x′ ∈ dom(f) then, obviously,
|x′ − x| ≤ δ (since δ ∈ ◦R). Hence, |f(x) − f(x′)| ≤ ε. Since ε ∈ ◦R is arbitrary;
therefore, f(x′) ≈ f(x).

(2) → (1): Take an arbitrary ε > 0. We have to find some δ fitting the “ε-δ-
definition.” By transfer, it suffices to do this on assuming ε standard. However, in
case ε is standard we may take as δ whatever strictly positive infinitesimal. �

2.3.9. In view of 2.3.8(2), we call a function f : dom(f) → R microcontinuous
at x provided that x ∈ dom(f) and f(x′) ≈ f(x) whenever x′ ∈ dom(f) and x′ ≈ x.

2.3.10. Commenting on Theorem 2.3.8, we note that microcontinuity and ε-δ-
continuity at a point mean the same for a standard function at a standard point. We
may also repeat the discussion of 2.3.2 and emphasize, following Courant, that “as
in the case of the limit of a sequence, the Cauchy definition that rests, so to say, on
the reversal of the intuitively acceptable order in which we would prefer to consider
variables. Instead of starting from the independent variable and passing then to the
dependent variable, we first direct our attention to the ‘accuracy estimate’ ε, and
then we try to restrict the corresponding ‘arena’ of δ for the independent variable”
[64, p. 73].

Theorem 2.3.8 eliminates the unpleasant reversal of quantifiers for all standard
functions and points. It is curious as well as luminous to observe also that Courant
referred to the ε-δ-definition of continuity as the Cauchy definition whereas it is the
definition of microcontinuity that mimics the words “an infinitely small increment
given to the variable produces an infinitely small increment of the function itself”
(cf. 1.5).

At the same time, the ε-δ-definition of continuity, applicable to all functions
with no exception, is only implicitly reconstructible from microcontinuity at a point
by standardization. As always, the standard and nonstandard treatments reveal
their intricate but genuine unity in regard to continuity. This demonstrates that
the new concept of microcontinuity of a function at a point is a valuable piece of
mathematical acquisition. The following propositions will widen the scope of our
understanding of microcontinuity.

2.3.11. Examples.

(1) The function x �→ x2 is microcontinuous at no unlimited point t ∈ R.

� Indeed, t+ t−1 ≈ t and, at the same time, (t+ t−1)2 − t2 ≈ 2. �
(2) Let δ be a strictly positive infinitesimal. Consider the function x �→

δ sinx−1 defined as zero at the origin. This function is discontinuous at zero but
microcontinuous.
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� It suffices to note that sinx ∈ ≈R for x ∈ R and refer to the properties of
infinitesimals in 2.2.8. �

2.3.12. Uniform Continuity Test. If f is a standard real function f then
(1) f is microcontinuous, i.e., f is microcontinuous at every point of

dom(f) or, in symbols,

(∀x, x′ ∈ dom(f))(x′ ≈ x → f(x′) ≈ f(x));

(2) f is uniformly continuous.

� (1) → (2): Let ε > 0 be standard, and let δ > 0 be infinitesimal. Obviously,
x ≈ x′ whenever |x− x′| ≤ δ. Therefore,

(∀ ε ∈ ◦R, ε > 0)(∃ δ > 0)(∀x, x′ ∈ dom(f))
(|x− x′| ≤ δ → |f(x) − f(x′)| ≤ ε).

By transfer we conclude that f is uniformly continuous.
(2) → (1): By transfer, to each standard ε > 0 there is some standard δ > 0

satisfying |x− x′| ≤ δ → |f(x) − f(x′)| ≤ ε for all x, x′ ∈ dom(f). Observing that
x ≈ x′ → |x− x′| ≤ δ, we complete the proof. �

2.3.13. Let f be a standard function given in a standard neighborhood of
a standard point x of ◦R. The following are equivalent:

(1) f is differentiable at x and f ′(x) = t;
(2) If h is a nonzero infinitesimal then

t = st((f(x+ h) − f(x))/h).

� This is straightforward from 2.3.8. �
2.3.14. Assume that y is a standard function given in a neighborhood of a stan-

dard point x and differentiable at x. Let dx be an arbitrary nonzero infinitesimal.
Denote (in the wake of Leibniz) by dy the differential of y at x calculated at dx.
Then

dy ≈ y(x+ dx) − y(x),
dy

dx
= y′(x).

� By the definition of Leibniz (cf. 1.1), from 2.3.9 we infer that

dy = y′(x)dx, y′(x) = st
(
y(x+ dx) − y(x)

dx

)

.

Hence,

dy ≈ y(x+ dx) − y(x)
dx

dx = y(x+ dx) − y(x),

which proves the first claim. The second follows from 2.3.10. �
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2.3.15. The “nonstandard” treatments of the role of infinitesimals in the def-
initions of derivatives, differentials, and increments as given in 2.3.13 and 2.3.14,
supplement the following directions by Euler:

“I have already remarked that in differential calculus the problem of finding
differentials should be understood in a relative rather than absolute sense. This
means that if y is a function of x then it is not its differential but rather the ratio
of this differential to the differential dx that should be determined. Indeed, since
all differentials are exactly equal to zero; therefore, whatever the function y of the
quantity x might be, dy is always equal to zero; therefore, in the absolute sense
there is nothing more to be sought for.

The sound statement of the problem is as follows: x takes an infinitely small,
i.e., vanishing increment dx [= evanescens, an actual number that ‘is exactly equal
to zero’]; the problem is to determine the ratio of the resulting increment of the
function y to dxs. In fact, both increments = 0; however, there is some finite ratio
between them that is perfectly revealed in differential calculus.

For instance, if y = x2 then, as demonstrated in differential calculus, dy
dx = 2x

and this ratio of the increments is valid only if the increment dx which generates
dy is considered to be exactly equal to zero. Nevertheless, after this warning on
the true notion of differential has been made, it is allowed to use the conventional
expressions that treat the differentials as in the absolute sense provided though
that the truth be constantly borne in mind. For instance, we have the right to
say: if y = x2 then dy = 2xdx. In actuality, if somebody said that dy = 3xdx or
that dy = 4xdx then this would be not false either, since even these equalities are
valid as dx = 0 and dy = 0. Only the first equality, however, agrees with the true
relation dy

dx
= 2x” [111, p. 9].

The reader will note that Euler used the sign “=” at the places where we write
“≈” (see 2.2.10). Moreover, we may emphasize that he was seeking for the dif-
ferentials that he presumed existent, while working with particular (differentiable)
functions. In these circumstances, it would be quite legitimate to use for finding
the differential any infinitely small dx chosen in any way.

Therefore, Euler had full grounds to say that the differential dy (calculated at
an infinitely small dx) “is exactly equal to zero”; the differential dy is exactly the
increment, i.e., the “absolute differential”; and at the same time the differential dy
is the “fourth proportional” for infinitely small increments, i.e., in our notation:

◦dy = 0, ◦(dy − (y(x+ dx) − y(x)) = 0;
◦(dy

dx
− y(x+ dx) − y(x)

dx

)

= 0.

The above analysis demonstrates the soundness of the ideas and views of Euler
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in handling “assignable”—standard—objects, the function y and the point x, on
assuming the crucial hypothesis that dx is infinitely small.

In the limelight of the above arguments we must exercise due criticism at
pondering over the following words by Courant:

“If we want to understand the essence of differential calculus then we should
beware of viewing a derivative as a ratio of two actually existing ‘infinitely small
quantities.’ The point is that we must always start with arranging the ratio of
the increments Δy/Δx, where the difference Δx is not equal to zero. Then we
should imagine that, either by way of transforming this ratio or by some other way,
passage to the limit has been accomplished. But in no case you can imagine that
at first there is some transition from Δx to an infinitely small quantity dx which is
still other than zero and from Δy to dy after which we divide these ‘infinitely small
quantities’ one by the other. Such a view of the derivative is absolutely incompatible
with the requirement of the mathematical clarity of notions, and it makes hardly
any sense at all” [64, pp. 126–128].

The excessive stiffness of the last phrase is but partially smoothed down by
the further clarification:

“A physicist, a biologist, a technician, or any other specialist who has to deal
with these notations in practice has therefore the right to identify, within the ac-
curacy required, the derivative with the ratio of the increments... .
‘Physically infinitesimal’ quantities have an exact sense. They are undoubtedly
finite nonzero quantities, chosen though to be sufficiently small in the problem
under discussion, less for instance than some fraction of a wavelength or smaller
than the distance between two electrons in an atom; etc., generally speaking, less
than some desirable degree of accuracy” [64, p. 135].

2.3.16. We proceed with discussion of the basics of integral calculus and start
with the “infinitesimal” definition of the Riemann integral.

2.3.17. Let f : [a, b]→ R be a standard continuous function, and let a = x1 <
x2 < · · · < xN < xN+1 = b be a partition of [a, b] satisfying ξk ∈ [xk, xk+1] and
xk ≈ xk+1 for k := 1, . . . , N . Then

b∫

a

f(x)dx =
◦( N∑

k=1

f(ξk)(xk+1 − xk)
)

.

� Observe first that N is infinitely large, and appeal to the conventional defi-
nition of the integral, as well as Theorems 2.3.1 and 2.3.12 for f . �

2.3.18. Theorem (the basic principle of integral calculus). “In calculation of
the sum of an infinitely large number of infinitely small addends (of the same sign)
it is possible to subtract from each addend a higher-order infinitesimal.”
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� Consider the sum ◦∑N
k=1 αk = t, with αk ≈ 0. By hypothesis, βk :=

αk − o(αk). By 2.2.13 (2) βk ∼ αk, and so

t =
◦( N∑

k=1

αk

)

=
◦( N∑

k=1

βk

)

,

which completes the proof. �
2.3.19. The above propositions give formal grounds to consider the integral as

a finite sum of infinitely small terms, i.e., they justify the antique view of integration
as a particular instance of summation.

In this respect we find it illuminating to quote the following definition of inte-
gral (“with a variable upper limit”) by Euler:

“Integration is usually defined as follows: It is said to be summation of all values
of the differential expression Xdx which the variable x assumes consecutively at all
values that differ by the difference dx starting from some given value up to x, with
this difference taken to be infinitely small. ... From the method presented it is in any
case clear that integration results from summation to within any accuracy, whereas
integration cannot be accomplished exactly in any other way than by assuming
these differences to be infinitesimals, i.e., zeros” [111, p. 163].

We are happy to note once again that in order to find the integral of a stan-
dard continuous function it suffices, as follows from the facts presented above, to
calculate the “exact value” or standard part of only one finite sum of an infinitely
large number of infinitely small addends in which me may neglect all higher-order
infinitesimals. This technique does not work in general for arbitrary nonstandard
functions. In other words, we again discover, as has been repeatedly the case before,
that the nonstandard views of the objects of mathematical analysis supplement, re-
fine, and elaborate but never refute their conventional counterparts.

2.3.20. All these facts manifest that the nonstandard methods of today are
direct descendants of the calculus of infinitesimals. That is why the term “infini-
tesimal analysis” regains popularity as better reflecting the essence of the matter
than a somewhat extravagant term “nonstandard analysis” often causing irritation,
which is quite understandable in the long run.

It deserves special emphasis that the idea of actual infinites and infinitesimals
has never abandoned the toolkit of natural sciences but rather took a short leave
from mathematics for about thirty years. This saves us from expatiating eloquently
on the versatility and importance of infinitesimal analysis.
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Set-Theoretic Formalisms of
Infinitesimal Analysis

The naive discussion of Chapter 2 of the qualitative differences between the
standard (explicit) and nonstandard (implicit) methods of introducing mathemati-
cal objects has enriched our views of the infinitely large and infinitely small, making
them more rigorous but still agreeable with intuition. Our most valuable acquisition
was a better understanding of the methods of reasoning which are deeply rooted in
the bygones of differential and integral calculus.

At the same time, we face serious complications even in simple examples. First
of all, the criteria remain obscure for distinguishing between standard and nonstan-
dard entities, which stirs up a premonition that the principles of infinitesimal anal-
ysis might be mistreated. Discontent is aggravated with appearance of the objects
that, on the one hand, seem quite legitimate as constructed with the routine math-
ematical tools but, on the other hand, cannot achieve the status of conventional
sets without contradiction.

These are galore: various monads, proximities, the collections of standard parts
of infinite subsets of the reals, O’s and o’s, etc. Still more annoying is the fact that
the “mathematical law” x �→ ◦x, the standard part operation acting from R to R,
is not a function. The point is that the concept of function had been established in
mathematics long before the formulation of the set-theoretic stance.

It was as far back as in 1755 that Euler wrote: “If some quantities depend on
the others in such a way that when the latter are varied the former are also subject
to varying, then the former are called the functions of the latter. This denomination
has an extremely wide range of application; it embraces all manners in which one
quantity may be determined from the others. Thus, ... all quantities that depend
on x in whatever manner, i.e., that are determined by x, are called the functions
of x” [110, p. 38].

This dynamical idea of how one object may depend on the other is not conveyed
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completely by the “stationary” set-theoretic view of a function as a set which pre-
vails nowadays. “It is a formal set-theoretic model of the intuitive idea of a function,
a model that captures an aspect of the idea, but not its full significance” [133, p. 20].

We recall in this regard that if s, t ∈ [0, 1] then

◦(s+ t) = ◦s+ ◦t, ◦0 = 0, ◦1 = 1,

and, moreover, ◦t = 0 for all t in some interval [0, h], where h is a strictly positive
real (every nonzero positive infinitesimal will do). The presence of such a “nu-
merical” function is an outright contradiction or, to put it mildly, a harbinger of
antinomy.

These circumstances call for clarifying, immediately and explicitly, the concepts
and means we use as well as specifying the foundations we rest them on.

As we have already mentioned, infinitesimal analysis acquires justification with-
in the set-theoretic stance. More exactly, it appears that the ideas of the naive
nonstandard set theory we have presented above can be placed on the same (and
so, equally solid) foundations as cantorian set theory or, strictly speaking, the ax-
iomatic set theories “approximating the latter from below.”

In order to bring into focus the relations between mathematical analysis and
set theory, the following statements are worth comparing:

Analysis ... is the science of the infinite itself.

Leibniz

Mathematical analysis is just the science of the infinite.

This old definition lives through ages.

Luzin

SET THEORY, an area of mathematics which studies the

general properties of sets, primarily, of infinite sets.

The Great Encyclopedic Dictionary

Consequently, the very notion of the infinite intertwines analysis and set theory
quite tightly. At the same time we should never forget that the classical articles by
Cantor appeared two centuries after the invention of calculus.

The attempt at grounding mathematics on set theory could be compared with
a modern method of building erection, rack mounting, when a house is assembled
starting with upper stores, “from attic to cellar.” By the way, this technology
requires that the footing of the building to be erected has been laid before the rack
mounting begins. Likewise, the initial footing of mathematical analysis is a product
of the material and mental activities of mankind.

The present-day mathematics leans its basic parts on set theory. In other
words, the set-theoretic foundation has been floated under the “living quarters”
of mathematics. Only the future will reveal what is going to happen next. By



Set-Theoretic Formalisms of Infinitesimal Analysis 37

now we may just state that the process continues of erecting the edifice of future
mathematics and that this process is fraught with drastic changes.

Aggravation of the state of the art, collision of opinions, and a fierce struggle
of ideas are faithful witnesses of rapid development.

A collection of quotations to follow (far from claiming for completeness) will
illustrate the process of polarization of views now in progress.

Pro Contra

After an initial period of distrust the newly
created set theory made a triumphal inroad
in all fields of mathematics. Its influence on
mathematics of the present century is clearly
visible in the choice of modern problems and
in the way these problems are solved. Ap-
plications of set theory are thus immense.

Kuratowski and

Mostowski [254, p. v]

It is claimed that the theory of sets is impor-
tant for the progress of science and technol-
ogy, while presenting one of the most recent
achievements in mathematics. In actuality,
the theory of sets has nothing to do with
the progress of science and technology nor
it is one of the most recent achievements of
mathematics.

Pontryagin [400, p. 6]

Part of the creation of Georg Cantor is, of
course, set theory, and some of this is now
taught in high school and earlier. This is
another of the domains of mathematics that
many persons thought could never be of the
remotest practical use, and how wrong they
were. Elementary sets even find their appli-
cation in little collections of murder myster-
ies. Set theory has well-known connections
with computer programs and these affect an
untold number of practical projects.

Young [533, p. 102]

Mathematics, based on Cantor set theory,
changed to mathematics of Cantor set theo-
ry. ... Contemporary mathematics thus stu-
dies a construction whose relation to the real
world is at least problematic. ... This makes
the role of mathematics as a scientific and
useful method rather questionable. Math-
ematics can be degraded to a mere game
played in some specific artificial world. This
is not a danger for mathematics in the fu-
ture but an immediate crisis of contempo-
rary mathematics.

Vopěnka [513]

Concluding the preliminary discussion we emphasize that only now, after dis-
pelling the illusion that it is possible to provide some final “absolute” foundation for
infinitesimal analysis (as well as for the whole of mathematics) by the set-theoretic
or whatever stance, we may proceed with exposing some available implementations
of this project.

3.1. The Language of Set Theory

Axiomatic set theories are bylaws of sound set formation. In evocative words,
every axiomatics of set theory describes a world or universe that consists of all sets
we need for adequate expression of our intuitive conception of the treasure-trove of
the “cantorian paradise,” the all-embracing universe of the naive set theory.
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The present-day mathematics customarily expounds and studies any attractive
axiomatics as a formal theory. We acknowledge readily that a formal approach has
proven itself to be exceptionally productive and successful in spite of its obvious
limitations stemming from the fact that mathematics reduces only in part to the
syntax of mathematical texts. This success is in many respects due to the paucity
of formal means since the semiotic aspects, if properly distinguished, invoke the
insurmountable problem of meaning. The list of achievements of the formal ap-
proach contains the celebrated Gödel completeness and incompleteness theorems,
independence of the continuum hypothesis and of the axiom of choice, Boolean
valued analysis, etc.

The cornerstone of a formal theory is its language. Intending to give the latter
some exact description and to study the properties of the theory, we are impelled
to use another language that differs in general from the original language. It is
in common parlance to call this extra language the metalanguage of the theory in
question. The metalanguage mostly presents a collection of fragments of natural
languages trimmed and formalized slightly but enriched lavishly with numerous
technical terms. The tools of the metalanguage of a theory are of utmost im-
portance for metamathematics. Since we are interested in applicable rather than
metamathematical aspects of an axiomatic set theory, we never impose extremely
stringent constraints on the metalanguage of the theory. In particular, we use the
expressive means and level of rigor that are common to the mathematical routine.

3.1.1. Each axiomatic set theory is a formal system. The ingredients of such
a theory are its alphabet, formulas, axioms, and rules of inference. The alphabet
of a formal theory is a distinguished set A of symbols of an arbitrary nature, i.e.,
a cantorian set of letters. Finite sequences of letters of A, possibly with blanks, are
called expressions, or records, or texts. If we distinguish some set Φ(A) of expressions
by giving detailed prescriptions, algorithms, etc.; then we declare given a language
with alphabet A and call the chosen expressions well-formed formulas. The next
step consists in selecting some finite (or infinite) families of formulas called axioms
in company with explicit description of the admissible rules of inference which
might be viewed as abstract relations on Φ(A). A theorem is a formula resulting
from the axioms by successive application of finitely many rules of inference. Using
common parlance, we express this in a freer and cozier fashion as follows: The
theorems of a formal theory comprise the least set of formulas which contains all
axioms and is closed under the rules of inference of the theory.

3.1.2. Of primary interest for us is some special formal language, the so-called
first-order language of predicate calculus.

Recall that the signature σ of a language is a triple (F, P, a) where F and P
are some sets called the set of function or operation symbols and the set of predicate
symbols, respectively, while a is a mapping of F ∪P into the set of natural numbers.
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Say that u ∈ F ∪ P is an n-ary symbol or n-place symbol whenever a(u) = n. Re-
garding the alphabet of a first-order language of signature σ, we usually distinguish:

(1) the set of symbols of signature σ, i.e., the set F ∪ P ;
(2) the set of variables composed of lower case or upper case Latin

letters possibly with indices;
(3) the set of propositional connectives: ∧, conjunction; ∨, disjunction;

→, implication; and ¬, negation;
(4) the set of the symbols of quantifiers: ∀, the symbol of a universal

quantifier, and ∃, the symbol of an existential quantifier;
(5) the sign of equality =;
(6) the set of auxiliary symbols: the opening parenthesis (; the closing

parenthesis ); and the comma , .

3.1.3. In the language of set theory we distinguish terms and formulas.
(1) A term of signature σ is an element of the least set of expressions

of the language (of the same signature σ) obeying the following conditions:
(a) Each variable is a term;
(b) Each nullary function symbol is a term;
(c) If f ∈ F , a(f) = n, and t1, . . . , tn are terms then f(t1, . . . , tn)

is a term.
(2) An atomic formula of signature σ is an expression of the kind

t1 = t2, p(y1, . . . , yn), q,

where t1, t2, y1, . . . , yn are terms of signature σ, the letter p stands for some n-ary
predicate symbol, and q is a nullary predicate symbol.

(3) The formulas of signature σ constitute the least set of records obey-
ing the following conditions:

(a) Each atomic formula of signature σ is a formula of signature σ;
(b) If ϕ and ψ are formulas of signature σ then (ϕ ∧ ψ), (ϕ ∨ ψ),

(ϕ → ψ), and ¬ϕ are formulas of signature σ, too;
(c) If ϕ is a formula of signature σ and x is a variable then (∀x)ϕ

and (∃x)ϕ are formulas of signature σ too.
A variable x is bound in some formula ϕ or belongs to the domain of a quantifier

provided that x appears in a subformula of ϕ of the kind (∀x)ψ or (∃x)ψ. In
the opposite case, x is unbound or free in ϕ. We also speak about free or bound
occurrence of a variable in a formula. Intending to stress that only the variables
x1, . . . , xn are unbound in the formula ϕ, we write ϕ = ϕ(x1, . . . , xn), or simply
ϕ(x1, . . . , xn). The words “proposition” and “statement” are informally treated
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as synonyms of “formula.” A formula with no unbound variables is a sentence.
Speaking about verity or falsity of ϕ, we imply the universal closure of ϕ which
results from generalization of ϕ by every bound variable of ϕ. It is also worth
observing that quantification is admissible only by variables. In fact, the words
“first-order” distinguish this syntactic feature of the formal languages we discuss.

3.1.4. The language of set theory is a first-order language whose signature
contains only one binary predicate symbol ∈ and so it has no predicates but ∈
nor any function symbols. So, set theory is a simple instance of the abstract first-
order theories. We agree to write x ∈ y instead of ∈(x, y) and say that x is
an element or a member of y. It is also in common parlance to speak of membership
or containment. As usual, a formula of set theory is a formal text resulting from
the atomic formulas like x ∈ y and x = y by appropriate usage of propositional
connectives and quantifiers.

Set theory (or strictly speaking, the set theory we profess in this book) bases
upon the laws of classical logic. In other words, set theory uses the common logical
axioms and rules of inference of predicate calculus which are listed in nearly every
manual on mathematical logic (see, for instance, [105, 238, 444]). Note also that
the instance of predicate calculus we use in this book appears often with some of
the epithets classical, or lower, or narrow, or first-order and is formally addressed
as the first-order classical predicate calculus with equality. In addition, a particular
set theory contains some special nonlogical axioms that legitimize the conceptions
of sets and classes we want to explicate. By reasonably varying the special axioms,
we may come to axiomatic set theories that differ in the power of expression. This
section describes one of the most popular axiomatic set theories, Zermelo–Fraenkel
set theory symbolized as ZF or ZFC if the axiom of choice is available or stressed.

3.1.5. Among the best conveniences of any metalanguage we must mention ab-
breviations. The point is that formalization of the simplest fragments of workable
mathematics leads to bulky texts whose recording and playing back is problematic
for both physical and psychological reasons. For that reason we must introduce
many abbreviations, building a more convenient abridged dialect of the initial sym-
bolic language. Naturally, this is reasonable only if we ensure a principal possibility
of unambiguous translation from the dialect to the original and vise versa. In accord
with our intentions, we will not expatiate on the exact technique of abbreviation
and translation and adhere to the every-day practice of doing Math. For instance,
we use the assignment operator or definor := throughout the book, with no fuss
about accompanying formal subtleties.

3.1.6. We now give some examples of abbreviated texts in the language of set
theory. These examples rely on the intuition of the naive set theory. We start with
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the most customary instances. Here they are:

(∃! x)ϕ(x) := (∃x)ϕ(x) ∧ (∀x)(∀ y)(ϕ(x) ∧ ϕ(y) → x = y);
(∃x ∈ y)ϕ := (∃x)(x ∈ y ∧ ϕ);
(∀x ∈ y)ϕ := (∀x)(x ∈ y → ϕ),

with ϕ a formula. As usual, we put x �= y := ¬(x = y) and x /∈ y := ¬(x ∈ y).
Also, we use the routine conventions about the traditional operations on sets:

x ⊂ y := (∀ z)(z ∈ x → z ∈ y);

u =
⋃
x := (∀ z)(z ∈ u ↔ (∃ y ∈ x)z ∈ y);

u =
⋂
x := (∀ z)(z ∈ u ↔ (∀ y ∈ x)z ∈ y);

u = y − x := y \ x := (∀ z)(z ∈ u ↔ (z ∈ y ∧ z /∈ x)).

Given a formula ϕ, we introduce the collection Pϕ(x) of all subsets of x which
satisfies ϕ as follows

u = Pϕ(x) := (∀ z)(z ∈ u ↔ (z ⊂ x) ∧ ϕ(z)).

In particular, if fin(y) means that y is a finite set then Pfin(x) comprises all finite
subsets of x. We call a set u empty and denote it by ∅ if u contains no elements.
In other words,

u = ∅ := (∀x)(x ∈ u ↔ x �= x).

An empty set is unique practically in every set theory and so we refer to ∅ as the
empty set.

These examples use one of the commonest methods of abbreviation, namely,
omission of some parentheses.

3.1.7. The statement that x is the unordered pair of elements y and z is
formalized as follows:

(∀u)(u ∈ x ↔ u = y ∨ u = z).

In this event we put {y, z} := x and speak about the unordered pair {y, z}. Note
that braces do not belong to the original alphabet and so they are metasymbols, i.e.
symbols of the metalanguage.

An ordered pair or ordered couple and an ordered n-tuple result from the Ku-
ratowski trick:

(x, y) := 〈x, y〉 := {{x}, {x, y}};
(x1, . . . , xn) := 〈x1, . . . , xn〉 := 〈〈x1, . . . , xn−1〉, xn〉,
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where {x} := {x, x}. Observe the overuse of parentheses. This is inevitable and
must never be regarded as pretext for introducing new symbols. Also note that it
is in common parlance to omit the attribute “ordered” while speaking about pairs,
couples, and tuples.

The agreements we made enable us to ascribe a formal meaning to the expres-
sion “X is the cartesian product Y ×Z of Y and Z.” Namely, we put X := {(y, z) :
y ∈ Y, z ∈ Z}. Note also that the nickname “product” is in common parlance for
“cartesian product.”

3.1.8. Consider the following propositions:
(1) Rel (X);
(2) Y = dom(X);
(3) Z = im(X).

Formally these read as follows:
(1′) (∀u)(u ∈ X → (∃ v)(∃w) u = (v, w));
(2′) (∀u)(u ∈ Y ↔ (∃ v)(∃w)w = (u, v) ∧ w ∈ X);
(3′) (∀u)(u ∈ Z ↔ (∃ v)(∃w)w = (v, u) ∧ w ∈ X).

In other words, we state in (1)–(3) that the members of X are couples, Y is
the collection of the first coordinates of the members of X , and Z comprises the
second coordinates of the members of X . It is in common parlance to say that Y
is the domain of X , and Z is the range or image of X . In this event we refer to X
as an abstract relation.

We express the fact that X is single-valued or, in symbols, Un (X) by the
formula

Un (X) := (∀u)(∀ v1)(∀ v2)((u, v1) ∈ X ∧ (u, v2) ∈ X → v1 = v2).

We put Fnc (X) := Func (X) := Un (X)∧Rel (X). In case Fnc (X) is valid, we have
many obvious reasons to call X a function or even a function-class. Naturally, this
implies that we will sometimes use the term “function-set” emphasizing the cases
in which X is a function and set simultaneously. Paraphrasing the membership
(u, v) ∈ X , we write v = X(u), X : u �→ v, etc. We say that F is a mapping or
function from X to Y , implying that every member of F belongs to X × Y , while
F is single-valued, and the domain of F coincides with X ; that is,

F : X → Y := F ⊂ X × Y ∧ Fnc (F ) ∧ dom(F ) = X.

The term function-class is also applied to F if we want to stress that F is a class.
The restriction of X to U is by definition X ∩ (U × im(X)). We denote it by

X � U , or X |U , or X |U . If there is a unique z satisfying (y, z) ∈ X then we put
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X ‘y := z. We finally let X“y := im(X � y). Instead of X“{y} we write X(y) or
even Xy when this does not lead to misunderstanding. It is worth emphasizing that
we always exercise a liberal view on placing and removing parentheses. In other
words, we insert or eliminate parentheses, influenced as a rule by what is convenient
or needed for formal presentation of a record we discuss.

Abstract relations deserve special attention. Relevant details follow.
A correspondence Φ from X to Y is a triple Φ := (F,X, Y ) where F is some

subset of the product X × Y . Clearly, Rel (F ) holds. It is in common parlance to
say that F is the graph of Φ, in symbols, Gr(Φ) = F ; while X is the domain of
departure and Y is the domain of arrival or target of Φ. Recall that a relation or
a binary relation on X is a correspondence whose domain of departure and target
are the same set X .

The image of A ⊂ X under Φ is the projection of (A × Y ) ∩ F to Y . The
image of A under F is denoted by Φ(A) or simply F (A). Thus,

Φ(A) := F (A) := {y ∈ Y : (∃x ∈ A)((x, y) ∈ F )}.

To define a correspondence Φ amounts to describing the mapping

Φ̃ : x �→ Φ({x}) ∈ P(Y ) (x ∈ X),

where P(Y ) stands for the powerset or boolean of Y which is the collection of
all subsets of Y . Abusing the language, we often identify the mapping Φ̃, the
correspondence Φ, and the graph of Φ, denoting these three objects by the same
letter. We also write Φ(x) instead of Φ({x}).

The domain of definition or simply domain of Φ is the domain of the graph
of Φ. In other words,

dom(Φ) := {x ∈ X : Φ(x) �= ∅}.

By analogy, the image of a correspondence is the image of its graph.

3.1.9. Assume that X and Y are abstract relations; i.e., Rel (X) and Rel (Y ).
We may arrange the composite of X and Y , denoted by the symbol Y ◦X , collecting
all couples (x, z) such that (x, y) ∈ X and (y, z) ∈ Y for some y:

(∀u)(u ∈ Y ◦X ↔ (∃x)(∃ y)(∃ z)(x, y) ∈ X ∧ (y, z) ∈ Y ∧ u = (x, z)).

The inverse of X , in symbols X−1, is defined as

(∀u)(u ∈ X−1 ↔ (∃x)(∃ y)(x, y) ∈ X ∧ u = (y, x)).
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The symbol IX denotes the identity relation or identity mapping on X , i.e.,

(∀u)(u ∈ IX ↔ (∃x)(x ∈ X ∧ u = (x, x))).

We will elaborate the above for correspondences. To this end, assume that
Φ := (F,X, Y ) is a correspondence from X to Y . Assign F−1 := {(y, x) ∈ Y ×X :
(x, y) ∈ F}. The correspondence Φ−1 := (F−1, Y,X) is the inverse of Φ. Consider
another correspondence Ψ := (G, Y, Z). Denote by H the image of (F×Z)∩(X×G)
under the mapping (x, y, z) �→ (x, z). Clearly,

H = {(x, z) ∈ X × Z : (∃ y ∈ Y )((x, y) ∈ F ∧ (y, z) ∈ G)}.

Hence, H coincides with the composite G ◦ F of the graphs G and F . The corre-
spondence Ψ ◦ Φ := (G ◦F,X, Z) is the composite, or composition, or superposition
of Φ and Ψ. We have the following obvious equalities:

(Ψ ◦ Φ)−1 = Φ−1 ◦ Ψ−1, Θ ◦ (Ψ ◦ Φ) = (Θ ◦ Ψ) ◦ Φ.

A few words about another abbreviation related to correspondences: Consider
Φ := (F,X, Y ). The polar πΦ(A) of A ⊂ X under Φ is the collection of all y ∈ Y
satisfying A× {y} ⊂ F . In other words,

πΦ(A) := πF (A) := {y ∈ Y : (∀x ∈ A)((x, y) ∈ F )}.

If Φ is fixed then we abbreviate πΦ(A) to π(A) and πΦ−1(A) to π−1(A).
The simplest properties of polars are as follows:

(1) If A ⊂ B ⊂ X then π(A) ⊃ π(B);

(2) For every A ⊂ X the inclusions hold:

A ⊂ π−1(π(A)); A× π(A) ⊂ F ;

(3) If A×B ⊂ F then B ⊂ π(A) and A ⊂ π−1(B);
(4) If (Aξ)ξ∈Ξ is a nonempty family of subsets of X then π(

⋃
ξ∈ΞAξ) =⋂

ξ∈Ξ π(Aξ);
(5) If A ⊂ X and B ⊂ Y then π(A) = π(π−1(π(A))) and π−1(B) =

π−1(π(π−1(B))).
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3.1.10. Provided that Rel (X) ∧ ((X ∩Y 2) ◦ (X ∩Y 2) ⊂ X), we call X a tran-
sitive relation on Y . A relation X is reflexive (over Y ) if Rel (X) ∧ (IY ⊂ X).
A relation X is symmetric if X = X−1. Finally, we say that “X is an antisym-
metric relation on Y ” if Rel (X) ∧ ((X ∩ X−1) ∩ Y 2 ⊂ IY ). As usual, we use the
conventional abbreviation Y 2 := Y × Y .

A reflexive and transitive relation on Y is a preorder on Y . An antisymmetric
preorder on Y is an order or ordering on Y . A symmetric preorder is an equivalence.

Other terms are also applied that are now in common parlance. Recall in
particular that an order X on Y is total or linear, while Y itself is called a chain
(relative to X), whenever Y 2 ⊂ X ∪ X−1. If each nonempty subset of the set Y
has a least element (relative to the order of X) then we say that X well orders Y .
The terms well-ordered and well-orderable are understood correspondingly.

3.1.11. Quantifiers are bounded if they appear in the text as (∀x ∈ y) or
(∃x ∈ y). The formulas of set theory (and, generally speaking, of every first-order
theory) are classified according to how they use bounded and unbounded quantifiers.

Of especial importance to our exposition are the class of bounded formulas or
Σ0-formulas and the class of the so-called Σ1-formulas. Recall that a formula ϕ is
bounded provided that each quantifier in ϕ is bounded. Say that ϕ is of class Σ1 or
a Σ1-formula if ϕ results from atomic formulas and their negations by using only
the logical operations ∧, ∨, (∀x ∈ y), and (∃x).

Clearly, every bounded formula is of class Σ1. However, it is false that every
Σ1-formula is bounded. Moreover, there are formulas not belonging to the class Σ1.
The corresponding examples follow. We start with bounded formulas.

3.1.12. The proposition z = {x, y} amounts to the bounded formula

x ∈ z ∧ y ∈ z ∧ (∀u ∈ z)(u = x ∨ u = y).

So, the definition of ordered pair is a bounded formula. The same holds for the
definition of product since we may rewrite Z = X × Y as

(∀ z ∈ Z)(∃x ∈ X)(∃ y ∈ Y )(z = (x, y)) ∧ (∀x ∈ X)(∀ y ∈ Y ))(∃ z ∈ Z)(z = (x, y)).

Another bounded formula reads “a mapping F from X to Y ” (see 3.1.8). Indeed,
the above shows that F ⊂ X × Y is a bounded formula. Moreover, bounded are
the expressions dom(F ) = X and Un (F ), equivalent to the respective formulas

(∀x ∈ X)(∃ y ∈ Y )(∃ z ∈ F )(z = (x, y));
(∀ z1 ∈ F )(∀ z2 ∈ F )(∀x ∈ X)(∀ y1 ∈ Y )(∀ y2 ∈ Y )

(z1 = (x, y1) ∧ z2 = (x, y2) → y1 = y2).
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3.1.13. The statements, that x and y are equipollent, or equipotent, or x and
y have the same cardinality , symbolically,

x � y,

each implying that there is a bijection between x and y, are all equivalent to the
following Σ1-formula:

(∃ f)(f : x → y ∧ im(f) = y ∧ Un (f−1)).

However, this fact is not expressible by a bounded formula. The notion of abstract
relation gives another Σ1-formula:

Rel (X) := (∀u ∈ X)(∃ v)(∃w)(u = (v, w)).

Beyond the class Σ1 lies the following formula stating that a set y is equipollent to
none of its members:

(∀x ∈ y) ¬(x � y).

3.1.14. Comments.

(1) It goes without saying that we may vary not only the special axioms
of a first-order theory (see 3.1.4) but also its logical part, i.e., the logical axioms
and rules of inference. The collections of the so-resulting theorems may essentially
differ from each other. For instance, eliminating the law of the excluded middle
from the axioms of propositional calculus, we arrive at intuitionistic propositional
calculus. Intuitionistic predicate calculus (see [133, 201]) appears in a similar way.

(2) The modern formal logic was grown in the course of the evolution
of philosophical and mathematical thought with immense difficulties. The classical
predicate calculus originates with the Aristotle syllogistic whereas the origin of
intuitionistic logic belongs elsewhere. Other logical systems, different essentially
from the two systems, were invented in various times for various purposes. For
instance, an ancient Indian logic had three types of negation, expressing the ideas:
something has never exist and cannot happen now, something was available for the
time being but is absent now, and something happens now but will disappear soon.

(3) As is seen from 3.1.6 and 3.1.7, abbreviations may appear in for-
mulas, in other abbreviations, in abbreviations of abbreviations, etc. Invention of
abbreviating symbols is an art in its own right, and as such it can never be formal-
ized completely. Nevertheless, systemizing and codifying the rules for abbreviation
is at the request of both theory and practice. Some advice (on exact descriptions,
introduction of function letters, etc.) is available in the literature [58, 175, 238].
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3.2. Zermelo–Fraenkel Set Theory

As has been noted in 3.1.4, the axioms of set theory include the general logical
axioms of predicate calculus which postulate the classical rules for logical inference.
Below we list the special axioms of set theory, ZF1–ZF6 and AC. The theory
proclaiming ZF1–ZF6 as special axioms is called Zermelo–Fraenkel set theory and
denoted by ZF. Enriching ZF with the axiom of choice AC, we come to a wider
theory denoted by ZFC and still called Zermelo–Fraenkel set theory (the words
“with choice” are added rarely). Note that we supply the formal axioms below
with their verbal statements in the wake of the cantorian views of sets.

3.2.1. We often encounter the terms “property” and “class” dealing with ZFC.
We now elucidate their formal statuses. Consider a formula ϕ = ϕ(x) of ZFC (in
symbols, ϕ ∈ (ZFC)). Instead of the text ϕ(y) we write y ∈ {x : ϕ(x)}. In other
words, we use the so-called Church schema for classification:

y ∈ {x : ϕ(x)} := ϕ(y).

The expression y ∈ {x : ϕ(x)} means in the language of ZFC that y has the
property ϕ or, in other words, y belongs to the class {x : ϕ(x)}. Bearing this in
mind, we say that a property, a formula, and a class mean the same in ZFC. We
has already applied the Church schema in 3.1.6 and 3.1.7. Working within ZFC,
we conveniently use many current abbreviations:

U := {x : x = x} is the universe of discourse or the class of all sets;
{x : ϕ(x)} ∈ U := (∃ z)(∀ y)ϕ(y) ↔ y ∈ z;

{x : ϕ(x), ψ(x)} := {x : ϕ(x)} ∩ {x : ψ(x)};

x ∪ y :=
⋃

{x, y}, x ∩ y ∩ z :=
⋂

{x, y, z} . . . .

We are now ready to formulate the special axioms of ZFC.

3.2.2. Axiom of Extensionality ZF1. Two sets are equal if and only if
they contain the same elements:

(∀x)(∀ y)(∀ z)((z ∈ x ↔ z ∈ y) ↔ x = y).

Note that we may replace the last equivalence by → without loss of scope, since
the reverse implication is a theorem of predicate calculus.

3.2.3. Axiom of Union ZF2. The union of a set of sets is also a set:

(∀x)(∃ y)(∀ z)(∃u)((u ∈ z ∧ z ∈ x) ↔ z ∈ y).
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With the abbreviations of 3.1.6 and 3.2.1, ZF2 takes the form

(∀x)
⋃
x ∈ U.

3.2.4. Axiom of Powerset ZF3. All subsets of each set comprise a new set:

(∀x)(∃ y)(∀ z)(z ∈ y ↔ (∀u)(u ∈ z → u ∈ x)).

In short,
(∀x)P(x) ∈ U.

This axiom is also referred to as the axiom of powers.

3.2.5. Axiom of Replacement ZFϕ
4 . The image of a set under each bijective

mapping is a set again:

(∀x)(∀ y)(∀ z)(ϕ(x, y)) ∧ ϕ(x, z) → y = z)
→ (∀ a)(∃ b)((∃ s ∈ a)(∃ t)ϕ(s, t) ↔ t ∈ b).

In short,

(∀x)(∀ y)(∀ z)(ϕ(x, y) ∧ ϕ(x, z) → y = z)
→ (∀ a)({v : (∃u ∈ a)ϕ(u, v)} ∈ U).

Here ϕ is a formula of ZFC containing no free occurrences of a. Note that ZFϕ4
is a schema for infinitely many axioms since a separate axiom appears with an
arbitrary choice of ϕ ∈ (ZFC). Bearing in mind this peculiarity, we often abstain
from using a more precise term “axiom-schema” and continue speaking about the
axiom of replacement for the sake of brevity and uniformity.

Note a few useful corollaries of ZFϕ4 .

3.2.6. Let ψ = ψ(z) be a formula of ZFC. Given a set x, we may arrange
a subset of x by collecting the members of x with the property ψ, namely,

(∀x){z ∈ x : ψ(x)} ∈ U.

Our claim is ZFϕ4 , with ψ(u)∧(u = v) playing the role of ϕ. This particular form of
the axiom of replacement is often called the axiom of separation or comprehension.

3.2.7. Applying ZFϕ4 to the formula

ϕ(u, v) := (u = ∅ → v = x) ∧ (u �= ∅ → v = y)

and the set z := P(P(∅)), we deduce that the unordered pair {x, y} of two sets
(cf. 3.1.7) is also a set. This assertion is often referred to as the axiom of pairing.
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3.2.8. Axiom of Infinity ZF5. There is at least one infinite set:

(∃x)(∅ ∈ x ∧ (∀ y)(y ∈ x → y ∪ {y} ∈ x)).

In other words, there is a set x such that ∅ ∈ x, {∅} ∈ x, {∅, {∅}} ∈ x,
{∅, {∅}, {∅, {∅}}} ∈ x, etc. The cute reader will observe a tiny gap between
formal and informal statements of the axiom of infinity. The vigilant reader might
suspect the abuse of the term “infinity.” In fact, the axiom of infinity belongs to
the basic cantorian doctrines and so some mystery is inevitable and welcome in this
respect.

3.2.9. Axiom of Regularity ZF6. Each nonempty set is disjoint from at
least one of its members:

(∀x)(x �= ∅ → (∃ y)(y ∈ x ∧ y ∩ x = ∅)).

Another name for the axiom of regularity is the axiom of foundation.
Applying ZF6 to a singleton, i.e., a one-point set x := {y}, we see that y /∈ y.

Speaking a bit prematurely, we may note, on taking x := {x1, . . . , xn}, that there
are no infinitely decreasing ∈-sequences x1 � x2 � · · · � xn � . . . .

3.2.10. Axiom of Choice AC. To each set x there is a choice function on x;
i.e., a single-valued correspondence assigning an element of X to each nonempty
member of X ; i.e.,

(∀x)(∃ f)(Fnc (f) ∧ x ⊂ dom(f)) ∧ (∀ y ∈ x) y �= ∅ → f(y) ∈ y.

Set theory has many propositions equivalent to AC (cf. [196]). We recall the
two most popular among them.

Zermelo Theorem (the well-ordering principle). Every set is well-orderable.

Kuratowski–Zorn Lemma (the maximality principle). LetM be a (partial-
ly) ordered set whose every chain has an upper bound. Then to each x ∈ M there
is a maximal element m ∈ M satisfying m ≥ x.

3.2.11. The axiomatics of ZFC enables us to find a concrete presentation for
the class of all sets in the shape of the “von Neumann universe.” We start with the
empty set. Each step of the construction consists in uniting the powersets of all
available sets, thus making the stage for the next step. The transfinite repetition
of these steps yields the von Neumann universe. Classes (in a “Platonic” sense)
are viewed as external objects lying beyond the universe of discourse. Pursuing
this approach, we consider a class as a family of sets obeying some set-theoretic
property that is expressed by a formula of Zermelo–Fraenkel set theory. Therefore,
the class consisting of some members of a certain set is a set itself (by the axiom of
replacement). A formally sound definition of the von Neumann universe requires
preliminary acquaintance with the notions of ordinal and cumulative hierarchy. We
now turn to a minimum of prerequisites to these objects.
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3.2.12. A set x is transitive if each member of x is a subset of x. A set x
is an ordinal if x is transitive and totally ordered by the membership relation ∈.
These definitions look in symbolic form as follows:

Tr (x) := (∀ y ∈ x)(y ⊂ x) := “x is a transitive set”;
Ord (x) := Tr (x) ∧ (∀ y ∈ x)(∀ z ∈ x)

(y ∈ z ∨ z ∈ y ∨ z = y) := “x is an ordinal.”

We commonly denote ordinals by lower case Greek letters. Every ordinal is endowed
with the natural order by membership: given β, γ ∈ α, we put

γ ≤ β ↔ γ ∈ β ∨ γ = β.

The class of all ordinals is denoted by On. So, On := {α : Ord (α)}.
An ordinal is a well-ordered set ; i.e., it is totally ordered and its every subset

has the least element (which is ensured by the axiom of regularity). We can easily
see that

α ∈ On ∧β ∈ On → α ∈ β ∨ α = β ∨ β ∈ α;
α ∈ On ∧β ∈ α → β ∈ On;
α ∈ On → α ∪ {α} ∈ On;

Ord (∅).

The ordinal α+1 := α∪{α} is called the successor of α or the son of α. A nonzero
ordinal other than a successor is a limit ordinal. The following notation is common:

KI := {α ∈ On : (∃β) Ord (β) ∧ α = β + 1 ∨ α = ∅};
KII := {α ∈ On : α is a limit ordinal};
0 := ∅, 1 := 0 + 1, 2 := 1 + 1, . . . ,

ω := {0, 1, 2, . . .} = 0 ∪ N.

This is a right place to recall that the continuum we talk about in this book from
time to time is simply the powerset of ω.

3.2.13. It is worth observing that ZFC enables us to prove the properties
of ordinals well known at a naive level. In particular, ZFC legitimizes transfinite
induction and recursion. We now define the von Neumann universe, purposefully
omitting formalities.
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Given an ordinal α, put

Vα :=
⋃

β<α

P(Vβ),

i.e., Vα = {x : (∃β)(β ∈ α ∧ x ⊂ Vβ)}. More explicitly,

V0 := ∅;
Vα+1 := P(Vα);

Vβ :=
⋃

α<β

Vα if β ∈ KII.

Assign
V :=

⋃

α∈On

Vα.

Of principal importance is the following theorem, ensuing from the axiom of
regularity:

(∀x)(∃α)(Ord (α) ∧ x ∈ Vα).

In shorter symbols,
U = V.

Alternatively, we express this fact as follows: “The class of all sets is the von
Neumann universe,” or “every set is well-founded.”

The von Neumann universe V, also called the sets, is customarily viewed as
a pyramid “upside down,” that is, a pyramid standing on its vertex which is the
empty set (Fig. 3). It is helpful to look at a few “lower floors” of the von Neumann
universe:

V0 = ∅, V1 = {∅}, V2 = {∅, {∅}}, . . . ,
Vω = {∅, {∅}, {∅, {∅}}, . . .}, . . . .

The representation of the von Neumann universe V as the “cumulative hierar-
chy” of (Vα)α∈On makes it possible to introduce the concept of the ordinal rank or
simply the rank of a set. Namely, given a set x, put

rank(x) := a least ordinal α such that x ∈ Vα+1.

It is easy to prove that

a ∈ b → rank(a) < rank(b);
Ord (α) → rank(α) = α;

(∀x)(∀ y) rank(y) < rank(x) → (ϕ(y) → ϕ(x)) → (∀x)ϕ(x),

where ϕ is a formula of ZFC. The preceding theorem (or, more precisely, the schema
of theorems) is called the principle of induction on rank.
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3.2.14. Two sets are equipollent, or equipotent, or of the same cardinality if
there is a bijection of one of them onto the other. An ordinal that is equipotent to
no preceding ordinal is a cardinal. Each natural is a cardinal.

A cardinal other than a natural is an infinite cardinal. Therefore, ω is the least
infinite cardinal.

V1

V2

Vω

Vβ

Vα

Va+1

x

O

1

2

rank(x)=α

ω

β

α

α+1

∅
Fig. 3

The Hartogs number H (x) of a set x is the least of the ordinals α such that
there is no injection from α to x. Clearly, H (x) is a cardinal for every x. Moreover,
the Hartogs number of each ordinal α is the least of the cardinals strictly greater
than α.

By recursion we define the alephic scale:

ℵ0 := ω0 = ω;
ℵα+1 := ωα+1 = H (ωα);

ℵβ := ωβ := sup{ωα : α < β} if β ∈ KII.

The following hold:
(1) Infinite cardinals form a well-ordered proper class;
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(2) The mapping α �→ωα is an order isomorphism between the class of
ordinals and the class of infinite cardinals;

(3) There is a mapping | · | from the universal class U onto the class
of all cardinals such that the sets x and |x| are equipollent for all
x ∈ U.

The cardinal |x| is called the cardinality or the cardinal number of a set x.
Hence, each set is equipollent to a unique cardinal which is its cardinality.

A set x is countable provided that |x| = ω0 := ω, and x is at most countable
provided that |x| ≤ ω0.

Given an ordinal α, we denote by 2ωα the cardinality of P(ωα); i.e., 2ωα :=
|P(ωα)|. This denotation is justified by the fact that 2x and P(x) are equipollent
for all x, with 2x standing for the class of all mappings from x to 2.

A theorem, proven by Cantor, states that |x| < |2x| for whatever set x. In
particular, ωα < 2ωα for each ordinal α. Moreover, ωα+1 ≤ 2ωα .

The generalized problem of the continuum asks whether or not there are
intermediate cardinals between ωα+1 and 2ωα ; i.e., whether or not the equality
ωα+1 = 2ωα holds. For α = 0 this is the classical continuum problem.

The continuum hypothesis or CH is the equality ω1 = 2ω. Similarly, the
generalized continuum hypothesis or GCH is the equality ωα+1 = 2ωα for all α ∈ On.

3.2.15. In the sequel we will make use of the following technical result of
profound importance which is often called the reflection principle. In a sense, this
result shows that all “particular” set-theoretic events happen to sets of bounded
rank.

Montague–Levy Theorem. Let ϕ := ϕ(x1, . . . , xn) be a formula of ZFC.
Take an ordinal α. Then there is an ordinal β such that β > α and

(∀x1, . . . , xn ∈ V β)ϕ(x1, . . . , xn) ↔ ϕV
β

(x1, . . . , xn),

where ϕV
β

is the relativization of ϕ to V β.

� Assume that the prenex normal form of ϕ looks as follows

ϕ = (Q1y1) . . . (Qmym)ψ(x1, . . . , xn, y1, . . . , ym).

In other words, ψ is quantifier-free and Qk ∈ {∃, ∀}.
Put

ψk := (Qk+1yk+1) . . . (Qmym)ψ

for k := 0, . . . , m. With due precaution, it is possible to conclude that

ψk = ψk(x1, . . . , xn, y1, . . . , yk−1).
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Assigning a collection of unbound variables in ψk, find the least ordinal γ satisfying

(∃ yk)ψk → (∃ yk ∈ V γ)ψk

provided that Qk = ∃ and

(∃ yk)¬ψk → (∃ yk ∈ V γ)¬ψk
provided that Qk = ∀. Put

gk(x1, . . . , xn, y1, . . . , yk−1) := γ.

Given an ordinal α and using the axiom of replacement 3.2.5, find the set Ak(α) so
that

{gk(x1, . . . , xn, y1, . . . , yk−1) : x1, . . . , xn ∈ V α; y1, . . . , yk−1 ∈ V α} .
Put

fk(α) := sup{α+ 1, (supAk(α)) + 1}.
Using the so-constructed ordinal-valued functions, we successively put

f (0)(α) := α;

f (1)(α) := sup{f1(α), . . . , fm(α)};

f (s+1)(α) := f (1)(f (s)(α)) (s ∈ N).

And, finally,
f(α) := sup

s∈N

f (s)(α).

Clearly, f(α) is a limit ordinal greater than α for all α. Moreover,

gk(x1, . . . , xn, y1, . . . , yk−1) < f(α)

for all x1, . . . , xn, y1, . . . , ym ∈ V f(α) and 1 ≤ k ≤ m.
Putting β := f(α), considering that ψk−1 = (Qkyk)ψk, and using the definition

of gk, proceed successively as follows:

ψm = ψV
β

m

→ (
ψm−1 ↔ (Qmym ∈ V β)ψm

)

→
(
ψm−1 ↔ ψV

β

m−1

)

→ · · · → ψ1 ↔ ψV
β

1

→ (Q1y1)ψ1 ↔ (Q1y1 ∈ V β)ψ1

→ ψ0 ↔ ψV
β

0

→ ϕ(x1, . . . , xn) ↔ ϕV
β

(x1, . . . , xn).

This ends the proof. �
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Corollary. Let ϕ1, . . . , ϕm be formulas of ZFC whose unbound variables are
listed among x1, . . . , xn. Take α ∈ On. Then

(∃β > α)(∀x1, . . . , xn ∈ V β)(ϕ1 ↔ ϕV
β

1 ) ∧ · · · ∧ (ϕm ↔ ϕV
β

m ).

� Putting

ϕ(t, x1, . . . , xn) = (t = 1 ∧ ϕ1) ∨ (t = 2 ∧ ϕ2) ∨ · · · ∨ (t = m ∧ ϕm),

apply the above theorem. �

3.2.16. Study of various models of set theory often involves the ultrapower
construction. We now provide some details that will be needed to the reader who
intends to elaborate formalities of the status of nonstandard set theories.

Assume that U is some set and ε is some relation on U . In the context of set
theory, such a couple (U, ε) is often referred to as a universet or universoid. In this
event, we will sometimes write xεy instead of (x, y) ∈ ε.

Let ϕ = ϕ(x1, . . . , xn) be a formula of ZFC. Interpret ε as membership and
restrict all quantifiers of ϕ to U . Assuming that ϕ(x1, . . . , xn) for x1, . . . , xn ∈ U ,
we will write (U, ε) � ϕ(x1, . . . , xn) or ϕ(U,ε)(x1, . . . , xn) or even ϕU and speak of
the relativization of ϕ to U . Other abbreviations are also popular.

Consider the power X := XE of some set X , where E is some index set (for
the sake of convenience, we assume X and E nonempty). Given x1, . . . , xn ∈ X and
ϕ = ϕ(x1, . . . , xn) ∈ (ZFC), put

[[ϕ(x1, . . . , xn)]] = {e ∈ E : ϕX(x1(e), . . . , xn(e))},

where ϕX is the relativization of ϕ to X .
Assume further that F is a filter on E and

f ∼F g := [[f = g]] ∈ F (f, g ∈ X).

Denote the quotient set X/ ∼F by FX and let Ff stand for the coset of f .
Clearly,

[[f ′εg′]] = [[f = f ′]] ∩ [[g = g′]] ∩ [[f ′εg′]]

for f ∼F f ′ and g ∼F g′.
Therefore, [[fεg]] ∈ F ↔ [[f ′εg′]] ∈ F . In other words, we have soundly defined

on FX the following relation

Fε :=
{

(Ff, Fg) ∈ (FX)2 : [[fεg]] ∈ F
}
.
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It is easy to see that
Fε =∼F ◦εX◦ ∼F

for some appropriate interpretation εX on X of the membership relation. We call
FX the filtered power of X by F . If F is an ultrafilter then FX is the ultrapower
of X by F .

Given f, g ∈ X, from these definitions we infer that

Ff Fε Fg ↔ [[fεg]] ∈ F ;
Ff = Fg ↔ [[f = g]] ∈ F .

In other words,
(FX, Fε) � ϕFX(Ff, Fg) ↔ [[ϕ(f, g)]] ∈ F

for every atomic formula ϕ = ϕ(x, y) of ZFC.
Given x ∈ X , put x(e) := x for all e ∈ E and ∗x := Fx. Note that ∗x = ∗y ↔

x = y and ∗x F∈ ∗y ↔ x ∈ y. It turns out that such effects are routine. To describe
them, the following definition is in order.

Let ϕ = ϕ(x1, . . . , xn) be an arbitrary formula of ZFC. We say that ϕ is filtered
(with respect to X, E , and F ) provided that

(FX, Fε) � ϕFX(Ff1, . . . ,
Ffn) ↔ [[ϕ(f1, . . . , fn)]] ∈ F

for all f1, . . . , fn ∈ X.

�Loš Theorem. Every formula of ZFC is filtered with respect to an arbitrary
ultrafilter.

� Since all atomic formulas are filtered, it suffices to check that the application
of propositional connectives and quantification preserve filteredness. If ϕ is a filtered
formula then ¬ϕ is filtered by the “golden” property of every ultrafilter: F ∈ F ↔
F ′ := E − F �∈ F . We will thus establish the following (absolutely unavoidable)
fact: If ψ(y) := (∀x)ϕ(x, y) and ϕ is filtered then so is ψ.

To this end, assume that [[ψ(y)]] ∈ F for y ∈ F and x ⊂ FX . Clearly,
[[ψ(y)]] ⊂ [[ϕ(x, y)]] and so, (FX, Fε) � Fϕ(x, y). Since x is arbitrary, therefore,
(FX, F∈) � (∀x)ϕF (x, y).

Assume finally that x, y ∈ FX implies ϕ
FX(x, y), i.e. [[ϕ(x, y)]] ∈ F . Check

that B := [[(∀x)ϕ(x, y)]] belongs to F as well. Indeed, to e ∈ E −B := B′ there is
some x(e) satisfying ¬ϕ(x(e), y(e)). Take an arbitrary x0 in X. Put x(e) := x(e)
whenever e ∈ B′ and x(e) := x0(e) otherwise. Obviously, [[ϕ(x, y)]] ⊂ E −B′ = B.
Since [[ϕ(x, y)]] ∈ F , it follows that B ∈ F . The proof is complete. �
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Corollary 1. Let X be a nonempty set and let ∗X be some ultrapower of X .
Then

ϕX(x1, . . . , xn) ↔ ϕ∗X(∗x1, . . . , ∗xn)

for x1, . . . , xn ∈ X and ϕ ∈ (ZFC).

� By the 	Loš Theorem ϕ∗X(∗x1, . . . , ∗xn) ↔ [[ϕ(x1, . . . , xn)]] ∈ F , where F
is the ultrafilter in question and xk(e) = (xk) for all e ∈ E . From the definition
of [[ · ]] it follows that [[ϕ(x1, . . . , xn)]] ∈ F ↔ ϕX(x1, . . . , xn), which completes the
proof. �

Let X be an infinite set and let E stand for the cofinite filter on X which
consists of the complements to X of finite subsets of X . Assume further that F is
some ultrafilter finer than E . The ultrapower FX is a canonical enlargement of X ,
denoted still by ∗X .

Corollary 2 (the weak idealization principle). Let ϕ = ϕ(x, y, x1, . . . , xn)
be a formula of ZFC. Assume given elements x1, . . . , xn ∈ X and a canonical
enlargement ∗X of X . Then

(∀finA ⊂ X)(∃ b ∈ X)(∀ a ∈ A)ϕX(a, b, x1, . . . , xn)
→ (∃ b ∈ ∗X)(∀ a ∈ A)ϕ∗X(∗a, b, ∗x1, . . . , ∗xn).

� To e ∈ E there is some b(e) in X satisfying (∀ a ∈ e)ϕX(a, b(e), x1, . . . ,
xn). In other words, using b ∈ XE , we see that

[[ϕ(x, b, x1, . . . , xn)]] ⊂ {e ∈ E : a ∈ e}

where, as usual, y(e) := y for y ∈ X and e ∈ E .
By the 	Loš Theorem, ϕ∗X(∗a, Fb, ∗x1, . . . , ∗xn). This ends the proof. �
Let Z be a nonempty subset of Z̃. This Z is a Zermelo subset of Z̃ provided

that
(a) Z is transitive in Z (i.e., a ∈ Z̃ ∧ b ∈ Z ∧ a ∈ b → a ∈ Z);
(b) Z is closed under unordered pairing;
(c) a ∈ Z → ⋃

a ∈ Z ∧ P(a) ∈ Z.
Let (Z̃, ε̃) be a universet. Assume given another universet (Z, ε) such that Z is
a nonempty subset of Z̃ and ε is the restriction of ε̃ to E2. In this event (Z, ε) is
a subuniverset of (Z̃, ε).

Assume that Z models a Zermelo subset of Z̃ if ε̃ is interpreted as membership.
It this event Z is a Zermelo universet (in (Z̃, ε̃)). The indication of Z̃ is often
omitted when this leads to no confusion.
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Corollary 3. Let (X, ε) be a Zermelo universet and let ∗X be some ultrapower

of X . Assume further that X ∈ X, Y ∈ ∗X, and f̃ : X → Ỹ (i.e., f̃ is an external

function), with Ỹ := {y : y ∗X∈ Y }. Then there is some f in ∗X such that f is

a function from ∗X to Y inside (∗X) and, moreover, f̃(x) = f(∗x) for all x ∈ X .

� In case f̃ = ∅, put f := ∅. If f̃ �= ∅ then Y �= ∅. Assume that Y = FY0,
where F is the ultrafilter in question on an appropriate direction E . In this event
[[Y0 �= ∅]] = {e ∈ E : Y0 �= ∅} ∈ F . Redefining Y0(e), if need be, for e /∈ [[Y0 �= ∅]],
we may assume that Y = FY and Y (e) �= ∅ for all e ∈ E .

Suppose that y ∈ Ỹ and y = Fy. Clearly, [[y ∈ Y ]] ∈ F . Put h(y)(e) := y(e)
for e ∈ [[y ∈ Y ]] and define h(y) at other values of e as, for instance, some member
of Y (e) ∈ X . What matters is the equality Fh(y) = y holding irrespectively
of this choice. Given e ∈ E , define the function g(e) : X → Y (e) by the rule
g(e)(x) := h(f(x))(e) where x ∈ X . The set g(e) := {(x, g(e)(x)) : x ∈ X} is a
member of X (since X is a Zermelo universet). We thus arrive at the element g of
XE satisfying g : e ∈ E �→ g(e) ∈ X. It is evident also that [[g : X → Y ]] = E . Thus,
f := Fg is a function from ∗X to Y by the 	Loš Theorem. To prove, we inspect the
above arguments and note that

f̃(x) = f(∗x) ↔ f(∗x) = Fh(f̃(x))

↔ [[g(x) = h(f̃(x))]] ∈ F

for x ∈ X .
Moreover, by definition

g(x)(e) = g(e)(x) = h(f̃(x))(e)

for all e ∈ E , which finishes the proof. �
3.2.17. To study deeper properties we need a more abstract procedure which

is known as the ultralimit construction. We give only a necessary minimum of
information on ultralimits.

Assume that (U, ε) is a universet and V := P(U). Proceed by putting

fU (u) := f(u) = {v ∈ U : (v, u) ∈ ε} (u ∈ U);
E := {(A,B) ∈ V × V : (∃ a ∈ U)(A = f(a) ∧ a ∈ B)}.

Note that, given v ⊂ U , we infer by definition that

A ∈ f(v) ↔ (∃u ∈ v)(A = f(a)) ↔ (A, v) ∈ E.

In other words,
f(v) = {A ∈ V : (A, v) ∈ E}.

The universet (V,E) is the protoextension of (U, ε).
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3.2.18. Let (U, ε) be a universet satisfying the axiom of extensionality and
let (V,E) be the protoextension of (U, ε). Then

(1) (V,E) enjoys the axiom of extensionality;
(2) f := fU : U → U is an injective mapping and

(f(u), f(v)) ∈ E ↔ (u, v) ∈ ε.

(3) (∀u ∈ U)(A, f(u)) ∈ E ↔ (∃ a)((a, u) ∈ ε ∧ A = f(a)) for all
A ∈ V .

� (1): To check the axiom of extensionality in (V,E), take x, y ∈ V so that
(∀ z ∈ V )(z, x) ∈ E → (z, y) ∈ E. We have to validate that x ⊂ y. Take w ∈ x, w ∈
U . Then (f(w), x) ∈ E and so f(w) = f(w) and w ∈ y for some w ∈ U . However,
we already know that w = w. Hence, (∀w ∈ U)w ∈ x → w ∈ y. We are done on
recalling that x, y ∈ P(U).

(2): Note that (u, v) ∈ ε amounts to u ∈ f(v). Hence, on using the validity of
the axiom of extensionality for ε in U , we infer that

f(u) = f(v) → ((∀ z ∈ U) z ∈ f(u) ↔ z ∈ f(v))
→ ((∀ z ∈ U)(z, u) ∈ ε ↔ (z, v) ∈ ε) → u = v.

Assuming now that (f(u), f(v)) ∈ E, by definition we see that f(a) = f(a) and
a ∈ f(v) for some a ∈ U . Since a = u as proven; therefore, (u, v) ∈ ε. In turn, the
implication (u, v) ∈ ε → (f(u), f(v)) ∈ E is clear (and does not imply extensionality
in U) for we may take U as the element n that is requested by the definition of E.

(3): If (a, u) ∈ ε and A = f(a) then a ∈ f(u). Hence, (A, f(u)) ∈ E by
definition. Conversely, from (2) we infer that

(A, f(u)) ∈ E → (∃ a ∈ U)A = f(a) ∧ a ∈ f(u)
→ A = f(a) ∧ (f(a), f(u)) ∈ E → (a, u) ∈ ε ∧A = f(a),

which ends the proof. �
Let (U, ε) be a universet satisfying the axiom of extensionality. Put U0 := U

and ε0 := ε. Using the above consecutively and granted (Uk, εk), assign

Uk+1 := P(Uk);
fk(u) := {u ∈ Uk : (u, U) ∈ εk} (u ∈ Uk);

εk+1 := {(u, v) ∈ Uk+1 × Uk+1 : (∃ a ∈ Uk)(u = fk(a) ∧ a ∈ v)}.
We thus acquire the sequence of injections

U0
f1−→ U1

f2−→ U2 → · · · → Un
fn+1−→ Un+1 → . . .
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It is easy to find some V and some sequence of injections (gn)n∈Z+
so that the

following diagram commutes:

U0
f1−→ U1

g0

f2−→ U2

g1

−→ · · ·
g2

−→ Un
fn+1−→ Un+1

gn+1

−→ · · ·

V

and, moreover, V =
⋃
n∈Z

U ′n, with U ′n := gn(Un).
Indeed, consider the direct sum

Ṽ := {(x, n) : x ∈ Un, n ∈ Z}

and define the equivalence ∼ as follows: A member (x, n) is equivalent to (y,m)
provided that fk ◦fk−1 ◦ · · ·◦fn(x) = fk ◦fk−1 ◦ · · ·◦fm(y) for some k ≥ n,m. Take
Ṽ /∼ as V . The mapping gn appears as the composite of the natural embedding of
Un into Ṽ and the quotient mapping from Ṽ onto V . The tuple of V and (gn)n∈Z

is usually referred to as the inductive limit of (Un, fn)n∈Z.
Furnishing U ′n with the relation ε′n := g−1

n ◦ εn ◦ g−1
n , put

E :=
⋃

n∈Z

ε′n.

The resultant universet (V,E) is the external extension of (U, ε). In this event
we may consider U to be embedded in V by the injection ι := g0. (We often presume
the natural identification of (Un, εn) and (U ′n, ε′n), which saves room.)

3.2.19. If u and v are members of the external extension (V,E) of (U, ε) then

(u, v) ∈ E

↔ (∃n ∈ N)(v ∈ U ′n+1 ∧ u ∈ U ′n ∧ g−1
n (u) ∈ g−1

n+1(v))

↔ (∃n0 ∈ N)(∀n ≥ n0)(v ∈ U ′n+1 ∧ u ∈ U ′n ∧ g−1
n (u) ∈ g−1

n+1(v)).

� By 3.2.18 (2),

fn+1 ◦ εn ◦ f−1
n+1 ⊂ εn+1 (n ∈ Z+).
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Hence,

gn ◦ εn ◦ g−1
n = (gn+1 ◦ fn+1) ◦ εn ◦ (f−1

n+1 ◦ g−1
n+1)

= gn+1 ◦ (fn+1 ◦ εn ◦ f−1
n+1) ◦ g−1

n+1 ∈ gn+1 ◦ εn+1 ◦ g−1
n+1.

We may thus assume that

(u, v) ∈ E ↔ (∃n ∈ N)(u, v) ∈ gn+1 ◦ εn+1 ◦ g−1
n+1.

In this event, we also have

(u, v) ∈ gn+1 ◦ εn+1 ◦ g−1
n+1

for all n ≥ n0.
Clearly, v = gn+1(v) where v := g−1

n+1(v) ∈ Un+1; and u = gn+1(u) where
u := g−1

n+1(v). Moreover, uεn+1v and v ∈ Un+1, i.e. v = fn+1(a) for some a ∈ vn.
Therefore, (u, fn+1(a)) ∈ εn+1. Consequently, from 3.2.18 (3) it follows that u =
fn+1(u) for some u ∈ Un. Hence, u = gn+1(u) = gn+1(fn+1)(u) = gn(u) ∈ U ′n.
Since (fn+1(u), v) ∈ εn+1; therefore, u ∈ v by the definition of εn+1. We are done
on observing that g−1

n (u) = u and g−1
n+1(v) = v. �

3.2.20. Let (V,E) be an external extension of a universet (U, ε) enjoying the
axiom of extensionality. Then

(1) (V,E) � the axiom of extensionality;
(2) (V,E) � the axiom of pairing;
(3) (V,E) � the axiom of union;
(4) (V,E) � the axiom of powerset;
(5) (V,E) � the axiom-schema of comprehension;
(6) (V,E) � the axiom of choice;
(7) (V,E) � the axiom of the empty set;
(8) (V,E) � the axiom of infinity;
(9) (∀ a, b ∈ U)((a, b) ∈ ε) ↔ (ι(a), ι(b)) ∈ E;

(10) (∀x, y ∈ V )((x, y) ∈ E ∧ y ∈ ι(U) → x ∈ ι(U));
(11) (∀U ⊂ U)(∃U ∈ V )(∀ v ∈ V )((v, U) ∈ E ↔ v ∈ ι(U)).

� (1): From 3.2.18 (1) and the induction principle in (Un, εn) we see the validity
of the axiom of extensionality. It suffices to note the restriction of E to U ′n × U ′n
coincides with ε′n for all n ∈ Z+.

(2): Assume that u, v ∈ U ′n with u = gn(x) and v = gn(y). The unordered
z := {x, y} is a member of Un+1. Hence, w := gn+1(z) is a member of U ′n+1.
Clearly, (z, w) ∈ E ↔ z = u ∨ z = v.
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(3): Take u ∈ V . We may assume that u = gn+2(x) and x ∈ Un+2. Put

y :=
⋃

{fn+1(z) : z ∈ fn+2(x), z ∈ Un+1}.

Clearly, y ∈ Un+1. Assigning v := gn+1(y), note that

(w, v) ∈ E ↔ (∃ κ)(κ, v) ∈ E ∧ (w,κ) ∈ E

for w ∈ V .
Indeed, if a ∈ Un+1 then

a ∈ y ↔ ((∃ z ∈ Un+1)z ∈ fn+2(x)) ∧ a ∈ fn+1(z)
↔ (z, x) ∈ εn+2 ∧ (a, z) ∈ εn+1.

We are done on appealing to 3.2.19.
(4): Take u ∈ V and let u = gn(x), with x ∈ Un. Put A := {y ∈ Un : fn+1(y) ⊂

fn+1(x)}. Check that the set v := gn+2(A) plays the role of the powerset of u inside
(V,E). To this end, observe first of all that

fn+1(y) ⊂ fn+1(x) ↔ (∀ z ∈ V )(z, gn+1(fn+1(y)) ∈ E → (z, u) ∈ E

↔ (V,E) � gn(y) is a subset of x.

Given a ∈ V , we thus infer that

(a, v) ∈ E ↔ (a, gn+1(A)) ∈ E

↔ ((∃ a ∈ A)(a = gn(a)) ↔ (∃ y ∈ Un) a = gn(y) ∧ fn+1(y) ⊂ fn+1(x)
↔ (∃ z ∈ V ) a = Z ∧ (V,E) � z is a subset of v

↔ (V,E) � a is a subset of v.

(5): Assume that ϕ = ϕ(x, y) ∈ (ZFC) and u, y ∈ V . Assume also that
u = gn+1(x) and put A := {z ∈ fn+1(x) : ϕ(gn(z), y)}. Clearly, A ∈ Un+1. Assign
v := gn+1(A). In this event

(a, v) ∈ E ↔ (∃ z ∈ Un)a = gn(z) ∧ z ∈ A

↔ (∃ z ∈ Un)z ∈ fn+1(x) ∧ a = gn(z) ∧ ϕ(gn(z), y)
↔ (a, u) ∈ E ∧ ϕ(a, y)

for a ∈ U .
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(6): Assume that u = gn+1(x) and put

A := {z ∈ Un : z ∈ fn+1(x) ∧ fn+1(z) �= ∅}.
There is a choice function ψ : A → Un+1 such that ψ(z) ∈ fn+1(z) for all z ∈ A.
The set ψ is a member of Un+3. Put f := gn+3(ψ). It is easy to see that f plays
the role of a function inside (V,E), satisfying

(∀ v ∈ V )(v, y) ∈ E ∧ v �= 0) → (f(v), y) ∈ E.

It is such an element f that we have to demonstrate.
(7)–(10): These are beyond a doubt.
(11): Take g1(U) as U (which is sound since U ∈ U1). By (4) (v, U) ∈ ι ↔

(∃u ∈ U0)v = ι(u) ∧ u ∈ U . In other words, (v, U) ∈ E ↔ v ∈ ι(v). �
3.2.21. Comments.

(1) Zermelo suggested in 1908 an axiomatics that coincides practically
with ZF1–ZF3, ZF5, 3.2.5, and 3.2.6. This system, together with the Russell theory
of types, is listed among the first formal axiomatics for set theory.

The axioms of extensionality ZF1 and union ZF2 were proposed earlier by
Frege (1883) and Cantor (1899). The idea of the axiom of infinity ZF5 belongs to
Dedekind.

(2) The axiom of choice AC seems to be in use implicitly for a long
time before it was distinguished by Peano in 1890 and Levy in 1902. This axiom
was formally introduced by Zermelo in 1904 and remained most disputable for
many years. The axiom of choice is part and parcel of the most vital fragments
of contemporary mathematics. So, it is no wonder that AC is accepted by the
overwhelming majority of working mathematicians. Discussions of the place and
role of the axiom of choice may be found elsewhere [62, 123, 130, 196, 316].

(3) The axiomatics of ZFC was completely elaborated at the beginning
of the 1920s. By that time the formalization of the set-theoretic language had
been completed, which made it possible to clarify the vague description of the type
of properties admissible in the axiom of comprehension. On the other hand, the
Zermelo axioms do not yield the claim of Cantor that each bijective image of a set
is a set. This drawback was obviated by Fraenkel in 1922 and Scolem in 1923 who
suggested variations of the axiom of replacement. This moment seems to pinpoint
the birth of ZFC.

(4) The axiom of regularity ZF6 was in fact suggested by von Neumann
in 1925. This axiom is independent of the other axioms of ZFC.

(5) The system of axioms of ZFC is infinite as noted in 3.2.4. Absence
of finite axiomatizability for ZFC was proven by Montague in 1960 (see [123, 155,
316, 516]).
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3.3. Nelson Internal Set Theory

The preliminary analysis of the properties of standard and nonstandard sets
has shown that the von Neumann universe, if furnished with the predicate “to be
or nor to be standard,” has ample room for infinitesimals but fails to accommo-
date their monad, them all “viewed as one.” In other words, infinitesimal analysis
demonstrates that Zermelo–Fraenkel set theory, describing the classical world of
“standard” mathematics, distinguishes only some internal part of the cantorian
paradise, the universe of naive sets.

To emphasize this peculiarity, the nonstandard theory of sets we start present-
ing refers to the elements of the von Neumann universe as internal sets. Therefore,
a set in the sense of Zermelo–Fraenkel set theory and an internal set are synonyms.

A convenient foundation for infinitesimal analysis is given by the so-called
internal set theory suggested by Nelson and abbreviated to IST.

3.3.1. The alphabet of IST results from the alphabet of ZFC by adjoining the
only one new symbol of the unary predicate St expressing the property of a set to
be or not to be standard.

In other words, the texts of IST may contain fragments of the type St(x) which
reads as “x is standard” or “x is a standard set.” Therefore, the semantic domain
of definition for variables of IST is the world of Zermelo–Fraenkel set theory; i.e.,
the von Neumann universe in which we can now discriminate between standard and
nonstandard sets.

3.3.2. The formulas of IST are defined routinely on enriching the collection
of atomic formulas with the texts like St(x) where x is a variable. Each formula of
ZFC is a formula of IST, whereas the converse is obviously false. To discriminate
between the formulas of IST, we call the formulas of ZFC internal. By an external
formula, we mean a formula IST not expressible in ZFC. For instance, the text “x
is standard” is an external formula of IST.

For ecological reasons, we use the following convenient abbreviations: To sig-
nify that ϕ is a formula of IST, we write ϕ ∈ (IST); similarly, ϕ ∈ (ZFC) means
that ϕ is an internal formula of IST.

3.3.3. The distinction between the formulas of IST leads naturally to the
notions of external and internal classes. If ϕ is an external formula of IST then
we read the text ϕ(y) as follows: “y is an element of the external class {x : ϕ(x)}.”
The term internal class implies the same as the term class in ZFC. We usually
speak simply of classes when this leads to no confusion.

3.3.4. An external class consisting of elements of some internal set x is an
external set or, in more detail, an external subset of x. It is worth noting that
each internal class consisting of elements of some internal set is an internal set too.
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Alongside the abbreviations of ZFC, the theory IST maintains some additional
agreements. We list a few of them are concluded. A list of them follows:

Vst := {x : St(x)} is the external class of standard sets;
x ∈ Vst := x is standard := (∃ y)(St(y) ∧ y = x);

(∀ stx)ϕ := (∀x)(x is standard → ϕ);
(∃ stx)ϕ := (∃x)(x is standard ∧ ϕ);
(∀ st finx)ϕ := (∀ stx)(x is finite → ϕ);
(∃ st finx)ϕ := (∃ stx)(x is finite ∧ ϕ);

◦x := {y ∈ x : y is standard}.

The external set ◦x is often called the standard part or standard core of x. Observe
conspicuous collision of notations and outright abuse of the language since ◦x, with
x ∈ ≈

R, denotes the value of the standard part operation at x as well as the
standard part of x as a set. Fortunately, these convenient collision and abuse are
harmless, leading to confusion rarely if ever.

3.3.5. The list of axioms of IST includes all those of ZFC and three new axiom-
schemata which are known collectively as the principles of nonstandard set theory
or, which slightly abuses the language, the principles of infinitesimal analysis.

(1) Transfer Principle:

(∀ stx1)(∀ stx2) . . . (∀ stxn)((∀ stx)ϕ(x, x1, . . . , xn)
→ (∀x)ϕ(x, x1, . . . , xn))

for every internal formula ϕ;
(2) Idealization Principle:

(∀x1)(∀x2) . . . (∀xn)((∀ st finz)(∃x)(∀ y ∈ z)ϕ(x, y, x1, . . . , xn)
↔ (∃x)(∀ sty)ϕ(x, y, x1, . . . , xn)),

where ϕ ∈ (ZFC) is an arbitrary internal formula;
(3) Standardization Principle:

(∀x1) . . . (∀xn)((∀ stx)(∃ sty)(∀ stz)(z ∈ y) ↔ (z ∈ x ∧ ϕ(z, x1, . . . , xn)))

for every (possibly external) formula ϕ.
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3.3.6. Powell Theorem. IST is conservative over ZFC.
� Assume that ϕ is a formula of ZFC, ϕ = ϕ(x1, . . . , xn), and ϕ is proven

in IST. Assume further that the proof of ϕ uses the axioms ψ1, . . . , ψm of ZFC. By
the Montague–Levy Theorem there is an ordinal α such that

ϕ(x1, . . . , xn) ↔ ϕV
α

(x1, . . . , xn) ∧ ψV
α

1 ∧ · · · ∧ ψV
α

m

for all x1, . . . , xn ∈ V α.
Put U0 := V α and ε0 :=∈ |V α×V α . Take Pfin(U0) as E and let F be some

ultrafilter finer than the tail filter of Pfin(U0). Denote the resulting ultrapower (=
enlargement) of U0 by U1 and let ι1 : U0 → U1 stand for the canonical embedding
of U0 into U1. Repeating this construction successively, put Un+1 := Un

Pfin(U0)/F
and let ιn+1 : Un → Un+1 be the canonical embedding of Un into the ultrapow-
er Un+1. Identifying Un and ιn+1(Un), consider Un as a subset of Un+1. Put
U :=

⋃
n∈Z

Un and ε :=
⋃
n∈Z

εn, where εn+1 := ιn ◦ εn ◦ ιn+1 is the appropriate
interpretation of membership. Assume further that ∗ : U0 → U stands for the
canonical embedding of U0 into U . Treat the predicate St(·) as membership in
{∗u : u ∈ U0}. Since x ∈ V α → (∃β ∈ α) x ∈ V β → P(x) ∈ V β , conclude that the
standardization principle holds in U . Validity of the principles of transfer and ide-
alization follows from the 	Loš Theorem. Therefore, ψs1, . . . , ψ

s
m and the principles

of IST are satisfied in (U, ε), implying that ϕU (∗x1, . . . , ∗xn) and ϕV
α

(x1, . . . , xn).
Consequently, ϕ holds in the von Neumann universe. �

3.3.7. The above theorem implies that the internal theorems of IST are the-
orems of ZFC. In other words, proving “standard” theorems on sets we may use
the formalism of IST with the same feeling of reliability as we enjoy in ZFC. At
the same time, we should always bear in mind that the ultimate foundation ZFC
resides in the long run in its practical infallibility and semantic justification.

3.3.8. Pondering over the meaning of the formal records of the axioms of
IST, we cannot help but notice that the idealization principle looks somewhat
cumbersome. While the principles of transfer and standardization in their formal
disguise adequately reflect the naive conception, put forward earlier, the formal
expression of the idealization principle may drive the reader in a quandary. To
clear the coast, we start with proving that idealization principle as stated in 3.3.5 (2)
guarantees the presence of nonstandard elements.

3.3.9. There is a finite internal set containing every standard set.
� Consider the following formula: ϕ := (x is finite ∧ (y ∈ x)). Note that

ϕ ∈ (ZFC). Given a standard finite z, we may find an element x such that ϕ(x, y)
for all y ∈ z. Indeed, z may serve as such an x. We then complete the proof by
idealization. �
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3.3.10. When applying the idealization principle, we should bear in mind
clearly that those finite sets are standard whose every element is standard. This
fact was proved earlier, cf. 2.2.2. It is instructive to inspect the available formal
inference which proceeds also by idealization.

3.3.11. If A is an internal set then

A = ◦A ↔ (A is standard) ∧ (A is finite).

� Look at the formula ϕ := x ∈ A ∧ x �= y. Clearly, ϕ ∈ (ZFC). Proceed by
idealization as follows:

(∀ st finz)(∃x)(∀ y ∈ z)ϕ(x, y, A) ↔ (∃x)(∀ sty)(x ∈ A ∧ x �= y)
↔ (∃x ∈ A)(x is nonstandard) ↔ A− ◦A �= ∅.

In other words,

A = ◦A ↔ (∃ st finz)(∀x)(∃ y ∈ z) x /∈ A ∨ x = y

↔ (∃ st finz)(∀x ∈ A)(∃ y ∈ z) x = y ↔ (∃ st finz)A ⊂ z,

which completes the proof. �
3.3.12. Construction Principle. Assume that X and Y are standard sets,

while ϕ=ϕ(x, y, z) is a formula of IST. Then

(∀ stx)(∃ sty)(x ∈ X → y ∈ Y ∧ ϕ(x, y, z))
↔ (∃ sty( · ))(∀ stx)(y( · ) is a function from X in Y

∧(x ∈ X → ϕ(x, y(x), z))).

� Consider the standardization F (x) := ∗{y ∈ Y : ϕ(x, y, z)}. Applying
3.3.5 (3) again, arrange the standard set

F := ∗{(x,A) ∈ X × P(Y ) : F (x) = A},
which is sound since P(Y ) is standard whenever so is Y . By hypothesis, (∀ stx ∈
X)F �= ∅ and so. In this case, F (x) = F (x) by the definition of F . Consequently,

((∀ stx ∈ X)(F (x) �= ∅)) → ((∀x ∈ X)(F (x) �= ∅))

by transfer. Appealing now to the axiom of choice, conclude that

(∃ y( · ))(y( · ) is a function from X to Y ) ∧ (∀x ∈ X)(y(x) ∈ F (x)).

By transfer, there is a standard function y( · ) from X to Y satisfying y(x) ∈ F (x)
for all x ∈ X . Recalling the definition of F once again, observe that y( · ) is a sough
function. �
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3.3.13. In what follows (as well as precedes) we find it convenient to use some
symbolic records of the rules collected in the above propositions, deliberately but
slightly abusing the language. For instance, the construction principle 3.3.12 may
be rewritten as

(1) (∀ stx)(∃ sty)ϕ(x, y) ↔ (∃ sty( · ))(∀ stx)ϕ(x, y(x)),
(2) (∃ stx)(∀ sty)ϕ(x, y) ↔ (∀ sty( · ))(∃ stx)ϕ(x, y(x)),

where ϕ ∈ (IST). In other words, we will neglect the possible presence of unbound
variables in ϕ and the assumption that all quantifiers must be bounded which
implies that x and y are assumed to range over some standard sets that are specified
in advance. Similarly, if ϕ = ϕ(x1, . . . , xn) and ψ = ψ(y1, . . . , yn) then we will write
ϕ ↔ ψ whenever

(∀ stx1) . . . (∀ stxn)(∀ sty1) . . . (∀ styn)ϕ(x1, . . . , xn) ↔ ψ(y1, . . . , yn),

and say that ϕ and ψ are equivalent (although if one of the formulas ϕ and ψ is
external then the formulas ϕ(x1, . . . , xn) and ψ(y1, . . . , yn) are not equivalent for
some assignment of variables). Using these agreements, we will express the transfer
principle in reduced form

(3) (∀ stx)ϕ(x) ↔ (∀x)ϕ(x),
(4) (∃ stx)ϕ(x) ↔ (∃x)ϕ(x),

always keeping in mind that ϕ must be an internal formula: ϕ ∈ (ZFC).
It is reasonable also to write down a few elementary rules valid for every ϕ:
(5) (∀x)(∀ sty)ϕ(x, y) ↔ (∀ sty)(∀x)ϕ(x, y),
(6) (∃x)(∃ sty)ϕ(x, y) ↔ (∃ sty)(∃x)ϕ(x, y),

as well as some new records of the idealization principle:
(7) (∀ st finz)(∃x)(∀ y ∈ z)ϕ(x, y) ↔ (∃x)(∀ sty)ϕ(x, y),
(8) (∃ st finz)(∀x)(∃ y ∈ z)ϕ(x, y) ↔ (∀x)(∃ sty)ϕ(x, y),

which apply, obviously, only ϕ ∈ (ZFC).

3.3.14. These rules allow us to translate many (but definitely not all) concepts
and statements of infinitesimal analysis into equivalent definitions and theorems free
from the notion of “standardness.” In other words, the formulas of IST express-
ing “something unusual” about standard objects can be translated into equivalent
formulas of ZFC which are in mathematical parlance. The procedure yielding this
result is the Nelson algorithm or reduction algorithm which rests essentially on
3.3.13 (1)–(8). The essence of this “decoding” algorithm is in using standard func-
tions, idealization and transposition of quantifiers for reducing the expression under
study to a form more suitable for transfer. This translation amounts ultimately to
elimination of the external notion of standardness. It is worth observing that each
case of application of the formulas of 3.3.13 requires ensuring the hypotheses of
their validity.
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3.3.15. The Nelson algorithm consists of the following steps:
(1) Rewrite a proposition of infinitesimal analysis as a formula ψ of

IST; i.e., decode all abbreviations;
(2) Reduce the formula ψ of step (1) to the prenex normal form

(Q1x1) . . . (Qnxn)ϕ(x1, . . . , xn),

where Qk ∈ {∀, ∃, ∀ st, ∃ st} for k := 1, . . . , n and the matrix ϕ of ψ
is a formula of ZFC;

(3) In case Qn is an “internal” quantifier, i.e., ∀ or ∃; proceed by
putting ϕ := (Qnxn)ϕ(x1, . . . , xn) and return to step (2);

(4) If Qn is an “external” quantifier, i.e., ∀ st or ∃ st; search the prefix
(Q1x1) . . . (Qnxn) from right to left until the first internal quantifier
is found;

(5) In case there is no internal quantifiers in step (4); replace the quan-
tifier Qn with the corresponding internal quantifier (by 3.3.13 (3)
and 3.3.13 (4)), and return to step (2), i.e., delete all superscripts
st in right-to-left order;

(6) Let Qm be the first internal quantifier encountered. Suppose that
Qm+1 is an external quantifier of the same type as Qm (i.e., Qm = ∀
and Qm+1 = ∀ st, or Qm = ∃ and Qm+1 = ∃ st). Transpose the
quantifies by 3.3.13 (5) and 3.3.13 (6) and return to step (2);

(7) In case all the quantifiers Qm+1, . . . , Qn are of the same type, apply
the idealization principle in the form 3.3.13 (7) or 3.3.13 (8), and
return to step (2);

(8) In case the quantifiers alternate; i.e., Qp+1 is of the same type as
Qm while all quantifiers Qm+1, . . . , Qp are of the opposite type,
apply 3.3.13 (1) or 3.3.13 (2), on assuming x := (xm+1, . . . , xp) and
y := xp+1. After that return to step (2).

3.3.16. Note that an arbitrary assertion is expressible in various forms some
of which can be absolutely incomprehensible. Hence, implementing the Nelson
algorithm in practice, we must seize all possibilities of accelerating the procedure of
“dragging out the external quantifiers.” In particular, it is wise sometimes to skip
or leave unfinished step 3.3.15 (2). We will demonstrate this by example.

3.3.17. Examples.

(1) Infinitesimal analysis enjoys the external induction principle:

(ϕ(1) ∧ ((∀n ∈ ◦N)(ϕ(n) → ϕ(n+ 1)))) → (∀n ∈ ◦N)ϕ(n)

for every ϕ ∈ (IST).
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� The formula ϕ may be external, which prevents us from applying the Nelson
algorithm directly to the formal record of the external induction principle.

So, consider the standardization A := ∗{n ∈ N : ϕ(n)}. Obviously, 1 ∈ A, and
n+ 1 ∈ A for every standard n ∈ A.

We must prove that ◦N ⊂ A. For this purpose, write down the formula in
question and apply the Nelson algorithm to it:

(1 ∈ A ∧ (∀ stn ∈ N)(n ∈ A → (n+ 1) ∈ A)) → ◦
N ⊂ A

↔ (∀ stm)(∀ stn)(m ∈ N ∧ n ∈ N ∧ 1 ∈ A ∧ n ∈ A → (n+ 1) ∈ A)

→ m ∈ A ↔ (1 ∈ A ∧ (∀n ∈ N)(n ∈ A → (n+ 1) ∈ A)) → N ⊂ A,

which completes the proof. �

(2) The sum of infinitesimals is an infinitesimal too.

� (∀ s ∈ R)(∀ t ∈ R)(s ≈ 0 ∧ t ≈ 0 → s+ t ≈ 0)

↔ (∀ s ∈ R)(∀ t ∈ R)(s ≈ 0 ∧ t ≈ 0 → (∀ stε > 0)(|s+ t| < ε))

↔ (∀ stε > 0)(∀ s ∈ R)(∀ t ∈ R)(∀ stδ1 > 0)

(∀ stδ2 > 0)(|s| < δ1 ∧ |t| < δ2 → |s+ t| < ε)

↔ (∀ stε > 0)(∀ s ∈ R)(∀t ∈ R)(∃ stδ1 > 0)(∃ stδ2 > 0)(|s| < δ1

∧|t| < δ2 → |s+ t| < ε) ↔ (∀ stε)(∀ s) (∀ t)(∃ stδ1)(∃ stδ2)(ε > 0

∧ · · · ∧ δ2 > 0 ∧ |s| < δ1 ∧ |t| < δ2 → |s+ t| < ε)

↔ (∀ stε)(∀ s)(∀ t)(∃ stδ1)(∃ stδ2)(|s| < δ1 ∧ |t| < δ2 → |s+ t| < ε)

↔ (∀ stε)(∃ st finΔ1)(∃ st finΔ2)(∀ s) (∀ t)(∃ δ1 ∈ Δ1)(∃ δ2 ∈ Δ2)

(|s| < δ1 ∧ |t| < δ2 → |s+ t| < ε)

↔ (∀ stε)(∃ stδ1)(∃ stδ2)(∀ |s| < δ1)(∀ |t| < δ2)(|s+ t| ≤ ε)

↔ (∀ ε > 0)(∃ δ > 0)(∀ |s| < δ)(∀ |t| < δ)(|s+ t| ≤ ε). �

(3)Robinson Lemma. Let (an) be an internal numerical sequence, and an ≈
0 for all n ∈ ◦N. Then there is an index N ≈ +∞ such that an ≈ 0 for all n ≤ N .
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� Apply the Nelson algorithm to the conclusion:

(∃N ≈ +∞)(∀n ≤ N)(an ≈ 0)
↔ (∃N ∈ N)((∀ stm ∈ N)((N ≥ m) ∧ (∀n ∈ N)(n ≤ N))

→ (∀ stε > 0)|an| < ε) ↔ (∃N)(∀ stm)(∀ stε)
(∀n)(N ≥ m ∧ (n ≤ N → |an| < ε))

↔ (∀ st{m1, . . . , mp})(∀ st{ε1, . . . , εp})(∃N)(∀ k := 1, . . . , p)
(N ≥ mk ∧ n ≤ N → |an| < εk)

↔ (∀ stm)(∀ stε)(∃N)(N ≥ m ∧ (n ≤ N → |an| < ε))
↔ (∀ stm)(∀ stε)(m ∈ N ∧ ε > 0 → |am| < ε).

Proceed with applying the Nelson algorithm to the premise of the claim:

(∀n ∈ ◦N)(an ≈ 0) ↔ (∀ stn)(n ∈ N → (∀ stε > 0)(|an| < ε))
↔ (∀ stn)(∀ stε)(n ∈ N ∧ ε > 0 → |an| < ε).

Clearly, the premise and conclusion are equivalent. �
(4) Unique Determination Principle. Unique determination implies stan-

dardness in the standard environment.
In symbols, if y, V ∈ VSt and ϕ = ϕ(x, y) is an arbitrary (possibly external)

formula of IST then
((∃! x ∈ V )ϕ(x, y)) → St(x).

� Using the Nelson algorithm, rewrite ϕ as

ϕ(x, y) := (∀Stu)(∃Stv)ψ(x, u, v, y),

with ψ ∈ (ZFC).
In particular, by the construction principle,

(∃Stv (·))(∀Stu)ψ(x, u, v(u), y). (1)

Moreover,
(∀ z)(∀Stu ∃Stvψ(z, u, v, y) → z = x).

Using the Nelson algorithm, infer

(∀stv (·))(∃st finU)(∀ z)(((∀u ∈ U)ψ(z, u, v(u), y)) → z = x). (2)

Denote by U the standard finite set that corresponds by (2) to the function v(·)
of (1).

Clearly, (∀u ∈ U)ψ(x, u, v(u), y) and so (∃ z)(∀u ∈ U)ψ(z, u, v(u), y). By
transfer,

(∃Stz)(∀u ∈ U)ψ(z, u, v(u), y).

Using (2), conclude that z = x, i.e., St(x). �
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3.3.18. Alongside the theory IST by Nelson we will use some variation of this
theory, the so-called bounded (or limited) set theory BST, that was suggested by
Kanovĕı and Reeken in [213].

The theory BST preserves the alphabet and related attributes of IST. Distinc-
tions appear only in the formulation of the principles of nonstandard set theory.
Moreover, the principles of transfer and standardization of IST are still valid in
BST. However, the theory BST considers each internal set as included in some
standard set, implying due restrictions on the process of idealization:

(1) Boundedness Principle:

(∀x)(∃ stX)(x ∈ X);

(2) Bounded Idealization Principle:

(∀x1)(∀x2) . . . (∀xn)((∀ st finz)(∃x ∈ z0)(∀ y ∈ z)
ϕ(x, y, x1, . . . , xn) ↔ (∃x ∈ z0)(∀ sty)ϕ(x, y, x1, . . . , xn)),

where ϕ ∈ (ZFC) is an internal formula and z0 is some standard set.
Kanovĕı and Reeken proved that the bounded idealization principle may be

replaced with the following
(3) Internal Saturation Principle:

(∀x1)(∀x2) . . . (∀xn)((∀ st finz ⊂ z0) (∃x)(∀ y ∈ z)ϕ(x, y, x1, . . . , xn)
↔ (∃x)(∀ sty ∈ z0)ϕ(x, y, x1, . . . , xn)),

where ϕ ∈ (ZFC) is an internal formula and z0 is some standard set.
The most important property of BST is the fact that the bounded or limited

universe, comprising the members of all standard set in IST, serves as a model for
BST. This implies that BST is conservative over ZFC.

3.4. External Set Theories

The basic principles of infinitesimal analysis are adequately reflected in the
formal apparatus of Nelson internal set theory. The Powell Theorem enables us
to view IST as a technique of studying the von Neumann universe. At the same
time, the presence of external objects completely undermines the popular belief that
the formalism of Zermelo–Fraenkel set theory brings about a sufficient freedom of
operation from the viewpoint of the naive set theory.

Residing in the realm of IST, we are not is a position even to raise such an
innocent question as: “Is it possible to distinguish some set of reals such that each
element of R will admit a unique expansion in a linear combination of them with
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standard coefficients, since R may be naturally viewed as a vector space over ◦R?”
The amount of these inadmissible questions, undoubtedly mathematical from the
semantic point of view, is great to the extent that makes the necessity of trespassing
the frontiers of IST vital.

A priori prohibition against formulating problems is nothing but blindfolding
the mind. The introduction of an ad hoc dogma, an “explicitly expressed prohibi-
tion against thinking” (as was aphoristically remarked by Feuerbach) is absolutely
unacceptable in searching truth. A practical solution of the problem of returning
to the cantorian paradise lies, in particular, in designing a formalism that would
allow us to use the conventional means for working with sets that are external to
the von Neumann universe. We now start reviewing some axiomatic approaches to
external sets.

The first version of an appropriate formalism was suggested by Hrbáček in his
external set theory abbreviated as EXT. A close version, nonstandard set theory
NST, was propounded later by Kawai. Semantically speaking, these set theories
demonstrate that the external universe is constructed in much the same way as the
universe of naive sets as viewed from the standpoint of a pragmatic philistine which
the working mathematician often occupies and mostly indulges in. Clearly, the
external universe is at least as good as the naive cantorian paradise since the former
admits all classical set-theoretic operations including the generation of subsets by
abstract predicates (the axioms of comprehension) as well as the possibility of well-
ordering arbitrary sets (the axiom of choice). At the same time the external universe
includes the full collection of all internal sets, standard and nonstandard, satisfying
the principles of transfer, idealization, and standardization in the forms close to
their intuitive content. Strictly speaking, all internal sets belong to the external
world by definition.

As regards the every-day needs of the conventional (standard and nonstandard)
mathematical analysis, the two theories EXT and NST supply the tools of practi-
cally the same power in the quantities more than enough for meeting the demands
of whatever version of analysis.

Of course, to peruse the details of the formal axiomatics of both theories is
necessary for avoiding the illusions that accompany the euphoria of universal per-
missiveness. It is worth noting that the external world does not coincide with the von
Neumann universe (the axiom of regularity is omitted, which is essential). More-
over, the exact formulations of the principles of infinitesimal analysis of EXT differ
in technical details from their analogs in IST. Therefore, EXT is not an extension
of IST whereas EXT is a conservative extension of ZFC. This gap was filled by
Kawai whose theory NST enriches the formal apparatus of IST and, alongside with
IST and EXT, provides a reliable technique for studying ZFC.

3.4.1. The alphabet of EXT comprises the alphabet IST and a sole new symbol
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of the unary predicate, Int, expressing the property of a set to be or not to be
internal. In other words, we accept for consideration the texts that contain Int(x),
or in a more verbose form “x is internal,” or amply “x is an internal set.” Intuitively,
the range of variables of EXT is the external universe VExt := {x : x = x} which
includes the internal universe VInt := {x ∈ VExt : Int(x)} whose part is the
standard universe VSt := {x ∈ VExt : St(x)}.

3.4.2. The conventions of EXT are analogous to those of ZFC and IST. In
particular, we will continue using the “classifiers,” i.e., braces (see 3.3.3) and the
traditional symbols for the simplest operations on classes of external sets. Given
a formula ϕ of EXT (in symbols, ϕ ∈ (EXT)) we proceed as before and put

(∀ stx)ϕ := (∀x)(St(x) → ϕ) := (∀x ∈ VSt)ϕ,
(∃Int x)ϕ := (∃x)(Int(x) ∧ ϕ) := (∃x ∈ VInt)ϕ.

Similar rules, easily understood from context, will be hereupon used without
further specification. We also need a new concept and a corresponding notation.
We will say that an external set A has standard size (in writing, A ∈ V size) provided
that there are a standard set a and an external function f satisfying (∀X)(X ∈
A ↔ (∃ stx ∈ a)X = f(x)).

3.4.3. Let ϕ ∈ (ZFC) be a formula of EXT that is also a formula of ZFC (i.e.,
ϕ contains no symbols St and Int). Replacing each occurrence of a quantifier Q,
where Q ∈ {∀, ∃}, in the record of ϕ by Qst, denote the result by ϕSt and call ϕSt

the standardization of ϕ or relativization of ϕ to VSt. By analogy, replacing each
occurrence of a quantifier Q with QInt, we come to the formula ϕInt which is called
the internalization ϕ or relativization of ϕ to VInt. Note that nothing happens to
the unbound variables of ϕ.

We tacitly proceed likewise with abbreviations. For instance, given external
sets A and B, we write

A ⊂ StB := (∀ stx)(x ∈ A → x ∈ B)
:= ((∀x)(x ∈ A → x ∈ B))St := (A ⊂ B)St;

A ∈ IntB := (A ∈ B)Int := A ∈ B := A ∈ StB := (A ∈ B)St.

3.4.4. The special axioms of EXT fall into three groups: (a) the axioms of ex-
ternal set formation, (b) the axioms of interplay between the universes VSt, VInt,
and VExt, and, finally, (3) the principles of transfer, idealization, and standardiza-
tion.
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3.4.5. The universe EXT obeys the laws of Zermelo set theory (in symbols, Z).
The following axioms for external set formation accepted:

(1) Axiom of Extensionality:

(∀A), (∀B)((A ⊂ B ∧B ⊂ A) ↔ A = B);

(2) Axiom of Pairing:

(∀A)(∀B) {A,B} ∈ VExt;

(3) Axiom of Union:

(∀A)
⋃
A ∈ VExt;

(4) Axiom of Powersets:

(∀A) P(A) ∈ VExt;

(5) Axiom-Schema of Comprehension:

(∀A)(∀X1) . . . (∀Xn){X ∈ A : ϕ(X,X1, . . . , Xn)} ∈ VExt

for an arbitrary formula ϕ ∈ (EXT);
(6) Axiom of Well-Ordering: Every external set is well-orderable.
The last property, known also as the Zermelo Theorem, ensures (cf. (3.2.10))

the axiom of choice either in the conventional multiplicative form or in the form
of the Kuratowski–Zorn Lemma. It is worth observing here that the routine list of
the axioms of Z usually includes the axiom of infinity, which will appear somewhat
later in EXT.

3.4.6. The second group of the axioms of EXT comprises the following:
(1) Modeling Principle. The internal universe VInt is the von Neumann

universe; i.e., if ϕ is an axiom of Zermelo–Fraenkel set theory then the internaliza-
tion ϕInt is an axiom of EXT;

(2) Axiom of Transitivity:

(∀x ∈ VInt) x ⊂ VInt,

i.e., internal sets are composed of only internal elements;
(3) Axiom of Embedding:

VSt ⊂ VInt,

i.e., standard sets are internal.
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3.4.7. The third group of the axioms of EXT includes the following:
(1) Transfer Principle:

(∀ stx1) . . . (∀ stxn)ϕSt(x1, . . . , xn) ↔ ϕInt(x1, . . . , xn)

for every formula ϕ ∈ (ZFC);
(2) Idealization Principle:

(∀Int x1) . . . (∀Intxn)(∀A ∈ V size)(((∀finz) z ⊂ A

→ (∃Int x)(∀ y ∈ z)ϕInt(x, y, x1, . . . , xn))
→ (∃Int x)(∀Int y ∈ A)ϕInt(x, y, x1, . . . , xn))

for an arbitrary ϕ ∈ (ZFC);
(3) Standardization Principle:

(∀A)(∃ sta)(∀ stx)(x ∈ A ↔ x ∈ a),

to each external set A there corresponds the standardization ∗A of A.

3.4.8. As a simplest useful corollary to the above axioms we mention that the
bounded formulas of ZFC are absolute. To be more precise, if ϕ ∈ (Σ0) then

(∀Int x1) . . . (∀Int xn)ϕ(x1, . . . , xn) ↔ ϕInt(x1, . . . , xn),
(∀ stx1) . . . (∀ stxn)ϕSt(x1, . . . , xn)

↔ ϕInt(x1, . . . , xn) ↔ ϕ(x1, . . . , xn).

In other words, we may safely express every “bounded” property of standard
sets both in terms of external and internal or standard elements. For instance,
x ⊂ y ↔ x ⊂ Sty ↔ x ⊂ Inty for standard sets x and y.

3.4.9. Hrbáček Theorem. EXT is conservative over ZFC. In symbols,

(ϕ is a theorem of ZFC) ↔ (ϕInt is a theorem of EXT)
↔ (ϕSt is a theorem of EXT)

for all ϕ ∈ (ZFC).

� The bulky proof of this theorem can be found in [185]. �
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3.4.10. Pondering over the above axiomatics, we must realize first of all that
EXT is not an extension of IST.

In other words, the internal universe VInt is not a model for Nelson’s IST since
the idealization and standardization principles are formulated differently in EXT
and IST.

The conditions for standardization in VInt are considerably less restrictive than
those in IST. Indeed, given ϕ ∈ (IST) and A ∈ VInt, we may arrange ∗{x ∈ A :
ϕ(x)} since {x ∈ A : ϕ(x)} is an external subset of A. In IST this is possible
provided that A is standard (do not forget that to standardize the collection of
all standard elements is impossible in IST). Residing in EXT, we can find neither
external nor internal set containing all standard sets. Indeed:

3.4.11. There is no external set, a member of VExt, containing every standard
set.

� Assume by contradiction that VSt ⊂ X for some X ∈ VExt. Applying the
axiom of comprehension 3.4.5 (5), to the formula ϕ(x) = St(x) conclude that VSt

is an external set, i.e., (∃Y )(∀Z)(Z ∈ Y ↔ St(Z)). Look at the standardization
∗VSt. Observe that ∗VSt is a standard finite set containing every standard set,
which is impossible. �

3.4.12. Proposition 3.4.11 shows that the idealization principle in EXT (if
relativized to VInt) differs from its counterpart in IST not only in form but also in
essence. However, the importance of these differences should not be exaggerated.

3.4.13. The following hold:
(1) External naturals are the same as standard naturals;
(2) A finite external set A is standard if and only if A comprises only

standard elements;

(3) The standard part ◦A := {a ∈ A : St(a)} of each external set A is
of standard size;

(4) Each infinite internal set contains a nonstandard element.

� (1): By induction on standard naturals (which is, obviously, legitimate in
EXT (cf. 2.2.2 (1))), N

Ext ⊃ ◦N with N
Ext standing for the external set of external

naturals. It is also clear that ∗∅ = ∅ and ∗1 = ∗{∅} = {∅} = 1. Hence, by
induction on external naturals (which is a routine theorem of Z), N

Ext ⊂ ◦N and so
◦
N = N

Ext.
(2): Every standard set is internal. We may thus proceed along the lines of the

proof of 2.2.2 (3) on appealing to 3.4.6 (2). Also, by 2.2.2 (2), a finite set composed
of standard elements is standard.

(3): Let ∗A stand for the standardization of A. Put f(a) := a for a ∈ ◦A.
Obviously, (∀X)(X ∈ ◦A ↔ (∃stx ∈ ∗A) f(x) = X).
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(4): Let A stand for the internal set under discussion. By (3), the set ◦A is of
standard size. Hence, we may apply the idealization principle for ϕ(x, y) := y �=
x ∧ x ∈ A. Since A is infinite; therefore, (∃x ∈ A)(∀ y ∈ z) x �= y for every finite
z ⊂ ◦A. Finally, (∃x ∈ A)(∀ y ∈ ◦A) x �= y. �

3.4.14. As prompted by 3.4.13 and 3.4.9, it is convenient to consider some
variation INT of IST which is a conservative extension of ZFC with EXT serving
in turn as an extension of INT. The difference between INT and IST lies in the
idealization and standardization principles which are stated in INT as follows:

(1) (∀A)(∀x1) . . . (∀xn)((∀ st finz)(z ⊂ A)(∃x)(∀ y ∈ z)
ϕ(x, y, x1, . . . , xn) ↔ (∃x)(∀ sty ∈ A)ϕ(x, y, x1, . . . , xn)
for all ϕ ∈ (ZFC);

(2) (∀A)(∃ st ∗A)(∀ stx)(x ∈ A ↔ x ∈ ∗A ∧ ϕ(x))
for all ϕ ∈ (INT).

It is worth observing that the Nelson algorithm is mostly operative in INT.

3.4.15. We now describe the theory NST in a version most similar to EXT
and IST (in fact Kawai has propounded a somewhat different axiomatics, enabling
us to consider the classes of von Neumann–Gödel–Bernays theory as external sets).

3.4.16. The alphabet and conventions of NST are exactly the same as those
of EXT. Furthermore, NST accepts all axioms of external set formation, all axioms
of interplay between the universes of sets, and the transfer principle of EXT. The
differences between NST and EXT lie in the ways of stating the idealization and
standardization principles as well in the following supplementary postulate.

3.4.17. Axiom of Acceptance: Vst ∈ VExt, i.e., the standard universe of
NST is an external set.

In view of this axiom, an external set A in NST is of appropriate size, in
symbols A ∈ Va−size, provided there is an external function f from VSt onto A.
Note that VSt is of appropriate size. We also agree that the record a-fin(A) will
imply in the sequel that there is a injective external mapping from A onto some
standard finite set.

3.4.18. Standardization Principle in NST reads:

(∀A)((∃ stX)A ⊂ X → (∃ st ∗A)(∀ stx)(x ∈ A ↔ x ∈ ∗A)).

In other words, NST allows only the standardization of the external subsets of
standard sets rather than arbitrary external sets as is the case of EXT.
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3.4.19. Idealization Principle in NST reads:

(∀Int x1) . . . (∀Int xn)(∀A ∈ Va−size)(((∀z) z ⊂ A ∧ a = fin(z)
→ (∃Int x)(∀ y ∈ z)ϕInt(x, y, x1, . . . , xn))

→ (∃Int x)(∀Int y ∈ A)ϕInt(x, y, x1, . . . , xn))

for ϕ ∈ (ZFC).

3.4.20. Kawai Theorem. NST is conservative over ZFC.
� The proof proceeds along the lines of the proof of the Powell Theorem on

using 3.2.20 (see [232]). �
3.4.21. It is worth noting again that the internal universe V Int in NST, fur-

nished with the relativized standardization, idealization, and transfer principles,
serves as a model for IST. In other words, we may safely use all technical means
of NST for handling the external sets of IST in order to discover the truths of
“standard” mathematics.

3.4.22. Taking liberties with notations, we denote the external universe by VE

(irrespective of whether we imply NST or EXT). Analogously, we let VI and VS

stand for the internal and standard universes. Repeating the scheme of constructing
the von Neumann universe, i.e., consecutively taking the unions and powersets of
external subsets of already available sets, we start from the empty set and come to
the classical universe VC , the world of “classical sets.” In more detail,

V Cβ := {x : (∃ stα ∈ β)(x ∈ PExt(V Cα ))},
VC :=

⋃

β∈OnSt

V Cβ ,

where OnSt is the class of standard ordinals. Therefore, the empty set is “classical,”
and every “classical” set is composed only of “classical elements.”

3.4.23. Using recursion, i.e., walking about the stores of the classical universe,
we may define the robinsonian standardization or ∗-map.

A standard set ∗A is the robinsonian standardization or the ∗-image of a “clas-
sical” set A provided that every standard element of ∗A is the ∗-image of some
element of A. In symbols,

∗∅ := ∅, ∗A := ∗{∗a : a ∈ A}.
It is worth observing that the soundness of standardization raises no doubts in
EXT. The definition of VC shows the legitimacy of using this operation in NST to
define the robinsonian standardization.



80 Chapter 3

Similar arguments (cf. 3.2.12) demonstrate that the ∗-map identifies in a bijec-
tive manner the universes VC and VS. Moreover, the robinsonian standardization
ensures the validity of the transfer principle

(∀x1 ∈ VC) . . . (∀xn ∈ VC)ϕC(A1, . . . , An) ↔ ϕS(∗A1, . . . , ∗An)

for an arbitrary formula ϕ of Zermelo–Fraenkel set theory (as usual, ϕC and ϕS

are the relativizations of ϕ to VC and VS, respectively). It is usual to refer to this
form of transfer as the Leibniz principle. Since every bijection is usually viewed as
identification; therefore, it is a routine practice to denote ∗A by ∗A while using the
∗-map. This slightly abuses the language but prevails in common parlance. We will
indulge in this sin throughout the sequel.

3.5. Credenda of Infinitesimal Analysis

The discussion of the previous sections has enriched and extended the initial
naive views of sets which we use in infinitesimal analysis. From the conventional
von Neumann universe V we came to the internal universe VI , the scene of IST
presenting in fact the von Neumann universe with reference points, the standard
sets forming the standard universe VS (Fig. 4).

x∈V

A∈VI

x∈VS

∅ ∅

Von Neumann universe Internal universe

Fig. 4

Further analysis has shown that VI lies in a new class VE , the external universe
collecting all external sets in a Zermelo world. In VE we have selected the classical
universe VC that collects “classical” sets, presenting another implementation of
the standard universe. We have also constructed the robinsonian ∗-map that is
an elementwise bijection from VC to VS. By transfer, we may treat the universes
VC ,VS, and VI as hypostases of the von Neumann universe (Fig. 5).
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3.5.1. This picture of the location VE, VI , VS, and VC and the interplay be-
tween these worlds of sets drive us to formulating three general set-theoretic stances
or credos of infinitesimal analysis. These stances, known as classical, neoclassical,
and radical, canonize the general views of the objects and methods of research.
The acceptance of one of these stances is essential, determining for example the
manner of exposition of the mathematical results obtained by using infinitesimals.
Therefore, some familiarity with these stances seems to be an absolute necessity.

3.5.2. The classical stance of infinitesimal analysis relates to the technique
of its founder Robinson, and the corresponding formalism is mostly common at
present.

This credo proclaims that the principal object of research is the world of clas-
sical mathematics which is identified with the classical universe VC . The adept
considers VC as the “standard universe” (in practice, he or she deals usually with
a sufficiently large part of VC that contains all particular entities to study, which
is the so-called “superstructure”).

A∈VC

B

∗B

∗A∈VS

x∈VI

∅

External universe

Fig. 5

The main tool for studying the initial “standard universe” is the “nonstandard
universe” of internal sets VI (or an appropriate part of it) and the ∗-map that glues
together a usual “standard” set and its image in the “nonstandard universe” under
the ∗-map.
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It is worth noting that this stance involves a specific usage of the words “stan-
dard” and “nonstandard.” The robinsonian standardizations, which are the mem-
bers of VS, are viewed as “nonstandard” objects. A “standard” set is by credo an
arbitrary representative of the classical universe VC, a member of the “standard”
universe. The adept points out that the ∗-map usually adds new “ideal” elements
to sets. He or she implies that ∗A = {∗a : a ∈ A} if and only if the “classical” or
“standard” set A is finite.

For example, if the adept places R in VC and studies the ∗-image ∗R of R then
he or she will see that ∗R plays the role of the reals in the sense of the internal
universe VI . At the same time ∗R is not equal to the set of its standard elements:
◦(∗R) = {∗t : t ∈ R}. Considering that ∗R is the “internal set of the reals R,”
and ◦(∗R) is its standard part, the adept sometimes takes the liberty of writing
◦
R := {∗t : t ∈ R} and even R := {∗t : t ∈ R}. To visualize, the presence of new

elements in ∗R is expressed as ∗R − R �= ∅, and the adept talks of the “hyperreals”
∗
R extending the “standard” reals R.

A similar policy is pursued when considering an arbitrary classical set X .
Namely, the adept assumes that X := {∗x : x ∈ X} and, therefore, X ⊂ ∗X .
If X is infinite then ∗X −X �= ∅. In other words, the robinsonian standardization
adds new elements to all infinite sets. Furthermore, these additional “ideal” enti-
ties are galore by idealization in VI which is also referred to in this stance as the
technique of concurrence or saturation.

3.5.3. Assume that F is a correspondence and A lies in dom(F ). Call F
concurrent or finitely satisfiable or directed on A provided that to each nonempty
finite subset A0 of A there is some b satisfying (a0, b) ∈ F for all a0 ∈ A0.

If the above definition is abstracted by requiring that A0 has cardinality at
most given cardinal κ then we arrive to the definition of κ-concurrence.

3.5.4.Weak Concurrence Principle. To each correspondence F concurrent
on A, there is some b in im(∗F ) satisfying (∗a, b) ∈ ∗F for all a ∈ A.

3.5.5. It is easy to see conversely that the validity of 3.5.4 guarantees a nat-
ural analog of idealization in a somewhat weaker form than in IST as “relativized
to standard sets.” In this regard, applications often involve various conservative
enlargements of the classical set theory which allow for concurrence in the form of
3.5.4 and also in stronger forms insuring the additional possibilities of introducing
nonstandard entities in a manner that reflects idealization to a full extend.

3.5.6. Strong Concurrence Principle. Let F be such that ∗F is concurrent
on A. Then there is b ∈ im(∗F ) satisfying (∗a, b) ∈ ∗F for all a ∈ A.

Recall that (Aγ)γ∈Γ is a centered family or has the finite intersection property
whenever

⋂
γ∈Γ0

Aγ �= ∅ for every nonempty finite subset Γ0 of Γ.
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3.5.7. Saturation Principle. The following hold:
(1) Let (An)n∈N be a sequence of internal sets enjoying the finite inter-

section property. Then
⋂
n∈∗N

An �= ∅.
(1) Let (An)n∈N be an increasing sequence of internal sets and A :=⋃

n∈N
An. Then A = AN for some N ∈ ∗N.

The definition of ultralimit (cf. 3.2.17) involves arbitrariness which enables us
to show that there exist enlargements satisfying the analogs of 3.5.7 and similar
principles for each family whose index set has cardinality at most κ. In these
circumstances, it is in common parlance to speak of κ-saturation. Rephrased in
this terminology, 3.5.7 guarantees ω0-saturation. Applications often require ω1-
saturation as well.

3.5.8. The “enlarged,” “nonstandard” world, i.e., the internal universe VI

satisfies the transfer principle. Using the properties of the robinsonian standard-
ization, we may rephrase it as follows:

(∀x1 ∈ VC) . . . (∀xn ∈ VC)(ϕC(x1, . . . , xn) ↔ ϕI(∗x1, . . . ,
∗xn))

where ϕ is an arbitrary formula of Zermelo–Fraenkel set theory. Recall that this
form of transfer is the Leibniz principle.

3.5.9. Research in the “nonstandard universe” sometimes involves the “in-
ternal set technique,” i.e., the way of arguing which rests on the fact that every
external set given in the “set-theoretic manner” is internal. We now specify one of
the versions of this technique.

3.5.10. Let A be an infinite set. For any set-theoretic formula ϕ ∈ (ZFC) it
is then false that

{x : ϕI(x)} = ∗A−A.

� Assume the contrary. Then the class {x : ϕI(x)} would be an internal subset
of ∗A. Consequently, A would be internal too. However, the external set ∗A−A is
not internal since A is infinite by hypothesis. �

Applications also use other easy versions of the principles of infinitesimal anal-
ysis.

3.5.11. The following hold:
(1) Extension Principle. Each sequence (An)n∈N of internal sets An

is extendible to some internal sequence (An)n∈∗N;
(2) Overflow Principle. If A is an internal set and N ⊂ A then A

contains some infinitely large hypernatural, i.e. a member of ∗N−N;
(3) Underflow Principle. If A is an internal set and every infinitely

large hypernatural N ∈ ∗
N belongs to A then A contains some

standard n ∈ N;
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(4) Limitedness Principle. If B is an internal set of R consisting
only of limited reals then there is a standard real t ∈ R satisfying
B ⊂ [−t, t];

(5) Permanence Principle. If B is an internal set containing all
positive limited reals then B includes the interval [0, Ω] for some
infinitely large Ω;

(5) Cauchy Principle. If B is an internal set containing all infinitesi-
mals then B includes the interval [−a, a] for some standard a ∈ R;

(6) Robinson Principle. If B is an internal set consisting only of
infinitesimals then B is included in the interval [−ε, ε] where ε is
some infinitesimal.

It is worth noting that the words “overspill” and “underspill” are in common
parlance for “overflow” and underflow.”

3.5.12. Concluding the discussion, we can say that the adept confessing the
classical credo works with the two universes, standard and nonstandard. There is
a formal possibility of linking the properties of standard and nonstandard objects
with the help of the ∗-map. At the same time the adept may freely translate
statements about objects of one universe into those about their images in the other
universe, which is the Leibniz principle. The nonstandard universe is abundant
in “ideal” elements; various transfinite constructs are realizable in it because of
the concurrence principle. The sets falling beyond the nonstandard universe are
viewed as external (this is a peculiarity of the terminology: the internal sets are
not considered external in this stance). The technique of internal sets proves to be
a very effective tool.

The basic advantage of the classical stance is the availability of the ∗-map
enabling us to apply the machinery of infinitesimal analysis to the arbitrary sets
of “standard” mathematics. For example, the adept may assert that a function
f : [a, b] → R is uniformly continuous if and only if ∗f : ∗[a, b] → ∗

R is microcon-
tinuous; i.e., if ∗f preserves the infinite proximity between the “hyperreals.” The
principal complication in absorbing these notions lies in the necessity of imagining
the enormous number of the new “ideal” entities inserted forcibly into the ordinary
sets. The considerable problems are caused by a natural desire to work (at least
in the beginning) with two sets of variables that correspond to the two universes.
(When we have constructed the internalization ϕI of a formula ϕ, we implicitly
assume the possibility of this procedure.)

Thus, the part and parcel of the classical stance, bilingualism and the robinso-
nian standardization, determine all its peculiarities, advantages and disadvantages
of the corresponding formal machinery.

3.5.13. The neoclassical stance of infinitesimal analysis corresponds to the
methodology propounded by Nelson. This credo proclaims that the principal object
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of research is the world of classical mathematics which is identified with the internal
universe VI included in the external environment VE . The “classical” sets do not
enter into analysis. The standard and nonstandard elements are revealed within the
ordinary objects, the internal sets inhabiting VI . For instance, the field of reals is
the member R of VI which is of course the same as ∗R, the hyperreals, serving as
an “ideal” object of the classical stance.

The views we have professed in Chapter 2 correspond mainly to the neoclas-
sical stance. Their advantages are determined by the possibility of studying the
“auld lang syne” sets with the goal of discovering new elements in their construc-
tion by using additional linguistic means and opportunities. Nelson observed that
“really new in nonstandard analysis are not theorems but the notions, i.e., external
predicates” [380, p. 134].

The shortcomings of the neoclassical stance stems from the necessity of trans-
ferring all definitions and properties from standard objects to their internal relatives
by a highly implicit technique of standardization. We have encountered this obsta-
cle before.

3.5.14. The radical stance of infinitesimal analysis proclaims that the prin-
cipal object of research is the external universe in full completeness and complexity
of its own structure. The adept declares “parochial” or “shy” and discards the
classical and neoclassical views of infinitesimal analysis as a technique for study of
mathematics basing on Zermelo–Fraenkel set theory.

At a first glance this credo cannot be accepted earnestly and must be dismissed
as overextremist. Upon due reflection these accusations of the radical stance should
be rejected. This is an illusory, superficial “extremism.” A widely-accepted view of
mathematics as the science of forms and relations taken irrespective of their content,
as well as the considerably less restrictive classical set-theoretic stance stemming
from Cantor, undoubtedly embraces the “extremist” thoughts of the objects of
infinitesimal analysis.

Therefore, the most “intrepid” views of sets which we arrive at merge ultimately
into the original premises, extending and enriching it. Observe that we started
with a “modest” claim that infinitesimal analysis considers as sets exactly the same
entities as the rest of mathematics (cf. 2.1.3). We have so come full circle.

3.6. Von Neumann–Gödel–Bernays Theory

As we have already mentioned in 3.2.5, the axiom of replacement ZFϕ4 of
Zermelo–Fraenkel set theory ZFC is in fact an axiom-schema embracing infinite-
ly many axioms because of arbitrariness in the choice of a formula ϕ. It stands to
reason to introduce some primitive object that is determined from each formula ϕ
participating in ZFϕ4 . With these objects available, we may paraphrase the content
of the axiom-schema ZFϕ4 as a single axiom about new objects. To this end, we need
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the axioms that guarantee existence for the objects determined from a set-theoretic
formula.

Since all formulas are constructed by a unique procedure in finitely many steps,
we find highly plausible the possibility of achieving our goal with finitely many
axioms. It is this basic idea stemming from von Neumann that became a cornerstone
of the axiomatics of set theory which was elaborated by Gödel and Bernays and is
commonly designated by NGB.

The initial undefinable object of NGB is a class. A set is a class that is a mem-
ber of some class. A class other than any set is a proper class. Objectivization of
classes constitutes the basic difference between NGB and ZFC, with the metalan-
guage of the latter treating “class” and “property” as synonyms.

Axiomatic presentation of NGB uses as a rule one of the two available modifi-
cations of the language of ZFC. The first consists in adding a new unary predicate
symbol M to the language of ZFC, with M(X) implying semantically that X is
a set. The second modification uses two different types of variables for sets and
classes. It worth observing that these tricks are not obligatory for describing NGB
and reside in exposition routinely for the sake of convenience.

3.6.1. The system NGB is a first-order theory with equality. Strictly speak-
ing, the language of NGB does not differ at all from that of ZFC. However, the
upper case Latin letters X, Y, Z, . . . , possible with indices, are commonly used for
variables, while the lower case Latin letters are left for the argo resulting from
introducing the abbreviations that are absent in the language of NGB.

Let M(X) stand for the formula (∃Y )(X ∈ Y ). We read M(X) as “X is
a set.”

Introduce the lower case Latin letters x, y, z, . . . (with indices) for the bound
variables ranging over sets. Speaking more exactly, the formulas (∀x)ϕ(x) and
(∃x)ϕ(x), called generalization and instantiation of ϕ by x, are abbreviations of
the formulas (∀X)(M(X) → ϕ(X)) and (∃X)(M(X) ∧ ϕ(X)), respectively. Se-
mantically these formulas imply: “ϕ holds for every set” and “there is a set for
which ϕ is true.” In this event the variable X must not occur in ϕ nor in the
formulas comprising the above abbreviations.

The rules for using upper case and lower case letters will however be observed
only within the present section. On convincing ourselves that the theory of classes
may be formalized in principle, we will gradually return to the cozy and liberal
realm of common mathematical parlance. For instance, abstracting the set-theoretic
concept of function to the new universe of discourse, we customarily speak about
a function-class F implying that F might be other than a set but still obeys the
conventional properties of a function. This is a sacrosanct privilege of the working
mathematician.

We now proceed with stating the special axioms of NGB.
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3.6.2. Axiom of Extensionality NGB1. Two classes coincide if and only
if they consist of the same elements:

(∀X)(∀Y )(X = Y ↔ (∀Z)(Z ∈ X ↔ Z ∈ Y )).

3.6.3. We now list the axioms for sets:

(1) Axiom of Pairing NGB2:

(∀x)(∀ y)(∃ z)(∀u)(u ∈ z ↔ u = x ∨ u = y);

(2) Axiom of Union NGB3:

(∀x)(∃ y)(z ∈ y ↔ (∃u)(u ∈ x ∧ z ∈ u));

(3) Axiom of Powerset NGB4:

(∀x)(∃ y)(∀ z)(z ∈ y ↔ z ⊂ x);

(4) Axiom of Infinity NGB5:

(∃x)(∅ ∈ x ∧ (∀ y)(y ∈ x ↔ y ∪ {y} ∈ x)).

These axioms coincide obviously with their counterparts in ZFC, cf. A.2.3, A.2.4,
A.2.7, and A.2.8. However, we should always bear in mind that the verbal formu-
lations of NGB1–NGB5 presume a “set” to be merely a member of another class.
Recall also that the lower case Latin letters symbolize abbreviations (cf. 3.6.1).
By way of illustration, we remark that, in partially expanded form, the axiom of
powerset NGB4 looks like

(∀X)(M(X) → (∃Y )(M(Y ) ∧ (∀Z)(M(Z) → (Z ∈ Y ↔ Z ⊂ X)))).

The record of the axiom of infinity uses the following abbreviation

∅ ∈ x := (∃ y)(y ∈ x ∧ (∀u)(u /∈ y)).

Existence of the empty set is a theorem rather than a postulate in NGB in much
the same way as in ZFC. Nevertheless, it is common to enlist the existence of the
empty set in NGB as a special axiom:
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(5) Axiom of the Empty Set:

(∃ y)(∀u)(u /∈ y).

3.6.4. Axiom of Replacement NGB6. If X is a single-valued class then,
for each set y, the class of the second components of those couples of X whose first
components belong to y, is a set:

(∀X)(Un (X) → (∀ y)(∃ z)(∀u)(u ∈ z ↔ (∃ v)((v, u) ∈ X ∧ v ∈ y))),

where Un(X) := (∀u)(∀ v)(∀w)((u, v) ∈ X ∧ (u, w) ∈ X → v = w).
As was intended, the axiom-schema of replacement ZFϕ4 turns into a single

axiom. Note that the axiom-schema of comprehension in ZF (see 3.2.5) also trans-
forms into a single axiom, the axiom of comprehension. The latter reads that, to
each set x and each class Y , there is a set consisting of the common members of x
and Y :

(∀x)(∀Y )(∃ z)(∀u)(u ∈ z ↔ u ∈ x ∧ u ∈ Y ).

The axiom of comprehension is weaker than the axiom of replacement since the
former ensues from NGB6 and Theorem 3.6.14 below. However, comprehension is
often convenient for practical purposes.

The collection of axioms to follow, NGB7–NGB13, relates to the formation of
classes. These axioms state that, given some properties expressible by formulas, we
may deal with the classes of the sets possessing the requested properties. As usual,
uniqueness in these cases results from the axiom of extensionality for classes NGB1.

3.6.5. Axiom of Membership NGB7. There is a class comprising every
couple of sets whose first component is a member of the second:

(∃X)(∀ y)(∀ z)((y, z) ∈ X ↔ y ∈ z).

3.6.6. Axiom of Intersection NGB8. There is a class comprising the com-
mon members of every two classes:

(∀X)(∀Y )(∃Z)(∀u)(u ∈ Z ↔ u ∈ X ∧ u ∈ Y ).

3.6.7. Axiom of Complement NGB9. To each class X there is a class
comprising the nonmembers of X :

(∀X)(∃Y )(∀u)(u ∈ Y ↔ u /∈ X).

This implies the existence of the universal class U := ∅ which is the comple-
ment of the empty class ∅.
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3.6.8. Axiom of Domain NGB10. To each class X of couples there is a class
Y := dom(X) comprising the first components of the members of X :

(∀X)(∃Y )(∀u)(u ∈ Y ↔ (∃ v)((u, v) ∈ X)).

3.6.9. Axiom of Product NGB11. To each class X there is a class Y :=
X × U comprising the couples whose first components are members of X :

(∀X)(∃Y )(∀u)(∀ v)((u, v) ∈ Y ↔ u ∈ X).

3.6.10. Axioms of Permutation NGB12 and NGB13. Assume that σ :=
(ı1, ı2, ı3) is a permutation of {1, 2, 3}. A class Y is a σ-permutation of a class X
provided that (x1, x2, x3) ∈ Y whenever (xı1 , xı2, xı3) ∈ X .

To each class X , there are (2, 3, 1)- and (1, 3, 2)-permutations of X :

(∀X)(∃Y )(∀u)(∀ v)(∀w)((u, v, w) ∈ Y ↔ (v, w, u) ∈ X);
(∀X)(∃Y )(∀u)(∀ v)(∀w)((u, v, w) ∈ Y ↔ (u, w, v) ∈ X).

The above axioms of class formation proclaim existence of unique classes, as
was already observed. It is so in common parlance to speak about the complement
of a class, the intersection of classes, etc.

3.6.11. Axiom of Regularity NGB14. Each nonempty class X has a mem-
ber having no common elements with X :

(∀X)(X �= ∅ → (∃ y)(y ∈ X ∧ y ∩X = ∅)).

3.6.12.Axiom of ChoiceNGB15. To each classX there is a choice function-
class on X ; i.e., a single-valued class assigning an element of X to each nonempty
member of X :

(∀X)(∃Y )(∀u)(u �= ∅ ∧ u ∈ X → (∃!v)(v ∈ u ∧ (u, v) ∈ Y )).

This is a very strong form of the axiom of choice which amounts to a possibility of
a simultaneous choice of an element from each nonempty set.

The above axiom makes the list of the special axioms of NGB complete. A
moment’s inspection shows that NGB, unlike ZFC, has finitely many axioms. An-
other convenient feature of NGB is the opportunity to treat sets and properties
of sets as formal objects, thus implementing the objectivization that is absolutely
inaccessible to the expressive means of ZFC.
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3.6.13. We now derive a few consequences of the axioms of class formation
which are needed in the sequel.

(1) To each class X there corresponds the (2, 1)-permutation of X :

(∀X)(∃Z)(∀u)(∀ v)((u, v) ∈ Z ↔ (v, u) ∈ X).

� The axiom of product guarantees existence for the class X × U. Consecu-
tively applying the axioms of the (2, 3, 1)-permutation and (1, 3, 2)-permutation to
the X × U, arrive at the class Y of 3-tuples (alternatively, triples) (v, u, w) such
that (v, u) ∈ X . Appealing to the axiom of domain, conclude that Z := dom(Y ) is
the sought class. �

(2) To each couple of classes there corresponds their product:

(∀X)(∀Y )(∃Z)(∀w)
(w ∈ Z ↔ (∃u ∈ X)(∃v ∈ Y )(w = (u, v))).

� To prove the claim, apply consecutively the axiom of product, (1), and the
axiom of intersection to arrange Z := (U × Y ) ∩ (X × U). �

Given n ≥ 2, we may define the class Un of all ordered n-tuples by virtue of
3.6.13 (2).

(3) To each class X there corresponds the class Z := (Un × Um) ∩
(X × Um):

(∀X)(∃Z)(∀x1) . . . (∀xn)(∀ y1) . . . (∀ ym)
((x1, . . . , xn, y1, . . . , ym) ∈ Z ↔ (x1, . . . , xn) ∈ X).

(4) To each class X there corresponds the class Z := (Um × Un) ∩
(Um ×X):

(∀X)(∃Z)(∀x1) . . . (∀xn)(∀ y1) . . . (∀ ym)
((y1, . . . ym, x1, . . . , xn) ∈ Z ↔ (x1, . . . , xn) ∈ X).

� To demonstrate (3) and (4), apply the axiom of product and the axiom of
intersection. �

(5) To each class X there corresponds the class Z satisfying

(∀x1) . . . (∀xn)(∀ y1) . . . (∀ ym)
((x1, . . . , xn−1, y1, . . . , ym, xn) ∈ Z ↔ (x1, . . . , xn) ∈ X).

� Appeal to the axioms of permutation and the axiom of product. �
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3.6.14. Theorem. Let ϕ be a formula whose variables are among X1, . . . , Xn,
Y1, . . . , Ym and which is predicative; i.e., all bound variables of ϕ range over sets.
Then the following is provable in NGB:

(∀Y1) . . . (∀Ym)(∃Z)(∀x1) . . . (∀xn)
((x1, . . . , xn) ∈ Z ↔ ϕ(x1, . . . , xn, Y1, . . . , Ym)).

� Assume that ϕ is written so that the only bound variables of ϕ are those
for sets. It suffices to consider only ϕ containing no subformulas of the shape
Y ∈ W and X ∈ X , since these subformulas might be rewritten in equivalent
form as (∃x)(x = Y ∧ x ∈ W ) and (∃u)(u = X ∧ u ∈ X). Moreover, the symbol
of equality may be eliminated from ϕ on substituting for X = Y the expression
(∀u)(u ∈ X ↔ u ∈ Y ), which is sound by the axiom of extensionality. The proof
proceeds by induction on the complexity or length k of ϕ; i.e., by the number k of
propositional connectives and quantifiers occurring in ϕ.

In case k = 0 the formula ϕ is atomic and has the form xı ∈ xj, or xj ∈ xı, or
xı ∈ Yl (ı < j ≤ n, l ≤ m). If ϕ := xı ∈ xj then, by the axiom of membership, there
is a class W1 satisfying

(∀xı)(∀xj)((xı, xj) ∈ W1 ↔ xı ∈ xj).

If ϕ := xj ∈ xı then, using the axiom of membership again, we find a class W2 with
the property

(∀xı)(∀xj)((xj, xı) ∈ W2 ↔ xj ∈ xı),

and apply 3.6.13 (1). In result, we obtain a class W3 such that

(∀xı)(∀xj)((xı, xj) ∈ W3 ↔ xj ∈ xı).

Hence, in each of these two cases there is a class W satisfying the following formula:

Φ := (∀xı)(∀xj)((xı, xj) ∈ W ↔ ϕ(x1, . . . , xn, Y1, . . . , Ym)).

By 3.6.13 (4), we may replace the subformula (xı, xj) ∈ W of Φ with the mem-
bership (x1, . . . , xı−1, xı) ∈ Z1 for some other class Z1 and insert the quantifiers
(∀x1) . . . (∀xı−1) in the prefix of Φ.

Let Ψ be the so-obtained formula. By 3.6.13 (5), there is some class Z2 for Ψ
so that it is possible to write (x1, . . . , xı−1, xı, xj) ∈ Z1 instead of the subformula
(x1, . . . , xı, xı+1, . . . , xj) ∈ Z2 and to insert the quantifiers (∀xı+1) . . . (∀xj−1) in
the prefix of Ψ. Finally, on applying 3.6.13 (3) to Z2, find a class Z satisfying the
following formula:

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈ Z ↔ ϕ(x1, . . . , xn, Y1, . . . , Ym)).
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In the remaining case of xı ∈ Yl, the claim follows from existence of the products
W := Uı−1 × Yl and Z := W × Un−ı. This completes the proof of the theorem for
k = 0.

Assume now that the claim of the theorem is demonstrated for all k < p and
the formula ϕ has p propositional connectives and quantifiers. It suffices to consider
the cases in which ϕ results from some other formulas by negation, implication, and
generalization.

Suppose that ϕ := ¬ψ. By the induction hypothesis, there is a class V such
that

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈ V ↔ ψ(x1, . . . , xn, Y1, . . . , Ym)).

By the axiom of complement, the class Z := U − V := U\V meets the required
conditions.

Suppose that ϕ := ψ → θ. Again, by the induction hypothesis, there are
classes V and W making the claim holding for V and ψ and such that

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈ W ↔ θ(x1, . . . , xn, Y1, . . . , Ym)).

The sought class Z := U − (V ∩ (U −W )) exists by the axioms of intersection and
complement.

Suppose that ϕ := (∀x)ψ, and let V and ψ be the same as above. Applying
the axiom of domain to the class X := U − V , obtain the class Z1 such that

(∀x1) . . . (∀xn)((x1, . . . , xn) ∈ Z1 ↔ (∃x)¬ψ(x1, . . . , xn, Y1, . . . , Ym)).

The class Z := U − Z1 exists by the axiom of complement and is the one we seek
since the formula (∀x)ψ amounts to ¬(∃x)(¬ψ). �

3.6.15. Each of the axioms of class formation NGB7–NGB13 is a corollary to
Theorem 3.6.14 provided that the formula ϕ is duly chosen. On the other hand, the
theorem itself, as shown by inspection of its proof, ensues from the axioms of class
formation. Remarkably, we are done on using finitely many axioms NGB7–NGB13

rather than infinitely many assertions of Theorem 3.6.14.
Theorem 3.6.14 allows us to prove the existence of various classes. For instance,

to each class Y there corresponds the class P(Y ) of all subsets of Y , as well as the
union

⋃
Y of all elements of Y . These two classes are defined by the conventional

formulas:

(∀u)(u ∈ P(Y ) ↔ u ⊂ Y ),

(∀u)(u ∈
⋃
Y ↔ (∃ v)(v ∈ Y ∧ u ∈ v)).

The above claims of existence are easy on putting ϕ(X, Y ) := X ⊂ Y and ϕ(X, Y )
:= (∃V )(X ∈ V ∧ V ∈ Y ). Analogous arguments corroborate the definitions of
Z−1, im(Z), Z � Y , Z“Y , X ∪ Y , etc., with X , Y , and Z arbitrary classes.
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3.6.16. Theorem. Each theorem of ZFC is a theorem of NGB.

� Each axiom of ZFC is a theorem of NGB. The only nonobvious part of the
claim concerns the axiom of replacement ZFϕ4 which we will proof.

Assume that y is not unbound in ϕ , and let {x, t, z1, . . . , zm} stand for the
complete list of variables in the construction of ϕ. Assume further that, for all x,
u, v, z1, . . . , zm, the following formula holds:

ϕ(x, u, z1, . . . , zm) ∧ ϕ(x, v, z1, . . . , zm) → u = v.

The formula is predicative since each bound variable of ϕ ranges over sets. By
Theorem 3.6.14, there is a class Z such that

(∀x)(∀u)((x, u) ∈ Z ↔ ϕ(x, u, z1, . . . , zm)).

This property of ϕ shows that the class Z is single-valued; i.e., Un (Z) is provable
in NGB. By the axiom of replacement NGB6, there is a set y satisfying

(∀ v)(v ∈ y ↔ (∃u)((u, v) ∈ Z ∧ u ∈ x)).

Obviously, y satisfies the desired formula

(∀ z1) . . . (∀ zm)(∀ v)(v ∈ y ↔ (∃u ∈ x)ϕ(u, v, z1, . . . , zm)). �

3.6.17. Theorem. Each formula of ZFC expressing a theorem of NGB is
a theorem of ZFC.

� The proof may be found, for instance, in [62]. It uses some general facts of
model theory which lie beyond the framework of the present book. �

Theorems 3.6.16 and 3.6.17 are often paraphrased as follows.

3.6.18. Theorem. Von Neumann–Gödel–Bernays set theory is conservative
over Zermelo–Fraenkel set theory.

3.6.19. Among the other axiomatic set theories, we mention the so-called
Bernays–Morse theory that extends NGB. Bernays–Morse set theory assumes the
special axioms NGB1–NGB5, NGB14 and the following axiom-schema of compre-
hension:

(∃X)(∀Y )(Y ∈ X ↔ M(Y ) ∧ ϕ(Y,X1, . . . , Xn)),

with ϕ an arbitrary formula without free occurrences of X .
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3.7. Nonstandard Class Theory

In this section we introduce NCT, another axiomatics analogous to IST but
differing from IST since NCT is an extension of von Neumann–Gödel–Bernays class
theory. Each of the principles of transfer, idealization, and standardization is stated
in NCT as an axiom rather than an axiom-schema in IST, and so NCT, as well as
NGB, is finitely axiomatizable.

3.7.1. The language of NCT results from the language of NGB by supplement-
ing the alphabet of NGB with a new symbol St for the unary predicate expressing
the property of a class to be or not to be standard (the record St(X) reads: “X
is a standard class”). In much the same way as in 3.6, the variables ranging over
classes are denoted by capital Latin letters while the variable ranging over sets are
denoted by lowercase Latin letters.

We will user other abbreviations and conventions of 3.6. In particular, a class
X is a set in symbols M(X), provided that X is a member of some class: M(X) :=
(∃Y )(X ∈ Y ) (cf. 3.6.1). As before, the record S(X1, . . . , Xn) := ϕ(X1, . . . , Xn)
means that S(X1, . . . , Xn) is an abbreviation of ϕ(X1, . . . , Xn).

All in all, the language of NCT is the language of a first order predicate calculus
with equality which contains one unary predicate symbol ∈ and one unary predicate
symbol St. We now list the special axioms of NCT.

(1) In NCT we accept the same axioms of extensionality, pairing, union,
powersets, infinity, and choice as in NGB, namely, NBG1–NBG5, NBG14, NBG15

(see 3.6.2, 3.6.3, 3.6.11, and 3.6.12).
(2) Axiom of Replacement in NCT reads:

(∀V )(∀x)(∃y)(∀u ∈ x)(∃v((u, v) ∈ V ) → (∃v ∈ y)((u, v) ∈ V )).

In the sequel we will use the following abbreviations:

(∃ stx)ϕ := (∃x)(St(x) ∧ ϕ),
(∀ stx)ϕ := (∀x)(St(x) → ϕ).

(3) Axiom of Boundedness:

(∀x)(∃ stz)(x ∈ z).

(4) Axiom of Transfer:

(∀ stX)((∃x)x ∈ X → (∃ stx)x ∈ X).

(5) Axiom of Standardization:

(∀X)(∃ stY )(∀ stx)(x ∈ Y ↔ x ∈ X).

Starting with the empty set and appealing to the axiom of standardization, we
arrive at the standard class L without any standard elements. By transfer L = ∅;
i.e., the empty set is standard.



Set-Theoretic Formalisms of Infinitesimal Analysis 95

3.7.2. A formula of NCT is predicative, provided that each bound variable
ranges over members of some set and the standardness predicate enters only in ex-
ternal quantifiers, i.e., all occurrences of quantifiers and the standardness predicate
look like ∃x, ∃ stx, ∀x, and ∀ stx. Observe that we may replace the subformula St(x)
with (∃ sty)(y = x).

Let p be an arbitrary set. A class X is p-standard (in symbols, stpX) provided
that X is the p-section of some standard class Y ; i.e., (∃ stY )(X = Y ”p) with
Y ”p = {v : (p, v) ∈ Y }. A class X is internal, (in symbols, intX) provided that X
is p-standard for some p.

Axiom-Schema of Class Formation: If ϕ(x1, . . . , xn, Y1, . . . , Ym) is a pred-
icative formula then

(1) To all classes Y1, . . . , Ym there corresponds the class
T = {(x1, . . . , xn) : ϕ(x1, . . . , xn, Y1, . . . , Ym)};

(2) If ϕ is an internal formula and Y1, . . . , Yn are standard classes then
so is T .

In much the same way as in NGB, we may accept not the above axiom-schema
of class formation but rather finitely many of its particular cases (cf. NGB7–
NGB13) implying the validity of the full version of the axiom-schema (see 3.6.14).
Consequently, NCT is a finitely axiomatizable theory.

The following proposition is immediate from the axiom-schema of class forma-
tion.

3.7.3. If ϕ and Y1, . . . , Yn are internal in the axiom-schema of class formation
then T is an internal class. Moreover, if all Yi are p-standard for the same p then
T is a p-standard class.

� Everything follows from the axiom-schema of class formation. �
We now agree to use the notations:

U := {x : x = x} = {x : x /∈ ∅},
E := {x : (∃u)(∃v) (x = (u, v) ∧ u ∈ v)},
S := {x : St(x)},

−X := {x : x /∈ X}.

By the axiom-schema of class formation, U and E are standard classes, S is a
class. Moreover, if X and Y are some classes then −X , X ∩Y , dom(X), and X×U

are classes which are standard whenever so are X and Y .
Every set x is x-standard and so x is internal since x = E

−1”x. Every standard
class X is internal since X = ({∅} ×X)”∅.
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3.7.4. The following two axioms deal with some properties of internal classes.
(1) Axiom of Comprehension:

(∀ intX)(∀x)(∃y)(∀u)(u ∈ y ↔ u ∈ x ∧ u ∈ X).

(2) Axiom of Idealization:

(∀ intX)(∀ sta0)((∀ stfinc ⊆ a0)(∃x)(∀a ∈ c)((x, a) ∈ X)
↔ (∃x)(∀ sta ∈ a0)((x, a) ∈ X)).

3.7.5. The following propositions are straightforward from the axiom-schema
of class formation and 3.7.3.

(1) Let ϕ be an internal predicative formula. Then

(∀ intX1) . . . (∀ intXn)(∀x)(∃y)(∀u)(u ∈ y

↔ y ∈ x ∧ ϕ(x,X1, . . . , Xn)).

In particular, the axiom-schema of comprehension of BST is valid.
(2) The standardization and bounded idealization principles of BST

hold in NST.
(3) Transfer Principle. If ϕ is an internal predicative formula then

(∀ stX1) . . . (∀ stXn)((∀ stx)ϕ(x,X1, . . . , Xn)
→ (∀x)ϕ(x,X1, . . . , Xn)).

In particular, the transfer principle of BST is valid.
(4) Each sentence provable in BST is provable in NCT.

We emphasize that the axiom-schemata of transfer, idealization, standardiza-
tion, and comprehension of BST are particular instances of the analogous axioms
of NCT in which classes are determined by predicative formulas with free set vari-
ables (these formula are internal for the axioms of comprehension, transfer, and
idealization).

3.7.6. We note the following propositions:

(1) If x and p are sets then

stp x ↔ (∃ stz)(x = z”p) ↔ (∃ stf)(Fnc f ∧ x = f(p)).

� Assume first that x is a p-standard set. Then x = z”p for some standard z
by the axioms of boundedness and transfer. Therefore, f = {(q, z”q) : q ∈ dom(z)}
is a standard function and f(p) = x.

Conversely, if f is a standard function then, by the axiom of transfer, f(p) is
the p-section of the standard set {(q, u) : u ∈ f(q)}. �
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(2) Let ϕ be an internal predicative formula, and let p be a set. Then

(∀ st
p X1) . . . (∀ st

p Xn)((∀ st
p x)ϕ(x,X1, . . . , Xn)

→ (∀x)ϕ(x,X1, . . . , Xn)).

� By 3.7.3 it suffices to prove that each nonempty p-standard class X contains
a p-standard element. Assume that X = Y ”p, with stY and p ∈ r for some stan-
dard r. By the axioms of comprehension, choice, and transfer there is a standard
function f satisfying

(∀q ∈ r)((∃y)(q, y) ∈ Y → (∃y)(q, y) ∈ Y ∩ f).

Since X is nonempty; therefore, p ∈ dom(f) and f(p) is a p-standard member
of X . �

3.7.7. Given an arbitrary class C, put ◦C := C ∩ S. The axiom of standard-
ization postulates that to each class X there corresponds a standard class Y such
that ◦Y = ◦X . By transfer, such a standard class is unique. We denote it by sX .

(1) Theorem. A class X is standard if and only the intersection of X
with each standard set is a standard set.

� Necessity follows from the axiom-schema of class formation. To prove suf-
ficiency, assume that (∀ stz)(∃ stt)(t = X ∩ z). Put Y := s{x : x ∈ X} and
demonstrate that Y = X . By the axiom of boundedness it suffices to check that
z ∩X = z ∩ Y for every standard set z. From the choice of Y it follows that

◦(X ∩ z) = ◦X ∩ ◦z = ◦Y ∩ ◦z = ◦(Y ∩ z).

Since X ∩ z and Y ∩ z are standard sets, the last chain of equalities implies the
claim by transfer. �

(2) A set is standard and finite if and only if its every element is stan-
dard.

� By idealization

St(x) ∧ fin(x) ↔ (∃st finy ⊆ x)(∀a ∈ x)(∃b ∈ y)(a = b)
↔ (∀a ∈ x)(∃ stb ∈ x)(a = b),

which completes the proof. �
We call a set standardly finite whenever its cardinality is a standard natural.
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3.7.8. Theorem. A set is standardly finite if and only if its every subclass is
a set.

� Assume that x is a set, |x| = α, and f : α → x is an bijection.
If x is not a standardly finite set then (∀ stn ∈ N)(α > n) by transfer. Consid-

ering the class I := {f(n) : n ∈ ◦N}, we may write

(∀st fins ⊆ N)(∃k ∈ N)(∀n ∈ s)(f(k) ∈ I ∧ n < k).

Were I set, there would exist some k ∈ N such that f(k) ∈ I and (∀ stn ∈ N)
(n < k), which is impossible. Indeed, f(k) ∈ I implies that k is standard since f is
a bijection.

Conversely, let x be standardly finite and X ⊆ x. Consider the class T :=
{n ∈ α : f(n) ∈ X}. By standardization and transfer, there is some set t such
that t = sT and t ⊆ α. Since α ⊆ S by 3.7.7 (2); therefore, t = ◦t = ◦T = T .
Consequently, X = {f(n) : n ∈ t} is a set. �

3.7.9. The p-monad of a set x (in symbols μp(x)) is the intersection of all p-
standard classes including x. Since the complement of a standard class is a standard
class too, the p-monads of two sets are coincident or disjoint. From 3.7.6 (1) it
follows that

μp(x) = {y : (∀st
p z)(y ∈ z ↔ x ∈ z)}.

If x is p-standard then we call the class μp(x) the monad of x and denote it by
μ(x). Clearly, μ(x) =

⋂{a ∈ S : x ∈ a}.
Look at an arbitrary set x. By the axiom of boundedness, x ∈ x0 for some

standard x0. By transfer, it is easy to prove that u := s{a ⊆ x0 : x ∈ a} is
a standard ultrafilter and

⋂ ◦u = μ(x). Conversely, if u is an arbitrary standard
ultrafilter then, by transfer and idealization,

⋂ ◦u �= ∅ and μ(x) =
⋂ ◦u for every

x ∈ ⋂ ◦u.
The class

⋂ ◦u is the nest of an ultrafilter u; in symbols, ν(u). The class of
all ultrafilters will be denoted by Ult, while letting Ult(x) stand for the set of all
ultrafilters on a set x.

If x and p are sets then μp(x) = μ((p, x))”p.

� From 3.7.6 (1) it follows that

y ∈ μ((p, x))”p ↔ (p, y) ∈ μ((p, x))
↔ (∀ stz)((p, x) ∈ z ↔ (p, y) ∈ z) ↔ y ∈ μp(x),

which completes the proof. �
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3.7.10. A class X is p-saturated provided that X contains the p-monad of its
every element.

(1) A set x is p-standard if and only if x is p-saturated.

� Suppose that x is p-saturated. Take an arbitrary u ∈ x and show that u
belongs to the p-section of some standard set lying in x. Indeed, assuming the
contrary, note that

(∀ stz)(u ∈ z”p → (∃v ∈ z”p)(v /∈ x)).

We may restrict the range of z in this formula to the standard set {t : t ⊆ ⋃
x0},

where x0 is standard and x ∈ x0. By idealization,

(∃v /∈ x)(∀ stz)(u ∈ z”p → v ∈ z”p),

which contradicts the inclusion μp(u) ⊆ x.
Therefore, (∀u ∈ x)(∃ stz)(u ∈ z”p ⊆ x). Again by idealization, find a standard

finite set z0 satisfying (∀u ∈ x)(∃z ∈ z0)(u ∈ z”p ⊆ x). It is easy that x serves as
the p-section of the standard set

⋃
z0. �

(2) μp(x) = {x} ↔ stp x for arbitrary sets x and p.
� The implication to the left is obvious. If, conversely, μp(x) = {x} then {x}

is p-saturated and, hence, p-standard. By transfer, x is p-standard too. �
3.7.11. Axiom of Saturation:

(∀X)(∃p)(∀x ∈ X)(μp(x) ⊆ X),

i.e. each class is p-saturated for some set p.
Given a class D ⊆ Ult and a set p, put

Psls(D, p) :=
⋃

u∈◦D

ν(u)”p.

A semiset is a subclass of a set:

SmsX := (∃ stz)(X ⊆ z).

3.7.12. Theorem. Let X be an arbitrary class. Then there are some standard
class D ⊆ Ult and a set p such that

X = Psls(D, p).

Moreover, if X is a semiset then D may be chosen to be a set.
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� Let X be a p-saturated class. Put D = s{u ∈ Ult : ν(u)”p ⊆ X}. Then the
equality in question follows from the proposition in 3.7.9. The same equality holds
in case X ∈ z, with z standard, provided that as D we take d := D ∩ Ult(r × z),
where r is some standard set containing p. Observe that d is standard by transfer. �

Thus, each semiset in NCT turns out to be definable by some predicative
Σst

2 -formula. It is possible to prove also that if all quantifiers of a formula ϕ are
restricted to semisets then ϕ is equivalent to some predicative formula. Indeed, we
are done on replacing all subformulas like stX with (∀ sts)(∃ stt)(t = X ∩s) and the
formulas like (∃X)(SmsX → ϕ(X, . . . )) with (∃ std)(∃p)ϕ(Psls(d, p), . . . ).

The following theorem is the saturation principle in its traditional statement.
Observe that, in contrast to NCT, this theorem cannot be proven or even formulated
in IST or BST.

3.7.13. Theorem. Let a class X and a standard set z0 be such that

(∀ stx ∈ z0)(∃y)((x, y) ∈ X).

Then there is a function-set f satisfying

(∀ stx ∈ z0)((x, f(x)) ∈ X).

� By the axioms of comprehension and boundedness there is a standard set t
such that (∀x ∈ z0)((∃y)(x, y) ∈ X → (∃y ∈ t)(x, y) ∈ X). Assume that X is a p-
saturated class. If (x, y) ∈ X and x is standard, then (∀y′ ∈ μ(y))(x, y′) ∈ X since
μp((x, y)) = {x}×μp(y). Put d := s{(x, u) ∈ z×Ult(t) : {x}×(ν(u)”p) ⊆ X}. The
axioms of choice and transfer enable us to find a standard function h : z0 → Ult(t)
satisfying (∀x ∈ z0)((x, h(x)) ∈ d). Hence,

(∀ stfinz ∈ z0)(∃f)(∀x ∈ z)(∀ sta ∈ h(x))(Fnc (f) ∧ f(x) ∈ a).

By idealization, there is a function f such that (∀ stx ∈ z)(f(x) ∈ ν(h(x))). Obvi-
ously, this f completes the proof. �

3.7.14. Comments.

(1) The nonstandard class theory NCT, we set forth in this section,
was suggested by Andreev and Gordon in [14]. NCT is remarkable for clarity and
simplicity. In particular, NCT contains only finitely many axioms and the principles
of infinitesimal analysis become axioms rather than axiom-schemata in IST.

(2) The presence of classes enables us to implement various construc-
tions with external sets, which is impossible in IST. In particular, the list of axioms
of NCT contains the axiom of saturation (cf. 3.7.11) which plays a key role in ap-
plications of infinitesimal analysis.
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(3) All sets in NCT are internal. The external objects of NCT are
proper classes. Furthermore, in much the same way as alternative set theory AST
by Vopěnka [513], NCT allows for subclasses of sets which might fail to be sets
(the axiom of comprehension holds only for internal sets). We call these semisets
as minted by Vopěnka. The theory NCT enjoys some other properties of AST. In
particular, it is a theorem of NCT that x is a standardly finite set if and only if x
includes no semisets.

(4) If some internal class (in particular, internal set) X is the section of
a standard class by a set p then X is standard relative to p or p-standard, see 3.7.2.
This concept of relative standardness in IST was first suggested in the article [141]
which showed for instance that the transfer principle and the implication to the
right in the idealization principle remain valid on replacing all occurrences of the
standardness predicate in them with the predicate of standardness relative to an
arbitrary set p. This holds true in NCT (see 3.7.7 (1)).

3.8. Consistency of NCT

In this section we prove that NCT is conservative over BST.

3.8.1. Theorem. Every predicative proposition provable in NCT is provable
in BST.

� We will demonstrate below that each model of BST embeds isomorphically
into some model of NCT as the universe of all sets, which implies the claim by the
celebrated Gödel Completeness Theorem. �

3.8.2. Consider an arbitrary model M = (M,∈M , stM ) of BST. Let L stand
for the enrichment of the language of BST with the elements of M viewed as new
symbols. Assume that M is a model of the language L on defining the interpretation
of a symbol a inM to be a itself. The sets inM , entering a formula ϕ of the language
L, are referred to as the parameters of ϕ.

Given a formula ϕ of L with a single unbound variable, put !ϕ" := {x : M |=
ϕ(x)}. Furthermore,

N := {!ϕ" : ϕ is a formula of L with a single unbound variable};

Std := {!ϕ" ∈ N : ϕ is an internal formula with unbound parameters};

Set(a) := !x ∈ a" for all a ∈ M.

Given p, q ∈ N , define

p ∈N q := (∃ a ∈ M)(p = Set(a) ∧ a ∈ q),
stN p := p ∈ Std .
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3.8.3. Assume that a, b ∈ M and p, q ∈ N . Then
(1) p ∈N q → (∃ a ∈ M)(p = Set(a));
(2) Set(a) = Set(b) ↔ a = b;
(3) If p = Set(a) and q = Set(b) then p ∈N q ↔ a ∈M b;
(4) If p = Set(a) then stN p ↔ stM a.

� (1): Immediate from the definition of ∈N .
(2): This follows from the validity of the axiom of extensionality in M.
(3): This ensures from (1) by the definition of ∈N .
(4): Note that from the definition of stN it follows that

p = {b : M |= b ∈ a} = {b : M |= ϕ(b)},

where ϕ is an internal formula with standard parameters. Consequently, M |=
(∀x)(x ∈ a ↔ ϕ(x)). The axiom-schema of transfer is satisfied in M, implying that
M |= st a, i.e., stM a.

Conversely, if stM a then p = !x ∈ a" ∈ Std. �

(5) The mapping Set embeds isomorphically M as a model of L into
the model N = (N,∈N , stN ); moreover, N |= (∃X)(p ∈ X) →
(∃ a ∈ M)(p = Set(a)) for all p ∈ N .

� Everything follows from (1)–(4). �
Proposition 3.8.3 (5) shows that a class p is a set in N if and only if p = Set(a)

for some a ∈ M ; i.e., M does embed into N as the universe of all sets.

3.8.4. We are left with checking the validity of the axioms of NCT in the
model M.

From 3.8.3 (5) it follows that the axioms of NCT, written as predicative for-
mulas, hold in N whenever they are valid in BST. This concerns the axioms of
pairing, union, powersets, infinity, choice, regularity, and boundedness. The axiom
of extensionality holds in N by the construction of ∈N .

If ϕ is a formula of the language L then we let the symbol Cϕ stand for
the collection {x : ϕ(x, x1, . . . , xn)}. Assume that Φ(X1, . . . , Xn) is a predicative
formula, and ϕ1(x, x1, . . . , xm), . . . , ϕn(x, x1, . . . , xm) are some formulas of L whose
unbound variables do not enter the construction of Φ. Denote by Φ(Cϕ1 , . . . ,Cϕn

)
the formula that results from Φ(X1, . . . , Xn) by replacing

(1) all occurrences of the atomic formulas like y ∈ Xj with the formula
ϕj(y, x1, . . . , xm);

(2) all occurrences of the atomic formulas like Xi ∈ Xj with

(∃x)((∀y)(y ∈ x↔ ϕi(y, x1, . . . , xm)) ∧ ϕj(x, x1, . . . , xm));
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(3) all occurrences of the atomic formulas like Xi = Xj with

(∀x)(ϕi(x, x1, . . . , xm) ↔ ϕj(x, x1, . . . , xm));

(4) all occurrences of the atomic formulas like Xi = x with

(∀y)(y ∈ x ↔ ϕi(y, x1, . . . , xm)).

The unbound variables of Φ(Cϕ1 , . . . ,Cϕn
) are those of ϕ1, . . . , ϕn.

3.8.5. If Φ is a predicative formula and Cϕ1 , . . . ,Cϕn
are collections without

unbound variables then

N |= Φ(!ϕ1", . . . , !ϕn") ↔ M |= Φ(Cϕ1 , . . . ,Cϕn
).

� The proof proceeds by induction on the length of Φ on using the propositions
of 3.8.3. �

3.8.6. The axioms of NCT other than predicative formulas have the shape

(Q1X)(Q2Y )(QZ)Ψ(X, Y, Z),

where Q1, Q2 ∈ {∀, ∀ st}, Q ∈ {∃, ∃ st}, and Ψ is a predicative formula. We say that
some formula of the above shape holds in BST for classes whenever to arbitrary
formulas ϕ1(x, u1, . . . , ul) and ϕ2(x, v1, . . . , vm) of BST, assumed internal if the
corresponding quantifiers are external, there is a formula ϕ(x, w1, . . . , wn) of BST,
internal if Q is an external quantifier, such that the formula

(Q1u1) . . . (Q1ul)(Q2v1) . . . (Q2vm)(Qw1) . . . (Qwn)Ψ(Cϕ1,Cϕ2,Cϕ)

holds in BST. We also assume that the variables ui, vi, and wi are absent in the
construction of Ψ.

3.8.7. Assume that Φ has the shape

(Q1X)(Q2Y )(Q3Z)Ψ(X, Y, Z)

as in 3.8.6. If Φ holds in BST for classes then Φ is valid in N.

� Consider the case in which all quantifiers over classes in Φ are external. Take
arbitrary N-standard elements !ϕ1", !ϕ2" ∈ N . Since Φ holds in BST for classes,
it follows that there is an internal formula ϕ of the language L with M-standard
parameters and a single unbound variable such that M |= Ψ(Cϕ1,Cϕ2,Cϕ). Hence,
stN!ϕ" and N |= Ψ(!ϕ1", !ϕ2", !ϕ") by 3.8.5, which completes the proof. �

It is an easy matter to prove that the axioms of transfer, class formation,
regularity, replacement, and idealization hold for classes in BST. The axioms of
standardization, comprehension, and saturation deserve a special discussion.

We will use the definitions, notation, and above-proven facts about monads
and ultrafilters which are preserved in BST. We also need the following theorem
of [13].
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3.8.8. Theorem. To each formula Φ with two unbound variables there is an
internal formula ϕ satisfying

(∀p)(∀ stx)(Φ(x, p) ↔ (∀ stU ∈ Ult)(p ∈ ν(U) → ϕ(x, U))
↔ (∃ stU ∈ Ult)(p ∈ ν(U) ∧ ϕ(x, U))).

3.8.9. Theorem. The axiom of standardization of NCT holds in BST for
classes.

� Let Φ be an arbitrary formula. Without loss of generality, we may assume
that Φ has at most two unbound variables. Take some internal formula ϕ as sug-
gested by Theorem 3.8.8. If p is a set and U is an ultrafilter such that p ∈ ν(U)
then

(∀ stx)(Φ(x, p) ↔ ϕ(x, U)).

This proves the validity of the axiom of standardization in BST for classes since
each set belongs to the nest of some ultrafilter. �

Let U be an ultrafilter. Assign

dom(U) := {dom(u) : u ∈ U};
im(U) := {im(u) : u ∈ U}.

It is easy to prove by transfer and idealization that dom(U) and im(U) are
ultrafilters for every ultrafilter U . Moreover,

(a, b) ∈ ν(U) → a ∈ ν(dom(U)) ∧ b ∈ ν(im(U));
a ∈ ν(dom(U)) → (∃ b ∈ im(U))((a, b) ∈ ν(U))

for all sets a and b.

3.8.10. Theorem. The axiom of comprehension holds in BST for classes.
� Let Φ be some formula with two unbound variables. By Theorem 3.8.8 there

is an internal formula ϕ satisfying

Φ(a, b) ↔ (∃ stU ∈ Ult)((a, b) ∈ ν(U) ∧ ϕ(U)).

Put
ψ(V,W ) := (∃U ∈ Ult)(dom(U) = V ∧ im(U) = W ∧ ϕ(U)).

Using the transfer principle of BST and Theorem 3.8.10, to each standard set A
there is a standard set R such that

(∀V ∈ Ult(A))((∃W )ψ(V,W ) → (∃W ∈ R)ψ(V,W )).
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Put Y :=
⋃⋃

R. By transfer and the properties of the nests of ultrafilters,

(∃ b)Φ(a, b) → (∃ stV ∈ Ult(A))(∃ stW ∈ Ult)(a ∈ ν(V ) ∧ ψ(V,W ))
→ (∃ stV ∈ Ult(A))(∃ stW ∈ R)(a ∈ ν(U) ∧ ψ(V,W ))
→ (∃ b ∈ Y )(∃ stU)((a, b) ∈ ν(U) ∧ ϕ(U))
→ (∃ b ∈ Y )Φ(a, b)

for all a ∈ A.
Assume now that Ψ(x, y, p) is an arbitrary formula. To complete the proof of

the theorem it suffices to show that to each p and each standard X there is a set
Y such that

(∀x ∈ X)((∃ y)Ψ(x, y, p) → (∃ y ∈ Y )Ψ(x, y, p)).

Distinguishing some standard sets X and p, put

Φ(a, b) := (∃x)(∃ p)(a = (x, p) ∧ Ψ(x, b, p)).

As we have proven already, there is a standard set Y such that the sought formula
holds for all p ∈ P . We are done on applying the axiom of boundedness. �

3.8.11. Theorem. The axiom of saturation holds in BST for classes.
� By Theorem 3.8.8 to each formula Φ with two unbound variables there is an

internal formula ϕ satisfying

Φ(x, p) ↔ (∃ stU)((p, x) ∈ ν(U) ∧ ϕ(U)).

Hence, given an arbitrary set p and using 3.7.9, we infer that

(∀x)(Φ(x, p) → (∀y ∈ μp(x)) Φ(y, p)),

so completing the proof. �
We have checked that all axioms of NCT hold in N, which ends the proof of

Theorem 3.8.1.

3.8.12. Comments.

(1) The fact that proper classes are not members of other classes clearly
restricts the expressive means of NCT. In particular, it is impossible in NCT to
formalize the construction of the nonstandard hull E# of an internal normed space
E to a full extend (cf. Chapter 6). Indeed, the members of E# are the equivalence
classes of the quotient of the class of limited members of E by the external relation
of infinite proximity on E. Since these classes are both external, there is no class
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that contains them as members. However, to view the nonstandard hull of E as
the class comprising these equivalence classes we need furnish NCT with a stronger
form of the axiom of choice which asserts for instance the possibility of ordering
each semiset so that each subclass of this semiset has a least element. Such an order
is a strong well-ordering. However, this cannot be implemented in NCT without a
contradiction as shown in [14].

(2) We can prove that a class admits a strong well-ordering only if there
is a bijection of this class to the semiset of standard elements of some standard set
(the semiset of limited members of an internal normed space fails to possess this
property).

(3) A class X has standard size provided that there are a function F
and a class D satisfying X = F”◦D. In this event, we may assume F internal and
D standard. The article [14] contains the following

Theorem. A semiset X admits a strong well-ordering if and only if X has
standard size.

(4) The theory NCT has tools allowing us to prove some proposition
that is equivalent to the theorem of completeness of the nonstandard hull of an
internal normed space. We mean the claim that each external S-fundamental se-
quence (en) of elements of E (i.e., a sequence indexed with standard naturals and
such that (∀ stε > 0)(∃ stn0)(∀ stm,n > n0)(‖en − em‖ < ε)) has S-limit in E (i.e.,
(∃ e ∈ E)(∀ stε > 0)(∃ stn0)(∀ stn > n0)‖en − e‖ < ε)).

Analogously, NCT will allow us to formalize all considerations of Chapter 7
which deal with construction some topological groups as quotient groups of hyper-
finite group by external normal subgroups.

3.9. Relative Internal Set Theory

In this section we consider the theory of relative internal sets within Nelson’s
internal set theory.

3.9.1. The presence of infinitesimals in analysis opens a way of constructing
new concepts (and in fact of legitimizing the concepts that were refuted long ago)
in order to study the classical objects of mathematical analysis. In particular, our
new attractive acquisition is new mathematical concepts such as a microlimit of
a finite sequence (cf. 2.3.4) or microcontinuity of a function at a point (cf. 4.4.5).
These and similar concepts enable us to formulate the “infinitesimal” tests for limits
(cf. 2.3.5), continuity (cf. 2.3.8 and 4.2.7), compactness (cf. 4.3.6), etc. which lie in
the backgrounds of most applications.

However, all new tests presume the standard environment which is a limitation
on their applicability. Moreover, even in case we use infinitesimal tests to studying
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a standard object, we often face serious obstacles that stem from this limitation.
We will proceed with two typical examples.

(1) Consider the infinitesimal test for the fact that

lim
n→∞ lim

m→∞xnm = a

for some standard double sequence (xnm)n,m∈N and a standard real a. Apply the
test of 2.3.5 to reformulate:

A standard number a ∈ R is the limit of a standard sequence (an) if and only
if a is a microlimit of a[N ], with N an arbitrary unlimited natural number. In
symbols,

lim
n→∞ lim

m→∞ xnm = a ↔ (∀N ≈ +∞)( lim
m→+∞xN,m ≈ a).

However, the infinitesimal limit test is not applicable since the internal sequence
ym := ∗xN,m fails to be standard in general. A similar obstacle appears in testing
the double limit limx→0 limy→0 f(x, y) of a function f : R

2 → R as well as in trying
to find an infinitesimal presentation of the improper integral (cf. 2.3.6).

(2) Let us try now to supply an infinitesimal proof for the following
familiar proposition:

The uniform limit of a sequence of bounded uniformly continuous function on
a uniform space is a uniformly continuous function.

We thus consider a standard sequence (fn)n∈N of such functions converging
uniformly to a standard function f on a set X . By the same reasons as in (1), if N
is an unlimited natural and x ∈ X then fN (x) ≈ f(x), since sup{|fN (x)−f(x)| : x ∈
X} ≈ 0. By 2.3.12 (cf. 4.4.6 (1)) it suffices to prove that x′ ≈ x′′ → f(x′) ≈ f(x′′)
for all x′, x′′ ∈ X . Of course, f(x′) ≈ fN (x′) and f(x′′) ≈ fN (x′′). However, it
is impossible to infer that fN (x′) ≈ fN (x′′) despite the fact that f is uniformly
continuous since the infinitesimal uniform continuity test is not applicable to the
(generally) nonstandard function fN .

To obviate these obstacles we will introduce relatively standard elements. In-
formally speaking, a set relatively standard with respect to x is “more nonstandard”
as compared with x. This reminds us of higher order infinitesimals.

3.9.2. We will consider the notion of relative standardness within IST.
Denote by Ffin(f) the following: “f is a function and each member of the

image im(f) of f is a finite set.” In symbols,

Ffin(f) := Func (f) ∧ (∀x ∈ im(f)) fin(f(x)).

An element x is feasible (in symbols, (Su(x))) provided that (∃stX)(x ∈ X).
We introduced the predicate “x is standard relative to y” by the formula

x st y := (∃stϕ)(Ffin(ϕ) ∧ y ∈ dom(ϕ) ∧ x ∈ ϕ(y)).
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It is worth recalling that fin(x) means only that x is a finite set or, in other words,
the cardinality or size of x is a member of ω; i.e. x is a natural, possibly unlimited
whenever x is a nonstandard set.

3.9.3. In the sequel we will use the following auxiliary proposition.

Let ϕ(x, y) be a formula of ZFC. Assume that (∀x)(∃! y)ϕ(x, y) is provable in
ZFC. Then the formula (∀stx)(∀y)(ϕ(x, y) → St(y)) is provable in IST.

� This is immediate by transfer. �
In analogy with 3.3.4 we abbreviate some predicates as follows:

(∀ st yx)ϕ := (∀x) ((x is standard relative to y) → ϕ);
(∃ st yx)ϕ := (∃x) ((x is standard relative to y) ∧ ϕ);

(∀ st fin yx)ϕ := (∀ st yx) (x is finite → ϕ);
(∃ st fin yx)ϕ := (∃ st yx) (x is finite ∧ ϕ).

3.9.4. The two-place predicate x st y possesses the following properties:
(1) x st y → Su(x) ∧ Su(y).
(2) x st y ∧ y st z → x st z.
(3) x st y ∧ fin(x) → (∀z ∈ x) z st y.
(4) Su(y) ∧ St(x) → x st y.

In the last claim St is the familiar one-place predicate expressing “standard-
ness” in IST; cf. 3.3.1.

� (1): Obvious.
(2): Assume that x ∈ ϕ1(y) and y ∈ ϕ2(z) where ϕ1 and ϕ2 are standard

functions such that ϕ1(t) and ϕ2(t) are finite sets for all t ∈ dom(ϕi). Let h stand
for the function defined as

dom(h) := dom(ϕ2), h(t) := {ϕ1(u) : u ∈ ϕ2(t) ∩ dom(ϕ1)} (t ∈ dom(ϕ2)).

Clearly, h(t) is a finite set for all t ∈ dom(ϕ2) since so is ϕ1(t) and x ∈ h(z). By
3.9.3, h is a standard function, which finishes the proof of (2).

(3): Assume that ψ is a standard function such that ψ(t) is finite for all t ∈
dom(ψ). Take x ∈ ψ(y). Appealing to 3.9.3 again, let g stand for the standard
function defined by the rule

g(t) := {v : v ∈ ψ(t) ∧ v is finite} (t ∈ dom(g) := dom(ψ)).

It is clear that z ∈ g(y), and we are done on observing that g(t) is a finite set for
all t ∈ dom(ψ) as a union of finite sets.

(4): Let X be a standard set. This X exists since Su(y). Define the function
ϕ as ϕ(t) := {x} (t ∈ X). This is a standard function since x is standard and
x ∈ ϕ(y). �
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3.9.5. Relative Transfer Principle. If A is an internal formula with the
only unbound variables x, t1, . . . , tk (k ≥ 1) then

(∀st τ t1) . . . (∀st τ tk)((∀st τx)A(x, t1, . . . , tk) → (∀x)A(x, t1, . . . , tk))

for an arbitrary feasible τ .

� For brevity, put k := 1. We have to prove validity of the following proposition
in IST:

(∀τ)(Su(τ) → (∀stτ t)((∀stτx)A(x, t) → (∀x)A(x, t))).

Since ¬ Su(t) → ¬(t st τ), by 3.9.4 the formula in question amounts to the following

(∀τ)(∀stτ t)((∀stτx)A(x, t) → (∀x)A(x, t)).

Translating this formula to the language of IST, infer

(∀τ)(∀stϕ)(∀t) (τ ∈ dom(ϕ) ∧ t ∈ ϕ(τ)
→ ((∀stψ)(∀x)(τ ∈ dom(ψ) ∧ x ∈ ψ(τ) → A(x, t))
→ (∀y)A(y, t))).

Here and in what follows, we let ϕ and ψ stand for some functions whose values are
finite sets while Φ is some set of these functions. Proceed by applying the Nelson
algorithm 3.3.15 so arriving at the new equivalent record (in predicate calculus):

(∀stϕ) (∀τ, t) (∃stψ)(τ ∈ dom(ϕ) ∧ t ∈ ϕ(τ)
∧(∀x)(τ ∈ dom(ψ) ∧ x ∈ ψ(τ) → A(x, t)) → (∀y)A(y, t)).

By idealization, the last formula amounts to the following

(∀stϕ)(∃st finΦ)(∀τ) (∀t)(τ ∈ dom(ϕ) ∧ t ∈ ϕ(τ)
∧(∀ψ ∈ Φ)(∀x)(τ ∈ dom(ψ) ∧ x ∈ ψ(τ) → A(x, t)) → (∀y)A(y, t)).

By transfer, we omit the superscript st of the first two quantifiers and reduce the
task to validating the following formula in ZFC:

(∀ϕ)(∃finΦ)(∀τ, t)(τ ∈ dom(ϕ) ∧ t ∈ ϕ(τ)
∧(∀ψ ∈ Φ)(∀x)(τ ∈ dom(ψ) ∧ x ∈ ψ(τ) → A(x, t))

→ (∀y)A(y, t)).

Take some function ϕ, and arrange the singleton Φ := {ψ} where ψ is defined as
follows: Put M :=

⋃
im(ϕ) and M1 := {t ∈ M : (∃y) ¬A(y, t)}. The axioms of
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ZFC implies that there is a function h such that dom(h) = M1 and ¬A(h(t), t) for
all t ∈ dom(h). Assign dom(ψ) := dom(ϕ) and ψ(α) := {h(ν) : ν ∈ ϕ(α) ∩ M1}
(α ∈ dom(ϕ)). If ϕ(α) ∩ M1 = ∅ then ψ(α) := ∅. Note that ψ(α) is finite since
so is ϕ(α). Distinguish τ ∈ dom(ϕ) and t ∈ ϕ(τ). To validate the formula of ZFC
under study, it suffices now to prove the following implication:

(∀x ∈ ψ(τ))A(x, t) → (∀y)A(y, t).

If t ∈ M −M1 then this implication is valid, whereas if t ∈ M1, the premise of this
implication is false. Indeed, if x = h(t) then x ∈ ψ(τ) since t ∈ ϕ(τ) ∩M1, whereas
A(h(t), t) is false. �

3.9.6. Relative Idealization Principle. Let B(x, y) be an internal formula
possibly possessing unbound variables other than x and y. Then

(∀st τ fin z)(∃x)(∀y ∈ z)B(x, y) ↔ (∃x)(∀st τy)B(x, y)

for every feasible τ .

� As in 3.9.5, we let ϕ and ψ denote some functions whose values are finite
sets, while Φ and Ψ are some sets of these functions. Note first that to proof the
claim it suffices to demonstrate the implication → since the reverse implication
follows from 3.9.4 (3).

Assume for definiteness that B contains one more unbound variable t. Then
the task consists in validating the formula

(∀τ)(Su(τ) → (∀t)(∀st τ finx)(∃y)(∀z ∈ x)B(z, y, t)
→ (∃u)(∀st τv)B(v, u, t))).

Appealing to 3.9.4 again, observe that the above formula amounts to the following

(∀τ)(∀t)((∀st τ finx)(∃y)(∀z ∈ x)B(z, y, t) → (∃u)(∀st τv)B(v, u, t)).

Rephrasing this in the language of IST, replace the predicate x st τ with the equiv-
alent fragment in the language of IST to obtain

(∀τ)(∀t)((∀stϕ)(∀finx)(τ ∈ dom(ϕ) ∧ x ∈ ϕ(τ)
→ (∃y)(∀z ∈ x)B(z, y, t))
→ (∃u)(∀stΨ)(∀v)(τ ∈ dom(ψ) ∧ v ∈ ψ(τ) → B(v, u, t)))
↔

(∀τ)(∀t)((∀stϕ)(∀finx)(τ ∈ dom(ϕ) ∧ x ∈ ϕ(τ)
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→ (∃y)(∀z ∈ x)B(z, y, t))
→ (∀st finΨ)(∃u)(∀ψ ∈ Ψ)(∀v)(τ ∈ dom(ψ) ∧ v ∈ ψ(τ)
→ B(v, u, t)))
↔

(∀st finΨ)(∃st finΦ)(∀τ)(∀t)((∀ϕ ∈ Φ)(∀finx)
(τ ∈ dom(ϕ) ∧ x ∈ ϕ(τ)
→ (∃y)(∀z ∈ x)B(z, y, t)) → (∃u)(∀ψ ∈ Ψ)(∀v)

(τ ∈ dom(ψ) ∧ v ∈ ψ(τ) → B(v, u, t))).

In much the same way as in the proof of 3.9.5, we may omit the superscript st in
the first two quantifiers by transfer, reducing the matter again to validating the
so-obtained formula of ZFC. Take an arbitrary finite set of functions Ψ and define
Φ by the rule Φ := {ϕ} where

dom(ϕ) :=
⋃

ψ∈Ψ

dom(ψ), ϕ(α) :=
{⋃

ψ(α) : ψ ∈ Ψ, α ∈ dom(ψ)
}
.

Note that ϕ(α) is a finite set. Distinguish some arbitrary τ and t. If τ /∈ dom(ϕ)
then τ /∈ dom(ψ) for all ψ ∈ Ψ, implying that the formula in question is valid. In
case τ ∈ dom(ϕ), we are left with validating the implication

(∃y)
(

∀z ∈
⋃

{ψ(τ) : ψ ∈ Ψ, τ ∈ dom(ψ)}
)
B(z, y, t)

→ (∃u)(∀ψ ∈ Ψ)(∀v)(τ ∈ dom(ψ) ∧ v ∈ ψ(τ) → B(v, u, t)).

Rephrase the premise of this implication as

(∃y)
(∀z ∈

⋃
{ψ(τ) : ψ ∈ Ψ, τ ∈ dom(ψ)})B(z, y, t)

↔
(∃y)(∀z)(∃ψ ∈ Ψ)(τ ∈ dom(ψ) ∧ z ∈ ψ(τ) → B(z, y, t))

↔
(∃y)(∀z)(∀ψ ∈ Ψ)(τ ∈ dom(ψ) ∧ z ∈ ψ(τ) → B(z, y, t)).

It is now clear that the premise of this implication is equivalent to its conclusion. �
3.9.7. We now list a few simple corollaries to 3.9.5 and 3.9.6.

(1) In the context of 3.9.3, let x be some τ -standard element, and let
y satisfy A(x, y). Then y is a τ -standard element too.
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� Immediate by relative transfer. �

(2) For a τ -standard set x to be finite it is necessary and sufficient that
x consist of τ -standard elements.

� The implication → coincides with 3.9.4 (3). To prove the reverse implication,
rewrite the claim as (∀u ∈ x)(∃st τv)(u = v). By relative idealization, the last
formula may be rephrased as (∃st τ finV )(∀u ∈ x)(∃v ∈ V )(u = v) which means
that x ⊂ V and x is finite since so is V . �

(3) fin(x) → |x| st τ .

� Immediate from (1). �

3.9.8. We now show that it is impossible to prove any analog of 3.9.5 and 3.9.6
for standardization. To this end, we rewrite the alias “relative standardization
principle” as follows:

(1) (∀stτx)(∃stτy)(∀stτz)(z ∈ y ↔ z ∈ x ∧ C(z)),
where C(z) is a formula of IST which may possess unbound variable other than z.
We will demonstrate that 3.9.8 (1) leads to a contradiction even if C(z) satisfies the
following extra requirement: Each occurrence of the predicate st in C(z) has the
shape · st τ , whereas the unary predicate st(x) is absent from C(z).

Indeed, the existence of the standard part ◦t of an arbitrary limited real t ∈ R

follows in IST by standardization, cf. 2.2.16. The same arguments may be repeated
for the τ -standard part operation on assuming that 3.9.8 (1) holds. We now fill in
details.

Let τ be an arbitrary feasible internal set. A real x ∈ R is τ -infinitesimal (in
symbols, x

τ≈ 0) provided that |x| ≤ ε for every τ -standard strictly positive ε ∈ R.
From 3.9.8 (1) with the appropriate C(z) satisfying the above condition it ensues
that

(∀τ)(∀t ∈ R)((∃st τu ∈ R)(|t| < u) → (∃st τv ∈ R)(|t− v| τ≈ 0)).

To see the falsity of 3.9.8 (1) it suffices to appeal to the following proposition.

3.9.9. There are an infinitely large natural N and x ∈ [0, 1] such that y fails
to be N -standard whenever y is N -infinitely close to x.

� The proof is given below in 4.6.15. �

3.9.10. Closing the current section, we briefly present the axiomatic theory
RIST of relative internal sets. The language of this theory results from the language
of Zermelo–Fraenkel set theory by supplementing it with a sole two-place predicate
st. As before, we read the expression x st y as “x is standard relative to y.” A
formula of RIST is internal if it contains no occurrences of the predicate st. In
much the same way as in 3.9.3 we define the external quantifiers ∀ stα, ∃ stα, ∀ st finα,
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∃ st finα. The axioms of RIST contain all axioms of ZFC. Moreover, the predicate
st obeys the following three axioms:

(1) (∀x) x stx;
(2) (∀x)(∀y) x st y ∨ y st x;
(3) (∀x)(∀y)(∀z)(x st y ∧ y st z → x st z).

Moreover, RIST, in analogy with IST, includes three new axiom-schemata.
The axiom-schemata of transfer and idealization are the same as in 3.9.4 and 3.9.5,
whereas we must restrict the class of formulas in the axiom-schema of standardiza-
tion in accord with 3.9.6.

3.9.11.Axiom-Schema of Transfer. If ϕ(x, t1, . . . , tk) is an internal formula
with free variables x, t1, . . . , tk and τ a fixed set then

(∀st τ t1) . . . (∀st τ tk)
(
(∀st τx)ϕ(x, t1, . . . , tk) → (∀x)ϕ(x, t1, . . . , tk)

)
.

3.9.12. Axiom-Schemata of Idealization. Let ϕ(x1, . . . , xk, y) be an inter-
nal formula with unbound variables x1, . . . , xk, y and possibly other unbound vari-
ables. Assume that τ1, . . . , τk are given and β is not standard relative to (τ1, . . . , τk).
Then

(1) Restricted Idealization Principle:
(∀st τ1 finz1) . . . (∀st τk finzk)
(∃st βy)(∀x1 ∈ z1) . . . (∀xk ∈ zk)ϕ(x1, . . . , xk, y)
↔ (∃stβy)(∀st τ1x1) . . . (∀st τkxk)ϕ(x1, . . . , xk, y).

(2) Unrestricted Idealization Principle:
(∀st τ finz1) . . . (∀st τ finzk)
(∃y)(∀x1 ∈ z1) . . . (∀xk ∈ zk)ϕ(x1, . . . , xk, y)
↔ (∃y)(∀st τ1x1) . . . (∀st τkxk)ϕ(x1, . . . , xk, y).

3.9.13. To formulate the axiom-schema of standardization, we introduce the
class Fτ of τ -external formulas, with τ a distinguished set. If F is a class of formu-
las of RIST then Fτ is defined as the least subclass of F meeting the conditions:

(1) Each atomic formula x ∈ y, with x and y variables or constants,
belongs to Fτ ;

(2) If some formulas ϕ and ψ belong to Fτ then the formulas ¬ϕ and
ϕ → ψ belong to Fτ too;

(3) If a formula ϕ(x, y) belongs to Fτ then the formula (∃y)ϕ(x, y)
belongs to Fτ as well;

(4) If a formula ϕ(x, y) belongs to Fτ and β is a set such that the set τ
is standard relative to β, then the formula (∃stβy)ϕ(x, y) belongs
to Fτ .
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3.9.14. Axiom-Schema of Standardization. If τ is a given set and ϕ is
some τ -external formula then

(∀st τy)(∃st τz)(∀st τ t)(t ∈ z ↔ (t ∈ y ∧ ϕ(t))).

3.9.15. Theorem. RIST is conservative over ZFC.

3.9.16. Comments.

(1) The content of 3.9.2–3.9.9 is taken from Gordon’s article [504]; also
see [146]. Since the relative standardization principle is not valid, we may conclude
that the standardization principle of IST is not a consequence of the other axioms
of this theory (for details, see [504, 146]).

(2) The definitions and basic properties of relative standard elements
are presented within IST. However, all these results are naturally valid in an arbi-
trary nonstandard universe maintaining the idealization principle of IST. Applying
these tools, we must surely bear in mind the particularity of the classical stance of
infinitesimal analysis, cf. 3.5.2–3.5.12.

(3) The axiomatic theory RIST, as presented in 3.9.10–3.9.14, was pro-
pounded by Péraire [395]. The last article contains Theorem 3.9.15. Prior to this,
Péraire carried out an extension of IST (consistent with ZFC) by appending a se-
quence of the undefinable predicates Stp(x) (read: x is “standard to the power of”
1/p); cf. [393]. The articles [394] and [396] contain other results in this direction.

(4) The articles [141, 146] also consider simpler version of the concept
of relative standardness. Namely, we introduce the relation x is strongly standard
relative to τ or x is τ -strongly-standard by the formula

x sst τ := (∃stϕ) (Fnc (ϕ) ∧ τ ∈ dom(ϕ) ∧ x = ϕ(τ)).

Clearly, x sst y → x st y. However, the converse fails in general, see. [146].

(5) The relative transfer principle, as well as 3.9.4 (1, 2, 4), remains valid
provided that we replace all occurrences of the predicate · st · with · sst ·. The
relative idealization principle reduces to the implication →.

(6) The following hold: (cf. [146]):

(∃N ∈ ω) (∃n < N) (¬n sstN).

� It suffices to check the falsity in IST of the following

(∀N ∈ ω) (∀n < N)(∃stϕ ∈ ωω)(n = ϕ(N)).
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Rephrasing this formula by idealization and transfer, we obtain

(∃Φ ∈ Pfin(ω))(∀n,N ∈ ω)(n < N → (∃ϕ ∈ Φ)(n = ϕ(N))).

We now prove that the negation of the last formula is true in ZFC.
To this end, let Φ = {ϕ1, . . . , ϕk} be some finite set of functions ϕl : ω →

ω. Take N > k. Clearly, there is some n satisfying n ∈ {0, 1, . . . , N − 1} −
{ϕ1(N), . . . , ϕk(N)}. These n and N satisfy the formula n < N ∧ (∀ϕ ∈ Φ) (n �=
ϕ(N)), which ends the proof. �



Chapter 4

Monads in General Topology

The set-theoretic stance of mathematics has provided us with the environment
known today as general topology for studying continuity and proximity since the
beginning of the 20th century.

Considering the microstructure of the real axis, we have already seen that the
collection of infinitesimals arises within infinitesimal analysis as a monad, i.e., the
external intersection of all standard elements of the neighborhood filter of zero in
the only separated topology agreeable with the algebraic structure of the field of
reals.

We may say that the notion of the monad of a filter synthesizes to some ex-
tend the topological idea of proximity and the analytical idea of infinitesimality.
Interplay between these ideas is the main topic of the current chapter.

We focus attention on the most elaborate ways of studying classical topological
concepts and constructions that surround compactness and rest on the idealization
principle we accept in nonstandard set theory.

The contribution of the new approach to the topic we discuss resides basically
in evoking the crucial notion of a nearstandard point. The corresponding test
for a standard space to be compact, consisting in nearstandardness of every point,
demonstrates the meaning and significance of the concept of nearstandardness which
translates the conventional notion of compactness from whole spaces to individual
points. This technique of individualization is a powerful and serviceable weapon in
the toolbox of infinitesimal analysis.

It is worth observing that we conform mainly to the neoclassical credo of in-
finitesimal analysis in this chapter, and so exposition proceeds in the standard
environment unless otherwise stated.

4.1. Monads and Filters

The simplest example of a filter is well-known to be the collection of supersets of
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a nonempty set. Infinitesimal analysis enables us to approach an arbitrary standard
filter in much the same manner viewing this filter as standardization of the collection
of supersets of an appropriate external set, the monad of the filter. The method
for introducing these monads and studying their simplest properties constitutes the
topic of this section.

4.1.1. Let X be a standard set and let B be a standard filterbase on X . In
particular, B �= ∅, B ⊂ P(X), ∅ /∈ B, and B1, B2 ∈ B → (∃B ∈ B)(B ⊂
B1 ∩B2). The symbol μ(B) denotes the monad of B, i.e., the external set defined
as follows:

μ(B) :=
⋂

{B : B ∈ ◦B}.
4.1.2. An internal set A is a superset of some standard element of a standard

filterbase B if and only if A includes the monad μ(B) of B.
� If A ⊃ B and B ∈ ◦B then A ⊃ μ(B) by definition. Conversely, if A ⊃ μ(B)

then by idealization there is an internal set B ∈ B such that B ⊂ μ(B), and so
A ⊃ B. �

4.1.3. Each standard filter F is the standardization of the principal external
filter of supersets of the monad μ(F ).

� In symbols, the claim reads:

(∀ stA)((A ∈ F ) ↔ (A ⊃ μ(F ))).

The last equivalence is obviously a consequence of 4.1.2. �
4.1.4. The monad μ(F ) of a standard filter F is an internal set if and only if

μ(F ) is a standard set. In this event F is the standard filter of supersets of μ(F ).
� If μ(F ) is an internal set then, using 4.1.3 and the idealization principle, we

find

(∃A)(∀ stF )(F ∈ F )
↔ (F ⊃ A) ↔ (∀ st finU )(∃A)(∀F ∈ U )(F ∈ F ↔ F ⊃ A)

↔ (∀ stU)(∃A)(U ∈ F ↔ U ⊃ A).

By transfer, we conclude that F is the filter of supersets of some set A. Since such
a set A is unique; therefore, A = μ(F ) and, moreover, A is a standard set. �

4.1.5. Given a standard filterbase B, we call the members of μ(B) infinitesi-
mal or distant, or remote, or astray (relative to B). Analogously, an element B in
B such that B ⊂ μ(B) is also called an infinitesimal or distant, or remote, or astray
member of B. The collection of infinitesimal members of B is denoted by aB.
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4.1.6. Examples.

(1) The monad μ(R) is the monad of the neighborhood filter of zero in
the natural topology on R.

(2) Let B be a filterbase and let fil B be the filter with filterbase B,
i.e., B is the collection of supersets of members of B. In symbols,

fil B := {F ⊂ X : (∃B ∈ B)(B ⊂ F )}.

By transfer, if B is a standard filterbase (on a standard set X) then fil B is also
a standard filter. In this case μ(B) = μ(fil B).

Observe that in the sequel we will conveniently deal with the monad of an ar-
bitrary internal filter F which is determined in a perfect analogy with the above:
μ(F ) :=

⋂ ◦F . Observe also that the monad of a filter F on a standard set is
always an external superset of some internal element of F .

(3) Let Ξ be a standard direction, i.e., a nonempty directed set. By
idealization, Ξ contains an internal element that dominates all standard points of Ξ.
Such a member of Ξ is called distant, or remote, infinitely large, or unlimited, or
astray in Ξ.

Consider a standard base for the tail filter B := {[ξ,→) := {η ∈ Ξ : η ≥ ξ} :
ξ ∈ Ξ} of Ξ. By definition, η ∈ μ(B) ↔ (∀ stξ ∈ Ξ) η ≥ ξ, i.e., the monad of the
tail filter of Ξ naturally comprises remote elements of Ξ. We will use the notation
aΞ := μ(B).

(4) Let E be a standard cover of a standard set X , i.e., X ⊂ ⋃
E .

Consider the family Ξ(E ) of standard finite unions of elements of E . Clearly,
Ξ(E ) := ∗{⋃ E0 : E0 ∈ Pst fin(E )}, where Pst fin(E ) is the set of standard fi-
nite subsets of E . The external collection of remote elements of Ξ(E ) is called the
monad of E and is denoted by μ(E ). Hence,

μ(E ) =
⋃

{E : E ∈ ◦E }.

By analogy, we define the monad of each upward-filtered family.

(5) Assume given a correspondence f ⊂ X×Y and a filterbase F on X
such that f meets F , i.e., (∀F ∈ F ) dom(f) ∩ F �= ∅. As usual, we put

f(F ) := {B ⊂ Y : (∃F ∈ F )(B ⊃ f(F ))}.

Therefore, f(F ) is a filter on Y , called the image of F under the correspondence f .
Assuming the standard environment, i.e., on supposing that X , Y , f , and F are
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standard objects, we recall the idealization principle to obtain

y ∈ μ(f(F )) ↔ (∀ stB ∈ f(F ))(y ∈ B) ↔ (∀ stF ∈ F )(y ∈ f(F ))
↔ (∀ stF ∈ F )(∃x)(x ∈ F ∧ y ∈ f(x))

↔ (∀ st finF0 ⊂ F )(∃x)(∀F ∈ F0)(x ∈ F ∧ y ∈ f(x))
↔ (∃x)(∀ stF ∈ F )(x ∈ F ∧ y ∈ f(x))

↔ (∃x ∈ μ(F ))(y ∈ f(x) ↔ y ∈ f(μ(F ))).

Therefore, the image of the monad of a filter is the monad of the image of this
filter:

μ(f(F )) = f(μ(F )).

We now assume that G is a filterbase on Y such that f−1 meets G . Consider
the preimage or inverse image f−1(G ) of G under f (i.e., the image of this filter
under the correspondence f−1). Obviously, μ(f−1(G )) = f−1(μ(G )).

It is worth noting that the last relation may be proved without “saturation.”
Indeed, recalling definitions, we simply deduce

μ(f−1(G )) =
⋂

G∈◦G

f−1(G) = f−1
( ⋂

G∈◦G

G
)

= f−1(μ(G )),

i.e., the monad of the inverse image of a filter is the inverse image of the monad of
the initial filter. Observe that, proving this, we use the possibility of dealing with
the inverse image under f of an arbitrary external subset of Y .

4.1.7. Let B1 and B2 be two standard filterbases on some standard set. Then

fil B1 ⊃ fil B2 ↔ μ(B1) ⊂ μ(B2).

� →: If B2 is standard and B2 ⊃ μ(B2) then, by 4.1.2, B2 ∈ fil B2 and so
B2 ∈ fil B1. Therefore, B2 ⊃ μ(B1), yielding μ(B1) ⊂ μ(B2).

←: Let F2 be a standard element of fil B2, i.e., a superset of some standard
B2 ∈ B2. By hypothesis, B2 includes the monad μ(B1). By 4.1.2, B2 ∈ fil B1 and
so F2 ∈ fil B1. It suffices to appeal to the transfer principle. �

4.1.8. Consider a mapping f : X → Y . Suppose that A is a filterbase on X
and B is a filterbase on Y . Assuming the standard environment, the following are
valid:

(1) f(A ) ⊃ fil B;
(2) f−1(B) ⊂ fil A ;
(3) μ(f(A )) ⊂ μ(B);
(4) f(μ(A )) ⊂ μ(B).
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� To prove the equivalence (1) ↔ (2), proceed as follows:

f(A ) ⊃ fil B ↔ (∀B ∈ B)(∃A ∈ A )(f(A) ⊂ B)
↔ (∀B ∈ B)(∃A ∈ A )A ⊂ f−1(B) ↔ f−1(B) ⊂ fil A .

Equivalence of (1) and (3) ensues from 4.1.7. We now recall 4.1.6 (5) to infer

f(μ(A )) ⊂ μ(B) ↔ μ(A ) ⊂ f−1(μ(B))
↔ μ(A ) ⊂ μ(f−1(B)) ↔ f−1(B) ⊂ fil A ,

which completes the proof. �
4.1.9. Using the classical stance, we may simplify the statement of 4.1.8. This

is done by omitting the words “assuming the standard environment” while restating
4.1.8 (4) as ∗f(μ(A )) ⊂ μ(B), with ∗ denoting the robinsonian standardization. It
is in common parlance to presume f := ∗f , which leads to the most comprehensible
and easily-memorized formulation. The same formulation is also often within the
neoclassical and radical stances. In other words, if infinitesimal analysis is used
as a technique for exploring the von Neumann universe, we assume the explicit
parameters standard unless otherwise stated, abbreviating the term “internal set”
to “set.” This convenient agreement correlates obviously with the qualitative views
of standard objects.

In the sequel, we will continue to pursue a freelance attitude, omitting any
indication to the type of sets under study whenever this entails no confusion.

4.1.10. The following hold:
(1) The filters F1 and F2 have the least upper bound if and only if

μ(F1) ∩ μ(F2) �= ∅;
(2) Given an upper bounded set of filters E , we have

μ(sup E ) =
⋂

{μ(F ) : F ∈ ◦E },
i.e., the monad of the intersection of filters is the intersection of
their monads.

� (1): This is immediate from 4.1.7.
(2): Note first that for F ∈ ◦E we have F ≤ sup E and so μ(sup E ) ⊂ μ(F ).

This implies the inclusion μ(sup E ) ⊂ ⋂{μ(F ) : F ∈ ◦E }. Assume now that F ∈
◦ sup E . By the definition of filter, there is a standard finite set E0 ⊂ E such that
F ∈ sup E0. Using 4.1.3 and (1), we deduce F ⊃ μ(sup E0) =

⋂{μ(F ) : F ∈ E0}.
Finally,

μ(sup E ) ⊃
⋂

{μ(F ) : F ∈ E0, E0 ∈ Pst fin(E )} =
⋂

{μ(F ) : F ∈ ◦E },
which completes the proof. �
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4.1.11. Assume that A is an ultrafilter on X , i.e., an inclusion maximal mem-
ber of the set F (X) of filters on X . Assume further that F is another filter on X ,
i.e., F ∈ F (X). Then either μ(A ) ∩ μ(F ) = ∅ or μ(A ) ⊂ μ(F ).

� If μ(A ) ∩μ(F ) �= ∅, then, by 4.1.10 (1), we may find the least upper bound
A ∨ F = A . Hence, F ⊂ A , and, by 4.1.7, μ(A ) ⊂ μ(F ). �

4.1.12. A standard filter F on X is an ultrafilter if and only if the monad of
F is easy to catch, i.e., for all standard subsets A and B in X such that A∪B = X
either μ(F ) ⊂ A or μ(F ) ⊂ B.

� →: Since μ(F ) ⊂ A ∪ B, we may assume that μ(F ) ∩ A �= ∅. Since
A = μ({filA}); therefore, μ(F ) ⊂ A by 4.1.11.

←: Let G ⊃ F . Then, according to 4.1.7, μ(G ) ⊂ μ(F ). If A is standard and
A ⊃ μ(G ), then either A ⊃ μ(F ) or A′ := X −A ⊃ μ(F ) by hypothesis. The case
A′ ⊃ μ(F ) is impossible, since we would get μ(F )∩μ(G ) ⊂ A∩A′ = ∅. Therefore,
A ⊃ μ(F ) i.e., A ∈ F by 4.1.2. Consequently, A ∈ F for every standard A ∈ G .
By transfer, G ⊂ F , i.e., F is an ultrafilter. �

4.1.13. A filterF is an ultrafilter if and only if A∪B ∈ F → A ∈ F ∨B ∈ F .

� →: If A ∪ B ∈ F then the monad of F is caught: μ(F ) ⊂ A ∪ B. If
μ(F ) ∩ A �= ∅ then μ(F ) ⊂ A and A ∈ F . If μ(F ) ∩B �= ∅ then μ(F ) ⊂ B and
B ∈ F .

←: Let A∪B = X . If A ∈ F then A ⊃ μ(F ). If B ∈ F then B ⊃ μ(F ); i.e.,
the monad is easily caught. �

4.1.14. Each limit of a filter is one of its adherent points. An adherent point
of an ultrafilter is one of its limits.

� It suffices to assume the standard environment. Obviously, F → x ↔
μ(F ) ⊂ μ(x) := μ(τ(x)). Moreover, x ∈ cl(F ) :=

⋂{cl(F ) : F ∈ F} ↔ (∀F ∈
F )(∀U ∈ τ(x))(U ∩ F �= ∅) ↔ (μ(F ) ∩ μ(x) �= ∅) by 4.1.10 (1). We have thus
proved the first claim.

Assume now that F is an ultrafilter. Take x ∈ cl(F ). Then μ(F ) ∩μ(x) �= ∅.
Using the alternative of 4.1.11, deduce μ(F ) ⊂ μ(x); i.e., F → x. �

4.1.15. Let E be a cover of X . The following are equivalent:
(1) There is a standard finite subcover E0 of E , i.e., E0 ∈ Pst fin(E )

and X ⊂ ⋃ E0;
(2) The monad μ(E ) of E coincides with X ;
(3) The monad μ(E ) of E is a standard set;
(4) The monad μ(E ) of E is an internal set;
(5) To each standard ultrafilter F on X there is a member of E be-

longing to F .
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� The implications (1) → (2) → (3) → (4) are all clear.
If μ(E ) is an internal set then by 4.1.6 (4) and 4.1.4 we conclude that μ(E )

is standard; i.e., there is a standard finite E0 ⊂ E satisfying μ(E ) =
⋃

E0 ⊃ X .
Hence, (4) → (1).

The implication (1) → (5) is obvious. To prove (5) → (1), assume by way of
contradiction that (∀ st finE0) ∪ E0 /∈ X . Put E ′ := {E′ := X − E : E ∈ E }. The
family E ′ obviously generates a filterbase on X . Let F be some ultrafilter finer
than this filterbase. In this case we may find E ∈ E such that E ∈ F . Moreover,
by construction, E′ ∈ F . Thus, we come to a contradiction. �

4.1.16. In closing, we list some useful propositions that rest on the “technique
of internal sets.”

4.1.17. Cauchy Principle. Let F be a standard filter on a standard set.
Assume further that ϕ := ϕ(x) is an internal property (i.e., ϕ = ϕI for a set-
theoretic formula ϕ). If ϕ(x) holds for every remote element x relative to F then
there is a standard set F ∈ F such that (∀x ∈ F )ϕ(x).

� There is an internal set F satisfying the property in question (for instance,
a remote element of the filter F ). By transfer, we conclude that there is a standard
set F enjoying the same property. �

4.1.18. Granted Horizon Principle. Let X and Y be standard sets. As-
sume further that F and G are standard filters on X and Y respectively satisfying
μ(F ) ∩ ◦X �= ∅. Distinguish a remote set, a “horizon,” F in aF . Given a standard
correspondence f ⊂ X × Y meeting F , the following are equivalent:

(1) f(μ(F ) − F ) ⊂ μ(G );
(2) (∀F ′ ∈ aF ) f(F ′ − F ) ⊂ μ(G );
(3) f(μ(F )) ⊂ μ(G ).

� Obviously, (3) → (1) → (2). Hence, we have only to establish the implication
(2) → (3).

To this end, choose a member G in ◦G . Suppose that for every standard F ′′

of ◦F there is an element x of F ′′−F for which f(x) /∈ G. By idealization, there is
an element x′ in μ(F ) such that x′ /∈ F and at the same time f(x′) /∈ G. We now
put F ′ := F ∪ {x′}. Clearly, F ′ ∈ aF , which leads to a contradiction implying that
f(F ′′−F ) ⊂ G for some standard F ′′ ∈ F . Since F contains no standard elements
of X , deduce

(∀ stG ∈ G )(∃ stF ∈ F )(∀ stx ∈ F )(f(x) ∈ G).

It suffices to appeal to the transfer principle. �
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4.2. Monads and Topological Spaces

In this section we study the properties of the monads of neighborhood filters
in topological spaces.

4.2.1. Let (X, τ) be a standard pretopological space. Namely, to each standard
point x of X there is a standard filter τ(x) on X of sets containing x. Put μ(x) :=
μτ (x) := μ(τ(x)). We say that the elements of μ(x) are infinitely close to x.
Obviously, μ(x) is the monad of the neighborhood filter τ(x) of x. A pretopological
space (X, τ) is a topological space provided that each neighborhood of a point in X
contains an open neighborhood of this point. In other words, each point x in ◦X has
an infinitely small or infinitesimal neighborhood U ∈ τ(x) satisfying μ(x′) ⊂ μ(x)
for all x′ ∈ U .

4.2.2. Let G be an external set in a topological space (X, τ). Put h(G) :=⋃ {μ(x) : x ∈ ◦G}. The set h(G) is the halo of G in X . The set G ∩ h(G) is the
autohalo or nearstandard part of G. The nearstandard part of G is denoted by
nst (G). If G ⊃ h(G) then G is called saturated or, in more detail, τ -saturated. If
for all x ∈ G we have μ(x) ⊂ G then G is called well-saturated (well-τ -saturated).

4.2.3. A standard set is open if and only if it is saturated.

� If G is open and x ∈ ◦G then G ⊃ μ(x). Hence, G includes its halo.
Conversely if G ⊃ h(G) then choose a remote element Ux of the filter τ(x) for

x ∈ ◦G. Clearly, G ⊃ Ux. Consequently, G is open by transfer. �

4.2.4. A standard element x of X is a microlimit point of U provided that
μ(x) ∩ U �= ∅. We call the standardization of all microlimit points of U , the
microclosure of U and denoted it by cl≈(U).

4.2.5. The microclosure cl≈(U) of an arbitrary internal set U is closed. If U is
a standard set then the microclosure cl≈(U) coincides with the closure cl(U) of U .

� Put A := cl≈(U) = ∗{x ∈ X : μ(x) ∩ U �= ∅} and take y ∈ cl(A). The
task is to establish that y ∈ A. By transfer, it suffices to settle the case in which
y is a standard point. Choose a standard open neighborhood V of y. By hypoth-
esis, there is a standard point x ∈ V such that x ∈ A. Using the definitions of
standardization and monad, deduce that V ⊃ μ(x) and μ(x) ∩ U �= ∅. Hence,
(∀ stV ∈ τ(y))V ∩ U �= ∅. By idealization, conclude that μ(y) ∩ U �= ∅, i.e.,
y ∈ cl≈(U).

Assume U standard. Obviously, ◦U ⊂ cl≈(U). By what was proved above,
U ⊂ cl≈(U) and cl(U) ⊂ cl≈(U). Considering y ∈ cl(U), observe that (∀ stV ∈
τ(y))V ∩ U �= ∅. By idealization, μ(y) ∩ U �= ∅, i.e., y ∈ cl≈(U). �
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4.2.6. For a point x and a nonempty set U the following are equivalent:
(1) x is an adherent point of U ;
(2) x is a microlimit point of U ;
(3) There is a standard filter F whose monad μ(F ) lies in the monad

μ(x);
(4) There is a standard net (xξ)ξ∈Ξ of points of U whose entries with

remote indices are infinitely close to x, i.e., xξ ∈ μ(x) for all ξ ∈ aΞ.
� (1) → (2): If x ∈ cl(U) then the least upper bound τ(x)∨fil {U} is available.

Using 4.1.10 (1), obtain

∅ �= μ(τ(x) ∨ fil {U}) = μ(τ(x)) ∩ μ(fil {U}) = μ(x) ∩ U,

which implies that x ∈ cl≈(U).
(2) → (3): If x ∈ cl≈(U) then U ∩ μ(x) �= ∅. Using 4.1.10 (1), we may now

construct a filter F such that A ∈ F ↔ A ⊃ U ∩ μ(x). Obviously, such a filter F
gives what we seek.

(3) → (4): Put Ξ := τ(x) and order Ξ as follows: ξ1 ≤ ξ2 ↔ ξ1 ⊃ ξ2. Take as
xξ an arbitrary point of F ∈ F such that F ⊂ ξ. Obviously, (xξ)ξ∈Ξ is a sought
net. Indeed, xξ ∈ μ(x) for ξ ∈ aΞ by construction.

(4) → (1): Let V be a standard neighborhood of x, and let η be an arbitrary
remote index of Ξ. Obviously, xξ ∈ V for ξ ≥ η, since μ(x) ⊂ V and ξ ∈ aΞ. It
follows that V ∩ U �= ∅ since xξ ∈ U by hypothesis. �

4.2.7. Assume that (X, τ) and (Y, σ) are standard topological spaces, f : X →
Y is a standard mapping, and x is a standard point in X . The following are
equivalent:

(1) f is continuous at x;
(2) f sends each point infinitely close to x to a point infinitely close to

f(x), i.e.,
(∀x′)(x′ ∈ μτ (x) → f(x′) ∈ μσ(f(x))).

� It suffices to refer to 4.1.8. �
4.2.8. Given a set A in X , we denote by μ(A) the intersection of standard

open sets including A. The set μ(A) is the monad of A.
Note that μ(∅) = ∅. If A �= ∅ then μ(A) is the monad of the neighborhood

filter of A.

4.2.9. Let (X, τ) be a standard topological space. Then
(1) (X, τ) is a separated (= T1) space if and only if ◦μ(x) = {x} for

every point x ∈ ◦X ;
(2) (X, τ) is a Hausdorff (= T2) space if and only if μ(x1) ∩μ(x2) = ∅

for distinct x1, x2 ∈ ◦X ;
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(3) (X, τ) is regular if X is a T1-space enjoying the property T3: μ(x)∩
μ(A) = ∅ for every closed standard A ⊂ X and every standard
point x /∈ A;

(4) (X, τ) is normal if X is separated and satisfies the property T4:
μ(A) ∩ μ(B) = ∅ for every two disjoint closed sets A and B in X .

4.2.10. The following are true:
(1) A standard set is well-saturated if and only if it is open;
(2) The monad of an arbitrary set is well-saturated;
(3) The monad of a standard filter F is well-saturated if and only if

F has a filterbase composed of open sets;

(4) The monad μ(A) of an arbitrary internal A is the least well-satura-
ted set including A; moreover, μ(A) =

⋃ {μ(a) : a ∈ A}.
� (1): If A is standard and well-saturated then A is saturated and so A is open

(see 4.2.3).
On assuming conversely that A is standard and open we apply the definition

of monad to find μ(a) ⊂ A for a ∈ A, i.e., A is well-saturated.
(2): The monad of a set is by definition the intersection of standard open sets.

Hence, this monad is well-saturated by (1).
(3): If F has a base consisting of open standard sets then everything fol-

lows from (1). If μ(F ) is well-saturated and V is a standard member of F then
V ⊃ μ(F ) ⊃ ⋃ {Ua : a ∈ F}, where F is some remote element of F , and Ua is
an infinitesimal neighborhood of a. Since

⋃ {Ua : a ∈ F} ∈ F , the claim follows
by transfer.

(4): By (2), μ(A) is well-saturated. Moreover, so is the set B :=
⋃ {μ(a) : a ∈

A} by (3). We are left with checking that B = μ(A). The inclusion B ⊂ μ(A) is
obvious. Assume by way of contradiction that B �= μ(A). Hence, there is some x in
μ(A) satisfying x /∈ B. Therefore, to each a ∈ A there is a standard neighborhood
Ua of a satisfying x /∈ Ua. In other words, (∀ a ∈ A)(∃ stUa)Ua ∈ τ(a). By
idealization, note that there is a standard finite set {a1, . . . , an} ⊂ A satisfying
A ⊂ Ua1 ∪· · ·∪Uan

. Hence, x ∈ μ(A) ⊂ Ua1 ∪· · ·∪Uan
, which is a contradiction. �

4.2.11. Let (X, τ) be a separated topological space. A mapping f : (X, τ) →
(Y, τ) is continuous at a point x if and only if f(μτ (x) − U) ⊂ μσ(f(x)) for some
(and hence every) infinitesimal neighborhood U of x.

� By separatedness μτ (x)−U = μ(x)−U , where μ(x) is the monad of the filter
τ(x) of deleted neighborhoods of x, i.e., V ∈ τ(x) ↔ V ∪ {x} ∈ τ(x). Obviously,
μ(x) = μτ (x)−{x}, in which case U−{x} is an infinitesimal member of τ(x). Using
the granted horizon principle 4.1.18, conclude that f(μ(x) − U) ⊂ μσ(f(x)) ↔
f(μ(x)) ⊂ μσ(f(x)) ↔ f(μτ (x)) ⊂ μσ(f(x)). �
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4.2.12. Let (Yξ, σξ)ξ∈Ξ be a family of topological spaces. Assume further that
(fξ : X → Yξ)ξ∈Ξ is a family of mappings, and τ := supξ∈Ξ f

−1
ξ (σξ) is the initial

topology in X with respect to (fξ : X → Yξ)ξ∈Ξ, i.e., τ is the weakest topology in
X such that the mapping fξ is continuous for all ξ ∈ Ξ. In this event,

μτ (x) =
⋂

ξ∈◦Ξ

f−1
ξ

(
μ(σξ(fξ(x)))

)

for every standard point x ∈ X .

� The claim is immediate from 4.1.8. �
4.2.13. A point x′ of a Tychonoff product is infinitely close to a given point x

provided that each standard coordinate of x′ is close to the corresponding standard
coordinate of x.

� Formally speaking, let (Xξ, τξ)ξ∈Ξ be a standard family of standard topo-
logical spaces. Assume further that (X , τ) is the Tychonoff product of (Xξ, τξ)ξ∈Ξ,
i.e.,

X :=
∏

ξ∈Ξ

Xξ; τ := sup
ξ∈Ξ

Pr−1
ξ (τξ),

where Prξ is the projection from X onto Xξ. Given x ∈ ◦X , we use 4.2.11
and 4.1.6 (5) to infer

μ(x) =
⋂

ξ∈◦Ξ

μ(Pr−1
ξ (τξ(xξ))) =

⋂

ξ∈◦Ξ

Pr−1
ξ (μ(τξ(xξ))).

Given ξ ∈ ◦Ξ, observe x′ ∈ Pr−1
ξ (μ(τξ(xξ))) ↔ Prξ x′ ∈ μ(τξ(xξ)), i.e.,

Pr−1
ξ (μ(τξ(xξ))) = μτξ

(xξ) ×
∏

η 
=ξ
Xη.

Therefore,
Prξ(μ(x)) = μ(τξ(xξ))

for every standard ξ ∈ Ξ (cf. 4.1.6 (5)), which completes the proof. �

4.3. Nearstandardness and Compactness

Proximity to a standard point, existent in topological spaces, makes it possible
to give convenient tests for a set to be compact. These tests are the topic of the
present section.
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4.3.1. A point x of a topological standard space (X, τ) is nearstandard or, am-
ply, τ -nearstandard provided that x ∈ nst (X), i.e., if x ∈ μ(x′) for some standard
x′ ∈ ◦X .

4.3.2. A point x ∈ X is nearstandard if and only if x ∈ μ(E ) for each standard
open cover E of X . In symbols,

nst (X) =
⋂

{μ(E ) : E is an open cover ofX}.

� Assume first that x ∈ μ(x′) with x ∈ nst (X) and x′ ∈ ◦X . Given an open
cover E , find a standard element E ∈ E satisfying x′ ∈ E, i.e., μ(x′) ⊂ E (see 4.2.3).
Note that x ∈ μ(x′) ⊂ E ⊂ μ(E ).

We now take x /∈ nst (X). We then have x /∈ μ(x′) for all x′ ∈ ◦X . Hence, there
is a standard open neighborhood Ux′ of x′ satisfying x /∈ Ux′ . The standardization
E := ∗{Ux′ : x′ ∈ ◦X} is an open cover of X such that x /∈ μ(E ). �

4.3.3. Each nearstandard point of X is infinitely close to a unique standard
point if and only if X is Hausdorff.

� If τ is a Hausdorff topology and x′, x′′ ∈ ◦X , then μ(x′) ∩ μ(x′′) �= ∅ →
x′ = x′′. Conversely, assume that x ∈ μ(x′) ∩ μ(x′′) for x′, x′′ ∈ ◦X . Since x
is nearstandard; therefore, x′ = x′′ by hypothesis and so x′ �= x′′ → μ(x′) ∩
μ(x′′) = ∅. �

4.3.4. Define the external correspondence st(x) := {x′ ∈ ◦X : x ∈ μ(x′)}. In
the Hausdorff case st is an external mapping from nst (X) onto ◦X .

4.3.5. If U is an internal set then cl≈(U) = ∗ st(U). In particular, a standard
set U is closed if and only if U = ∗ st(U).

� Everything ensues from 4.2.5. �

4.3.6. Theorem. For a standard space X the following are equivalent:
(1) X is compact;

(2) Every point of X is nearstandard;
(3) The autohalo of X is an internal set.

� (1) → (2): Let E be an open cover of X . The monad μ(E ) coincides with X
by 4.1.15 (since X is compact). By 4.3.2, nst (X) =

⋂
Eμ(E ) = X .

(2) → (3): Obvious.
(3) → (1): Let E be a standard open cover of X . Since (∀x ∈ nst (X))

(∃ stE ∈ E ) x ∈ E; therefore, by idealization, (∃ st finE0 ⊂ E ) ∪ E0 ⊃ nst (X) ⊃ ◦X .
By transfer, E0 is a cover of X . �
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4.3.7. Let C be a set in a topological space X . The following are equivalent:
(1) C is compact in the induced topology;
(2) C lies in the halo h(C);
(3) The monad μ(C) coincides with the halo h(C).

� (1) → (2): Since C is compact in the induced topology; therefore, C ⊂
nst (C) ⊂ h(C) (see 4.3.6).

(2) → (3): Clearly, h(G) =
⋃{μ(x) : x ∈ ◦G} ⊂ μ(G). By hypothesis, to each

x ∈ C there is a member y in ◦C satisfying x ∈ μ(y). By 4.2.8 (2), μ(x) ⊂ μ(y).
By 4.2.8 (4), μ(C) =

⋃{μ(x) : x ∈ C} ⊂ ⋃{μ(y) : y ∈ ◦C} = h(C).
(3) → (1): Let E be a standard open cover of C. By definition, C ⊂ μ(C) ⊂

h(C). Therefore (cf. 4.3.2), C ⊂ μ(E ). By 4.1.15, there is a finite subcover of C
in E . �

4.3.8. For a regular space X and a set C in X the following are equivalent:
(1) C is relatively compact (i.e., cl(C) is compact);
(2) C lies in the nearstandard part of X .

� (1) → (2): With no extra hypotheses, Proposition 4.3.7 obviously yields:

C ⊂ cl(C) ⊂ h(cl(C)) ⊂ h(X) = h(X) ∩X = nst (X).

(2) → (1): Consider the closure cl(C), and let E be an open cover of cl(C).
Hence, to each c ∈ C there is an E ∈ E containing c. Let Ec be a closed neighbor-
hood of c included in E. Obviously, the family E ′ := {Ec : c ∈ C} is a standard
cover of cl(C). The family E ′ ∪ {X − cl(C)} covers X and so, on using 4.3.1, we
infer C ⊂ nst (X) ⊂ μ(E ′ ∪ {X − cl(C)}). By 4.1.15, there is a finite set E0 ⊂ E ′

covering C. Obviously,
⋃

E0 is closed, i.e., E0 is a cover of cl(C). Each element of
E0 is, by construction, a subset of a member of E . Therefore, we may refine a finite
subcover of cl(C) from the initial cover E . �

4.3.9. The test for relative compactness 4.3.8 allows strengthening. Namely,
the microclosure is compact of an arbitrary internal subset of the nearstandard part
of an arbitrary Hausdorff space.

4.3.10. Let X :=
∏
ξ∈ΞXξ be the standard product of some standard family

of topological spaces. A point x ∈ X is nearstandard if and only if so is its every
standard coordinate xξ ∈ nst (Xξ) for ξ ∈ ◦Ξ.

� If x ∈ nst (X ) then xξ ∈ μ(yξ) for some y ∈ ◦X and all ξ ∈ ◦Ξ by 4.1.12.
It suffices to note that yξ ∈ ◦Xξ by transfer.

Assume now that xξ ∈ nst (Xξ) for ξ ∈ ◦Ξ. Consider the external function
y : ξ �→ st(xξ) from ◦Ξ to

⋃
ξ∈Ξ

◦Xξ. Considering the standardization ∗y and
using 4.1.12, conclude easily that ∗y ∈ ◦X and x ∈ μ(∗y). �
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4.3.11. Tychonoff Theorem. The Tychonoff product of compact sets is
compact.

� By transfer, it suffices to settle the case of a standard family of standard
spaces. In this event, appealing to 4.3.10, conclude that every point of the product
is nearstandard. �

4.3.12. In sequel we usually consider Hausdorff compact spaces. It is in com-
mon parlance to refer to such a space briefly as a compactum.

4.4. Infinite Proximity in Uniform Space

Each uniform space generates a symmetric, reflexive, and transitive external
relation between internal points, called infinite proximity. We will now address the
most important relevant constructions.

4.4.1. Let (X,U ) be a uniform space. This implies that U := {∅} in case
X = ∅. If X �= ∅ then U is a filter on X2 called the uniformity of X and enjoying
the following properties:

(1) U ⊂ fil {IX};
(2) (∀U ∈ U )(U−1 ∈ U );
(3) (∀V ∈ U )(∃U ∈ U )(U ◦ U ⊂ V ).

4.4.2. Luxemburg Test. For a filter U on X2 to be a uniformity on a non-
empty set X it is necessary and sufficient that the monad μ(U ) of U is an external
equivalence.

� →: Observe that

μ(U ) =
⋂ ◦U =

⋂

U∈◦U

U =
⋂

U∈◦U

U−1 = μ(U )−1;

μ(U ) ⊃ IX ;

μ(U ) =
⋂

{U ◦ U : U ∈ ◦U } ⊃ μ(U ) ◦ μ(U ) ⊃ μ(U ) ◦ IX ⊃ μ(U ).

The above derivation rests on the fact that U−1 and U ◦ U are standard whenever
so is U . Moreover, by the definition of monad, U ⊃ μ(U ) for U ∈ ◦U .

←: By 4.1.4, the filter U is the standardization of all supersets of the monad
of U , i.e.,

U ∈ ◦U ↔ U ⊃ μ(U ).

This implies that U ⊂ fil {IX} and U ∈ U → U−1 ∈ U . Consider an infinitesimal
member W of the filter U . By above, U := W−1 ∩ W ∈ U . Moreover, U ◦ U ⊂
μ(U ) ◦ μ(U ) = μ(U ). Hence, to each standard V ∈ U , there is some U in U
satisfying U ◦ U ⊂ V . By transfer, conclude that U is a uniformity. �
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4.4.3. Using the Luxemburg test it is worthwhile to bear in mind that an
arbitrary external equivalence on X2 may fail to be the monad of any filter (gener-
ating no uniformity on X in this event). For instance, assuming that x, y ∈ R are
equivalent whenever x − y ∈ ◦R, we see the external coset of zero is the standard
part ◦R of the reals R which is the monad of no filter. We conclude in particular
that this external equivalence produces no standard uniformity.

4.4.4. Consider a couple of points x and y in a space X with uniformity U .
The points x and y are infinitely close (relative to U ), in symbols x ≈ U y or
x ≈ y, provided that (x, y) ∈ μ(U ). If A is an arbitrary (possibly, external) set in
X then we call the external set μU (A) the microhalo of A in X and denoted it by
≈A. If A is a standard set then, slightly abusing consistency, we let the symbol ≈A
denote the halo h(A) of A, implying the equality h(A) = ≈◦A. Clearly, in this event
we calculate the halo relative to the uniform topology τU on X generated by U .
Observe that in this topology the monad of a standard point x consists, as it might
be expected, of all points infinitely close to x, i.e., the monad of x coincides with
the microhalo ≈x := ≈{x} of x. A less adequate terminology is used sometimes in
which the microhalo ≈x of an internal point x is still called the monad of x. This
is misleading since the microhalo of a point may fail to be the monad of any filter.

4.4.5. A function f from a uniform space X to a uniform space Y is microcon-
tinuous on X provided that f sends infinitely close points of X to infinitely close
points of Y .

4.4.6. Theorem. The following hold:
(1) A standard function is microcontinuous if and only if it is uniformly

continuous;
(2) A standard set consists of microcontinuous functions if and only if

it is a (uniformly) equicontinuous set.

� (1): The uniform continuity of f : X → Y implies that f×(UX) ⊃ UY , with
UX and UY standing for the uniformities of X and Y respectively and f×(x, x′) :=
(f(x), f(x′)) for x, x′ ∈ X . Considering 4.1.8, deduce

f×(UX) ⊃ UY ↔ μ(f×(UX)) ⊂ μ(UY ).

(2): Recall that E ⊂ Y X is a (uniformly) equicontinuous set whenever

(∀V ∈ UY )(∃U ∈ UX)(∀ f ∈ E )(f−1 ◦ V ◦ f ∈ UX).

Given such a set E , by transfer we have

(∀ stV ∈ UY )(∃ stU ∈ UX)(∀ f ∈ E )(∀x, x′ ∈ U)((f(x), f(x′)) ∈ V ).
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In particular, if x ≈ x′ then (f(x), f(x′)) ∈ V for all f ∈ E and V ∈ ◦UY , i.e.,
f(x) ≈ f(x′). Thus, an equicontinuous standard set contains only microcontinuous
elements.

To prove the reverse implication, we will use the Cauchy principle 4.1.17 for
the sake of diversity.

Indeed, given V ∈ ◦UY and an arbitrary remote element U ∈ ◦UX , note that
(∀ f ∈ E ) f×(U) ⊂ V . Hence, there is some standard U ∈ UX enjoying the same
internal property. We are left with appealing to the transfer principle. �

4.4.7. Let (X,UX) and (Y,UY ) be standard uniform spaces, and let f be
an internal function; f : X → Y . Let EUX and

EUY stand for the filters of
external supersets of ◦UX and

◦UY , respectively. In this case the following are
equivalent:

(1) f is microcontinuous;
(2) f : (X,EUX) → (Y,EUY ) is uniformly continuous;
(3) (∀ stV ∈ UY )(∃ stU ∈ UX)(f×(U) ⊂ V ).

� (1) → (3): Take V ∈ ◦UY . Considering a remote element U ∈ ◦UX , note
that (x, x′) ∈ U → x ≈ x′ → f(x) ≈ f(x′), i.e., f×(U) ⊂ V . By the Cauchy
principle 4.1.17, there is a standard set U enjoying the same property.

(3) → (1): Take x ≈ x′ and a standard element V ∈ UY . By hypothesis, there
is some standard U ∈ UX satisfying f×(U) ⊂ V . In particular, (f(x), f(x′)) ∈ V
and so f(x) ≈ f(x′).

(3) ↔ (2): Obvious. �
4.4.8. Examples.

(1) Let X be a set, and let d be a semimetric (= deviation) on X . In
other words, assume given the (standard) objects X and d : X2 → R such that

d(x, x) = 0 (x ∈ X);
d(x, y) = d(y, x) (x, y ∈ X);

d(x, y) ≤ d(x, z) + d(z, y) (x, y, z ∈ X).

Consider the cylinders {d ≤ ε} := {(x, y) ∈ X2 : d(x, y) ≤ ε} and the family
Ud := fil {{d ≤ ε} : ε ∈ R, ε > 0}. Obviously, Ud furnishes X with the structure of
a uniform space, namely, the semimetric uniformity of the semimetric space (X, d).
It is worth observing that the monad of the semimetric uniformity amounts to the
following external equivalence:

x ≈ dy ↔ d(x, y) ≈ 0 ↔ d(x, y) ∈ μ(R).

(2) Let (X,M) be a multimetric space, i.e., M is a multimetric (=
a nonempty set of semimetrics on X). The monad μ(M) of M is defined as the
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intersection of the monads of the (standard) uniform spaces (X, d), with d ∈ ◦M.
Namely,

x ≈ My ↔ (∀ d ∈ ◦M) d(x, y) ≈ 0.

The monad μ(M) is undoubtedly the monad of the uniformity UM := sup{Ud :
d ∈ M} of the multimetric space (X,M). It stands to reason to recall that every
uniform space (X,U ) is multimetrizable, i.e., U = UM for some multimetric M.

(3) Let (X,U ) be a uniform space. Furnish the powerset P(X) with
the Vietoris uniformity whose neighborhood filterbase comprises the sets

{(A,B) ∈ P(X)2 : B ⊂ U(A), A ⊂ U(B)},
where U ∈ U . Obviously, the monad μv := μv(U ) of the Vietoris uniformity is as
follows:

μv = {(A,B) : A ⊂ ≈B, B ⊂ ≈A}.
(4) Let (X, τ) be a compactum, i.e., a Hausdorff compact space. The

space X is uniquely uniformizable, i.e., there is a unique uniformity U on X2

such that the uniform topology τU coincides with the original topology τ . This
uniformity U is simply the neighborhood filter of the diagonal of X2. Therefore,
μ(U ) = μτ×τ (IX). In other words, x ≈ x′ ↔ st(x) = st(x′), since μτ×τ (x, x) =
μτ (x) × μτ (x) for a standard point x (see 4.2.13) and every point of X2 is near-
standard (see 4.3.6).

(5) Let X and Y be nonempty sets, let UY be a uniformity on Y , and
let B be a family of subsets of X which is upward-filtered by inclusion. Consider
the uniformity U on Y X , called the “uniformity of uniform convergence on the
members of B.” The family U is the union of supersets of the following elements:

VB,U := {(f, g) ∈ Y X × Y X : g ◦ IB ◦ f−1 ⊂ U},
where B ∈ B and U ∈ UY . It is immediate that

(f, g) ∈ μ(U ) ↔ (∀ stB ∈ B)(∀ stU ∈ UY )(∀x ∈ B)(f(x), g(x) ∈ U)
↔ (∀ stB ∈ B)(∀x ∈ B)(f(x) ≈ g(x)) ↔ (∀x ∈ μ(B))(f(x) ≈ g(x)),

where, as usual, μ(B) :=
⋃ ◦B is the monad of B. If B = {X} then we speak

about the strong uniformity Us on X . The following relation is obvious:

(f, g) ∈ μ(Us) ↔ (∀x ∈ X)(f(x) ≈ g(x)).

If B = Pfin(X) then μ(B) = ◦X and so

(f, g) ∈ μ(Uw) ↔ (∀ stx ∈ X)(f(x) ≈ g(x))

for the corresponding weak convergence Uw (or, which is the same by definition,
for the uniformity of pointwise convergence).
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4.4.9. A set A is infinitely small or infinitesimal (relative to the uniformity U )
provided that A2 ⊂ μ(U ), i.e., if any two points of A are infinitely close.

4.4.10. For a standard filter F on (X,U ) the following hold:
(1) The monad μ(F ) is infinitesimal;
(2) F is a Cauchy filter;
(3) For every U ∈ ◦U there is some member x of ◦X such that μ(F ) ⊂

U(x).
� (1) → (2): Suppose that μ(F )2 ⊂ μ(U ). Obviously μ(F )2 = μ(F×),

where F× := {F 2 : F ∈ F}, since

(x, y) ∈ μ(F×) ↔ (∀ stF ∈ F )(x ∈ F ∧ y ∈ F ) ↔ (x ∈ μ(F ) ∧ y ∈ μ(F )).

Therefore, μ(F×) ⊂ μ(U ), i.e., F× ⊃ U . This implies that F is a Cauchy filter.
(2) → (3): For U ∈ ◦U there is a standard element F ∈ F satisfying F ×

F ⊂ U . If x ∈ ◦F then (∀ sty ∈ F )(y ∈ U(x)). Hence, F ⊂ U(x) and, moreover,
μ(F ) ⊂ U(x).

(3) → (1): By standardization, (∃x ∈ X)μ(F ) ⊂ ≈x. Hence, μ(F ) is an
infinitesimal external set. �

4.4.11. A Cauchy filter converges if and only if its monad contains a nearstan-
dard point.

� →: If F is a convergent Cauchy filter then μ(F ) ⊂ μ(x) since F → x.
Hence, every point of μ(F ) is nearstandard.

←: Let μ(F ) ∩ ≈x �= ∅. Given y ∈ μ(F ) and z ∈ μ(F ) ∩ ≈x, observe
y ≈ z ≈ x, i.e., y ≈ x. Hence, μ(F ) ⊂ μ(x). It suffices to appeal to 4.1.7. �

4.5. Prenearstandardness, Compactness, and Total
Boundedness

The uniform spaces are well-known to enjoy a convenient test for compactness,
the classical Hausdorff test. In this section we give its nonstandard analogs in the
standard environment as well as a relevant test for a point to be prenearstandard
in the space of continuous functions on a compact space.

4.5.1. For an internal point x of a standard uniform space X the following are
equivalent:

(1) The microhalo of x is the monad of some standard filter on X ;
(2) The microhalo of x is the monad of some Cauchy filter on X ;
(3) The microhalo of x coincides with the monad of an inclusion-mini-

mal Cauchy filter;
(4) The microhalo of x contains some infinitesimal monad;
(5) There is a standard net (xξ)ξ∈Ξ in X elements microconvergent

to x, i.e., such that xξ ≈ x for all ξ ∈ aΞ.
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� (1) → (2): If ≈x = μ(F ) for some standard filter F then μ(F ) is infinites-
imal (since so is the microhalo ≈x).

(2) → (3): Suppose that ≈x = μ(F ) while F ′ is a Cauchy filter and F ′ ⊂ F .
Then μ(F ′) ⊃ μ(F ) = ≈x by 4.1.17. If y ∈ μ(F ′) then y ≈ x since μ(F ′) is
infinitesimal, and so μ(F ′) = μ(x) = μ(F ). Hence, F ′ = F (see 4.1.4).

(3) → (4): Obvious.
(4) → (1): Assume that ≈x ⊃ μ(F ) and F is a Cauchy filter. Put F ′ :=

fil{U(F ) : U ∈ UX , F ∈ F}. Considering U := UX , find

≈μ(F ) = μ(U ) (μ(F )) = μ(U )
( ⋂

F∈◦F

F
)

=
⋂

F∈◦F

μ(U )(F )

=
⋂

F∈◦F

⋂

U∈◦U

U(F ) =
⋂

{F ′ : F ′ ∈ ◦F ′} = μ(F ′).

Clearly, ≈μ(F ) ⊃ ≈x, and so μ(F ) = ≈x = μ(F ′).
(4) → (5): If F is a filter and μ(F ) ⊂ ≈x then, choosing a point from each

standard F ∈ ◦F in a routine manner and applying standardization, construct
a sought net. Conversely, if (xξ)ξ∈Ξ microconverges to x then the monad of the tail
filter of this sequence lies in the microhalo ≈x. �

4.5.2. A point x, obeying one (and hence all) of the equivalent conditions
4.5.1 (1)–(4), is prenearstandard in X . The external set of prenearstandard points
in X is denoted by pst (X).

4.5.3. Every nearstandard point relative to a uniform topology is prenearstan-
dard.

� Take x∈nst (X), with (X,U ) the space under study. Therefore, x ∈ ≈y for
some y ∈ ◦X . Hence, ≈x ⊃ ≈y = μ(τU (y)). By 4.5.1 conclude that x ∈ pst (X). �

4.5.4. The image of a prenearstandard point under a uniformly continuous
mapping is prenearstandard.

� Let F be a Cauchy filter and μ(F ) ⊂ ≈x. Obviously, f(F ) is a Cauchy
filter on the image of X under the mapping f . Hence, μ(f(F )) ⊂ ≈f(x); i.e., f(x)
is a prenearstandard point (see 4.5.2). �

4.5.5. A point of the Tychonoff product of a standard family of uniform spaces
is prenearstandard if and only if so are its standard coordinates.

� →: Let (X ,UX ) be the Tychonoff product of standard spaces (Xξ,Uξ)ξ∈Ξ;
i.e., X =

∏
ξ∈ΞXξ and UX = supξ∈Ξ Prx−1

ξ (Uξ). Take x ∈ pst (X ). By 4.5.1,
there is a Cauchy filter F on (X ,UX ) satisfying ≈x = μ(F ).



Monads in General Topology 135

Since Prξ is continuous; therefore, by 4.4.6, given a standard ξ ∈ Ξ, observe
that Prξ(≈x) ⊂ ≈xξ, i.e., ≈xξ ⊃ Prξ(μ(F )) = μ(Prξ(F )). Consequently, xξ is
a prenearstandard point in Xξ for all ξ ∈ ◦Ξ.

←: Assume that to each ξ ∈ ◦Ξ there is some Cauchy filter Fξ such that
≈xξ = μ(Fξ). Consider the filter

F := sup
ξ∈Ξ

Pr−1
ξ (Fξ).

Obviously, F is a standard filter on X and

μ(F ) =
⋂

ξ∈◦Ξ

μ(Pr−1
ξ (Fξ)) =

⋂

ξ∈◦Ξ

Pr−1
ξ (μ(Fξ))

=
⋂

ξ∈◦Ξ

Pr−1
ξ (≈xξ) = {y ∈ X : (∀ ξ ∈ ◦Ξ) yξ ≈ xξ} = ≈x.

The proof is complete. �
4.5.6. A standard space is complete if and only if its every prenearstandard

point is nearstandard.

� →: Since X is complete, every Cauchy filter on X converges. Take x ∈
pst (X). By 4.5.2, μ(F ) = ≈x for some Cauchy filter F . By compactness, there
is a point y in ◦X such that μ(y) ⊃ μ(F ). Hence, ≈y = μ(y) ⊃ μ(F ) ⊃ ≈x.
Therefore, ≈y = ≈x, i.e., x ∈ nst (X).

←: Assume that nst (X) = pst (X) and let F be a Cauchy filter on X . Take
a point x in μ(F ). Then ≈x ⊃ μ(F ) (since μ(F ) is an infinitesimal set). By 4.5.2,
x ∈ pst (X). Hence, x ∈ nst (X). We are done on appealing to 4.4.11. �

4.5.7. The Tychonoff product of complete uniform spaces is complete.
� By transfer, assume the standard environment. Every prenearstandard point

of a complete standard factor is nearstandard by 4.5.5. Recall now that a nearstan-
dard point is a point with nearstandard standard coordinates by 4.3.10, while a pre-
nearstandard point is a point with prenearstandard standard coordinates by 4.5.5.
The proof is complete on chanting: “The uniform topology of a product is the
product of the uniform topologies of factors.” �

4.5.8. The space of functions acting into a complete space is complete under
the strong uniformity.

� Let (Y,U ) be a complete standard uniform space, and let X be a standard
set. Choose a prenearstandard point f ∈ Y X . By 4.5.2 and 4.4.8, there is a standard
net (fξ)ξ∈Ξ of elements of Y X such that

(∀ ξ ∈ aΞ)(∀x ∈ X)(fξ(x) ≈ f(x)).
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By 4.5.7, f is nearstandard in the weak uniformity, i.e., there is a standard
element g ∈ Y X satisfying

(∀ ξ ∈ aΞ)(∀ stx ∈ X)(fξ(x) ≈ g(x)).

Hence, for every standard x ∈ X the sequence (fξ(x))ξ∈Ξ converges to g(x).
By transfer, (∀x ∈ X) fξ(x) → g(x). Consequently,

(∀U ∈ ◦U )(∀x ∈ X)(f(x), g(x)) ∈ U,

which implies that f is infinitely close to g in the strong uniformity. The proof is
complete by referring to 4.5.6 and the transfer principle. �

4.5.9. Let E be a set in a uniform space (X,U ). The following are equivalent:
(1) E is a totally bounded set; i.e., to each U ∈ U there is a finite set

E0 ⊂ E such that E ⊂ U(E0) (in other words, E has a finite U -net
for all U ∈ U );

(2) there is an internal finite cover of E by infinitesimal internal sets;
(3) E has a finite skeleton; i.e., there is an internal finite set E0 in X

such that E lies in the microhalo ≈E0;
(4) E lies in the microhalo of an internal totally bounded set.

� (1) ↔ (2): By definition and idealization, infer successively that

(∀ stU ∈ U )(∃E0)(E0 ⊂ E ∧E0 ∈ Pfin(X) ∧ E ⊂ U(F0))
↔ (∀st finU0 ⊂ U )(∃E0)(∀U ∈ U0)(E0 ⊂ E ∧E0 ∈ Pfin(X) ∧ E ⊂ U(E0))

↔ (∃E0)(∀ stU ∈U )(E0 ⊂ E ∧E0 ∈ Pfin(X) ∧ E ⊂ U(E0))
↔ (∃E0 ⊂ E)(E0 ∈ Pfin(X) ∧E ⊂ ≈E0).

(1) ↔ (3): Obviously, E is totally bounded if and only if to each standard
U ∈ U there is a finite cover {E1, . . . , En} of E such that Ek × Ek ⊂ U (i.e., Ek
is small of order U) for k := 1, . . . , n. We are done on appealing to the idealization
principle.

(3) → (4): Obvious.
(4) → (1): Let U be a standard entourage of the diagonal. There is a symmetric

element V ∈ ◦U satisfying V ◦ V ⊂ U . Given a finite set E′ in X , we easily see
that V (E′) ⊃ E0, where E0 is a given totally bounded set enjoying the property
≈E0 ⊃ E. Hence, U(E′) ⊃ V ◦ V (E′) ⊃ V (E0) ⊃ E. �

4.5.10. Each standard uniform space X has a universal finite skeleton, i.e.
a common internal finite skeleton for all totally bounded standard sets of X .

� Recall that the union of finitely many totally bounded sets is totally bounded.
Given a finite standard family E of totally bounded sets in X and a standard finite
family U0 ⊂ UX , by 4.5.9, find a common finite set in X serving as a U -net for all
E ∈ E and U ∈ U0. Proceed by idealization. �
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4.5.11. For a uniform space X the following are equivalent:
(1) X is totally bounded;

(2) Every point of X is prenearstandard;
(3) pst (X) is an internal set;
(4) X has a finite skeleton.

� (1) → (2): Take x ∈ X . To each standard U ∈ U there is a standard point
x′ ∈ ◦X such that x ∈ U(x′) is an element of a finite standard U -net for X . Put
F := fil ∗{U(x′) : U ∈ ◦U }. Obviously, F is a Cauchy filter (see 4.4.10). In this
event, x ∈ μ(F ) by construction, i.e., x ∈ pst (X).

(2) → (3): Obvious.
(3) → (1): Assume that the inclusion pst (X) ⊂ U(E) is false for some standard

U ∈ U and all finite standard subsets E of X . By idealization, there is an internal
point x ∈ pst (X) satisfying x /∈ U(y) for all y ∈ ◦X . By 4.5.2, ≈x = μ(F ) for
some Cauchy filter F . Choose F ∈ ◦F so that F × F ⊂ U . For all y ∈ ◦F we
then see that x ∈ μ(F ) ⊂ U(y), which is a contradiction. Therefore, (∀ stU ∈ U )
(∃ st finE ⊂ X)U(E) ⊃ pst (X). It suffices to recall that pst (X) ⊃ ◦X .

(1) ↔ (4): Follows from 4.5.9. �

4.5.12. Hausdorff Test. A uniform space is compact if and only if it is com-
plete and totally bounded.

� →: If X is a compact and standard space then every point of X is nearstan-
dard and, hence, prenearstandard (by 4.5.3). By 4.5.11, X is totally bounded and
X is complete by 4.5.6.

←: Since X is totally bounded; therefore, X = pst (X) by 4.5.11. Since X is
complete, pst (X) = nst (X) by 4.5.6. All in all, X = nst (X); i.e., X is compact
by 4.3.6. �

4.5.13. Assume that X is an arbitrary set, Y is a uniform space, and f : X →
Y is a function. The following are equivalent:

(1) f is a totally bounded mapping, i.e., im(f) is totally bounded in Y ;
(2) There is an internal finite cover E of X such that f(E) is infinites-

imal for all E ∈ E , i.e., f is a nearstep function relative to E ;

(3) There are an internal n ∈ N and a set {X1, . . . , Xn} of disjoint
external sets such that X1 ∪ · · · ∪ Xn = X and f(x) ≈ (x′) for all
x, x′ = Xk and k := 1, . . . , n.

� (1) → (2): By 4.5.9, there is an internal finite cover E of im(f) such that
E ∈ E → E2 ⊂ μ(UY ). Put E ′ := {f−1(E) : E ∈ E }. Obviously, E ′ is a sought
cover of X .

(2) → (3): Obvious.
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(3) → (1): Choose yk ∈ f(Xk) and put E := {yk : k = 1, . . . , n}. Clearly, E is
a finite internal set. By hypothesis, E is a skeleton of f(X). Hence, im(f) is totally
bounded by 4.5.9. �

4.5.14. The space CB(X, Y ) of totally bounded mappings from X to Y is
complete in the strong uniformity.

� By 4.5.8, it suffices to demonstrate that CB(X, Y ) is closed. To this end,
let a standard f : X → Y be such that (∀x ∈ X) f(x) ≈ g(x) for some totally
bounded function g. Clearly, f ⊂ ≈im(g). Since im(g) is totally bounded, from
4.2.5 and 4.5.9 infer that f ∈ cl(CB(X, Y )) → f ∈ CB(X, Y ). �

4.5.15. A finite cover E of a standard set X is tiny provided that E coarsens
every standard finite cover E0 of X , i.e., if every member of E is included in some
member of E0. A mapping f from X into a uniform space is microstep on X
provided that f is nearstep relative to every tiny cover of X .

4.5.16. A function f : X → Y , with Y a complete uniform space, is prenear-
standard in CB(X, Y ) relative to the strong uniformity if and only if f is microstep
on X and the image of f consists of nearstandard points of Y .

� →: Using 4.5.14 and 4.5.6, conclude that f is nearstandard in the strong
uniformity. Therefore, there is some g ∈ ◦CB(X, Y ) such that f(x) ≈ g(x) for
all x ∈ X . Obviously, im f ⊂ ≈im(g). Moreover, im(g) ⊂ pst (Y ) (see 4.5.13).
If E is a tiny cover then, by the definition of total boundedness, to each standard
V ∈ UY there is a standard finite cover E ′ of X satisfying g(E)2 ⊂ V for all E ∈ E ′.
Therefore, (∀E ∈ E ) g(E)2 ⊂ V , i.e., g is nearstep on E . Hence, g(x) ≈ f(x) ≈
f(x′) ≈ g(x′) for all E ∈ E and x, x′ ∈ E, i.e., f is also nearstep relative to E .
Since E is arbitrary, f is a microstep mapping.

←: Since im(f) ⊂ nst (Y ); therefore,

(∀x ∈ X)(∃ sty ∈ Y )(∀ stW ∈ τ(y))(f(x) ∈ W ).

By the construction principle 3.3.12,

(∀ stW ( · ))(∀x ∈ X)(∃ sty ∈ Y )(f(x) ∈ W (y)).

By idealization,

(∀ stW ( · ))(∃ st{y1, . . . , yn})(∀x ∈ X)(∃ k)(f(x) ∈ W (yk)).

We now take V ∈ UY . By hypothesis, for every tiny cover E of X and for all
E ∈ E we have f(E)2 ⊂ V . Using the Cauchy principle 4.1.17 and recalling that
the tiny covers are exactly the remote elements of the directed set of finite covers,
we see that there is a standard finite cover EV satisfying f(E)2 ⊂ V for E ∈ EV .
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Choose a corresponding standard cover EV and a standard finite set Y0 of Y
elements, for which im(f)⊂V (Y0).

Using EV and Y0, it is easy to construct a standard step function fV such
that (∀x ∈ X)((fV (x), f(x)) ∈ V ). Obviously, if U ∈ ◦UY obeys the conditions
U = U−1 and U ◦ U ⊂ V then (fV ′(x), fV ′′(x)) ∈ V ′ ◦ V ′′−1 ⊂ U ◦ U ⊂ V for
all V ′, V ′′ ⊂ U . Considering ∗{fV : V ∈ ◦UY }, note that (fV )V ∈UY

is a Cauchy
net. Denote by g the standard limit of (fV )V ∈UY

in CB(X, Y ). We still see that
(∀ stV ∈ UY )(∀x ∈ X)((g(x), f(x)) ∈ V ). Consequently, g ≈ f in the strong
uniformity. Therefore, f is nearstandard; hence, prenearstandard by completeness
of CB(X, Y ) (cf. 4.5.14). �

4.5.17. Theorem. If E is a subset of a complete separated space X then the
following are equivalent:

(1) E is relatively compact;
(2) E is precompact (i.e., the completion of E is compact);
(3) E is totally bounded;
(4) E ⊂ pst (X);
(5) E ⊂ nst (X);
(6) E lies in the microhalo of a finite set;
(7) cl(U) has a finite skeleton.

� Since X is complete; by 4.5.6, pst (X) = nst (X). Therefore, (5) → (1) → (4)
(see 4.3.8). Obviously, (7) → (6) → (3) → (1) → (2). If (2) holds then cl(E) is
complete and totally bounded by the Hausdorff test. From 4.5.11 we infer the
implication (2) → (7). �

4.5.18. Theorem. Assume that X is a compact space, Y is a complete uni-
form space, and C(X, Y ) is the space of continuous functions from X to Y endowed
with the strong uniformity. For an internal member f of C(X, Y ) the following are
equivalent:

(1) f is prenearstandard;
(2) f is nearstandard;
(3) f is microcontinuous and sends each standard point to a nearstan-

dard point.

� (1) → (2): Obviously, f is prenearstandard in Y X in the strong uniformity
by 4.5.4, while f is nearstandard in Y X by 4.5.8 and 4.5.6, i.e., there is a standard
g ∈ Y X such that f(x) ≈ g(x) for all x ∈ X . Let (fξ)ξ∈Ξ be a standard net in
C(X, Y ) microconvergent to f . Take x′ ≈ x and note that fξ(x′) ≈ fξ(x) for all
standard ξ ∈ Ξ (since fξ is continuous and X is compact). Then (cf. 3.3.17(3))
fη(x′) ≈ fη(x) for some η ∈ aΞ. Hence, g(x′) ≈ f(x′) ≈ fη(x′) ≈ fη(x) ≈ f(x) ≈
g(x). Therefore, the standard function g is microcontinuous and so g ∈ CB(X, Y )
by 4.4.6.
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(2) → (3): By hypothesis, there is a standard continuous function g such that
g(x) ≈ f(x) for all x ∈ X . Therefore, f(◦X) ⊂ ≈g(◦X) ⊂ ≈◦g(X) ⊂ nst (Y ).
Moreover, by 4.5.6, g is microcontinuous and so f(x) ≈ g(x) ≈ g(x′) ≈ f(x′) for all
x′ ≈ x.

(3) → (1): By 4.5.3, we are to demonstrate only that (3) → (2). Choose
a microcontinuous f such that f(◦X) ⊂ nst (X). By the construction princi-
ple 3.3.12, there is a standard function g such that g(x) ∈ ◦f(x) for all x ∈ ◦X .
Check that g is uniformly continuous. To this end, choose a standard entourage
V ∈ UY and a standard set W ∈ UY from the condition W ◦ W ◦ W ⊂ V . Us-
ing 4.5.7, find a standard U of the unique uniformity UX (see 4.4.8 (4)) so that
f×(U) ⊂ W . Considering standard points x, x′ ∈ ◦X satisfying (x, x′) ∈ U , note
that (f(x), f(x′)) ∈ W , (f(x′), g(x′)) ∈ W , and (g(x), f(x)) ∈ W . Therefore,
(g(x), g(x′)) ∈ W ◦W ◦W ⊂ V . Finally,

(∀ stV ∈ UY )(∃ stU ∈ UX)(∀ stx, x′ ∈ U)((g(x), g(x′)) ∈ V ).

By transfer, we infer g ∈ C(X, Y ).
Given an arbitrary x ∈ X , observe now that f(x) = f(x′) ≈ g(x′) ≈ g(x),

where x′ is the only standard point infinitely close to x. Hence, f is infinitely close
to g in the strong uniformity. �

4.5.19. Ascoli–Arzelà Theorem. Assume that X is a compact space, Y is
a complete separated uniform space, and E ⊂ C(X, Y ). The set E is relatively
compact in the strong uniformity if and only if E is equicontinuous and uniformly
(totally) bounded (i.e., there is some totally bounded C in Y such that f(X) ⊂ C
for all f ∈ E).

� The claim follows from 4.5.18, 4.5.17, and 4.4.6 (2). �

4.6. Relative Monads

The notion of relatively standard element we have introduced in 3.9 is conve-
nient for characterizing various topological properties.

4.6.1. Assume that τ is an arbitrary admissible element (see 3.9.2) and X
is a τ -standard topological space. Given a τ -standard point a ∈ X , define the
τ -monad of a as the intersection of τ -standard neighborhoods of a:

μτ (a) :=
⋂

{u ⊂ X : u is open; a ∈ u; u st τ}.

If x ∈ μτ (a) then x is τ -infinitely close to a; in symbols, x
τ≈ a.

If X is a uniform space with τ -standard uniformity U then x and y are τ -
infinitely close points in X , in symbols, x

τ≈ y provided that (x, y) ∈ ⋂{U ∈ U :
U st τ}.
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If a is not an isolated point then μτ (a) − {a} �= ∅ by idealization.
4.6.2. Assume that τ and λ are admissible elements; moreover, τ is λ-standard.

If a topological space X and a point a ∈ X are τ -standard and τ stλ, then
(1) μλ(a) ⊂ μτ (a);

(2) If x
λ≈ y then x

τ≈ y for all x, y ∈ X ;
(3) If X and a are standard then μλ(a) ⊂ μ(a);

(4) If X and a are standard then x
λ≈ y implies x ≈ y for all x, y ∈ X .

� The claim follows from 3.9.4 (2) also implying that X stλ, i.e., the definition
of μλ(a) is sound.

In case X and a are standard it suffices to put τ = ∅ (or another standard
set) instead of ∅ since st(X) and X st ∅ are equivalent. �

4.6.3. Theorem. Assume given a topological space X , a subset A of X , and
a point a ∈ X . Then

(1) A is open if and only if μτ (x) ⊂ A for all τ -standard x ∈ A;
(2) A is closed if and only if each τ -standard point x ∈ X τ -infinitely

close to some point in A belongs to A: in symbols,

(∀stτx ∈ X)(∀η ∈ A)(η ∈ μτ (x) → x ∈ A).

� Everything is proven in much the same way as in the case of the standard
environment. For completeness, we will demonstrate (1).

Let σ be the topology on X , and let σ(a) be the collection of open neighbor-
hoods of a. It follows from the τ -standardness of X that σ is τ -standard as well as
σ(a) is τ -standard for every τ -standard a ∈ X by 3.9.7 (1).

Assume now that A is open, and take τ -standard element x ∈ A. By definition,
μτ (x) =

⋂{u : u st τ, u ∈ σ(x)}. Hence, μτ (x) ⊂ A since A ∈ σ(x).
To prove the converse, assume by way of contradiction that μτ (x) ⊂ A for all

τ -standard x ∈ A, but A is not open. Since X and A are τ -standard, by relative
transfer principle we have

(∃st τx ∈ A)(∀st τU ∈ σ(x))(∃st τy)(y ∈ U ∧ y /∈ A).

Consider the binary relation R ⊂ σ(x) ×X with

(u, z) ∈ R ↔ z ∈ U ∧ z /∈ A.

Since
⋂
I ∈ σ(x) and

⋂
I st τ for every τ -standard finite set I ⊂ σ(x), the relation R

satisfies the condition of the idealization principle. Hence, (∃y)(∀st τU ∈ σ(x))(y ∈
U ∧ y /∈ A) implying that y ∈ μτ (x) − A, which is a contradiction. �
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4.6.4. Theorem. Assume that topological spaces X and Y , a mapping f :
X → Y between them, and points a ∈ X and b ∈ Y are all τ -standard. If τ is
a λ-standard element for some admissible λ then

(1) limx→a f(x) = b if and only if ξ
λ≈ a implies f(ξ)

τ≈ b for all ξ ∈ X ;
(2) In case X and Y are uniform spaces, f is uniformly continuous if

and only if ξ
λ≈ η implies f(ξ)

τ≈ f(η) for all ξ, η ∈ X .

� We will prove (1). Using the τ -standardness of f , a, and b, infer on appealing
to the relative transfer principle that

lim
x→a f(x) = b ↔ (∀st τW ∈ σY (b))(∃st τu ∈ σX(a))(f(u) ⊂ W ),

with σY and σX the topologies of Y and X respectively. Agree that limx→a f(x)
= b and demonstrate that f(μλ(a)) ⊂ μτ (b). By 4.6.2 (1) μλ(a) ⊂ μτ (a), and so it
suffices to show that f(μτ (a)) ⊂ μτ (b) which amounts to

(∀st τW ∈ σY (b))(f(μτ(a)) ⊂ W ).

Suppose that u st τ , u ∈ σX(a), and f(u) ⊂ W . Then μτ (a) ⊂ u and so f(μτ (a)) ⊂
W , which completes the proof.

To demonstrate the converse, assume that f(μλ(a)) ⊂ μτ (b). Fix an arbitrary
τ -standard neighborhood W ∈ σY (b) and note that W stλ and f(μλ(a)) ⊂ W
by 3.9.4 (2).

Show first that (∃st λU ∈ σX(a))(f(U) ⊂ W ). Were this false, the relation
R1 ⊂ σX(a) × Y with R1 := {(U, y) : y ∈ U ∧ f(y) /∈ W} would satisfy the
hypotheses of the relative idealization principle, implying

(∃y)(∀st λU ∈ σX(a))(y ∈ U ∧ f(y) /∈ W ).

This would contradict the inclusion f(μλ(a)) ⊂ W .
Thus, (∃u ∈ σX(a))(f(U) ⊂ W ). Since all parameters here are τ -standard, the

relative transfer principle implies that (∃st τU ∈ σX(a))(f(U) ⊂ W ), which is what
was required.

Item (2) is proved along the similar lines. �
4.6.5. Theorems 4.6.3 and 4.6.4 are applicable in the case of arbitrary admissi-

ble objects because we have x stx for every admissible x. For example, if τ := (X,A)
(or if τ := (X, Y, f, a, b)) then X and A in Theorem 4.6.3 (and X, Y, f, a, and b in
Theorem 4.6.4) are τ -standard. In particular, this implies the following proposi-
tions.

(1) Assume that X is an admissible topological space and A ⊂ X .
If τ := (X,A) then A is open if and only if μτ (x) ⊂ A for all
τ -standard x in A.
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(2) Assume that X and Y are admissible topological spaces, f :X → Y ,
a ∈ X , and b ∈ Y . If τ := (X, Y, f, a, b) then

lim
x→a f(x) = b ↔ (∀x ∈ μτ (a)) f(x) ∈ μτ (b).

4.6.6. We now consider the case of X := R in more detail. Fix an internal
admissible set τ . Let x ∈ R be an arbitrary (possibly nonstandard) real. We say
that x is τ -infinitesimal or τ -infinitely small , in symbols: x

τ≈ 0, provided that
(∀st τy ∈ R+) |x| < y. As usual, the word “infinitesimal” serves as an adjective as
well as a noun.

By analogy, we introduce the following natural definitions: x is a τ -unlimited
or τ -infinitely large real, in symbols: x

τ≈ ∞ or x τ∼ ∞, provided that 1/x is τ -
infinitesimal; x is a τ -limited or τ -finite real provided that x is not τ -infinitely large,
in symbols: x

τ� ∞.
These definitions readily imply the following:

x
τ≈ 0 ↔ (∀st τy ∈ R+)(|x| ≤ y),

x
τ≈ ∞ ↔ (∀st τy ∈ R+)(|x| > y),

x
τ� ∞ ↔ (∃st τy ∈ R+)(|x| ≤ y).

4.6.7. A real x ∈ R+ is τ -infinitesimal if and only if |x| < ϕ(τ) for each
R+-valued standard function ϕ satisfying τ ∈ dom(ϕ).

� Necessity is obvious. To prove sufficiency suppose that y ∈ R+ and y st τ .
Show that |x| < y. Since y st τ ; therefore, there exists a standard function ψ
satisfying y ∈ ψ(τ), τ ∈ dom(ψ), and rngψ ⊂ Pfin(R+) (as usual, Pfin(A) stands
for the set of finite subsets of A).

By 3.9.3 we may define the standard function ϕ : dom(ψ) → R+ by putting
ϕ(α) := minψ(α). By hypotheses, |x| < ϕ(τ) while y ≥ ϕ(τ) by the construction
of ϕ. �

4.6.8. If n is a natural then n stx for all x ∈ R+ such that n ≤ x.

� Denote by m the integral part [x] of x. Note that m st x and n ≤ m. Consider
the set m = {0, 1, . . . , m}. Clearly, m stm (Proposition 3.9.7 (1)). Moreover, m is
a finite set, in symbols: fin(m). By 3.9.7 (2), n stm whenever n ∈ m. �

4.6.9. If λ st τ and x
τ≈ 0 (x

τ≈ ∞) then x
λ≈ 0 (x

λ≈ ∞). If x is λ-limited then
x is τ -limited.

� Immediate from 4.6.6. �
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4.6.10. Theorem. The following hold:
(1) Limitedness Principle. If an internal set B ⊂ R consists only

of τ -limited members then there is a τ -standard t ∈ R satisfying
B ⊂ [−t, t].

(2) Permanence Principle. If an internal set B contains all positive
τ -limited reals then B includes the interval [0, Ω] with Ω some τ -
unlimited real Ω.

(3) Cauchy Principle. If an internal setB contains all τ -infinitesimals
then B includes the interval [−a, a] with a some τ -standard positive
real.

(4) Robinson Principle. If an internal set B consists only of τ -
infinitesimals then B is included in the interval [−ε, ε] with ε some
positive τ -infinitesimal.

� We confine demonstration to items (1) and (4) since (2) and (3) are proved
similarly.

(1): If λ
τ≈ ∞ then |ξ| < λ for all ξ ∈ B by hypothesis (cf. 4.6.6). In other

words, B is a bounded set. The set B′ := {|b| : b ∈ B} is bounded above as so B′

has the positive least upper bound μ := sup(B′). If μ
τ≈ ∞ then μ − 1

τ≈ ∞, and
μ− 1 < |ξ| ≤ μ for some ξ ∈ B by definition. We arrive at a contradiction implying
that ξ is limited. Consequently, μ is a τ -limited real, and so there is a τ -standard
real t ∈ R such that t > μ (cf. 4.6.6). Obviously, B ⊂ [−t, t].

(4): Take an arbitrary τ -standard real y ∈ R. By hypothesis, ξ ≤ y for all
ξ ∈ B′. Hence, B′ is a bounded set. Put ε := sup(B′). Note that B ⊂ [−ε, ε] and
ε ≤ y for all τ -standard y ∈ R. �

4.6.11. To each unlimited (infinitesimal) real x ∈ R there is a nonstandard

real η such that x
η≈ ∞ (x

η≈ 0, respectively). This η may be chosen to be limited,
or infinitesimal, or unlimited.

� Consider the internal relation σ ⊂ R
R
+ × R × R with

(f, ξ, η) ∈ σ ↔ f(η) < |x| ∧ η �= ξ.

If x is unlimited then it is easy to see that σ satisfies the hypotheses of the ideal-
ization principle:

(∀st finM ⊂ R
R

+ × R)(∃η)(∀(f, ξ) ∈ M)((f, ξ, η) ∈ σ).
By idealization, we thus conclude that

(∃η)(∀stf ∈ R
R

+)(∀stξ ∈ R)(f(η) < |x| ∧ η �= ξ).
Such an η will suffice. If the so-obtained η is limited then η′ = η − ◦η ≈ 0 still
meets the claims by 4.6.9. �

We now exhibit some examples that show how to obviate obstacles we have
discussed in the beginning of 3.9.
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4.6.12. Theorem. Suppose that f : R
2 → R and a ∈ R are standard, and

limy→0 f(x, y) exists for each x in some neighborhood of zero. Then

lim
x→0

lim
y→0

f(x, y) = a ↔ (∀α ≈ 0)(∀β α≈ 0)(f(α, β) − a ≈ 0).

� Put a := limx→0 limy→0 f(x, y), and let

g(x) := lim
y→0

f(x, y).

Then g(α) ≈ a for all α ≈ 0. Observe that g is a standard function by 3.9.3, and
so g(α) stα. By 4.6.2 and 3.9.4 (2), the equality g(α) = limy→0 f(α, y) amounts to

(∀β α≈ 0) f(α, β)
α≈ g(α).

By 4.6.2, the approximate equalityf(α, β) ≈ g(α) follows from f(α, β)
α≈ ϕ(α).

Since g(α) ≈ a; therefore, f(α, β) ≈ a.
To prove the converse it suffices obviously to demonstrate that

(∀ε > 0)(∃δ)(∀x)(|x| < δ → (∃γ)(∀y)(|y| < γ → |f(x, y) − a| < ε)).

To this end, take an arbitrary standard ε and consider the internal set

M := {δ > 0 : (∀x)(|x| < δ → (∃γ)(∀y)(|y| < γ → |f(x, y) − a| < ε))}.

It is easy that M contains all infinitesimals. Indeed, if δ ≈ 0 and |x| < δ then
x ≈ 0. If γ

x≈ 0 then (∀y)(|y| < γ → y
x≈ 0), so that |f(x, y) − a| < ε. By the

Cauchy principle M obviously contains some standard element. �
This theorem holds also in the case when x → b and y → c for arbitrary

standard b and c. It translates routinely to infinite limits and limits at infinity as
well as to arbitrary topological spaces.

4.6.13. If f : R → R is Riemann-integrable on each bounded interval and the
integral

∫∞
−∞ f(x) dx exists at least in the principal value sense, then

∞∫

−∞
f(x) dx =

◦(
Δ

[
a
Δ]
∑

−[
a
Δ

]

∗f(kΔ)
)

for all a ≈ ∞ and Δ
a≈ 0.

� Immediate from 4.6.12. �
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4.6.14. It stands to reason now to exhibit three simple examples.
(1) We first attempt at proving the “difficult” part of l’Hôpital’s rule.

Suppose that f and g are standard functions differentiable in a neighborhood
of a standard point a. Suppose further that limx→a f(x) = limx→a g(x) = ∞, while
g′(x) �= 0 in a neighborhood of a and

lim
x→a

f ′(x)
g′(x)

= d.

The task is to show that limx→a f(x)/g(x) = d. Take arbitrary points y and
z ≈ a. For definiteness, assume that a < z < y. By Cauchy’s Theorem, there is
a point η in [z, y] satisfying

∗f(y) − ∗f(z)
∗g(y) − ∗g(z)

=
∗f ′(η)
∗g′(η)

≈ d

because η ≈ a.
We now consider the equality

∗f(y) − ∗f(z)
∗g(y) − ∗g(z)

=
∗f(z)
∗g(z)

(

1 −
∗f(y)
∗f(z)

)(

1 −
∗g(y)
∗g(z)

)−1

.

This formula shows that if z
y≈ a then ∗f(y)/∗f(z) ≈ 0 and ∗g(y)/∗g(z) ≈ 0

by Theorem 4.6.4 (1) (more precisely, by its obvious translation to infinite limits).
Hence, ∗f(z)/∗g(z) ≈ d. Thus, ∗f(z)/∗g(z) ≈ d for all z

y≈ a. By 4.6.4 (1), this
means that limx→a f(x)/g(x) = d.

(2) We now complete the proof of the claim of 4.6.4 (2). To this end,

take x′ and x′′ so that x′
N≈ x′′. By 4.6.4 (2), ∗fN (x′) ≈ ∗fN (x′′) and we readily

find that ∗f(x′) ≈ ∗f(x′′). Therefore, for all x′ and x′′ from x′
N≈ x′′ it follows that

∗f(x′) ≈ ∗f(x′′). This amounts to the uniform continuity of f by 4.6.4 (2).
(3) As an example of application of 4.6.11 we consider the following

proposition (cf. [3, 1.3.2]).
Let (am,n)m∈N,n∈N be a standard double sequence having the limits

lim
n→∞ lim

m→∞ am,n = a; lim
m→∞ lim

n→∞ am,n = b.

Then

(∀m ≈ ∞)(∃n1, n2 ≈ ∞)
(
(∀n < n1)(n ≈ ∞ → am,n ≈ a) ∧ (∀n > n2)(am,n ≈ b)

)
.

To prove, take n1 ≈ ∞ so that m
n1≈ ∞ (this is possible by 4.6.11) and n2

m≈ ∞.
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4.6.15. Theorem. There are an unlimited natural N and a real x in [0, 1]
such that if y is N -infinitely close to x then y fails to be N -standard.

� Proceed by contradiction and suppose that the claim is false. By 4.6.6, we
then obtain the following theorem of IST

(∀N ∈ N)(∀x ∈ [0, 1])(∃stϕ ∈ (Pfin(R)+)N)(∃z ∈ R+)
(∀stψ ∈ R

N

+)(z ∈ ϕ(N) ∧ |x− z| < ψ(N)).

Nelson’s algorithm applies to the last formula. We agree to assume that the
variables N, x, ϕ, z, and ψ range over the sets indicated in the formula by implica-
tion. Using the idealization principle, we arrive at the formula

(∀N)(∀x)(∃stϕ) (∀stΞ)(∃z)(∀ψ ∈ Ξ)(z ∈ ϕ(N) ∧ |x− z| < ψ(N)),

with Ξ ∈ Pfin(RN
+).

Applying the standardization principle, proceed to the equivalent formula

(∀N)(∀x)(∀stΞ̃)(∃stϕ)(∃z)(∀ψ ∈ Ξ̃(ϕ))(z ∈ ϕ(N) ∧ |x− z| < ψ(N)),

where Ξ̃ : Pfin(R+)N → Pfin(RN
+). Drag out the universal quantifiers and apply the

idealization and transfer principles successively to come to the equivalent formula

(∀Ξ̃)(∃Φ)(∀N)(∀x)(∃ϕ ∈ Φ)(∀ψ ∈ Ξ̃(ϕ))(∃z)
(z ∈ ϕ(N) ∧ |x− z| < ψ(N)),

with Φ ∈ Pfin(Pfin(R+)N). We are left with refuting the last formula in ZFC.
Define the function Ξ̃ and the set Mϕ,n as follows:

Ξ̃(ϕ) := {ψ}, ψ(n) := an := 1/2n|ϕ(n)|ϕ ∈ Pfin(R+)N);

Mϕ,n :=
⋃

z∈ϕ(n)

(z − an, z + an),

with |ϕ(n)| the size of ϕ(n). Note that ν(Mϕ,n) ≤ 1/n, with ν standing for Lebesgue
measure. In case Φ ∈ Pfin(Pfin(R+)N) we then put

MΦ,n :=
⋃

ϕ∈Φ

Mϕ,n.

Clearly, ν(MΦ,n) ≤ |Φ|/n.
If the formula in question were true in ZFC then we would apply it to the

above-constructed function to obtain

(∃Φ ∈ Pfin(Pfin(R+)N)(∀n ∈ N)([0, 1] ⊂ MΦ,n).

This is a contradiction since we would have ν(MΦ,n) < 1 for n > |Φ|. �
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4.6.16. Comments.

(1) This section is an excerpt from [141] (cf. [146]).
(2) From 4.6.14 it follows also that the “infinitesimal” tests 4.3.6 do not

admit abstraction to the case of τ -standard objects in contrast to the test 4.4.6 (1)
(see 4.6.4).

(3) Consider the relation of strict standardness sst we have discussed in
3.9.16 (4). Replacing · st · with · sst · in 4.6.6, we define τ -infinitesimal (τ -unlimited
or τ -limited) relative to the predicate · sst ·. In this event, we see from 4.6.7 that the
concept of τ -infinitesimal (τ -unlimited or τ -limited) real relative to · st τ · coincides
with the respective concept relative to · sst τ ·.

(4) Slight modification of the proof of 4.6.7 shows that the concepts
of τ -infinite proximity relative to · st · and · sst · coincide in arbitrary topological
and uniform spaces. Therefore, Theorems 4.6.3, 4.6.4, 4.6.10, and 4.6.12 as well as
Propositions 4.6.9 and 4.6.11 remain valid on substituting · sst τ · for · st τ ·.

(5) In contrast to (4), Proposition 4.6.8 fails for the predicate · sst τ ·.
This entails that neither 3.9.4 (3) nor the implication ← in the relative idealization
principle hold on replacing · st τ · with · sst τ ·. See [141, 146] for more details.

4.7. Compactness and Subcontinuity

This section collects standard and nonstandard tests for a filter to be compact
and addresses related matters. These tests supplement the similar topological facts
for sets as presented in 4.3 and 4.5. We give a few applications to the theory of
subcontinuous correspondences which was suggested in [125, 450].

4.7.1. A filter F (on a topological space X) is compact (cf. [392]) provided
that each filter on X finer than F has an adherent point in X . Similarly, a net is
compact provided that its every subnet has a convergent subnet.

4.7.2. A standard filter F on X is compact if and only if every member of
the monad of F is nearstandard: μ(F ) ⊂ nst (X).

� →: Take x ∈ μ(F ). Consider the ultrafilter (x) := ∗{U ⊂ X : x ∈ U} on the
original space X . Clearly, (x) ⊃ F and so there is a standard point x′ satisfying
x ≈ x′. In other words, x is a nearstandard point.

←: If G ⊃ F then μ(G ) ⊂ μ(F ). Take x ∈ μ(G ). Then x ∈ nst (X), i.e.
x ≈ x′ for some x′ ∈ ◦X , which means that x′ is an adherent point of F . �

4.7.3. A filter F on X is compact if and only if to each open cover E of X
there is a finite subset of E covering some member of F .

� →: It suffices to work on assuming the standard environment. In this event
if F is compact then μ(F ) ⊂ nst (X). Since nst (X) lies in the monad of every
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standard cover E of X ; therefore, (∃F ∈ F )(∀x ∈ F )(∃E ∈ ◦E )(x ∈ E). Take as
a sought F an arbitrary infinitesimal member of F . Using the principles of transfer
and idealization successively, complete the proof.

←: Assume that E is an open cover of X and μ(E ) stands for the monad of E ;
i.e., by transfer there are a standard member F of ∈ F and standard finite subset
E0 of E satisfying

⋃
E0 ⊃ F ⊃ μ(F ). Consequently, μ(F ) ⊂ μ(E ). We are done

on recalling that nst (X) is exactly the intersection of the monads of standard open
covers of X . �

4.7.4. Proposition 4.7.3 makes it natural to seek for an analog for filters of
the celebrated Hausdorff test for a set to be compact. To this end, we will work in
a uniform space (X,U ).

4.7.5. A filter F on X is totally bounded provided that to each entourage
U ∈ U there is a finite U -net for some member of F .

4.7.6. A filter F on X is complete provided that every Cauchy filter finer than
F converges in X .

4.7.7. A standard filter F is complete if and only if every prenearstandard
point of the monad of F is nearstandard.

� →: Let x ∈ pst (X)∩μ(F ) be a prenearstandard point of F . This means that
x belongs to the monad of some Cauchy filter G . In this event μ(F ) ∩ μ(G ) �= ∅.
The least upper bound of G and F is clearly a Cauchy filter. Hence, there is a point
x′ in ◦X satisfying x′ ∈ μ(G ) ∩ μ(F ). Consequently, x′ ≈ x and x ∈ nst (X).

←: Assume that G ⊃ F and G is a Cauchy filter. If x ∈ μ(G ) then x ∈
μ(F ) ⊂ nst (X). This means that G has an adherent point. �

4.7.8. A standard filter F is totally bounded if and only if every point of the
monad of F is prenearstandard.

� →: By transfer, to each standard member U of the uniformity U of the
space X under study, there are a standard member F of F and standard finite
set E satisfying U(E) ⊃ F . Thus, μ(F ) ⊂ U(E) and so to each x ∈ μ(F ) and
each U ∈ ◦U there is some standard x′ such that x ∈ U(x′). Put G := ∗{U(x′) :
U ∈ U , x ∈ U(x′)}. Clearly, G is a base for a Cauchy filter and x ∈ μ(G ) by
construction. Consequently, μ(F ) ⊂ pst (X).

←: Assume by way of contradiction that μ(F ) ⊂ pst (X), but F is not totally
bounded. By transfer, there is a standard member U of ◦U such that to each
F ∈ ◦F and each standard finite E there is some x in F in the complement of U(E).
By idealization, there is a point x in μ(F ) such that x /∈ U(y) for all standard
y ∈ X . By hypothesis x ∈ μ(G ), with G a Cauchy filter. Take G ∈ ◦G so that
G×G ⊂ U . Note that x ∈ μ(G ) ⊂ U(y) for all y ∈ G, which is a contradiction. �
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4.7.9. Theorem. A filter is compact if and only if it is complete and totally
bounded.

� →: It suffices to assume the standard environment. If F is a compact
filter then μ(F ) ⊂ nst (X) by 4.7.2. Since nst (X) ⊂ pst (X), conclude that F is
complete and totally bounded.

←: Since F is a totally bounded filter; therefore, μ(F ) ⊂ pst (X) by 4.7.8.
Since F is a complete filter, μ(F ) ∩ pst (X) ⊂ nst (X). Consequently, μ(F ) =
μ(F ) ∩ pst (X) ⊂ nst (X). The proof in complete on recalling 4.7.2. �

4.7.10. The above is helpful in studying various topological concepts that are
close to continuity. We will address one of these concepts (cf. [125, 392, 450]).

4.7.11. A correspondence Γ from X to Y is subcontinuous at a point x of
dom(Γ) provided that the image of the neighborhood filter of x under Γ is a compact
filter on Y . A correspondence Γ is subcontinuous provided that Γ is subcontinuous
at every point of dom(Γ).

4.7.12. A standard correspondence Γ from X to Y is subcontinuous if and
only if Γ(nst (X)) ⊂ nst (Y ).

� The claim follows from 4.7.2, since nst (X) is the union of monads of points
in the standard part ◦X of X . �

4.7.13. A correspondence is subcontinuous if and only if it sends each compact
filter to a compact filter.

� Since the neighborhood filter of every point is always compact, the necessity
part is beyond a doubt. Assume now that we deal with a subcontinuous correspon-
dence. Without loss of generality, we will proceed in the standard environment.
Using 4.7.12 and 4.7.2, note that the image of a standard compact filter is compact
too. It suffices to appeal to the transfer principle. �

4.7.14. In view of 4.7.13 a subcontinuous correspondence is sometimes referred
to as a compact correspondence (cf. [392]).

4.7.15. Every subcontinuous correspondence with range a Hausdorff space
preserves relative compactness.

� If U is a standard relatively compact set in X then U ⊂ nst (X). Hence,
Γ(U) ⊂ nst (Y ). By 4.3.8 Γ(U) is relatively compact. �

4.7.16. Let Γ be a closed subcontinuous mapping. Then Γ is upper semicon-
tinuous.

� By transfer, assume the standard environment. Let A be a standard closed
set and x ∈ cl(Γ−1(A)). There is a point x′ infinitely close to x such that (x′, a′) ∈ Γ
for some a′ ∈ A.
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Since a′ ∈ Γ(nst (X)), there is a standard point a in the target of Γ such that
a ≈ a′. Since A is closed; therefore, a ∈ A. Since Γ is closed; therefore, (x, a) ∈ Γ.
All in all, x ∈ Γ−1(A). �

4.7.17. Proposition 4.7.16 is established in [450] and generalizes an earlier fact
about functions in [125]. In closing, we give an easy proof for a slight modification
of the test 5.1 of [125].

4.7.18. Let f : X → Y be a function with range a Hausdorff space. Then f is
continuous if and only if to each point x in X there is an element y in Y such that
the condition xξ → x implies existence of a subnet (xη)η∈H satisfying f(xη) → y.

� Only the sufficiency part needs proving. Assume the standard environment.
By hypothesis

(∀xξ → x)(∃yη → y)(xη, yη) ∈ f,

which may easily be rewritten as

(∀x′ ≈ x)(∃y′ ≈ y)(x′, y′) ∈ f.

In particular, y′ = f(x) for some y′ ≈ y. Since Y is Hausdorff, y = f(x).
Moreover, x′ ≈ x → f(x′) ≈ f(x), i.e. f is a continuous function. �

4.8. Cyclic and Extensional Filters

This section contains (mostly easy) prerequisites for descending and ascending
filters.

4.8.1. If (Aξ)ξ∈Ξ is a family of nonempty members of V(B) and (bξ)ξ∈Ξ is
a partition of unity then

(∑

ξ∈Ξ

bξAξ

)

↓ =
∑

ξ∈Ξ

bξAξ↓.

� Put A :=
∑
ξ∈Ξ bξAξ. Given ξ ∈ Ξ, observe immediately that [[a ∈ Aξ]] ≥

[[a ∈ A]] ∧ [[A = Aξ]] = [[A = Aξ]] ≥ bξ, whenever a ∈ A↓. Using the transfer
principle for V(B), derive [[a ∈ Aξ]] = [[(∃aξ ∈ Aξ)(a = aξ)]]. Appealing to the
maximum principle, infer (∃aξ ∈ Aξ↓)[[a ∈ Aξ]] = [[a = aξ]] ≥ bξ. Therefore,
a =

∑
ξ∈Ξ bξaξ.

Assume now that bξa = bξaξ for some aξ ∈ Aξ↓ and all ξ ∈ Ξ. Since [[A =
Aξ]] ≥ bξ (ξ ∈ Ξ) by the definition of mixing, we then derive that [[a ∈ A]] ≥ [[a =
aξ]]∧[[aξ ∈ Aξ]]∧[[Aξ = A]] ≥ bξ for ξ ∈ Ξ, i.e., [[a ∈ A]] ≥ ∨ξ∈Ξ bξ = 1 and a ∈ A↓. �
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4.8.2. If Aξ ∈ P(V(B)) is a cyclic set for every ξ ∈ Ξ then

∑

ξ∈Ξ

bξAξ↑ =
(∑

ξ∈Ξ

bξAξ

)

↑.

� Since Aξ↑↓ = Aξ for ξ ∈ Ξ by hypothesis, from 4.8.1 we infer
(∑

ξ∈Ξ

bξAξ↑
)

↓ =
∑

ξ∈Ξ

bξAξ↑↓ =
∑

ξ∈Ξ

bξAξ.

Recall that if A is a nonempty set inside V(B) then A = A↓↑. Consequently,

∑

ξ∈Ξ

bξAξ↑ =
(∑

ξ∈Ξ

bξAξ↑
)

↓↑ =
(∑

ξ∈Ξ

bξAξ

)

↑,

which completes the proof. �
4.8.3. Let (bξ)ξ∈Ξ be a partition of unity. Assume further that (Xξ)ξ∈Ξ and

(Yξ)ξ∈Ξ are some families satisfying [[Xξ ⊃ Yξ]] = 1 for all ξ ∈ Ξ. Then
[[∑

ξ∈Ξ

bξXξ ⊃
∑

ξ∈Ξ

bξYξ

]]

= 1.

� Put X :=
∑
ξ∈Ξ bξXξ and Y :=

∑
ξ∈Ξ bξYξ. Clearly, [[Y ⊂ X ]] ≥ [[X =

Xξ]] ∧ [[Xξ ⊃ Y ]] ≥ [[X = Xξ]] ∧ [[Xξ ⊃ Yξ]] ∧ [[Y = Yξ]] ≥ bξ ∧ 1 ∧ bξ = bξ for all
ξ ∈ Ξ. �

4.8.4. Let X be a nonempty member of V(B). Then

[[Pfin(X) = Pfin(X↓)�]] = 1,

wherePfin(A) stands as usual for the collection of finite subsets of A andPfin(X↓)�

:= {Y ↑ : Y ∈ Pfin(X↓)}↑.
� The inclusion Pfin(X↓)� ⊂ Pfin(X) raises no doubt inside V(B) (since the

descent of a finite set is finite too). We are thus left with checking the relation

[[(∀t)t ∈ Pfin(X) → t ∈ Pfin(X↓)�]] = 1.

This amounts to the equality

∧{
[[t ∈ Pfin(X↓)�]] : [[t ∈ Pfin(X)]] = 1

}
= 1.
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If [[t ∈ Pfin(X)]] = 1 then the transfer principle yields

1 = [[(∃n ∈ N
∧)(∃f : n → X)(t = im(f))]] =

∨

n∈N

[[f : n∧ → X]] ∧ [[t = im(f)]].

Using the mixing and maximum principles, find a countable partition of unity (bn)
in B and a sequence (fn) in V(B) so that bn ≤ [[fn : n∧ → X ]]∧[[t = im(f)]]. Without
loss of generality, we may assume that [[fn : n∧ → X ]] = 1. Put gn := f↓ : n → X↓.
Then im(g) ∈ Pfin(X↓) and bn ≤ [[t = (im(g))↑]]. Therefore,

1 =
∨

n∈N

[[t = (im(g))↑]] ≤
∨

{[[t = u]] : u ∈ Pfin(X↓)↑}

= [[t ∈ Pfin(X↓)�]],

which completes the proof. �
4.8.5. Let G be a filterbase on X , with X a subset of V(B), i.e., X ∈ P(V(B)).

Put

G ′ := {F ∈ P(X↑)↓ : (∃G ∈ G )[[F ⊃ G↑ ]] = 1};
G ′′ := {G↑ : G ∈ G }.

Then G ′↑ and G ′′↑ are bases for the same filter G ↑ on X↑ inside V(B).

� Check that G ′↑ is a filterbase on X↑ inside V(B). To this end note that

[[(∀F1, F2 ∈ G ′↑)(∃F ∈ G ′↑)(F ⊂ F1 ∩ F2)]]

=
∧

F1,F2∈G ′
[[(∃F ∈ G ′↑)(F ⊂ F1 ⊂ F2)]].

If F1, F2 ∈ G ′ then there are G1, G2 ∈ G such that [[F1 ⊃ G1↑]] = 1 and
[[F2 ⊃ G2↑]] = 1. Take G ∈ G such that G ⊂ G1 ∩G2 to find (G1 ∩G2)↑ ∈ G ′↑ and

[[F1 ∩ F2 ⊃ (G1 ∩G2)↑]] ≥ [[F1 ⊃ G1↑]] ∧ [[F2 ⊃ G2↑]] = 1.

Moreover, it is beyond a doubt that G ′′↑ is a filterbase on X↑ inside V(B). By
construction, G ′ ⊃ G ′′ and so G ′↑↓ ⊃ G ′′↑↓. Therefore, [[G ′↑ ⊃ G ′′↑]] = 1, implying
that [[fil{G ′↑} ⊃ fil{G ′′↑}]] = 1, with fil{B} standing as usual for the collection of
supersets of the members of B. Moreover,

[[(∀F1 ∈ G ′↑)(∃F2 ∈ G ′′↑)(F1 ⊃ F2)]]

=
∧

F1∈G ′
[[(∃F2 ∈ G ′′↑)(F1 ⊃ F2)]] = 1

since G1↑ ∈ G ′↑ for all G1 ∈ G such that [[F1 ⊃ G1↑]] = 1.
This yields [[fil{G ′↑} ⊂ fil{G ′′↑}]] = 1 by the transfer principle for V(B). �
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4.8.6. The filter G ↑ inside V(B), we have constructed in 4.8.5, is the ascent
of G .

4.8.7. Let G be a filterbase on the descent X↓ of a nonempty X inside V(B).
Let further mix(G ) stand for the collection of mixings of nonempty families of
members of G . If G consists of cyclic sets then mix(G ) is a filterbase on X↓ and
mix(G ) ⊃ G . Moreover, G ↑ = mix(G )↑.

� Take U, V ∈ mix(G ). This means that there exist sets Ξ and H, partitions
of unity (bξ)ξ∈Ξ and (cη)η∈H, and families (Uξ)ξ∈Ξ and (Vξ)η∈H of members of G
such that bξU = bξUξ for all ξ ∈ Ξ and cηV = cηVη for all η ∈ H.

Let W(ξ,η) ⊂ Uξ ∩ Vη be some element of G . Put d(ξ,η) := bξ ∧ cη. Clearly,
(d(ξ,η))(ξ,η)∈Ξ×H is a partition of unity.

Consider the set W :=
∑

(ξ,η)∈Ξ×H d(ξ,η)W(ξ,η), i.e. the collection of the cor-
responding mixings of members of W(ξ,η). Obviously, d(ξ,η)U = bξcηU = cηbξUξ ⊃
d(ξ,η)W(ξ,η) and, by the same reasons, d(ξ,η)V ⊃ d(ξ,η)W(ξ,η). Consequently, W ⊂
U ∩ V and W ∈ mix(G ).

Since G consists of cyclic sets; therefore, considering 4.8.2 and 4.8.3, we infer
that mix(G )′ = mix(G ′), so completing the proof. �

4.8.8. Given a filter F on X inside V(B), put F ↓ := fil{F↓ : F ∈ F↓}. The
filter F ↓ on X↓ is called the descent of F . A filterbase G on X↓ is extensional
provided that there is a filter F on X such that fil{G } = F ↓. A filterbase G on
X↓ is cyclic provided that fil{G } has a base consisting of cyclic sets. (Note that the
epithet “cyclic” sometimes replaces “extensional” in this context in the literature.)

4.8.9. A filter F is extensional if and only if F is a cyclic filter and F =
fil{mix(F )}.

� Everything follows from 4.8.2, 4.8.3, and 4.8.7. �

4.8.10. If F and G are extensional filters on the same set then F ⊃ G ↔
[[F ↑ ⊃ G ↑]] = 1.

� If F ⊃ G then F ′ ⊃ G ′ and so [[F ↑ ⊃ G ↑]] = 1. Therefore, F ↑↓ ⊃ G ↑↓, i.e.
F ↑↓ ⊃ G ↑↓. It suffices to recall 4.8.8. �

4.8.11. A proultrafilter is a maximal element of the set of extensional filters.
4.8.12. Each proultrafilter is a maximal element of the set of cyclic filters.

� If A is proultrafilter and F is a cyclic filter finer than A then A ⊂ F ⊂
mix(F ). Hence, A = F . Conversely, assume that A is a maximal cyclic filter.
Then A = mix(A ) and so A is a proultrafilter. �

4.8.13. Each proultrafilter on X↓ is the descent of an ultrafilter on X .
� This is immediate from 4.8.8. �
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4.8.14. The following hold:
(1) If f : X → Y inside V(B) and [[F is a filter on X ]] = 1 then

f(F )↓ = f↓(F ↓);

(2) If f : X↓ → Y ↓ is an extensional mapping and F is a filter on X↓
then

f(F )↑ = f↑ (F ↑);

(3) The image of an extensional filter under an extensional mapping is
extensional;

(4) The image of a proultrafilter under an extensional mapping is a pro-
ultrafilter.

� (1): Using the definitions and properties of the descent f↓ of f , observe that

G ∈ f(F )↓ ↔ (∃U ∈ f(F )↓)(G ⊃ U↓) ↔ (∃F ∈ F↓)(G ⊃ f(F )↓)
↔ (∃F ∈ F↓)(G ⊃ f↓(F↓) ↔ (∃F ∈ F ↓)(G ⊃ f↓(F ) ↔ G ∈ f↓(F ↓).

(2): Using the properties of the ascent f ↑ of f , estimate the truth values as
follows:

[[G ∈ f↑(F ↑)]] = [[(∃U ∈ f↑(F ↑))(G ⊃ U)]]

= [[(∃F ∈ F ↑)(G ⊃ f↑(F ))]] =
∨

F∈F

[[G ⊃ f↑(F↑)]]

=
∨

F∈F

[[G ⊃ f(F )↑]] =
∨

U∈f(F)′
[[G ⊃ U ]] = [[(∃U ∈ f(F )′↑)(G ⊃ U)]]

= [[(∃U ∈ f(F )↑)(G ⊃ U)]] = [[G ∈ f(F )↑]].

(3): Using (2) and (1) successively, obtain

f(F )↑↓ = f↑(F ↑)↓ = f↑↓(F ↑↓) = f(F ↑↓).

The last equality ensures the claim.
(4): If f : X↓ → Y ↓ is an extensional mapping and F is a proultrafilter

then F ↑ is an ultrafilter on X inside V(B). Consequently, f↑(F ↑) is an ultrafilter
on Y inside V(B). Therefore, f ↑(F ↑)↓ is a proultrafilter. It suffices to note that
f ↑(F ↑)↓ = f(F ↑↓) = f(F ) by (3). �
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4.9. Essential and Proideal Points of Cyclic Monads

In this section we give a test for a filter to be cyclic and introduce some relevant
concepts we need in the sequel.

We start with a standard complete Boolean algebra B and the corresponding
Boolean-valued universe V(B) which is thought of as composed of internal sets.

4.9.1. If A is an external set then the cyclic hull mix(A) of A is introduced as
follows:

An element x ∈ V(B) belongs to mix(A) if there are an internal family (aξ)ξ∈Ξ

of elements of A and an internal partition (bξ)ξ∈Ξ of unity in B such that x is
the mixing of (aξ)ξ∈Ξ by (bξ)ξ∈Ξ, i.e. bξx = bξaξ for ξ ∈ Ξ or, equivalently,
x = mixξ∈Ξ(bξaξ).

The monad μ(F ) of a filter F is cyclic if μ(F ) coincides with its cyclic hull
mix(μ(F )).

4.9.2. Theorem. A standard filter is cyclic if and only if so is its monad.

� →: Let F be a standard cyclic filter. Take an internal set Ξ, an internal
partition of unity (bξ)ξ∈Ξ, and a family (xξ)ξ∈Ξ of points of μ(F ). By hypothesis,
F has some base G consisting of cyclic sets. Hence, μ(F ) =

⋂{G : G ∈ ◦G }. If x
is a mixing of (xξ)ξ∈Ξ by (bξ)ξ∈Ξ then x belongs to every standard G in G (since
xξ ∈ G for ξ ∈ Ξ). Consequently, μ(F ) ⊃ mix(μ(F )) ⊃ μ(F ).

←: The monad μ(F ) is now a cyclic external set. Taking an infinitesimal
member F in F (i.e. F ⊂ μ(F )), note that F0 := mix(F ) ⊂ mix(μ(F )) ⊂ μ(F ).
Therefore, the internal set F0 is infinitesimal and lies in F . So, (∀stF ∈ F )(∃F0 ∈
F )(F0 = mix(F0) ∧ F ⊃ F0). By transfer, F has a cyclic base. �

4.9.3. Theorem. Let F be a standard filter on X↓. Put

F↑↓ := fil{F↑↓ : F ∈ F}.

Then mix(μ(F )) = μ(F↑↓), and F↑↓ is the finest cyclic filter coarser than F .

� Clearly, F↑↓ ⊂ F . By Theorem 4.9.2 μ(F↑↓) ⊃ μ(F ) and μ(F↑↓) ⊃
mix(μ(F )). Take x ∈ μ(F↑↓). Using the definition of monad and the properties
of mixing, obtain

(∀stF ∈ F )(∃(bξ)ξ∈Ξ)(∃(xξ)ξ∈Ξ)(∀ξ ∈ Ξ)(xξ ∈ F ∧ bξx = bξxξ).

Therefore,

(∀st finF0 ⊂ F )(∃(bξ)ξ∈Ξ)(∃(xξ)ξ∈Ξ)(∀F0 ∈ F0)
(∀ξ ∈ Ξ)(xξ ∈ F ∧ bξxξ = bξx).



Monads in General Topology 157

By idealization

(∃(bξ)ξ∈Ξ)(∃(xξ)ξ∈Ξ)(∀stF ∈ F )(∀ξ ∈ Ξ)(xξF ∧ bξxξ = bξx).

This means that there are some elements (xξ)ξ∈Ξ in μ(F ) such that x =
∑

ξ∈Ξ bξxξ,
i.e. x ∈ mix(μ(F )). Conclude that μ(F↑↓) = mix(μ(F )).

Now, let G be a cyclic filter satisfying G ⊂ F . Therefore, mix(μ(G )) = μ(G ) ⊃
mix(μ(F )) = μ(F↑↓). Consequently, G ⊂ F↑↓. �

4.9.4. Let x be an internal point of X↓. Define the standard filter (x) on X↓ as

(x) := ∗{U ⊂ X↓ : x ∈ U}.

In other words, (x) comprises exactly those standard subsets of X↓ that contain x.
A member x of X↓ is an essential point of X↓ (in symbols, x ∈ e(X)) provided that
(x)↑↓ is a proultrafilter on X↓.

4.9.5. Every point x of the monad of a standard proultrafilter F is essential.
Moreover,

F = (x)↑↓ = (x)↑↓ = fil{∗{U↑↓ : x ∈ U ∧ U ⊂ X↓}}.
� Since μ(F ) and (x) is an ultramonad, i.e., the monad of an ultrafilter;

therefore, (x) ⊃ F . Consequently, (x)↑↓ ⊃ F↑↓ = F . By 4.8.12 F = (x)↑↓.
From 4.8.5 it follows that (x)↑↓↑ = (x)↑. By 4.8.13 x is an essential point. Finally,
(x)↑↓ = F ↑↓ = F = (x)↑↓. �

4.9.6. The image of an essential point under an extensional mapping is an
essential point of the target space.

� Assume that x is an essential point of X↓ and f : X↓ → Y ↓ is an ex-
tensional mapping. There is a proultrafilter F satisfying x ∈ μ(F ). Clearly,
f(x) ∈ f(μ(F )) = μ(f(F )). Indeed, by idealization we have

y ∈ μ(f(F )) ↔ (∀stF ∈ F )(y ∈ f(F ))
↔ (∀st finF0 ⊂ F )(∃x)(∀F ∈ F0)(x ∈ F ∧ y = f(x))

↔ (∃x)(∀stF ∈ Fx ∈ F ∧ y = f(x)) ↔ (∃x ∈ μ(F ))(y = f(x))
↔ y ∈ f(μ(F )).

We are done on recalling 4.8.14. �
4.9.7. Assume that E is a standard set and X is a standard member of V(B).

Consider the product XE∧
inside V(B), with E∧ the standard name of E in V(B).

If x is an essential point of XE∧↓ then x↓(e) is an essential point of X↓ for all
standard e ∈ E.
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� Since x ∈ XE∧↓; therefore, [[x : E∧ → X ]] = 1, i.e. x↓ : E → X↓ and
[[x↓(e) = x(e∧)]] = 1 for all e ∈ E by the definition of the descent x↓.

Given a standard e ∈ E, consider the mapping sending x ∈ XE∧↓ to the point
x(e∧) in X↓. For x1, x2 ∈ XE∧↓ it is clear that

[[x1 = x2]] = [[(∀e ∈ E∧)(x1(e) = x2(e))]] =
∧

e∈E
[[x1(e∧) = x2(e∧)]]

≤ [[x1(e∧) = x2(e∧)]],

i.e. the above mapping is extensional. By 4.9.6 x(e∧) is an essential point of X↓.
We are done on recalling that x↓(e) = x(e∧) by the definition of descent. �

4.9.8. Let F be a cyclic filter on X↓, and let eμ(F ) := μ(F ) ∩ e(X) stand
for the set of essential points of the monad of F . Then eμ(F ) = eμ(F ↑↓).

� Take x ∈ eμ(F ). By definition, x belongs to the monad of some proultra-
filter G . Hence, μ(G ) ∩ μ(F ) �= ∅ and so G ⊃ F . By 4.8.10 G ↑↓ ⊃ F ↑↓ and
x ∈ μ(G ) ⊂ μ(F ↑↓).

If we now assume that x ∈ eμ(F↑↓) then there is an ultrafilter G on X inside
V(B) such that x ∈ μ(G ↓) and G ⊃ F ↑. Since F = F↑↓ ⊂ F ↑↓ ⊂ G ↓ by 4.9.7;
therefore, μ(F ) ⊃ μ(G ↓). Consequently, x ∈ eμ(F ). �

4.9.9. Let A be a subset of the descent X↓ in question. The set (X − A↑)↓,
denoted by Ac, is the procomplement or cyclic complement of A.

A point x in X↓ is proideal provided that x belongs to the procomplement of
each standard finite subset of X↓. The symbol p(X) stands for the set of proideal
points of X↓.

4.9.10. If X↓ lacks proideal points then X is a finite set inside V(B).

� By idealization, there is a standard finite set Y in X↓ satisfying Y e = ∅.
Hence, [[X − Y ↑ = ∅↑]] = 1, i.e. X = Y ↑. �

4.9.11. If X is an infinite set inside V(B) then the proideal points of X↓ com-
prise a cyclic monad. The descent of the cyclic filter with monad p(X) is the cofinite
filter on X inside V(B).

� The procomplements of finite subsets of X↓ comprise a filterbase. In-
deed, from (Y ∪ Z)↑↓ ⊃ Y ↑↓ ∪ Z↑↓ it follows that (Y ∪ Z)↑ ⊃ Y ↑ ∪ Z↑ and
[[X − (Y ∪ Z)↑ ⊂ X−(Y ↑∪Z↑)]] = 1. Hence, (Y ∪Z)c ⊂ (X − Y ↑)↓∩(X − Z↑)↓ =
Y c ∩ Zc. By Theorem 4.9.2 p(X) is a cyclic monad. Let pF stand for the filter
with monad p(X), i.e. the filter of procomplements of finite subsets of X↓. Assume
further that cfF (X) is the filter of cofinite subsets of X inside V(B) which is the
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cofinite filter on X by definition. By 4.9.4

[[Y ∈ cfF (X)]] = [[(∃Z ∈ Pfin(X))(Y ⊃ X − Z)]]

=
∨

A∈Pfin(X↓)
[[Y ⊃ X − A↑]] =

∨

A∈Pfin(X↓)
[[Y ⊃ Ac↑]]

=
∨

Z∈pF

[[Y ⊃ Z↑]] = [[Y ∈ pF
↑]].

Consequently, cfF (X) = pF ↑. �

4.10. Descending Compact and Precompact Spaces

In this section we apply cyclic monads to describing the descents of topological
spaces inside Boolean valued models of set theory. The results below follow the
ideas of the classical articles by Robinson [421] and Luxemburg [328].

For the sake of simplicity, we always consider a nonempty uniform space (X,U )
inside V(B). We also assume the standard environment: using nonstandard tools,
we consider B, X , U , etc. standard sets. As usual, we write x ≈ y whenever
(x, y) ∈ μ(U ↓).

4.10.1. The uniform space (X↓,U ↓) is procompact or cyclically compact pro-
vided that (X,U ) is compact inside V(B). A similar sense resides in the notion
of pro-total-boundedness and so on. The terms like “cyclic compactness” may be
encountered in several publications.

4.10.2. Theorem. For a standard space X the following are equivalent:
(1) X↓ is procompact;
(2) Every essential point of X↓ is nearstandard;
(3) Every essential ideal point of X↓ is nearstandard.

� (1) → (2): Let x be an essential point of X↓. Then x belongs to the monad
of the proultrafilter (x)↑↓. It is thus true inside V(B) that (x)↑ converges to some
member y of X . By the maximum and transfer principles, there is a standard point
y in X↓ satisfying (x)↑↓ ⊃ U ↑(y). Hence, μ((x)↑↓) ⊂ U ↓(y) and so x ≈ y. In other
words, x is a nearstandard point.

(2) → (3): Obvious.
(3) → (1): We have to demonstrate inside V(B) that each ultrafilter on X is an

adherent point.
Without loss of generality, assume that F is not a principal ultrafilter. In other

words, F is finer than the cofinite filter on X inside V(B). From 4.9.6 it follows that
μ(F ↓) ⊂ p(X). If x ∈ μ(F ↓) then F = (x)↑ by 4.9.8. Moreover, x is an essential
point. By hypothesis such a point is nearstandard, i.e. there is a standard point y
in X↓ satisfying U ↓(y) ∩ μ(F ↓) �= ∅. This implies that y is an adherent point of
F inside V(B). �
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4.10.3. It is easy from 4.10.2 that the Boolean valued test for procompactness
differs from its classical analog: “A compact space is a space consisting of nearstan-
dard points.” Procompact but not compact spaces are galore, providing a plenty
of inessential points.

We note also that the joint application of 4.10.2 and 4.9.7 allows us easily
to produce a nonstandard proof for a natural analog of Tychonoff’s Theorem for
a product of procompact spaces, the “descent of Tychonoff’s Theorem in V(B).”

4.10.4. A standard space is the descent of a totally bounded uniform space if
and only if its every essential point is prenearstandard.

� →: Let x be an essential point of X↓. Then (x)↑ is an ultrafilter inside
V(B) and so (x)↑ is a Cauchy filter on X for X is totally bounded inside V(B). The
descent of a Cauchy filter on X is a Cauchy filter on the descent of X . Therefore,
x belongs to the monad of a Cauchy filter and so x is prenearstandard.

←: Take an ultrafilter F on X inside V(B). The task is to show that F is
the Cauchy filter inside V(B). Take a point x from the monad of the descent F ↓ of
F . Then x is essential and so x is prenearstandard. Consequently, the microhalo
U ↓(x) of x is the monad of a Cauchy filter. It follows that F ↓ is a Cauchy filter. �

4.11. Proultrafilters and Extensional Filters

In 4.8 we have applied the monadology of infinitesimal analysis to study the
cyclic filters characteristic of Boolean valued topology. In this section we give some
tests for the monads of proultrafilters and extensional filters and discuss a few
relevant properties. Throughout this section we fix a complete Boolean algebra B
and the corresponding separated Boolean valued universe V(B).

4.11.1. Let X be a cyclic set which is the descent of some member of V(B). By
μd we denote the taking of the (discrete) monadic hull . In other words, μd(∅) := ∅

and, in case U is a nonempty subset of X , we assume that μd(U) is the standard-
ization of the external filter of supersets of U :

x ∈ μd(U) ↔ ((∀stV ⊂ X)U ⊂ V → x ∈ U).

By analogy we define the cyclic monadic hull μc as follows:

x ∈ μc(U) ↔ (∀stV )(V = V ↑↓ ∧ V ⊂ X ∧ U ⊂ V → x ∈ V ).

In other words, if U is nonempty then the cyclic monadic hull μc(U) of U is the
monad of the cyclic hull of the standardization of the filter of supersets of U .
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4.11.2. The cyclic monadic hull of a set U is the cyclic hull of the monadic
hull of U ; in symbols,

μc(U) = mix(μd(U)).

� Assume that U �= ∅ and U is a standard set satisfying V ⊃ mix(μd(U)).
Using 4.9.3, note that V ⊃ W↑↓ for some member W of ∗{Y ⊂ X : Y ⊃ U}.
Consequently, V ⊃ μc(U). It follows that μc(U) ⊂ mix(μd(U)) since the rightmost
set is a monad.

Conversely, if V ⊃ μc(U) and V is standard then V includes the cyclic hull of
a superset of U and so V ⊃ U . Hence V ⊃ μ((∗{W : W ⊃ U})↑↓) and we are done
on recalling 4.9.3. �

4.11.3. Since X is cyclic, X is the descent of the ascent of X . Consequently,
each proultrafilter on X is the descent of some ultrafilter on the ascent X↑ of X .

4.11.4. Theorem. A filter F is a proultrafilter on X if and only if the monad
μ(F ) of F is cyclic and μ(F ) is easy to catch by each cyclic subset of X : either
μ(F ) ⊂ U or μ(F ) ⊂ X − U for every cyclic set U in X .

� →: We are to prove the following:

(F is a proultrafilter )
↔ μ(F ) = mix(μ(F )) ∧ (∀stV )(V = V ↑↓ → μ(F ) ⊂ V ∨ μ(F ) ⊂ V ′).

Given a standard subset V of X , note that μ(F ) ∩ V = ∅, or μ(F ) ∩ V �= ∅. In
the first case V ′ := X − V ∈ F . In the second case we observe the filter G whose
monad is μ(F ) ∩ V . Clearly, if F is a proultrafilter and V is a cyclic set then
G = F by Theorem 4.9.2. Hence, V ∈ F .

←: Take some cyclic filter G finer than F . Obviously, G ∈ G → G′ /∈ F
(otherwise we would have G′ ⊃ μ(F ) ⊃ μ(G )). Hence, G ∈ F , implying that
G = F . �

4.11.5. Theorem. LetF be a cyclic filter onX . The following are equivalent:
(1) F is a proultrafilter;
(2) If E is a finite set of subsets of X then either (

⋃
E )′ ∈ F or

E↑↓ ∈ F for some E ∈ E ;
(3) If E is a finite family of cyclic subsets of X then F contains either

a member of E or the complement of each member of E ;
(4) If U is an arbitrary set then either U↑↓ ∈ F or U ′ ∈ F ;
(5) If V is an arbitrary cyclic set then either V ∈ F or V ′ ∈ F .

� To prove the implication (1) → (2), use the transfer principle and the test
of Theorem 4.11.4.
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Assume that F is a standard filter and E is a standard finite set of standard
subsets of X . The two cases are possible: μ(F )

⋂⋃
E = ∅ or μ(F )

⋂⋃
E �= ∅.

In the first case it is obvious that (
⋃

E )′ belongs to F . In the second case there is
some E in E satisfying E ∩ μ(F ) �= ∅. Therefore, E↑↓ ∩ μ(F ) �= ∅. Since E↑↓ is
standard, by Theorem 4.11.4 conclude that E↑↓ ⊃ μ(F ) and so E↑↓ ∈ F .

The implications (2) → (3) → (4) → (5) raise no doubts. The implication
(5) → (1) ensues from Theorem 4.11.4 by transfer. �

4.11.6. Let F be a filter on X . The filter F↑↓ is a proultrafilter if and only if
for each subset U ofX either U↑↓ ∈ F or there is some F inF satisfying F↑↓ ⊂ U ′.

4.11.7. Let F be a filter on X . For F to be a proultrafilter on X it is
necessary and sufficient that F = (F̈ )↑↓, where F̈ is the grill of F , i.e.

U ∈ F̈ ↔ (∀F ∈ F )(U ∩ F �= ∅).

� Assume that F is a proultrafilter. Clearly, F ⊂ F̈ and so F = F↑↓ ⊂
(F̈ )↑↓. If V ∈ (F̈ )↑↓ then V ⊃ U↑↓ for some U in F̈ . Moreover, U↑↓ belongs to
F by (4). Consequently, V ∈ F .

Assume now that F = (F̈ )↑↓. Since each member of the right side is a superset
of a cyclic set by definition; therefore, F is a cyclic filter.

Let U be an arbitrary cyclic set. If U ∩ F = ∅ for some F ∈ F then U ′ ∈ F .
If U ∩ F �= ∅ for all F ∈ F then U belongs to (F̈ )↑↓ and so U ∈ F . From (5) it
follows that F is a proultrafilter. �

4.11.8. The family (F̈ )↑↓ in 4.11.7 is the cyclic grill or (rarely) progrill of F .
The meaning of this concept as well as the way of its application becomes clear

in regard to the ascending and descending technique of Boolean valued analysis.
Recall that if E is a family of nonempty subsets of X↑ inside V(B) then the descent
E ↓ of E is defined by the formula

U ∈ E ↓ ↔ U ⊂ X ∧ (∃E ∈ E↓)(U ⊃ E↓).

4.11.9. Let F be a filter with grill F̈ inside V(B). Then

(F̈ )↓ = (F̈ ↓)↑↓.

� Using the rules for calculating truth values inside V(B), note that

[[U↑ ∈ F̈ ]] =
∧

F∈F↓
[[A↑ ∩ F↑ �= ∅ ]],

where A is a subset of X . �
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4.11.10. An extensional filter F is a proultrafilter if and only if the cyclic grill
of F is a filter.

� Clearly, F is a proultrafilter if and only if the descent F ↑ coincides with
its grill inside V(B). The last happens if and only if the grill of F ↑ is a filter inside
V(B). We are done on appealing to 4.11.9. �

4.11.11. A point x is essential if and only if x can be separated by a standard
set from every standard cyclic set not containing x.

� In symbols, the claim reads:

x ∈ eX ↔ (∀U = U↑↓)(x /∈ U → (∃V = V ↑↓) x ∈ V ∧ U ∩ V = ∅).

Assume first that x is an essential point and U is a standard cyclic set satisfying
x /∈ U . By 4.11.3 the complement U ′ of U belongs to the filter (x)↑↓ generated by
cyclic supersets of x (since (x)↑↓ is a proultrafilter by hypothesis). Hence, there is
some V such that x ∈ V and V ↑↓ ∩ U �= ∅.

Assume now that the separatedness condition is fulfilled. Then (x)↑↓ meets
the conditions of Theorem 4.11.4. Indeed, let U = U↑↓ be an arbitrary cyclic set.
We are to check that either U or U ′ belongs to (x)↑↓. If x ∈ U then U ∈ (x)↑↓
by definition. If x ∈ U ′ then V ∩ U = ∅ for some V ∈ (x)↑↓ by hypothesis; i.e.,
V ⊂ U ′ and U ′ ∈ (x)↑↓. �

4.11.12. If the monad of an ultrafilter F has an essential point then μ(F ) ⊂
eX and, moreover, F↑↓ is a proultrafilter.

� Assume that V is an arbitrary cyclic set and x ∈ μ(F ) ∩ eX . If x ∈ V
then V ∩ μ(F ) �= ∅. Hence, V ∈ F and so V ∈ F↑↓. If x /∈ V then x ∈ U and
U ∩ V = ∅ for some cyclic set U by 4.11.11. Clearly, U ∈ F↑↓. Therefore, V ′ ∈
F↑↓. Recalling 4.11.5, conclude that F↑↓ is a proultrafilter. As was mentioned,
this implies μ(F )↑↓ ⊂ eX . Since μ(F↑↓) = mix(μ(F )), we are done by 4.9.3. �

4.11.13. Theorem. A filter F is extensional if and only if the monad of F
is the cyclic monadic hull of its essential points.

� In symbols, the claim reads:

(F is extensional) ↔ μ(F ) = mix(μd(eμ(F ))).

The fact that F is extensional may be rewritten as follows: [[ F ↑ is a filter
on X↑ ]] = 1. By the Boolean valued transfer principle, there is some set A of
proultrafilters on X such that

[[F ∈ F ↑ ]] =
∧

A∈A

[[F ∈ A ↑ ]].
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Given a cyclic set F in X , we thus have

F ∈ F ↑↓ ↔ F ∈
⋂

A∈A

A ↑↓.

If now F is cyclic then

F ⊃ μ(F ↑↓) ↔ F ⊃ μd

( ⋃

A∈◦A

μ(A ↑↓)
)

,

with ◦A the standard part of A, i.e. the external set of standard members of A.
Using 4.11.2, note that

μ(F ↑↓) = mix
(

μ

( ⋃

A∈◦A

μ(A ↑↓)
))

.

It suffices to recall that the monad of every proultrafilter consists of essential points
by 4.9.5 and we may take as A the set of ultrafilters finer than F . �

4.11.14. A standard set U is cyclic if and only if U coincides with the cyclic
monadic hull of the set of essential points of U .

4.11.15. Let F be a filter on X , and let b be a member of the Boolean
algebra B. Assume further that bF stands for the image of F under multiplication
by b. Then

b(bF )↑ = bF ↑.

� Proceed by calculating the truth values

[[ (bF )↑ = F ↑ ]] ≥
∧

F∈F

[[ (bF )↑ ∈ F ↑ ]] ≥
∧

F∈F

[[ (bF )↑ = F↑ ]]

≥
∧

F∈F

∧

x∈X
[[ bx ∈ F↑ ]] ≥

∧

F∈F

∧

x∈X
[[ bx = x ]] ≥ b,

which completes the proof. �
4.11.16. Assume that F and G are filters on the same set inside V(B) and

b ∈ B. Then
bF = bG ↔ bF ↓ = bG ↓.

� If [[ F ⊂ G ]] ≥ b then to each F ∈ F ↓ there is some G in G ↓ satisfying

[[F↑ ⊃ G↑ ]] = [[ F ⊃ G ]] ≥ b
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by the maximum principle. In other words, bF↑ ⊃ bG↑. Hence, bF ⊃ bG for all
cyclic F and G. Consequently, bF ↓ ⊂ bG ↓.

Assume now that bF ↓ ⊂ bG ↓. Using 4.11.15, proceed successively as follows:

bF ↓ ⊂ bG ↓ → (bF ↓)↑ ⊂ (bG ↓)↑

→ b(bF ↓)↑ ⊂ b(bG ↓)↑ → b(bF ↓↑) ⊂ b(bG ↓↑) → bF ⊂ bG .

Finally, [[ F ⊂ G ]] ≥ b ↔ bF ↓ ⊂ bG ↓, which completes the proof. �
4.11.17. Theorem. Let (Fξ)ξ∈Ξ be a standard family of extensional filters

and let (bξ)ξ∈Ξ be a standard partition of unity. A filterF is the mixing of (Fξ)ξ∈Ξ

by (bξ)ξ∈Ξ if and only if

(∀stξ ∈ Ξ) bξμ(F ) = bξμ(Fξ).

� By definition, F belongs to the mixing
∑

ξ∈Ξ bξFξ provided that there is
a family (Fξ)ξ∈Ξ such that Fξ ∈ Fξ (ξ ∈ Ξ) and, moreover, F ⊃ ∑ξ∈Ξ bξFξ. Since
the members of the family (Fξ)ξ∈Ξ are extensional, by 4.8.1 and 4.8.2 conclude
that F is extensional too and the descent F ↑ is the mixing of (F ↑ξ )ξ∈Ξ by the
same weights. Since V(B) is a separated universe, we use 4.11.16 and 4.1.6 (5) to
derive

F ↑ =
∑

ξ∈Ξ

bξF
↑
ξ

↔ (∀stξ ∈ Ξ) bξF ↑ = bξF
↑
ξ

↔ (∀stξ ∈ Ξ) bξF ↑↓ = bξF
↑↓
ξ

↔ (∀stξ ∈ Ξ) bξF = bξFξ ↔ (∀stξ ∈ Ξ)μ(bξF ) = μ(bξFξ)
↔ (∀stξ ∈ Ξ) bξμ(F ) = bξμ(Fξ).

The proof is complete. �
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Infinitesimals and Subdifferentials

Infinitesimal analysis finds various applications in many areas of mathematics.
In this chapter we discuss infinitesimals in subdifferential calculus, a branch of
functional analysis which stems from the theory of extremal problems.

Convexifying plays a key role in optimization theory. The point is that we
have the versatile and handy tools of convex analysis which have demonstrated
their power and efficiency in the theoretical analysis and numerical solution of
convex programs.

Local approximations to arbitrary sets and functions are the topic of non-
smooth analysis which brings about a plenty of useful but complicated and often
cumbersome formulas. The meaning of the new notions such as hypertangents,
Rockafellar limits, and Clarke derivatives is difficult to comprehend from their for-
mal definitions.

Infinitesimal analysis offers profound and effective simplifications by “killing
quantifiers ” which makes the perception of standard constructions easy and pleas-
ant. We try to demonstrate this with providing an infinitesimal classification for
one-sided tangents to arbitrary sets and functions. It is worth emphasizing that
many constructions of this chapter have a wider range of applicability than subd-
ifferential calculus and nonsmooth analysis.

5.1. Vector Topology

Studying local approximations involves vector topologies whose monads are the
topic of this section. Unless otherwise stated, we assume the standard environment
in the sequel.

5.1.1. Let U be a standard star-like set in a vector space, i.e., [0, 1] U ⊂ U .
The set U absorbs a standard set V if and only if αV ⊂ U for some (and hence all)
positive infinitesimal α.
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� Since U absorbs V , there is some β > 0 satisfying βV ⊂ U by definition.
Since U and V are both standard, by transfer we conclude that (∃ stβ > 0) βV ⊂ U .
If α > 0 and α ≈ 0 then αV = α/β(βV ) ⊂ α/βU ⊂ U . The remaining claim is
obvious. �

5.1.2. Let x be a standard element of a standard vector space X . The external
set {αx : α > 0, α ≈ 0} is the conatus or direction of x in X . The term “conatus”
was minted by Hobbes [178, p. 173] who wrote that conatus “is motion through
a space and a time less than any given, that is, less than any determined whether
by exposition or assigned by number, that is, through a point.” The collection of
all conatus of standard vectors of X is the conatus of X ; in symbols, cnt(X).

5.1.3. A standard star-like set U is absorbing in X if and only if U includes
the conatus cnt(X) of X .

5.1.4. Let X be a standard vector space over the basic field F, and let N be
a standard filter on X . There is a vector topology τ on X satisfying N = τ(0)
if and only if the monad μ(N ) of N includes the conatus cnt(X) and, moreover,
μ(N ) is an external ≈F-submodule of X .

Here, as usual, ≈F := {t ∈ F : (∃ stn ∈ N)|t| ≤ n} is the limited part of the
basic field F endowed with the natural structure of an external ring. Recall that F

is, as usual, either C, the complex field or R, the reals.
� →: Since addition is continuous at zero, μ(N )+μ(N ) = μ(N ); i.e., μ(N )

is an external subgroup of X . Take α ∈ ≈F and let G be a base for N consisting of
balanced sets. If n ∈ ◦N satisfies |α| ≤ n then α/n x ∈ G for G ∈ ◦G and x ∈ μ(N ).
Therefore, α/nx ∈ ⋂{G : G ∈ ◦G } = μ(G ) = μ(N ); hence, αx ∈ nμ(N ) = μ(N );
and, finally, αμ(N ) = μ(N ) for α ∈ ≈F. Since N has a base of absorbing sets;
therefore, μ(N ) ⊃ cnt(X) by 5.1.3.

←: Take U ∈ ◦N . By 4.1.4, this means that U ⊃ μ(N ). If W is an infin-
itesimal member of N then the balanced hull V of W is infinitesimal too (since
V ⊂ μ(N )). Moreover, V + V ⊂ μ(N ) + μ(N ) ⊂ μ(N ) ⊂ U . Hence,

(∀ stU ∈ N )(∃V ∈ N )(V is balanced ∧ V + V ⊂ U).

By transfer, conclude that N +N = N and, moreover, N has a base of balanced
sets. By 5.1.3, observe also that N consists of standard balanced sets. Therefore,
N determines a vector topology on X . �

5.1.5. To each point x of the monad μ(X) := μ(τ(0)) of a topological vector
space X there is an unlimited natural number N satisfying Nx ∈ μ(X).

� If V is a standard neighborhood of zero and n ∈ ◦N, then (see 5.1.4) the
set A(n, V ) := {m ∈ N : m ≥ n ∧ mx ∈ V } is nonempty (since μ(X) ⊂ V ). By
transfer, there is an element N satisfying (∀ stn ∈ N)(∀ stU ∈ τ(0))(N ∈ A(n, V )).
This N is obviously a sought element. �
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5.1.6. It is sometimes convenient considering nearvector topologies in applica-
tions. Such a topology τ on X is characterized by the following properties: first,
multiplication of the vectors of X by every scalar of the basic field is continuous
and, second, addition is also jointly continuous. If τ is a nearvector topology on X
then the couple (X, τ), as well as X itself, is a neartopological vector space. This
notion is natural as is clear from the following easy proposition.

5.1.7. Let X be a vector space over F and let N be a filter on X . There is
a nearvector topology τ on X such that τ(0) coincides with N if and only if the
monad μ(N ) of N is an external vector space over the external field of standard
scalars ◦F.

5.1.8. In view of 5.1.7 we note that the monad of the neighborhood filter of
the origin of a nearvector space is an external convex set. Every internal convex
set U obviously contains arbitrary convex combinations of its elements: Given
arbitrary finitely positive scalars α1, . . . , αN with sum unity and a set {u1, . . . , uN}
of elements of U we have

∑N
k=1 αkuk ∈ U . Here N is an arbitrary internal element

of N. This property is referred to as hyperconvexity. Observe that an external
convex set may fail to be hyperconvex since it is impossible to use induction on
internal naturals in the external universe. The corroborating examples are easy
from the following useful proposition.

5.1.9. A vector topology is locally convex if and only if the monad of its filter
of zero neighborhoods is hyperconvex.

� →: Each standard neighborhood of a locally convex topology contains a stan-
dard convex and, hence, hyperconvex neighborhood. The intersection of hypercon-
vex external sets is hyperconvex too.

←: Every standard neighborhood of zero contains the convex hull of every in-
finitesimal neighborhood of zero (since this hull is included in the monad of the
neighborhood filter of zero and this monad is hyperconvex by hypothesis). Con-
clude by transfer that each neighborhood of zero contains a convex neighborhood
of zero. �

5.1.10. Closing this section, we deviate slightly from the mainstream of exposi-
tion to observe that infinitesimal analysis of topological vector spaces and operators
between them rests on studying the interlocation of various types of point. This
relates to nearstandard and prenearstandard points as well as to new notions of
a “bornological nature.” We list a few relevant facts.

5.1.11. Let (X, τ) be a locally convex space, and let x be an internal point
of X . The following are equivalent:

(1) αx ≈ τ0 for every infinitesimal α ∈ F;
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(2) x ∈ ⋂

V ∈τ(0)

⋃

n∈◦N

nV ;

(3) p(x) ∈ ≈F for every standard continuous seminorm p (a member of
the spectrum of τ).

� (1) ↔ (2): Proceed by the Nelson algorithm:

(∀α ∈ F)(α ≈ 0 → αx ≈ 0)
↔ (∀ stV ∈ τ(0))(∀α)(∀ stn ∈ N)(|α| ≤ n−1 → αx ∈ V )
↔ (∀ stV ∈ τ(0))(∀α)(∃ stn ∈ N)(|α| ≤ n−1 → αx ∈ V )

↔ (∀ stV ∈ τ(0))(∃ stn ∈ N)(x ∈ nV ).

(1) → (3): If p is a continuous seminorm then |t|p(x) = p(|t|x) ≈ 0 for all
t ∈ ≈R by 4.2.7. Hence, p(x) ∈ ≈R.

(3) → (1): Given a standard continuous seminorm p we have p(αx) = |α|p(x)
≈ 0 whenever |α| ≈ 0. This means that αx is infinitesimal in the topology τ , which
completes the proof. �

5.1.12. A point x satisfying one and hence all of the equivalent conditions
5.1.11 (1)–(3) is limited or finite in (X, τ). In this event we write x ∈ ltd(X, τ)
or simply x ∈ ltd(X) whenever omitting the topology would entail no confusion.
The external set ltd(X) is the limited or finite part of X . More exact terms like
“τ -limited point” are also in common parlance.

5.1.13. Let X be a standard locally convex space. A standard set U in X is
bounded if and only if U consists of limited points of X ; i.e., U ⊂ ltd(X).

� →: If U is bounded and p is a continuous seminorm on X then there is
a standard t ∈ ◦

R satisfying p(U) ≤ t. Given α ≈ 0 and x ∈ U , we thus have
p(αx) ≤ tα, i.e., αx ≈ 0.

←: We now use the sequential test for a set to be bounded for the sake of
diversity.

Let (αn) be a standard vanishing sequence of scalars, and let (un) be a standard
sequence of points of U . Check that αnun → 0. To this end, let N be an unlimited
natural. Then αN ≈ 0 and so αNuN ≈ 0 by hypothesis and 5.1.11 (1). �

5.1.14. A point x of a space X is bounded , in symbols x ∈ bd (X), provided
that there is a standard bounded set containing x.

5.1.15. Let X be a separated locally convex space. The following are equiva-
lent:

(1) X is normable;
(2) bd (X) = ltd(X);
(3) μ(X) ⊂ bd (X).
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� (1) → (2): Obviously, bd (X) ⊂ ltd(X) with no hypothesis on X . If X is
normable then ltd(X) = {x ∈ X : ‖x‖ ∈ ≈

R}, where ‖ · ‖ is a suitable norm.
Therefore, ltd(X) lies for instance in the unit ball BX := {x ∈ X : ‖x‖ ≤ 1}.

(2) → (3): Since μ(X) is always a subset of ltd(X), the claim is obvious.
(3) → (1): Let U be an infinitesimal neighborhood of zero in X . By hypothesis,

to each x ∈ U there is a standard set V such that V is bounded and x ∈ V . By
idealization U lies in some bounded set. We are done on appealing to the celebrated
Kolmogorov normability test. �

5.1.16. The above proposition shows in particular that if X is a general not
necessarily normable space then X has more limited points than those bounded
whereas ltd(X) = bd (X) in a normable space X as follows from 5.1.15.

5.2. Classical Approximating and Regularizing Cones

Nonsmooth analysis intensively seeks convenient methods of local one-sided
approximation to arbitrary functions and sets. The starting point of this search is
Clarke’s [263] definition of a subdifferential for a Lipschitz function.

The tangent cones and corresponding derivatives under study in nonsmooth
analysis are often defined by cumbersome and bulky formulas. In this section we
apply infinitesimal analysis as a method of “killing quantifiers,” i.e. diminishing
the complexity of formulas. Routinely assuming the standard environment (see
4.1.9–4.6.5), we show that the Bouligand, Clarke, and Hadamard cones as well as
relevant regularizing cones result in fact from explicit infinitesimal constructions
appealing straightforward to infinitely close points and directions.

5.2.1. Let X be a real vector space. Specifying some fixed nearvector topology
σ := σX in X with Nσ := σ(0) the neighborhood filter of zero, we also distinguish
a nearvector topology τ with Nτ := τ(0). As usual, we introduce the infinite
proximity on X that stems from the uniformity on X associated with σ by putting
x1 ≈ σx2 ↔ x1 − x2 ∈ μ(Nσ). We do the same with τ . Moreover, we will assume
that σ is a vector topology. For the monad of the neighborhood filter σ(x) we use
the symbol μ(σ(x)) while denoting the monad μ(σ(0)) simpler by μ(σ).

5.2.2. Given a subset F of X and a point x′ in X , subdifferential calculus
deals with the following Hadamard, Clarke, and Bouligand cones:

Ha(F, x′) :=
⋃

U∈σ(x′)
α′

intτ

( ⋂

x∈F∩U
0<α≤α′

F − x

α

)

;

Cl(F, x′) :=
⋂

V ∈Nτ

⋃

U∈σ(x′)
α′

⋂

x∈F∩U
0<α≤α′

(
F − x

α
+ V

)

;
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Bo(F, x′) :=
⋂

U∈σ(x′)
α′

clτ

( ⋃

x∈F∩U
0<α≤α′

F − x

α

)

,

where, as usual, σ(x′) := x′ + Nσ. If h ∈ Ha(F, x′) then we sometimes say that F
is epi-Lipschitz at x′ in the direction of h.

Obviously,
Ha(F, x′) ⊂ Cl(F, x′) ⊂ Bo(F, x′).

5.2.3. We also distinguish the hypertangent cone, the cone of feasible directions
and the contingency of F at x′ by the following relations:

H(F, x′) :=
⋃

U∈σ(x′)
α′

⋂

x∈F∩U
0<α≤α′

F − x

α
;

Fd(F, x′) :=
⋂

α′>0

F − x′

α′
;

K(F, x′) :=
⋂

α′
clτ

( ⋃

0<α≤α′

F − x′

α

)

.

It stands to reason to assume x′ ∈ F for the sake of brevity. We then may say
that H(F, x′) and K(F, x′) are the Hadamard and Bouligand cones when τ or σ is
the discrete topology respectively. In the sequel we thus assume that x′ ∈ F and
use the following abbreviations to save space:

(∀•x)ϕ := (∀x ≈ σx
′)ϕ := (∀x)(x ∈ F ∧ x ≈ σx

′) → ϕ,

(∀•h)ϕ := (∀h ≈ τh
′)ϕ := (∀h)(h ∈ X ∧ h ≈ τh

′) → ϕ,

(∀•α)ϕ := (∀α ≈ 0)ϕ := (∀α)((α > 0 ∧ α ≈ 0) → ϕ).

The quantifiers ∃•x, ∃•h, and ∃•α are defined by natural duality as follows

(∃•x)ϕ := (∃x ≈ σx
′)ϕ := (∃x)(x ∈ F ∧ x ≈ σx

′) ∧ ϕ,

(∃•h)ϕ := (∃h ≈ τh
′)ϕ := (∃h)(h ∈ X ∧ h ≈ τh

′) ∧ ϕ,

(∃•α)ϕ := (∃α ≈ 0)ϕ := (∃α)(α > 0 ∧ α ≈ 0) ∧ ϕ.

We now establish that the above cones admit simple descriptions on using
infinitesimals.
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5.2.4. The Bouligand cone is the standardization of the ∃∃∃-cone; i.e.,
h′ ∈ Bo(F, x′) ↔ (∃•x)(∃•α)(∃•h)(x+ αh ∈ F )

for a standard point h′.
� From the definition of the Bouligand cone it follows that

h′ ∈ Bo(F, x′)
↔ (∀U ∈ σ(x′))(∀α′ ∈ R)(∀V ∈ Nτ )(∃x ∈ F ∩ U)

(∃ 0 < α ≤ α′)(∃h ∈ h′ + V )(x+ αh ∈ F )
↔ (∀U)(∀α′)(∀V )(∃x)(∃α)(∃h)

(x ∈ F ∩ U ∧ h ∈ h′ + V ∧ 0 < α ≤ α′ ∧ x+ αh ∈ F ).

By transfer,

h′ ∈ Bo(F, x′) ↔ (∀ stU)(∀ stα′)(∀ stV )(∃ stx)(∃ stα)(∃ sth)
(x ∈ F ∩ U ∧ h ∈ h′ + V ∧ 0 < α ≤ α′ ∧ x+ αh ∈ F ).

By idealization,

h′ ∈ Bo(F, x′) → (∃x)(∃α)(∃h)(∀ stU)(∀ stα′)(∀ stV )
(x ∈ F ∩ U ∧ h ∈ h′ + V ∧ 0 < α ≤ α′ ∧ x+ αh ∈ F

→ (∃x ≈ σx
′)(∃α ≈ 0)(∃h ≈ τh

′)(x+ αh ∈ F )
→ (∃•x)(∃•α)(∃•h)(x+ αh ∈ F ).

Assume conversely that a standard element h′ belongs to the standardization
of the “∃∃∃-cone.” Since every standard element of a standard filter contains the
monad of this filter; therefore,

(∀ stU ∈ σ(x′))(∀ stα′ ∈ R)(∀ stV ∈ Nτ )
(∃x ∈ F ∩ U)(∃ 0 < α < α′)(∃h ∈ h′ + V )(x+ αh ∈ F ).

By transfer, h′ ∈ Bo(F, x′), which completes the proof. �
5.2.5. Proposition 5.2.4 may be rewritten as

Bo(F, x′) = ∗{h′ ∈ X : (∃•x)(∃•α)(∃•h)(x+ αh ∈ F )}
with ∗ standing for standardization. This leads to a more impressive notation:

∃∃∃(F, x′) := Bo(F, x′).

We will proceed likewise in the sequel without circumlocution.
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5.2.6. The Hadamard cone is the standardization of the ∀∀∀-cone:

Ha(F, x′) = ∀∀∀(F, x′).

In other words,

h′ ∈ Ha(F, x′) ↔ (x′ + μ(σ)) ∩ F + μ(R+)(h′ + μ(τ)) ⊂ F,

whenever h′, F , and x′ are standard, with μ(R+) the monad comprising positive
infinitesimals in R.

� The claim ensues from 5.2.4 by duality on forgetting the presence of F in
∃•x, which is by all means legitimate. �

5.2.7. The above implies also that

h′ ∈ Ha(F, x′) ↔ (∀•x)(∀•α)(x+ αh′ ∈ F ),
h′ ∈ K(F, x′) ↔ (∃•α)(∃• h)(x′ + αh ∈ F ).

5.2.8. If h′, F , and x′ are standard then, assuming weak idealization, the
following are equivalent:

(1) h′ ∈ Cl(F, x′);
(2) there are infinitely small U ∈ σ(x′), V ∈ Nτ , and α

′ > 0 satisfying

h′ ∈
⋂

0<α≤α′
x∈F∩U

(
F − x

α
+ V

)

;

(3) (∃U ∈ σ(x′))(∃α′)(∀x ∈ F ∩ U)(∀ 0 < α ≤ α′)(∃h ≈ τh
′)

(x+ αh ∈ F ).
� Deciphering the definition and using obvious abbreviations, note that

h′ ∈ Cl(F, x′)
↔ (∃V )(∃U)(∃α′)(∀x ∈ F ∩ U)(∀ 0 < α ≤ α′)(∃h ∈ h′ + V )

(x+ αh ∈ F ).

By transfer and weak idealization, infer

h ∈ Cl(F, x′) → (∀ stV )(∃ stU)(∃ stα′)(∀x ∈ F ∩ V )
(∀ 0 < α ≤ α′)(∃h ∈ h′ + V )(x+ αh ∈ F )

→ (∀ st{V1, . . . , Vn})(∃ stU)(∃ stα′)(∃ stV )(∀ k := 1, . . . , n)
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Vk ⊃ V ∧ (∀x ∈ F ∩ U)(∀ 0 < α ≤ α′)(∃h ∈ h′ + V )(x+ αh ∈ F )
→ (∃U)(∃α′)(∃V )(∀ stV ′)V ′ ⊃ V ∧ (∀x ∈ F ∩ U)

(∀ 0 < α ≤ α′)(∃h ∈ h′ + V )(x+ αh ∈ F ).

From (1) it is now easy that there are an infinitesimal α and some V ∈ Nτ ,
V ⊂ μ(τ) U ∈ σ(x′), U ⊂ μ(σ) + x′ meeting (2) and hence (3).

Conversely, if (3) holds then from the definition of ≈τ obtain

(∀ stV )(∃U)(∃α′)(∀x ∈ F ∩ U)(∀ 0 < α ≤ α′)(∃h ∈ h′ + V )
(x+ αh ∈ F ).

By transfer, h′ ∈ Cl(F, x′), which ends the proof. �
5.2.9. The Clarke cone is the ∀∀∃-cone

Cl(F, x′) = ∀∀∃(F, x′)

under the assumption of strong idealization. In other words,

h′ ∈ Cl(F, x′) ↔ (∀•x)(∀•α)(∃•h)(x+ αh ∈ F ).

� Take h′ ∈ Cl(F, x′). Choose x ≈σ x′ and α > 0, α ≈ 0 arbitrarily. To
each standard member V of the neighborhood filter Nτ , by transfer there is some
h satisfying h ∈ h′ + V and x+ αh ∈ F . By idealization,

(∀stV )(∃h)(h ∈ h′ + V ∧ x+ αh ∈ F )
→ (∃h)(∀stV )(h ∈ h′ + V ∧ x+ αh ∈ F ) → (∃•h)(x+ αh ∈ F ),

i.e., h′ ∈ ∀∀∃(F, x′).
Given h′ ∈ ∀∀∃(F, x′), take an arbitrary standard member V of the neighbor-

hood filter Nτ , some infinitesimal neighborhood U of x′, and a positive infinitesi-
mal α′. By hypothesis,

(∃x ∈ F ∩ U)(∀0 < α ≤ α′)(x+ αh ∈ F )

for some h ≈τ h
′. In other words,

(∀stV )(∃U)(∃α′)(∀x ∈ F ∩ U)(∀ 0 < α ≤ α′)(∃h ∈ h′ + V )(x+ αh ∈ F ).

By transfer, conclude that h′ ∈ Cl(F, x′). �
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5.2.10. We now apply the above “infinitesimal” test for the members of the
Clarke cone to deducing its basic (and well-known) property. A more general state-
ment will appear below.

5.2.11. The Clarke cone at each point of an arbitrary set in a topological
vector space is convex and closed.

� By transfer, we may assume the standard environment in which all param-
eters (space, topology, set, etc.) are standard.

To prove closure, take h0 ∈ clτ Cl(F, x′). Given a standard member V of the
neighborhood filter Nτ and standard elements V1, V2 ∈ Nτ satisfying V1 + V2 ⊂ V ,
find a standard element h′ ∈ Cl(F, x′) such that h′ − h0 ∈ V ′. Moreover, for all
x ≈τ x

′ and α > 0, α ≈ 0 there is some h such that h ∈ h′ + V2 and x + αh ∈ F .
Obviously, h ∈ h′ + V2 ⊂ h0 + V1 + V2 ⊂ h0 + V and so h0 ∈ Cl(F, x′).

To prove convexity it suffices to note that μ(τ) + μ(R+)μ(τ) ⊂ μ(τ), since
(x, α, h) �→ x+ αh is a continuous mapping. �

5.2.12. Assume that θ is a vector topology and θ ≥ τ . Then

∀∀∃(clθF, x′) ⊂ ∀∀∃(F, x′).

Moreover, if θ ≥ σ then

∀∀∃(clθF, x′) = ∀∀∃(F, x′).

� Let h′ ∈ ∀∀∃(clθF, x′) be a standard element of the cone in question. Choose
elements x ∈ F and α > 0 such that x ≈σ x′ and α ≈ 0. Clearly, x ∈ clθF .
Hence, x+ αh ∈ clθF for some h ≈τ h

′. Consider an infinitely small neighborhood
W included in μ(θ). The neighborhood αW is also an element of θ(0). Thus,
x′′−(x+αh) ∈ αW for some x′′ ∈ F . Put h′′ := (x′′−x)/α. Obviously, x+αh′′ ∈ F
and αh′′ ∈ αh+ αW . Therefore,

h′′ ∈ h+W ⊂ h′ + μ(τ) +W ⊂ h′ + μ(τ) + μ(θ) ⊂ h′ + μ(τ) + μ(τ) ⊂ h′ + μ(τ);

i.e., h′′ ≈τ h
′. Hence, h′ ∈ ∀∀∃(F, x′).

Assume now that θ ≥ σ and h′ ∈ ∀∀∃(F, x′). Choose an arbitrary infini-
tesimal α and an element x ∈ clθF such that x ≈σ x′. Find x′′ ∈ F satisfying
x − x′′ ∈ αW , with W ⊂ μ(θ) an infinitesimal symmetric neighborhood of the
origin in θ. Since θ ≥ σ; therefore, μ(θ) ⊂ μ(σ), i.e. x − x′′ ∈ μ(θ) ⊂ μ(σ) or, in
other words, x ≈σ x

′ ≈σ x
′′. Considering h′ standard, note that x′′ + αh ∈ F for

some h ≈σ h
′ by definition. Putting h′′ := (x′′ − x)/α+ h, infer

h′′ ∈ h+W ⊂ h+ μ(θ) ⊂ h′ + μ(θ) + μ(τ) ⊂ h′ + μ(τ) + μ(τ) ⊂ h′ + μ(τ),

i.e., h′′ ≈τ h
′. Moreover,

x+ αh′′ = x+ (x′′ − x) + αh = x′′ + αh ∈ clθF.

Finally, h′ ∈ ∀∀∃(clθF, x′). �
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5.2.13. The above representation implies in particular that

Ha(F, x′) ⊂ H(F, x′) ⊂ Cl(F, x′) ⊂ K(F, x′) ⊂ clτ Fd(F, x′).

If σ = τ and F is a convex set then

Fd(F, x′) ⊂ Cl(F, x′) ⊂ cl Fd(F, x′);

whence
Cl(F, x′) = K(F, x′) = cl Fd(F, x′).

5.2.14. The nonstandard definitions for the Bouligand, Hadamard, and Clarke
cones show that these cones belong to the list of eight possible cones with the
infinitesimal prefix (Q•x)(Q•α)(Q•h), with Q• standing for ∀ or ∃. To describe all
these cones completely it suffices to characterize ∀∃∃-cones and ∀∃∀-cones.

5.2.15. The following holds:

∀∃∃(F, x′) =
⋂

α′
∀∈Nτ

⋃

U∈σ(x′)

⋂

x∈F∩U

(

V +
⋃

0<α≤α′

F − x

α

)

.

� To prove, observe first that the sought equality abbreviates the following: if
h′, F , and x′ are standard then

(∀•x)(∃•α)(∃•h)(x+ αh ∈ F )
↔ (∀V ∈ Nτ )(∀α′)(∃U ∈ σ(x′))(∀x ∈ F ∩ U)

(∃0 < α ≤ α′)(∃h ∈ h′ + V )(x+ αh ∈ F ).

Therefore, given h′ ∈ ∀∃∃(F, x′), a standard V in Nτ , and a standard α > 0, we
may take an internal subset of the monad μ(σ(x′)) as the sought neighborhood U .
By transfer and idealization,

(∀ stV )(∀ stα′)(∀x ≈ σx
′)(∃0 < α ≤ α′)(∃h ∈ h′ + V )(x+ αh ∈ F )

→ (∀x ≈ σx
′)(∀ st{V1, . . . , Vn})(∀ st{α′1, . . . , α′n})

(∃h)(∃α)(∀ k := 1, . . . , n)(0 < α ≤ α′k ∧ h ∈ h′ + Vk ∧ x+ αh ∈ F )
→ (∀x ≈ σx

′)(∃h)(∃α)(∀ stV )(h ∈ h′ + V ) ∧ (∀ stα′)
(0 < α ≤ α′ ∧ x+ αh ∈ F ) → (∀• x)(∃•h)(∃α ≈ 0)(x+ αh ∈ F )
→ h′ ∈ ∗{h′ : (∀•x)(∃•α)(∃•h)(x+ αh ∈ F )} → h′ ∈ ∀∃∃(F, x′),

which completes the proof. �
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5.2.16. Alongside with the eight infinitesimal cones of the above classical series
discussed above, there are nine more couples of cones containing the Hadamard cone
and lying in the Bouligand cone. These cones result evidently from changing the
order of quantifiers. Five of these couples are constructed in a somewhat bizarre
manner by analogy with the ∀∃∀-cone, the remaining couples are generated by
permutations and dualizations of the Clarke cone and the ∀∃∃-cone.

Using natural notation, we for instance infer

∀α∀h∃x(F, x′) =
⋂

U∈σ(x′)

⋃

α′
intτ

( ⋂

0<α≤α′

⋃

x∈F∩U

F − x

α

)

,

∃h∃x∀α(F, x′) =
⋃

α′

⋂

U∈σ(x′)

clτ

( ⋃

x∈F∩U

⋂

0<α≤α′

F − x

α

)

,

∃h∀x∀α(F, x′) =
⋂

U∈σ(x′)
α′

clτ

( ⋂

0<α≤α′
x∈F∩U

F − x

α

)

.

The last cone, narrower than the Clarke cone, is convex provided that μ(σ) +
μ(R+)μ(τ) ⊂ μ(σ). We denote this cone by Ha+(F, x′). Observe that

Ha(F, x′) ⊂ Ha+(F, x′) ⊂ Cl(F, x′).

Also convex is the ∀α∃h∀x-cone, denoted by In(F, x′). Obviously,

Ha+(F, x) ⊂ In(F, x′) ⊂ Cl(F, x′).

5.2.17. Calculation of tangents to the composite of correspondences rests on
special regularizing cones.

Assume that F ⊂ X × Y , where X and Y are vector spaces furnished with
topologies σX , τX and σY , τY . Take a′ := (x′, y′) ∈ F . Assigning σ := σX × σY ,
put

R1(F, a′) :=
⋂

V ∈NτY

⋃

W∈σ(a′)
α′

⋂

a∈W∩F
0<a≤α′

(
F − a

α
+ 0 × V

)

,

Q1(F, a′) :=
⋂

V ∈NτY

⋃

W∈σ(a′)
α′

U∈Nσ

⋂

a∈W∩F
0<α≤α′
x∈U

(
F − a

α
+ {x} × V

)

,
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QR2(F, a′) :=
⋃

W∈σ(a′)
α′

U∈Nσ

⋂

a∈W∩F
0<α≤α′
x∈U

(
F − a

α
+ (x, 0)

)

.

We must confess here in one of our major sins: We tacitly identify 0 and
the singleton {0}, whereas still discriminating between x and {x}. This popular
abusage is very convenient and we exercise it throughout the book with no remorse.

The cones R2(F, a′), Q2(F, a′), and QR1(F, a′) are defined by duality. More-
over, we use analogous notation for the case of the product of more than two spaces:
The superindex of the symbol of an approximating set signifies the coordinate on
which we impose the corresponding condition. Note also that applications usually
involve pairwise coincident topologies: σX = τX and σY = τY .

We proceed with nonstandard definitions of regularizing cones.

5.2.18. If s′ ∈ X and t′ ∈ Y are standard then

(s′, t′) ∈ R1(F, a′)
↔ (∀ a ≈ σa

′, a ∈ F )(∀α ∈ μ(R+))(∃ t ≈ τY
t′)(a+ α(s′, t) ∈ F );

(s′, t′) ∈ Q1(F, a′)
↔ (∀a ≈ σa

′, a ∈ F )(∀α∈μ(R+))(∀s ≈ τXs
′)(∃t ≈ τY

t′)(a+ α(s, t) ∈ F );
(s′, t′) ∈ QR2(F, a′)

↔ (∀ a ≈ σa
′, a ∈ F )(∀α ∈ μ(R+))(∀ s ≈ τX

s′)(a+ α(s, t′) ∈ F ).

5.2.19. As seen from 5.2.18, the cones of the type QRj are variations of the
Hadamard cone, while the cones Rj are particular cases of the Clarke cone. The
cones Rj are also specializations of the cones of the type Qj if we appropriately
choose discrete topologies. These cones are convex under the routine assumptions.
We demonstrate this claim only for the cone Qj , which is clearly enough.

5.2.20. If (a, α, b) �→ a+αb is a continuous mapping from (X×Y, σ)×(R, τR)×
(X × Y, τX × τY ) to (X × Y, σ) then Qj(F, a′) is a convex cone for j := 1, 2.

� By transfer, we may proceed in the standard environment, and so the tests
of 5.2.18 are readily available.

Take (s′, t′) and (s′′, t′′) in Q1(F, x′). Put a ≈σ a′, a ∈ F . Let α ≈ 0 be
positive and s ≈τX

(s′ + s′′). By 5.2.18, a1 := a + α(s − s′′, t1) ∈ F for some
t1 ≈τY

t′. By hypothesis, μ(σ) + α(μ(τX) × μ(τY )) ⊂ μ(σ). Therefore, a1 ≈σ a
and a1 ∈ F . Applying 5.2.18 again, find t2 ≈τY

t′′ satisfying a1 + α(s′′, t2) ∈ F .
Putting t := t1 + t2, observe that t ≈τY

(t′ + t′′) and

a+ α(s, t) = a+ α(s− s′′, t1) + α(s′′, t2) = a1 + α(s′′, t2) ∈ F,
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which completes the proof since the homogeneity of Q1(F, a′) ensues from closure
of the monad of a nearvector topology under multiplication by standard scalars (cf.
5.1.4). �

5.2.21. The above analysis corroborates the introduction of the cones Pj and
Sj by standardization as follows:

(s′, t′) ∈ P2(F, a′)
↔(∃ s ≈ τX

s′)(∀ t ≈ τY
t′)(∀ a ≈ σa

′, a∈F )(∀α ∈ μ(R+))(a+ α(s, t) ∈ F ),
(s′, t′) ∈ S2(F, a) ↔ (∀ t ≈ τY

t′)(∃ s ≈ τX
s′)(∀ a ≈ σa

′, a ∈ F )(∀α ∈ μ(R+))
(a+ α(s, t) ∈ F ).

The explicit definitions of Pj and Sj are available in principle (we will discuss
this in the subsection to follow). However, the arising formulas (especially that for
Sj) are enormously cumbersome and bulky, and so, of little avail. Moreover, as
we have seen already, these explicit formulas often obscure analysis by hiding the
transparent “infinitesimal” ideas behind the formal constructions.

5.2.22. The inclusions hold

Ha(F, a′) ⊂ Pj(F, a′) ⊂ Sj(F, a′) ⊂ Qj(F, a′) ⊂ Rj(F, a′) ⊂ Cl(F, a′)

for j := 1, 2. These cones are convex provided that μ(σ)+α(μ(τX)×μ(τY )) ⊂ μ(σ)
for all α > 0, α ≈ 0.

� The inclusions are immediate from the nonstandard definitions of these
cones.

As regards convexity, we have already demonstrated it for most of these cones.
For the sake of perfection, we now show that S2(F, a′) is a convex cone.

The set S2(F, a′) is closed under multiplication by every positive standard real
since the monad of real infinitesimals is indivisible. We are left with checking that
S2(F, a′) is a semigroup. To this end, given standard members (s′, t′) and (s′′, t′′)
of S2(F, a′), choose t ≈τY

(t′ + t′′). Then t − t′′ ≈τY
t′ and there is an s1 ≈τX

s′

serving to t − t′′ by the definition of S2(F, a′). Choose a point s2 ≈τX
s′′ that

“serves” to t′′ by the same definition. Clearly, (s1 + s2) ≈τX
(s′+ s′′). In this event

a1 := a + α(s1, t− t′′) ∈ F for all a ∈ F and α > 0 such that a ≈σ a
′ and α ≈ 0.

Since a1 is infinitely close to a′ with respect to σ, from the choice of s2 we conclude
that a1+α(s2, t′′) ∈ F . Hence, a+α(s1+s2, t) ∈ F , i.e., (s′+s′′, t′+t′′) ∈ S2(F, a′).

An analogous straightforward argument proves that Pj(F, a′) is a convex cone
too. �
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5.2.23. Inspection of the proof of 5.2.22 prompts us to consider convex “en-
largements” of Pj and Sj , i.e. the cones P+j and S+j that result from transferring
the quantifier ∀α. For instance, the cone P+2(F, a′) is defined as

(s′, t′) ∈ P+2(F, a′) ↔ (∀α ∈ μ(R+))(∃ s ≈ τX
s′)(∀ t ≈ τY

t′)
(∀ a ≈ σa

′, a ∈ F )(a+ α(s, t) ∈ F ).

In view of 5.2.19 it is reasonable to use the regularizations that result from
specifying the cone Ha+ by choosing discrete topologies. We skip the corresponding
explicit formulas. The importance of regularizing cones stems from their role in
subdifferentiation of composite mappings we address in 5.5.

5.3. Kuratowski and Rockafellar Limits

The preceding section shows that many vital constructions result from alter-
nating quantifiers over infinitesimals. Similar effects arise in various problems and
pertain to principal facts. We will now address those which are most often in subd-
ifferential calculus. We start with some general observations concerning the Nelson
algorithm.

5.3.1. Assume that ϕ = ϕ(x, y) ∈ (ZFC); i.e., ϕ is some formula of ZFC with
no bound variables but x, y. Then

(∀x ∈ μ(F ))ϕ(x, y) ↔ (∃ stF ∈ F )(∀x ∈ F )ϕ(x, y),
(∃x ∈ μ(F ))ϕ(x, y) ↔ (∀ st ∈ F )(∃x ∈ F )ϕ(x, y),

with μ(F ) standing as usual for the monad of a standard filter F .

� It suffices to demonstrate the implication → in the first of the equivalences.
By hypothesis, the internal property ψ := (∀x ∈ F )ϕ(x, y) is fulfilled for every

remote element F of F . Hence, ψ is valid for some standard F by the Cauchy
principle. �

5.3.2. Assume that ϕ = ϕ(x, y, z) ∈ ZFC. Assume further that F and G are
standard filters on some standard sets. In this case

(∀x ∈ μ(F ))(∃ y ∈ μ(G ))ϕ(x, y, z)
↔ (∀ stG ∈ G )(∃ stF ∈ F )(∀x ∈ F )(∃ y ∈ G)ϕ(x, y, z)

↔ (∃ stF ( · ))(∀ stG ∈ G )(∀x ∈ F (G))(∃ y ∈ G)ϕ(x, y, z),
(∃x ∈ μ(F ))(∀ y ∈ μ(G ))ϕ(x, y, z)

↔ (∃ stG ∈ G )(∀ stF ∈ F )(∃x ∈ F )(∀ y ∈ G)ϕ(x, y, z)
↔ (∀ stF ( · ))(∃ stG ∈ G )(∃x ∈ F (G))(∀ y ∈ G)ϕ(x, y, z),

with F ( · ) symbolizing a function from G to F .
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� The proof consists in appealing to the idealization and construction princi-
ples together with 5.3.1. �

5.3.3. Take ϕ = ϕ(x, y, z, u) ∈ (ZFC) and let F ,G , and H be three standard
filters. Assuming the standard environment, the following hold:

(∀x ∈ μ(F ))(∃ y ∈ μ(G ))(∀ z ∈ μ(H ))ϕ(x, y, z, u)
↔ (∀G( · ))(∃F ∈ F )(∃finH0 ⊂ H )(∀x ∈ F )
(∃H ∈ H0)(∃ y ∈ G(H))(∀ z ∈ H)ϕ(x, y, z, u),

(∃x ∈ μ(F ))(∀ y ∈ μ(G ))(∃ z ∈ μ(H ))ϕ(x, y, z, u)
↔ (∃G( · ))(∀F ∈ F )(∀ finH0 ⊂ H )(∃x ∈ F )
(∀H ∈ H0)(∀ y ∈ G(H))(∃ z ∈ H)ϕ(x, y, z, u),

with G( · ) standing for a function from H to G .

� The Nelson algorithm yields

(∀x ∈ μ(F ))(∃ y ∈ μ(G ))(∀ z ∈ μ(H ))ϕ
↔ (∀x ∈ μ(F ))(∀ stG( · ))(∃ stH ∈ H )(∃ y ∈ G(H))(∀ z ∈ H)ϕ

↔ (∀ stG( · ))(∀x) (∃ stF ∈ F )(∃ stH ∈ H )
(x ∈ F → (∃ y ∈ G(H))(∀ z ∈ H)ϕ)

↔ (∀ stG( · ))(∃ stfinF0)(∃ st finH0)(∀x) (∃F ∈ F0)(∃H ∈ H0)
(F ∈ F ∧H ∈ H ∧ (x ∈ F → (∃ y ∈ G(H))(∀ z ∈ H)ϕ))

↔ (∀ stG( · ))(∃ stfinF0 ⊂ F )(∃ st finH0 ⊂ H )(∀x) (∃F ∈ F0)
(x ∈ F → (∃H ∈ H0)(∃ y ∈ G(H))(∀ z ∈ H)ϕ)

↔ (∀G( · ))(∃finF0 ⊂ F )(∃finH0 ⊂ H )(∀x)
↔ ((∀F ∈ F0) x ∈ F → (∃H ∈ H0) (∃ y ∈ G(H))(∀ z ∈ H)ϕ)

↔ (∀G( · ))(∃finF0 ⊂ F )(∃finH0 ⊂ H )(∀x ∈ ∩F0)
(∃H ∈ H0)(∃ y ∈ G(H))(∀ z ∈ H)ϕ.

We are done on observing that
⋂

F0 ∈ F for nonempty finite subset F0 of F . �

5.3.4. Proposition 5.3.3 enables us to describe the ∀∃∀-cones and similar ag-
gregates explicitly. The so-obtained descriptions are obviously bulky.

We now address the practically important constructions whose prefixes are of
the types ∀∃, ∀∀, ∃∀, and ∃∃. We start with some linguistic tools for handling
infinitesimals in this situation.
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5.3.5. Let Ξ be a direction, i.e. a nonempty directed set. By idealization, there
are internal elements serving as upper bounds for ◦Ξ in Ξ. Recall (see 4.1.6 (3)) that
these bounds are remote, or infinitely large members of Ξ. Consider the standard
filterbase B := {σ(ξ) : ξ ∈ Ξ} for the so-called tail filter of Ξ, where σ is the order
on Ξ. The monad of the tail filter of Ξ obviously comprises the remote elements
of Ξ. The following notations are current: aΞ = μ(B) and ξ ≈ +∞ ↔ ξ ∈ aΞ.

5.3.6. Let Ξ and H be two directed sets, and let ξ := ξ(·) : H ↔ Ξ be
a mapping. Then the following are equivalent:

(1) ξ(aH) ⊂ aΞ;
(2) (∀ ξ ∈ Ξ)(∃ η ∈ H)(∀ η′ ≥ η)(ξ(η′) ≥ ξ).

� Indeed, (1) implies that the tail filter of Ξ is coarser than the image of the
tail filter of H. This implies that each tail of Ξ includes the image of some tail of H,
which is the claim of (2). �

5.3.7. Whenever equivalent conditions 5.3.6 (1) and 5.3.6 (2) are fulfilled, H is
a subdirection of Ξ relative to ξ(·).

5.3.8. Let X be a set, and let x := x(·) : Ξ → X be a net in X (in brief
notations, (xξ)ξ∈Ξ or (xξ)). Assume further that (yη)η∈H is another net in X . Say
that (yη) is a Moore subnet of (xξ), or a strict subnet of (xξ) provided that H is
a subdirection of Ξ relative to some ξ(·) satisfying yη = xξ(η) for all η ∈ H, i.e.,
y = x ◦ ξ. It is worth observing that y(aH) ⊂ x(aΞ) by 4.1.6 (5).

5.3.9. The above-mentioned property of Moore subnets is a cornerstone of
a more liberal definition of subnet whose attractive feature is a close connection
with filters. Namely, a net (yη)η∈H in X is a subnet (or a subnet in a broader sense)
of (xξ)ξ∈Ξ, provided that

(∀ξ ∈ Ξ)(∃η ∈ H)(∀η′ ≥ η)(∃ξ′ ≥ ξ)(x(ξ′) = y(η′)),

i.e. in the case when every tail of x contains some tail of y. In terms of monads,
this reads y(aH) ⊂ x(aΞ) or, which is more lucid,

(∀η ≈ +∞)(∃ξ ≈ +∞)(yη = xξ).

Speaking expressively, we say that (xη)η∈H is a subset of (xξ)ξ∈Ξ (this ambiguity
may lead to confusion).

It is worth observing that an arbitrary subnet is not necessarily a Moore subnet.
Note also that two nets in a single set are equivalent provided that each one of them
is a subnet of the other; i.e., if their monads coincide.
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5.3.10. If F is a filter on X and (xξ) is a net in X then we say that (xξ)
is subordinate to F whenever ξ ≈ ∞ ↔ xξ ∈ μ(F ). In other words, (xξ) is
subordinate to F provided that the tail filter of (xξ) is finer than F . In this event
we write xξ ↓ F by analogy with the topological notation of convergence which
slightly abuses the language. Note also that if F is an ultrafilter then F coincides
with the tail filter of every net (xξ) subordinate to F , i.e., such a net (xξ) is an
ultranet.

5.3.11. Theorem. Let ϕ = ϕ(x, y, z) be a formula of Zermelo–Fraenkel set
theory with no bound variables but x, y, z and z a standard set. Let F be a filter
on X , and let G be a filter on Y . Then the following are equivalent:

(1) (∀G ∈ G )(∃F ∈ F )(∀x ∈ F )(∃ y ∈ G)ϕ(x, y, z);
(2) (∀x ∈ μ(F ))(∃ y ∈ μ(G ))ϕ(x, y, z);
(3) To each net (xξ)ξ∈Ξ in X subordinate toF , there are a net (yη)η∈H

in Y subordinate to G and a strict subnet (xξ(η))η∈H of (xξ)ξ∈Ξ such
that ϕ(xξ(η), yη, z) for all η ∈ H; in symbols,

(∀xξ ↓ F )(∃ yη ↓ G )ϕ(xξ(η), yη, z);

(4) To each set (xξ)ξ∈Ξ in X subordinate toF , there are a net (yη)η∈H

in Y subordinate to G and a subnet (xη)η∈H of (xξ)ξ∈Ξ such that
ϕ(xη, yη, z) for all η ∈ H; in symbols,

(∀xξ ↓ F )(∃ yη ↓ G )ϕ(xη, yη, z);

(5) To each ultranet (xξ)ξ∈Ξ in X subordinate to F , there are an
ultranet (yη)η∈H subordinate to G and ultranet (xη)η∈H equivalent
to (xξ)ξ∈Ξ such that ϕ(xη, yη, z) for all η ∈ H.

� (1) → (2): Take x ∈ μ(F ). By transfer, to each standard G there is
a standard F satisfying (∀x ∈ F )(∃y ∈ G)ϕ(x, y, z). Therefore, (∀G ∈ ◦G )(∃y ∈ G)
ϕ(x, y, z). By idealization, (∃y)(∀G ∈ ◦G )(y ∈ G)ϕ(x, y, z). Hence, y ∈ μ(G ) and
ϕ(x, y, z).

(2) → (3): Let (xξ)ξ∈Ξ be a standard net in X subordinate to F . Given
a standard G in G and ξ ∈ ◦Ξ, put

A(G,ξ) := {ξ′ ≥ ξ : (∀ξ′′ ≥ ξ′)(∃y ∈ G)ϕ(xξ′′ , y, z)}.

By 4.1.8, aΞ ⊂ A(G,ξ). Since A(G,ξ) is an internal set, from the Cauchy principle
it follows that ◦A(G,ξ) �= ∅. Therefore, there are standard mappings ξ : H → Ξ
and y : H → Y on the direction H := G × Ξ (under the natural order) such that
ξ(η) ∈ A(G,ξ) and yη ∈ G for G ∈ G and ξ ∈ Ξ with η = (G, ξ). Obviously,
ξ(η) ≈ +∞ and yη ∈ μ(G ) for η ≈ +∞.
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(3) → (4): Obvious.
(4) → (1): If (1) fails then, by hypothesis,

(∃G ∈ G )(∀F ∈ F )(∃x ∈ F )(∀y ∈ G)¬ϕ(x, y, z).

Given F ∈ F , choose xF ∈ F so that ¬ϕ(x, y, z) for all y ∈ G. The so-obtained
net (xF )F∈F in X , as well as the set G, can be considered standard by transfer.
Clearly, xF ↓ F . Hence, by (3) there are a direction H and a subnet (xη)η∈H

of (xF )F∈F such that we may find a subnet (yη)η∈H satisfying ϕ(xη, yη, z) for all
η ∈ H.

By 5.3.9, if η is remote then xη coincides with xF for some remote F ; i.e.,
xη ∈ μ(F ). By hypothesis, yη ∈ μ(G ) and, moreover, yη ∈ G. In this event
ϕ(xη, yη, x) and ¬ϕ(xη, yη, x), which is a contradiction.

(1) ↔ (5): To demonstrate, note that the claim is evident in the case when
F and G are ultrafilters. We are done on recalling that each monad is a union of
ultramonads. �

5.3.12. Applications often involve specifications of 5.3.11 in which the monad
of one of the filters is a singleton; i.e. the filter is discrete. In this event,

(∃x ∈ μ(F ))ϕ(x, y) ↔ (∃xξ ↓ F )ϕ(xξ, y);
(∀x ∈ μ(F ))ϕ(x, y) ↔ (∀xξ ↓ F )(∃xη ↓ F )ϕ(xη, y).

5.3.13. Let F ⊂ X × Y be an internal correspondence from a standard set X
to a standard set Y . Assume given a standard filter N on X and a topology τ
on Y . Put

∀∀(F ) := ∗{y′ : (∀x ∈ μ(N ) ∩ dom(F ))(∀ y ≈ y′)(x, y) ∈ F},
∃∀(F ) := ∗{y′ : (∃x ∈ μ(N ) ∩ dom(F ))(∀ y ≈ y′)(x, y) ∈ F},
∀∃(F ) := ∗{y′ : (∀x ∈ μ(N ) ∩ dom(F ))(∃ y ≈ y′)(x, y) ∈ F},
∃∃(F ) := ∗{y′ : (∃x ∈ μ(N ) ∩ dom(F ))(∃ y ≈ y′)(x, y) ∈ F},

with ∗ symbolizing standardization and y ≈ y′ standing for y ∈ μ(τ(y′)). We call
Q1Q2(F ) the Q1Q2-limit of F (here Qk (k := 1, 2) is one of the quantifiers ∀ or ∃).

5.3.14. It suffices in applications to restrict consideration to the case in which
F is a standard correspondence on some element of N and to study the ∃∃-limit
and the ∀∃-limit. The former is the limit superior or upper limit; the latter is the
limit inferior or lower limit of F along N .

If (xξ)ξ∈Ξ is a net in the domain of F then, implying the tail filter of (xξ)ξ∈Ξ,
we put
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Liξ∈Ξ F := lim inf
ξ∈Ξ

:= ∀∃(F ),

Lsξ∈Ξ F := lim sup
ξ∈Ξ

F (xξ) := ∃∃(F )

and speak about Kuratowski limits.

5.3.15. If F is a standard correspondence then

∃∃(F ) =
⋂

U∈N

cl
( ⋃

x∈U
F (x)

)

;

∀∃(F ) =
⋂

U∈N̈

cl
( ⋃

x∈U
F (x)

)

,

where ¨N is the grill of a filter N on X , i.e., the family comprising all subsets of
X meeting the monad μ(N ).

In other words,

N̈ = ∗{U ′ ⊂ X : U ′ ∩ μ(N ) �= ∅}
= {U ′ ⊂ X : (∀U ∈ N )(U ∩ U ′ �= ∅)}.

We also note the relations:

∀∃(F ) =
⋂

U∈N̈

int
( ⋃

x∈U
F (x)

)

,

∀∀(F ) =
⋃

U∈N

int
( ⋂

x∈U
F (x)

)

.

5.3.16. Theorem 5.3.11 immediately describes the limits in the language of
nets.

5.3.17. An element y lies in the ∀∃-limit of F if and only if to each net (xξ)ξ∈Ξ

in dom(F ) subordinate to N there are a subnet (xη)η∈H of the net (xξ)ξ∈Ξ and
a net (yη)η∈H convergent to y such that (xη, yη) ∈ F for all η ∈ H.

5.3.18. An element y lies in the ∃∃-limit of F if and only if there are a net
(xξ)ξ∈Ξ in dom(F ) subordinate to N and a net (yξ)xi∈Ξ convergent to y, such that
(xξ, yξ) ∈ F for any ξ ∈ Ξ.
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5.3.19. If F is an internal correspondence then

∀∀(F ) ⊂ ∃∀(F ) ⊂ ∀∃(F ) ⊂ ∃∃(F ).

Moreover, ∃∃(F ) and ∀∃(F ) are closed sets whereas ∀∀(F ) and ∃∀(F ) are open sets.
� The claim about inclusions is obvious. By duality, it suffices to establish for

definiteness only the fact that the ∀∃-limit is closed.
If V is a standard open neighborhood of a point y′ of cl(∀∃(F )), then there is

some y in ∀∃(F ) belonging to V . Given x ∈ μ(N ), find some element y′′ satisfying
y′′ ∈ μ(τ(y)) and (x, y′′) ∈ F . Obviously, y′′ ∈ V since V is a neighborhood of y.
Therefore,

(∀x ∈ μ(N ))(∀V ∈ ◦τ(y′))(∃y′′ ∈ V )(x, y′′) ∈ F.

By idealization, conclude that y′ ∈ ∀∃(F ). �
5.3.20. The above propositions make it possible to characterize the elements

of many approximating or regularizing cones in the common terms of nets (see [263,
279]). Observe in particular that the Clarke cone Cl(F, x′) of a set F in X appears
as the Kuratowski limit:

Cl(F, x′) = Liτ(x′)×τ
R+ (0) ΓF ,

where ΓF is the homothety associated with F , i.e.

(x, α, h) ∈ ΓF ↔ h ∈ F − x

α
(x, h ∈ X, α > 0).

5.3.21. Convex analysis often operates with some special variations of Kura-
towski limits that involve the epigraphs of functions acting to the extended reals R.
We start with recall important properties of the classical upper and lower limits.

5.3.22. Let f : X → R be a standard function on X , and let F be a standard
filter on X . If t ∈ R then

sup
F∈F

inf f(F ) ≤ t ↔ (∃x ∈ μ(F )) ◦f(x) ≤ t,

inf
F∈F

sup f(F ) ≤ t ↔ (∀x ∈ μ(F )) ◦f(x) ≤ t.

� To check the first equivalence, infer by transfer and idealization that

sup
F∈F

inf f(F ) ≤ t → (∀F ∈ F ) inf f(F ) ≤ t

→ (∀F ∈ F )(∀ε > 0) inf f(F ) < t+ ε → (∀ε)(∀F )(∃x ∈ F )
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f(x) < t+ ε → (∀ stε)(∀ stF ) (∃x)(x ∈ F ∧ f(x) < t+ ε)
(∃x)(∀ stε)(∀ stF )(x ∈ F ∧ f(x) < t+ ε)

→ (∃x ∈ μ(F ))(∀ stε > 0) f(x) < t+ ε → (∃x ∈ μ(F ))◦f(x) ≤ t

(this rests on 2.2.18 (3)). Observe now that x ∈ μ(F ) ⊂ F for a standard element
F of F . Hence, inf f(F ) ≤ t since inf f(F ) ≤ f(x) < t+ε for all ε > 0. By transfer,
inf f(F ) ≤ t for all internal F of F , which was required.

Since −f and t are standard, from the above we deduce

inf
F∈F

sup f(F ) ≥ t ↔ − inf
F∈F

sup f(F ) ≤ −t ↔ sup
F∈F

inf(−f)(F ) ≤ t

↔ (∃x ∈ μ(F )) ◦(−f(x)) ≤ −t ↔ (∃x ∈ μ(F )) ◦f(x) ≥ t.

Therefore,

inf
F∈F

sup f(F ) < t ↔ ¬
(

inf
F∈F

sup f(F ) ≥ t
)

↔ ¬((∃x ∈ μ(F )) ◦f(x) ≥ t) ↔ (∀x ∈ μF )) ◦f(x) ≤ t.

Finally,

inf
F∈F

sup f(F ) ≤ t ↔ (∀ ε > 0) inf
F∈F

sup f(F ) < t+ ε

↔ (∀ stε > 0)(∀x ∈ μ(F )) ◦f(x) < t+ ε

↔ (∀x ∈ μ(F ))(∀ stε > 0) ◦f(x) < t+ ε ↔ (∀x ∈ μ(F )) ◦f(x) ≤ t,

since ◦f(x) is standard. �
5.3.23. Let X and Y be standard sets and let f : X × Y → R be a stan-

dard function. Assume further that F and G are standard filters on X and Y ,
respectively.

If t is a standard real t then

sup
G∈G

inf
F ∈F

sup
x∈F

inf
y∈G

f(x, y) ≤ t

↔ (∀x ∈ μ(F ))(∃ y ∈ μ(G )) ◦f(x, y) ≤ t.

� Put fG(x) := inf{f(x, y) : y ∈ G}. Observe that fG is a standard function
whenever G is a standard set. Using successively the transfer principle, 5.3.22 and
(strong) idealization, we infer that
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sup
G∈G

inf
F∈F

sup
x∈F

inf
y∈G

f(x, y) ≤ t ↔ (∀G ∈ G ) inf
F∈F

sup
x∈F

fG(x) ≤ t

↔ (∀ stG ∈ G ) inf
F∈F

sup
x∈F

fG(x) ≤ t ↔ (∀ stG ∈ G )(∀x ∈ μ(F )) ◦fG(x) ≤ t

↔ (∀x ∈ μ(F ))(∀ stG ∈ G )(∀ stε > 0) inf
y∈G

f(x, y) < t+ ε

→ (∀x ∈ μ(F ))(∀ stε > 0)(∀ stG ∈ G )(∃ y ∈ G)(f(x, y) < t+ ε)
→ (∀x ∈ μ(F ))(∃ y ∈ μ(G ))(∀ stε > 0)(f(x, y) < t+ ε)

→ (∀x ∈ μ(F ))(∃ y ∈ μ(G )) ◦f(x, y) ≤ t.

Given an internal element F ⊂ μ(F ) of F and a standard element G of G , the last
relation yields

sup
x∈F

inf
y∈G

f(x, y) ≤ t → inf
F∈F

sup
x∈F

inf
y∈G

f(x, y) ≤ t

→ (∀ stG ∈ G ) inf
F∈F

sup
x∈F

inf
y∈G

f(x, y) ≤ t

→ (∀G ∈ G ) inf
F∈F

sup
x∈F

inf
y∈G

f(x, y) ≤ t,

which completes the proof by transfer. �
5.3.24. In view of 5.3.23 it is in common parlance to call

lim sup
F

inf
G
f := sup

G∈G
inf
F∈F

sup
x∈F

inf
y∈G

f(x, y)

the Rockafellar limit of f .
If f := (fξ)ξ∈Ξ is a family of functions from a topological space (X, σ) to R,

and if N is a filter on Ξ, then we define the limit inferior or lower limit of f
at x′ ∈ X and the limit superior, or upper limit, or the Rockafellar limit of f at
x ∈ X as

liN f(x′) := sup
V ∈σ(x′)

sup
U∈N

inf
ξ∈U

inf
x∈V

fξ(x),

lsN (x′) := sup
V ∈σ(x′)

inf
U∈N

sup
ξ∈U

inf
x∈V

fξ(x).

These last limits are often referred to as epilimits. The idea behind this is clear
from the following easy proposition.

5.3.25. The upper and lower limits of a family of epigraphs are the epigraphs
of the respective limits of the family of functions under consideration.
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5.4. Approximation Given a Set of Infinitesimals

In this section we analyze the classical approximating cones of Clarke type
by elaborating the contribution of infinitesimals to their definition. This analysis
enables us to single out new analogs of tangent cones as well as new descriptions
for the Clarke cone.

5.4.1. We again consider a real vector space X furnished with a linear topology
σ and a nearvector topology τ . Assume that F is a set in X and x′ is a point in F .
In line with 5.2, these objects are considered standard.

We start with fixing a positive infinitesimal real number α and putting

Haα(F, x′) := ∗{h′ ∈ X : (∀x ≈ τx
′, x ∈ F )(∀h ≈ τh

′)(x+ αh ∈ F )},
Inα(F, x′) := ∗{h′ ∈ X : (∃h ≈ τh

′)(∀x ≈ σx
′, x ∈ F )(x+ αh ∈ F )},

Clα(F, x′) := ∗{h′ ∈ X : (∀x ≈ σx
′, x ∈ F )(∃h ≈ τh

′)(x+ αh ∈ F )},

where ∗ stands as usual for standardization.
We now consider a nonempty and, generally speaking, external set of positive

infinitesimals Λ and put

HaΛ(F, x′) := ∗
⋂

α∈Λ

Haα(F, x′),

InΛ(F, x′) := ∗
⋂

α∈Λ

Inα(F, x′),

ClΛ(F, x′) := ∗
⋂

α∈Λ

Clα(F, x′).

We will pursue the same policy as regards notation for other types of the approxima-
tions we introduce. By way of example, it is worth emphasizing that by definition

h′ ∈ InΛ(F, x′)
↔ (∀α ∈ Λ)(∃h ≈ τh

′)(∀x ≈ σx
′, x ∈ F )(x+ αh ∈ F )

for every standard point h′ of X .
If Λ is the monad of the corresponding standard filter FΛ, where FΛ := ∗{A ⊂

R : A ⊃ Λ} then, say, for ClΛ(F, x′) we have

ClΛ(F, x′) =
⋂

V ∈N

⋃

U∈σ(x′)
A∈FΛ

⋂

x∈F∩U
α∈A,α>0

(
F − x

α
+ V

)

.
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If Λ is not a monad (for instance, a singleton) then the implicit form of
ClΛ(F, x′) is determined by the particular choice of the model of analysis we deal
with. It is worth emphasizing that the monad of the ultrafilter U (α) := ∗{A ⊂
R : α ∈ A} reduces in no way to the initial infinitesimal α; i.e., the set Clα(F, x′)
is, generally speaking, larger than Clμ(U (α))(F, x′). At the same time, the above
approximations happily enjoy many advantageous properties inherent to Clarke
cones. Elaborating the last claim, we will suppose as before in 5.2 that the map-
ping (x, β, h) �→ x + βh from (X × R × X, σ × τR × τ) to (X, σ) is continuous at
zero, which amounts to the inclusion μ(σ) + μ(R+) · μ(τ) ⊂ μ(σ)) on assuming the
standard environment.

5.4.2. Theorem. If Λ is a set of positive infinitesimals then
(1) HaΛ(F, x′), InΛ(F, x′), and ClΛ(F, x′) are semigroups and

Ha(F, x′) ⊂ HaΛ(F, x′) ⊂ InΛ(F, x′) ⊂ ClΛ(F, x′) ⊂ K(F, x′),
Cl(F, x′) ⊂ ClΛ(F, x′);

(2) If Λ is internal then HaΛ(F, x′) is τ -open;
(3) ClΛ(F, x′) is τ -closed; moreover, if F is convex then we have

K(F, x′) = ClΛ(F, x′)

whenever σ = τ ;
(4) If σ = τ then

ClΛ(F, x′) = ClΛ(cl(F ), x′);

(5) The Rockafellar formula holds

HaΛ(F, x′) + ClΛ(F, x′) = HaΛ(F, x′);

(6) If x′ is a τ -boundary point of F then

HaΛ(F, x′) = − HaΛ(F ′, x′),

with F ′ := (X − F ) ∪ {x′}.
� (1): We must only check that Inα(F, x′) is a semigroup. If h′ and h′′ are

standard and belong to Inλ(F, x′) then there is some h1 ≈σ h′ such that x′′ :=
x + αh1 ∈ F for all x ∈ F , x ≈σ x

′. By hypothesis, there is also some h2 ≈τ h
′′

such that x′′ + αh2 ∈ F whenever x′′ ≈σ x. Finally, h1 + h2 ≈τ h′ + h′′ and,
moreover, this h1 + h2 “serves” to the membership h′ + h′′ ∈ Inλ(F, x′).

If h′ ∈ Clα(F, x′) and h′ is standard then x′ + αh ∈ F and h ≈τ h
′, which

implies h′ ∈ K(F, x′). The rest of the inclusions in (1) are obvious.
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(2): If h′ is a standard element of HaΛ(F, x′) then

(∀x ≈σ x
′, x ∈ F )(∀h ≈τ h

′)(∀α ∈ Λ)(x+ αh ∈ F ).

Taking 5.3.2 into account and using the fact that Λ is an internal set, we deduce:

(∃stV ∈ Nτ )(∃stU ∈ σ(x′))(∀x ∈ U ∩ F )(∀h ∈ h′ + V )(∀α ∈ Λ)(x+ αh ∈ F ).

Choose standard neighborhoods V1, V2 ∈ Nτ so that V1 + V2 ⊂ V . Then

(∀x ∈ U ∩ F )(∀h ∈ h′′ + V2)(∀α ∈ Λ)(x+ αh ∈ F )

for all standard h′′ ∈ h′ + V1; i.e. h′′ ∈ HaΛ(F, x′) for all h′′ ∈ h′ + V1.
(3): Assume now that h′ is a standard element of clτ (ClΛ(F, x′)). Take an

arbitrary standard neighborhood V of h′ and again choose some standard V1, V2 ∈
Nτ that satisfy the condition V1 + V2 ⊂ V . By definition, there is some h′′ in
ClΛ(F, x′) such that h′′ ∈ h′ + V1. By 5.4.1 and 5.3.2,

(∀α ∈ Λ)(∃stU ∈ σ(x′))(∀x ∈ F ∩ U)(∃h ∈ h′′ + V2)(x+ αh ∈ F ).

Moreover, h ∈ h′′ + V2 ⊂ h′ + V1 + V2 ⊂ h′ + V . In other words,

(∀stV ∈ Nτ )(∀α ∈ Λ)(∃stU ∈ σ(x′))(∀x ∈ F ∩ U)(∃h ∈ h′ + V )(x+ αh ∈ F ).

Therefore, h′ ∈ Clα(F, x′) for all α ∈ Λ, i.e., h′ ∈ ClΛ(F, x′).
Assume now that h′ ∈ FdΛ(F, x′) and h′ is standard. Then x′ + α′h′ ∈ F for

some standard α′ > 0 by transfer. If x ≈σ x
′ and x ∈ F then (x − x′)/α′ ≈σ 0.

Putting h := h′ + (x− x′)/α′ obtain h ≈τ h
′ and, moreover, x+ α′h ∈ F . Since F

is convex, conclude that x+ (0, α′]h ⊂ F . In particular, x+ Λh ⊂ F . Hence,

(∀x ≈σ x
′, x ∈ F )(∀α ∈ Λ)(∃h ≈τ h

′)(x+ αh ∈ F );

i.e., h′ ∈ ClΛ(F, x′). Hence,

Fd(F, x′) ⊂ ClΛ(F, x′) ⊂ K(F, x′) ⊂ cl(Fd(F, x′)).

Since ClΛ(F, x′) is τ -closed; therefore, K(F, x′) = ClΛ(F, x′).
(4): The proof proceeds along the same lines as in 5.2.11.
(5): Given standard k′ ∈ HaΛ(F, x′) and h′ ∈ ClΛ(F, x′), for all α ∈ Λ and all

x ∈ F satisfying x ≈ σx
′, choose h from the conditions h ≈ τh

′ and x + αh ∈ F .
We then obtain
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x+ α(h′ + k′ + μ(τ)) = x+ αh+ α(k′ + (h− h′) + μ(τ))
⊂ (x+ μ(σ)) ∩ F + α(k′ + μ(τ) + μ(τ))
⊂ (x+ μ(σ)) ∩ F + α(k′ + μ(τ)) ⊂ F,

which means that h′ + k′ belongs to HaΛ(F, x′).
(6): Let −h �∈ HaΛ(F ′, x′). Then to some α in Λ there is an element h ≈τ h

′

satisfying x − αh ∈ F for an appropriate x ≈σ x′, x ∈ F . If, nevertheless, h ∈
HaΛ(F, x′) then, in particular, h ∈ Haα(F, x′) and x = (x − αh) + αh ∈ F , since
x−αh ≈σ x. Hence, x ∈ F ∩F ′, i.e. x = x′. Moreover, (x′−αh)+α(h+μ(τ)) ⊂ F ,
since h+μ(τ) ⊂ μ(τ(h′)). Therefore, x′ is a τ -interior point of F , which contradicts
the assumption. Hence, h �∈ HaΛ(F, x′), which ensures the inclusion − HaΛ(F, x′) ⊂
HaΛ(F ′, x′). Substituting F = (F ′)′ for F ′ in the above considerations, we complete
the proof of (6). �

5.4.3. It is important to note that the above analogs of the Hadamard and
Clarke cones are convex in many situations, as shown by the following propositions.

5.4.4. Let τ be a vector topology, and tΛ ⊂ Λ for some standard t ∈ (0, 1).
Then ClΛ(F, x′) is a convex cone. If, in addition, Λ is an internal set then HaΛ(F, x′)
is a convex cone too.

� Consider only the case of HaΛ(F, x′) and take a standard h in HaΛ(F ,x′).
By 5.4.2 (2) HaΛ(F, x′) is open in the topology τ . Moreover, th ∈ HaΛ(F, x′), where
t is the standard positive real of the hypothesis. �

5.4.5. Let tΛ ⊂ Λ for all standard t ∈ (0, 1). Then ClΛ(F, x′), InΛ(F, x′), and
HaΛ(F, x′) are convex cones.

� For definiteness, we settle the case of ClΛ(F, x′). Let h′ be a standard vector
of ClΛ(F, x′), and let 0 < t < 1 be a standard real. Take x ≈σ x′, x ∈ F and
α ∈ Λ. Considering x and tα ∈ Λ, choose an element h, such that h ≈τ h

′ and
x+ αth ∈ F . Since th ≈τ th

′ by 5.1.7; therefore, th′ ∈ Clα(F, x′). In other words,
(0, 1) ClΛ(F, x′) ⊂ ClΛ(F, x′) by transfer. We are done on recalling 5.4.2 (1). �

5.4.6. A set Λ is representative provided that HaΛ(F, x′) and ClΛ(F, x′) are
convex cones. Propositions 5.4.4 and 5.4.5 exhibit examples of representative Λ’s.

5.4.7. Let f : X → R be a function acting to the extended reals. Given
a positive infinitesimal α, a point x′ in dom(f), and a vector h′ ∈ X , put

f(Haα)(x′)(h′) := inf{t ∈ R : (h′, t) ∈ Haα(epi(f), (x′, f(x′)))},
f(Inα)(x′)(h′) := inf{t ∈ R : (h′, t) ∈ Inα(epi(f), (x′, f(x′)))},
f(Clα)(x′)(h′) := inf{t ∈ R : (h′, t) ∈ Clα(epi(f), (x′, f(x′)))}.
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The derivatives f(Haα), f(Inα), and f(Clα) are introduced in a natural manner.
The function f(Cl) := f(Clμ(R+)) is called the Rockafellar derivative and

denoted by f↑. Thus,

f↑α(x′) := f(Clα)(x′), f↑Λ(x′) := f(ClΛ)(x′).

If τ is discrete then HaΛ(F, x′) = InΛ(F, x′) = ClΛ(F, x′). In this case the Rockafel-
lar derivative is called the Clarke derivative. The following notation is common:

f◦α(x′) := f↑α(x′), f◦Λ(x′) := f↑Λ(x′).

If Λ = μ(R+) then we omit any indications of Λ.
Considering epiderivatives, we assume that the space X × R is endowed with

the conventional product topologies σ× τR and τ × τR, where τR is the conventional
topology on R. It is sometimes convenient to furnish X × R with the couple of the
topologies σ × τ0 and τ × τR, where τ0 is the trivial topology in R. Using these
topologies, we speak about the Clarke and Rockafellar derivatives along effective
domain dom(f) and add the index d to the notation: f◦d , f↑Λ, d, etc.

5.4.8. The following hold:

f↑α(x′)(h′) ≤ t′

↔ (∀x ≈ σx
′, t ≈ f(x′), t ≥ f(x))(∃h ≈ τh

′)◦((f(x+ αh) − t)/α) ≤ t′;
f◦α(x′)(h′) < t′

↔ (∀x ≈ σx
′, t ≈ f(x′), t ≥ f(x))(∀h ≈ τh

′)◦((f(x+ αh) − t)/α) < t′;

f↑α,d(x
′)(h′) ≤ t′

↔ (∀x ≈ σx
′, x ∈ dom(f))(∃h ≈ τh

′)◦((f(x+ αh) − t)/α) ≤ t′;
f◦α,d(x

′)(h′) < t′

↔ (∀x ≈ σx
′, x ∈ dom(f))(∀h ≈ τh

′)◦((f(x+ αh) − t)/α) < t′.

� To prove, appeal to 2.2.18 (3). �

5.4.9. If f is a lower semicontinuous function then

f↑α(x′)(h′) ≤ t′

↔ (∀x ≈ σx
′, f(x) ≈ f(x′))(∃h ≈ τh

′)
◦(
f(x+ αh) − f(x)

α

)

≤ t′;

f◦α(x′)(h′) < t′
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↔ (∀x ≈ σx
′, f(x) ≈ f(x′))(∀h ≈ τh

′)
◦(
f(x+ αh) − f(x)

α

)

< t′.

� Only the implications from left to right need checking. We settle the first
case since both proofs are identical. Since f is lower semicontinuous; therefore,
x′ ≈σ x → ◦f(x) ≥ f(x′). Consequently, if x and t satisfy t ≈ f(x′) and t ≥ f(x)
then ◦t ≥ ◦f(x) ≥ f(x′) = ◦t. In other words, ◦f(x) = f(x′) and f(x) ≈ f(x′).
Choosing h by hypothesis, come to the conclusion

◦(α−1(f(x+ αh) − t)) ≤ ◦(α−1(f(x+ αh) − f(x))) ≤ t′,

which completes the proof (see 4.2.7). �
5.4.10. If f is a continuous function then

f↑Λ,d(x
′) = f↑Λ(x′), f◦Λ,d(x

′) = f◦Λ(x′).

� It suffices to note that the continuity of f at a standard point means in
symbols that (x ≈σ x

′, x ∈ dom(f)) → f(x) ≈ f(x′). �
5.4.11. Theorem. Let Λ be a monad. Then

(1) If f is a lower semicontinuous function then

f↑Λ(x′)(h′) = lim sup
x→fx

′

α∈FΛ

inf
h→h′

f(x+ αh) − f(x)
α

,

f◦Λ(x′)(h′) = lim sup
x→fx

′

α∈FΛ

f(x+ αh′) − f(x)
α

,

where x → fx
′ means that x → σx

′ and f(x) → f(x′);
(2) If f is a continuous function then

f↑Λ,d(x
′)(h′) = lim sup

x→x′
α∈FΛ

inf
h→h′

f(x+ αh) − f(x)
α

,

f◦Λ,d(x
′)(h′) = lim sup

x→x′
α∈FΛ

f(x+ αh′) − f(x)
α

.

� To prove, recall 5.3.23 together with 5.4.9 and 5.4.10. �
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5.4.12. Theorem. Let Λ be a representative set of infinitesimals. Then
(1) If f is a directionally Lipschitz mapping at a point x′, i.e.

Ha(epi(f), (x′, f(x′))) �= ∅;

then
f↑Λ(x′) = f◦Λ(x′).

If, moreover, f is continuous at x′ then

f↑Λ(x′) = f↑Λ,d(x
′) = f◦Λ,d(x

′) = f◦Λ(x′);

(2) If f is an arbitrary function and the Hadamard cone of dom(f)
at x′ is nonempty, i.e. Ha(dom(f), x′) �= ∅; then

f↑Λ,d(x
′) = f◦Λ,d(x

′).

� The proof of both statements sought proceeds along the same lines as in
Theorem 5.4.2. We will elaborate only the case of a directionally Lipschitz f .

Put A := epi(f) and a′ := (x′, f(x′)). By hypothesis, the sets ClΛ(A , a′) and
HaΛ(A , a′) are convex cones. Moreover, HaΛ(A , a′) ⊃ Ha(A , a′) and so

intτ×τR
HaΛ(A , a′) �= ∅.

By the Rockafellar formula,

clτ×τR
(HaΛ(A , a′)) = ClΛ(A , a′),

which completes the proof. �
5.4.13. Theorem. Let f1, f2 : X → R be arbitrary functions. Take x′ ∈

dom(f1) ∩ dom(f2). Then

(f1 + f2)↑Λ,d(x
′) ≤ (f1)↑Λ,d(x

′) + (f2)◦Λ,d(x
′).

If, moreover, f1 and f2 are continuous at x
′ then

(f1 + f2)↑Λ(x′) ≤ (f1)↑Λ(x′) + (f2)◦Λ(x′).

� Choose a standard element h′ so that

h′ ∈ dom((f2)◦Λ,d) ∩ dom((f1)↑Λ,d).

If there is no such an h′ the sought estimates are obvious.
Take t′ ≥ (f1)↑Λ,d(x

′)(h′) and s′ > (f2)◦Λ,d(x
′)(h′). By 5.4.8, to all x ≈σ x′,

x ∈ dom(f1) ∩ dom(f2), and α ∈ Λ there is an element h such that h ≈τ h
′ and,

moreover,

δ1 := ◦((f1(x+ αh) − f1(x))/α) ≤ t′;
δ2 := ◦((f2(x+ αh) − f2(x))/α) < s′.

Hence, δ1 + δ2 < t′ + s′, which gives (1).
If f1 and f2 are continuous at x, then we are done on recalling 5.4.10. �
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5.4.14. In closing this section, we address some special presentations of the
Clarke cone in finite-dimensional space that rest on the following remarkable result.

5.4.15. Cornet Theorem. If the ambient space is finite-dimensional then the
Clarke cone is the Kuratowski limit of contingencies:

Cl(F, x′) = Lix→x′
x∈F

K(F, x).

5.4.16. Let Λ be an external set of strictly positive infinitesimals, containing
an internal vanishing sequence. Then

ClΛ(F, x′) = Cl(F, x′).

� By transfer, we may assume the standard environment.
Since the inclusion ClΛ(F, x′) ⊃ Cl(F, x′) is obvious, take a standard point h′

in ClΛ(F, x′) and establish that h′ lies in the Clarke cone Cl(F, x′). By 5.3.13,

Lix→x′
x∈F

K(F, x) = ∗{h′ : (∀x ≈ x′, x ∈ F )(∃h ≈ h′) h ∈ K(F, x)}.

Consequently, if x ≈ x′ and x ∈ F then there is an element h in K(F, x) infinitely
close to h′. If (αn) is a vanishing sequence in Λ then, by hypothesis,

(∀n ∈ N)(∃hn)(x+ αnhn ∈ F ∧ hn ≈ h′).

For every standard ε > 0 and the conventional norm ‖·‖ in R
n we have ‖hn−h′‖ ≤ ε.

Since bounded sets are precompact in finite dimensions, there are sequences (ᾱn)
and (h̄n) such that

ᾱn → 0, h̄n → h̄, ‖h̄− h′‖ ≤ ε, x+ ᾱnh̄n ∈ F (n ∈ N).

By idealization, infer that there are some sequences (ᾱn) and (h̄n) serving simulta-
neously to every standard positive real ε. Obviously, the corresponding limit vector
h is infinitely close to h′, and, at the same time, h ∈ K(F, x) by the definition of
contingency. �

5.4.17. We may take as Λ in 5.4.16 the monad of an arbitrary vanishing filter,
for instance, the tail filter of a vanishing standard sequence (αn) of strictly positive
reals. We will list the characteristics of the Clarke cone pertaining to this case and
supplementing those above. In formulation we let the symbol dF (x) stand for the
distance from a point x to a set F .
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5.4.18. Theorem. Given a vanishing sequence (αn) of strictly positive reals,
the following are equivalent:

(1) h′ ∈ Cl(F, x′);
(2) lim sup

x→x′
n→∞

dF (x+αnh
′)−dF (x)

αn
≤ 0;

(3) lim sup
x→x′

lim sup
n→∞

α−1
n (dF (x+ αnh

′) − dF (x) ≤ 0;

(4) lim sup
x→x′
x∈F

lim sup
n→∞

α−1
n dF (x+ αnh

′) = 0;

(5) lim sup
x→x′

lim inf
n→∞ α−1

n (dF (x+ αnh
′) − dF (x)) ≤ 0;

(6) lim
x→x′
x∈F

lim inf
n→∞

dF (x+αnh
′)

αn
= 0.

� Observe first of all that if α > 0 then

◦(α−1dF (x+ αh′)) = 0 ↔ (∃h ≈ h′)(x+ αh ∈ F ),

with ◦t standing as usual for the standard part of a real t.
Indeed, to demonstrate the implication ←, put y := x+ αh′ and find

dF (x+ αh′)/α = ‖x+ αh′ − y‖/α ≤ ‖h− h′‖.

Checking the reverse implication, invoke the idealization principle and succes-
sively deduce:

◦(α−1dF (x+ αh′)) = 0 → (∀ stε > 0) dF (x+ αh′)/α < ε

→ (∀ stε > 0)(∃ y ∈ F )‖x+ αh′ − y‖/α < ε

→ (∃ y ∈ F )(∀ stε > 0)‖h′ − (y − x)/α‖ < ε

→ (∃ y ∈ F )‖h− (y − x)/α‖ ≈ 0.

Putting h := (y − x)/α, note that h ≈ h′, and x+ αh ∈ F .
We now proceed to proving the claims. Since the implications (3) → (4) → (6)

and (3) → (5) → (6) are obvious, we will establish only that (1) → (2) → (3) and
(6) → (1).

(1) → (2): Assuming the standard environment, take x ≈ x′ and N ≈ +∞.
Choose x′′ ∈ F so that ‖x− x′′‖ ≤ dF (x′) + α2

N . Since

dF (x+ αNh
′) − dF (x′′ + αNh

′) ≤ ‖x− x′′‖;
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therefore,

(dF (x+ αNh
′) − dF (x))/αN

≤ (dF (x′′ + αNh
′) + ‖x− x′′‖ − dF (x))/αN

≤ dF (x′′ + αNh
′)/αN + αN .

Considering that h′ ∈ Cl(F, x′), as well as the choice of x′′ and N , we have
x′′ + αNh ∈ F for some h ≈ h′. Therefore, ◦(dF (x′′ + αNh

′)/αN ) = 0. Hence,

(∀x ≈ x′)(∀N ≈ +∞) ◦(α−1
N (dF (x+ αNh

′) − dF (x))) ≤ 0.

By 5.3.22, this is a nonstandard reformulation of (2).
(2) → (3): It suffices to observe that if f : U ×V → R is an extended function,

F is a filter on U , and G is a filter on V then

lim sup
F

lim sup
G

f(x, y) ≤ t

↔ (∀x ∈ μ(F )) ◦lim sup
G

f(x, y) ≤ t

↔ (∀x ∈ μ(F ))(∀ stε > 0) inf
G∈G

sup
y∈G

f(x, y) < t+ ε

↔ (∀x ∈ μ(F ))(∀ stε > 0)(∃G ∈ G ) sup
y∈G

f(x, y) < t+ ε

↔ (∀x ∈ μ(F ))(∃G ∈ G )(∀ stε > 0) sup
y∈G

f(x, y)t+ ε

↔ (∀x ∈ μ(F ))(∃G ∈ G )(∀ stε > 0) sup
y∈G

f(x, y) ≤ t+ ε

↔ (∀x ∈ μ(F ))(∃G ∈ G )(∀ y ∈ G) ◦f(x, y) ≤ t.

As usual, μ(F ) stands for the monad of F .
(6) → (1): Using the previous notation, observe first that

lim sup
F

lim inf
G

f(x, y) ≤ t

↔ (∀x ∈ μ(F )) sup
G∈G

inf
y∈G

[(x, y) ≤ t

↔ (∀x ∈ μ(F ))(∀ stε > 0)(∀G ∈ G ) inf
y∈G

f(x, y) ≤ t+ ε

↔ (∀x ∈ μ(F ))(∀G ∈ G )(∀ stε > 0) inf
y∈G

f(x, y) < t+ ε

↔ (∀x ∈ μ(F ))(∀G ∈ G )(∀ stε > 0)(∃ y ∈ G) f(x, y) < t+ ε
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↔ (∀x ∈ μ(F ))(∀G ∈ G )(∃ y ∈ G) ◦f(x, y) ≤ t.

By hypothesis, the above implies

(∀x ≈ x′, x ∈ F )(∀n)(∃N ≥ n) ◦(α−1
N dF (x+ αNh

′)) = 0.

In other words, x+ αNhN ∈ F for some hN satisfying hN ≈ h′.
Proceeding along the same lines as in 5.4.16, conclude that h′ lies in the lower

Kuratowski limit of the contingencies of F at the points close to x′, i.e. in the
Clarke cone Cl(F, x′). �

5.5. Approximation to Composites

We now proceed to studying the tangents of Clarke type to composites of
correspondences. To this end we have to start with some topological preliminaries
to open and nearly open operators.

5.5.1. As before, we consider a vector space X furnished with two topologies
σY and τX as well as another vector space Y with topologies σY and τY . Let T
be a linear operator from X to Y . We will first address the interplay between the
approximating sets to F at a point x′, with F ⊂ X , and to the image T (F ) of F
under T at Tx′.

5.5.2. The following hold:
(1) The inclusion

T (μ(σX(x′)) ∩ F ) ⊃ μ(σY (Tx′)) ∩ T (F )

amounts to the relative preopenness (ρ−) condition (with parame-
ters T , F , and x′);

(∀U ∈ σX(x′))(∃V ∈ σY (Tx′))T (U ∩ F ) ⊃ V ∩ T (F );

(2) Condition (ρ−) combined with the requirement that T is a con-
tinuous mapping from (X, σX) to (Y, σY ) amounts to the relative
openness or (ρ) condition:

T (μ(σX(x′)) ∩ F ) = μ(σY (Tx′)) ∩ T (F );

(3) The operator T satisfies the relative quasiopenness or (ρ̄) condition

(∀U ∈ σX(x′))(∃V ∈ σY (Tx′))
(clτY

(T (U ∩ F )) ⊃ V ∩ T (F ))
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if and only if

(∀W ∈ NτY
)(T (μ(σX(x′)) ∩ F ) +W ) ⊃ μ(σY (Tx′)) ∩ T (F )).

� Claims (1) and (2) ensue from specialization of 5.3.2. To prove (3), we first
put

A := T (σX(x′) ∩ F ), B := σY (Tx′) ∩ T (F ),
N := {N ⊂ Y 2 : (∃W ∈ NτY

)N ⊃ {(y1, y2) : y1 − y2 ∈ W}},

i.e. N is the uniformity on Y generating τY . Using these notations, apply 5.3.2
and the principles of idealization and transfer to infer

(∀N ∈ N )N(μ(A )) ⊃ μ(B)
↔ (∀N ∈ N )(∀ b ∈ μ(B))(∃ a ∈ μ(A ))(b ∈ N(a))

↔ (∀N ∈ N )(∀ stA ∈ A )(∃ stB ∈ B)(∀ b ∈ B)(∃ a ∈ A)(b ∈ N(a))
↔ (∀ stA ∈ A )(∀N ∈ N )(∃ stB ∈ B)(B ⊂ N(A))
↔ (∀ stA ∈ A )(∃ stB ∈ B)(∀N ∈ N )(B ⊂ N(A))

↔ (∀ stA ∈ A )(∃ stB ∈ B)(B ⊂ cl(A))
↔ (∀A ∈ A )(∃B ∈ B)(B ⊂ cl(A)),

which completes the proof. �

5.5.3. Theorem. The following hold:
(1) If T , F and x′ satisfy condition (ρ) and T is a continuous mapping

from (X, τX) to (Y, τY ) then

T (ClΛ(F, x′)) ⊂ ClΛ(T (F ), Tx′),
T (InΛ(F, x′)) ⊂ InΛ(T (F ), Tx′);

if, moreover, T is an open mapping from (X, τX) to (Y, τY ) then

T (HaΛ(F, x′)) ⊂ HaΛ(T (F ), T (x′));

(2) If τY is a vector topology, T , F , and x′ satisfy condition (ρ̄), while
T : (X, τX) → (Y, τY ) is continuous then

T (ClΛ(F, x′)) ⊂ ClΛ(T (F ), Tx′).
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� (1): By way of example, we will demonstrate the second inclusion. To this
end, take h′ ∈ InΛ(F, x′). Given α ∈ Λ, choose h ≈τX

h′ so that x + αh ∈ F for
all x ≈σX

x′, x ∈ F . Obviously, Th ≈σX
Th′ and Tx + αTh ∈ T (F ). Applying

condition (ρ), conclude that Th′ ∈ InΛ(T (F ), Tx′).
Assume now that T is open, i.e.

T (μ(τX)) ⊃ μ(τY )

by 5.5.2 (1). Together with the continuity of T , this implies that the above monads
coincide. If now y ∈ T (F ), y ≈σY

Tx′, then by condition (ρ) we have y = Tx,
where x ∈ F and x ≈σY

x′. Moreover, given z ≈τY
Th′, we may find h ≈τX

h′ with
z = Th. Therefore, for all α ∈ Λ we have x+αh ∈ F , i.e. y+αz = Tx+αTh ∈ T (F )
as soon as a standard h′ is such that h′ ∈ HaΛ(F, x′).

(2): Take an infinitesimal α ∈ Λ and a standard element h′ ∈ Clα(F, x′). Let
W be some infinitesimal neighborhood of the origin in τY . Then, by hypothesis,
αW is also a neighborhood of the origin. By condition (ρ̄), given y ≈σY

Tx′,
y ∈ T (F ), we find x ∈ μ(σX(x′)) ∩ F satisfying y = Tx + αω and ω ≈τY

0.
Since h′ belongs to the Clarke cone, there is some h′′ such that h′′ ≈τY

h′ and
x + αh′′ ∈ F . Hence, y + α(Th′′ − w) = y − αw + αTh′′ = T (x + αh′′) ∈ T (F ).
Thus, Th′′ − w ∈ Th′ + μ(τY ) − w ∈ Th′ + μ(τY ) + μ(τY ) = Th′ + μ(τY ). This
yields Th′ ∈ Clα(T (F ), Tx′). �

5.5.4. We now consider vector spaces X , Y , and Z furnished with topologies
σX , τX , σY , τY , and σZ , τZ , respectively. Let F ⊂ X × Y and G ⊂ X × Z be two
correspondences, and let a point d′ := (x′, y′, z′) ∈ X × Y × Z meet the conditions
a′ := (x′, y′) ∈ F and b′ := (y′, z′) ∈ G. Put H := X ×G ∩ F × Z, c′ := (x′, z′). It
is worth recalling that G ◦ F = PrX×Z H, where PrX×Z is the natural projection
to X × Z along Y . We also introduce the following abbreviations:
σ1 := σX × σY ; σ2 := σY × σZ ; σ := σX × σZ ; σ := σX × σY × σZ ;
τ1 := τX × τY ; τ2 := τY × τZ ; τ := τX × τZ ; τ := τX × τY × τZ .

It is worth recalling that PrX×Z is a continuous and open operator (on assum-
ing “lettersame” topologies). We still distinguish some set Λ of infinitesimals. We
also need the next property of monads:

5.5.5. The monad of a composite is the composite of monads.
� Let A be a filter on X × Y , and let B be a filter on Y × Z. Put

B ◦ A := fil{B ◦A : A ∈ A , B ∈ B},

where we may assume all B ◦A nonempty. Clearly,

B ◦A = PrX×Z(A× Z ∩X ×B).
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Therefore, B ◦ A is the image PrX×Z(C ), where C := C1 ∨ C2, C1 := A × {Z},
and C2 := {X} × B. Since the monad of a product is the product of monads, the
monad of the least upper bound of filters is the intersection of their monads, and
the monad of the image of a filter coincides with the image of its monad, we come
to the relation

μ(B ◦ A ) = PrX×Z(μ(A ) × Z ∩X × μ(B)) = μ(B) ◦ μ(A ),

which was required. �
5.5.6. The following are equivalent:

(1) Condition (ρ) is fulfilled for PrX×Z , H, and c′;
(2) G ◦ F ∩ μ(σ(c′)) = G ∩ μ(σ2(b′)) ◦ F ∩ μ(σ1(a′));
(3) (∀V ∈ σY (y′))(∃U ∈ σX(x′))(∃W ∈ σZ(z′))

G ◦ F ∩ U ×W ⊂ G ◦ IV ◦ F,
with IV standing as usual for the identity relation on V .

� Using 5.3.2, rewrite (3) as

(∀V ∈ σY (y′))(∃O ∈ σ(c′))(∀ (x, z) ∈ O, (x, z) ∈ G ◦ F )
(∃ y ∈ V )(x, y) ∈ F ∧ (y, z) ∈ G ↔ (∀ (x, z) ≈ σc

′, (x, z) ∈ G ◦ F )
(∃ y ≈ σY

y′)(x, y) ∈ F ∧ (y, z) ∈ G ↔ μ(σ(c′)) ∩G ◦ F
⊂ μ(σ2(b′)) ∩G ◦ μ(σ1(a′)) ∩ F.

It remains to observe that

PrX×Z
(
μ(σ(d′)) ∩H

)

= {(x, z) ∈ G ◦ F : x ≈ σX
x′ ∧ z ≈ σZ

z′ ∧ (∃ y ≈ σY
y′)(x, y) ∈ F ∧ (y, z) ∈ G}

= μ
(
σ2(b′)

) ∩G ◦ μ(σ1(a′)
) ∩ F,

which completes the proof. �
5.5.7. The following are equivalent:

(1) Condition (ρ̄) is fulfilled for PrX×Z , H, and c′;
(2) (∀W ∈ Nτ )μ(σ2(b′)) ∩G ◦ μ(σ1(a′)) ∩ F +W

⊃ μ(σ(c′)) ∩G ◦ F ;
(3) (∀V ∈ σ2(b′))(∀U ∈ σ1(a′))(∃W ∈ σ(c′))

W ∩G ◦ F ⊂ clτ (V ∩G ◦ U ∩ F );
(4) (∀U ∈ σX(x′))(∀V ∈ σY (y′))(∀W ∈ σZ(z′))(∃V ∈ σ(c′))

O ∩G ◦ F ⊂ clτ (G ◦ IV ◦ F ∩ U ×W );
(5) If τ ≥ σ then (∀V ∈ σY (y′))(∃U ∈ σX(x′))(∃W ∈ σZ(z′))

G ◦ F ∩ U ×W ⊂ clτ (G ◦ IV ◦ F )
(in this event we say that condition (ρc) is fulfilled for the point d′ := (x′, y′, z′)).
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� From 5.5.2 (3) and the proof of 5.5.2 (3) we directly infer that (1)↔(2)↔(3).
To prove the equivalence (3) ↔ (4), it suffices to observe that

(V ×W ) ∩G ◦ (U × V ) ∩ F

={(x, z)∈X × Z : x∈U ∧ z ∈ W ∧ (∃ y ∈ V )(x, y) ∈ F ∧ (y, z) ∈ G}
= G ◦ IV ◦ F ∩ U ×W

for all U ⊂ X , V ⊂ Y , and W ⊂ Z. We are left with establishing (4) ↔ (5).
To this end, note that (4) → (5) is obvious since (5) is a specialization of (4)

with U := X and W := Z. To validate (5) → (4), take V ∈ σY (y′) and select an
open neighborhood C ∈ σ(c′) such that G ◦F ∩C ⊂ clτ (A), where A := G ◦ IV ◦F .
Given open sets U ∈ σX(x′) and W ∈ σZ(z′), put B := U × W and O := B ∩ C.
Obviously, G ◦ F ∩ O ⊂ (clτ (A)) ∩ B. Assuming the standard environment and
granted a ∈ (clτ (A)) ∩ B, find a point a′ ∈ A satisfying a′ ≈τ a. Clearly, a′ ≈σ a,
since μ(τ) ⊂ μ(σ) by hypothesis. The set B is σ-open and so a′ ∈ B, i.e. a′ ∈ A∩B
and a ∈ clτ (A ∩B). Finally, G ◦ F ∩O ⊂ clτ (A ∩B), as required. �

5.5.8. The following hold:
(1) HaΛ(H, d′) ⊃ X × HaΛ(G, b′) ∩ HaΛ(F, a′) × Z;
(2) R2

Λ(H, d′) ⊃ X × R1
Λ(G, b′) ∩ R2

Λ(F, a′) × Z;
(3) ClΛ(H, d′) ⊃ X × Q1

Λ(G, b′) ∩ ClΛ(F, a′) × Z;
(4) ClΛ(H, d′) ⊃ X × Cl(G, b′) ∩ Q2

Λ(F, a′) × Z;
(5) Cl2(H, d′) ⊃ X × P 2(G, b′) ∩ S2(F, a′) × Z,

where Cl2(H, d′) is defined as

Cl2(H, d′)
:= ∗{(s′, t′, r′) ∈ X × Y × Z : (∀ d ≈ σd

′, d ∈ H)
(∀α ∈ μ(R+))(∃ s ≈ τX

s′)(∀ t ≈ τY
t′)(∃ r ≈ τZ

z′)
(d+ α(s, t, r) ∈ H)}.

� We will check only (1) and (5), since the remaining claims are provable by
analogy.

(1): Assume that (s′, t′, r′) is a standard element belonging to the right side.
Take d ≈σ̄ d′ and α ∈ Λ, with d := (x, y, z) ∈ H. Clearly, a := (x, y) ∈ F and
a ≈σ1 a′, while b := (y, z) ∈ G and b ≈σ2 b′. Therefore, a + α(s, t) ∈ F and
b+ α(t, r) ∈ G for all α ∈ Λ and (s, t, r) ≈τ̄ (s′, t′, r′). Hence,

d+ α(s, t, r) = (a+ α(s, t), z + αr) ∈ F × Z,

d+ α(s, t, r) = (x+ αs, b+ α(t, r)) ∈ X ×G,
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i.e. (s′, t′, r′) ∈ HaΛ(H, d′).
(5): Take a standard element (s′, t′, r′) from the right of (4). By definition, we

may find s such that s ≈τX
s′ and to each t ≈τY

t′ there is some r ≈τZ
r′ satisfying

a + α(s, t) ∈ F and b + α(t, r) ∈ G for all a ≈σ1 a′ and b ≈σ2 b′. Obviously,
d+ α(s, t, r) ∈ H whenever b ≈σ̄ d

′ and d ∈ H. �
5.5.9. It should be emphasized that the mechanism of “leapfrogging” in 5.5.8

can be modified so as to meet the aims of research. These aims usually include
convenient approximation to composites. We note in passing that the scheme is
fruitful resting on the method of general position [263, 279]. By way of illustration,
we state the following typical result.

5.5.10. Theorem. Let τ be a vector topology with τ ≥ σ. Let F ⊂ X × Y
and G ⊂ Y × Z be correspondences such that Ha(F, a′) �= ∅. Assume further that
the cones Q2(F, a′) × Z and X × Cl(G, b′) are in general position (relative to the
topology τ̄). Then

Cl(G ◦ F, c′) ⊃ Cl(G, b′) ◦ Cl(F, a′),

whenever condition (ρ̄c) is fulfilled at d′.
� The proof proceeds along the lines of [263] (compare 5.3.13) and consists in

verifying the conditions that guarantee the validity for the following estimating

Cl(G ◦ F, c′) = Cl(PrX×Z H,PrX×Z d′) ⊃ clτ (PrX×Z Cl(H, d′))
⊃ PrX×Z clτ (X × Cl(G, b′) ∩Q2(F, a′) × Z)

= PrX×Z (clτ (X × Cl(G, b′)) ∩ clτ (Q2(F, a′) × Z))
= PrX×Z(X × Cl(G, b′) ∩ Cl(F, a′) × Z) = Cl(G, b′) ◦ Cl(F, a′).

The proof is complete. �

5.6. Infinitesimal Subdifferentials

Optimization theory pays attention to the problem of how the accuracy of
constraints and optimality criteria influences solutions and values in numerical cal-
culation. One of the qualitative approach to this problem is reflected in the so-called
convex ε-programming which provides tools for estimating approximations to an op-
timum “by functional,” i.e. by the values of the objective function. The technique
of ε-programming is rather specific and artificially complicated in a sense in regard
to its recommendations for recalculating accuracy as ε varies. These recommenda-
tions in a form of ε-subdifferential calculus are in an outright contradiction with
the common practice. The latter rests on belief that we are close to a “practical
optimum” whenever we satisfy the complementary slackness conditions or their ver-
sions corresponding to the classical case of ε = 0 with “practical accuracy.” This
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results in a glaring discrepancy if not an abyss between the theory and practice of
optimization.

In this section we outline an approach to bridging the gap within the radi-
cal stance of infinitesimal analysis. The basic tool is the concept of infinitesimal
optimal solution which is a feasible point at which the objective function is infin-
itely close to the ideal, not necessarily attained value of the program under study.
The infinitesimal optimum appears so an acceptable candidate for the role of a
“practical” optimum, since no “assignable” procedures can differ such an optimum
from the conventional, “theoretical” optimum. We derive the main formulas for
calculating the so-called infinitesimal subdifferentials that reflect the new concept
of infinitesimal optimality. It is worth emphasizing that the resulting formulas for
external sets coincide in form with their classical analogs in standard convex anal-
ysis. Moreover, the new criteria for infinitesimal optimality actually involve the
approximate complementary slackness.

5.6.1. Considering a vector space X , we let E• be an ordered vector space
extended with a greatest element +∞. Assume given a convex operator f : X → F •

and a point x in the effective domain dom(f) := {x ∈ X : f(x) < +∞} of F . Given
ε ≥ 0 in the positive cone E+ of E, by the ε-subdifferential of f at x we mean the
set

∂ εf(x) :=
{
T ∈ L(X,E) : (∀x ∈ X)(Tx− Fx ≤ Tx− fx+ ε)

}
,

with L(X,E) standing as usual for the space of linear operators from X to E.

5.6.2. Distinguish some downward-filtered subset E of E composed of positive
elements. Assuming E and E standard, define the monad μ(E ) of E as μ(E ) :=⋂{[0, ε] : ε ∈ ◦E }. The members of μ(E ) are positive infinitesimals with respect
to E ). As usual, ◦E denotes the external set of standard members of E, the standard
part of E . Observe that, adopting the canons of this field of research, we follow the
radical stance of nonstandard set theory.

Without further specification we assume in the sequel that E is Kantorovich
space or a K-space also knows as a Dedekind complete vector lattice. We will assume
that the monad μ(E ) is an external cone over ◦R and, moreover, μ(E ) ∩ ◦E = 0.
(In application, E is usually the filter of order-units of E.) The relation of infinite
proximity or infinite closeness between the members of E is introduced as follows:

e1 ≈ e2 ↔ e1 − e2 ∈ μ(E ) ∧ e2 − e1 ∈ μ(E ).

5.6.3. The equality holds:

⋂

ε∈◦E

∂εf(x) =
⋃

ε∈μ(E )

∂εf(x).
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� Given T ∈ L(X,E), proceed successively as follows

T ∈
⋂

ε∈◦E

∂εf(x) ↔ (∀ stε ∈ E )(∀x ∈ X)(Tx− Tx ≤ f(x) − f(x) + ε)

↔ (∀ stε ∈ E ) f∗(T ) := sup
x∈dom(f)

(Tx− f(x)) ≤ Tx− f(x) + ε

↔ (∀ stε ∈ E )0 ≤ f∗(T ) − (Tx− f(x)) ≤ −ε
↔ f∗(T ) − (Tx− f(x)) ≈ 0

↔ (∃ ε ∈ E+) ε ≈ 0 ∧ f∗(T ) = Tx− f(x) + ε

↔ T ∈
⋃

ε∈μ(E )

∂εf(x),

The proof is complete. �
5.6.4. The external set on both sides of 5.6.3 is the infinitesimal subdifferential

of f at x. We denote this set by Df(x). The elements of Df(x) are infinitesimal
subgradients of f at x. We abstain from explicitly indicating the set E since this
leads to no confusion.

5.6.5. Assume the standard environment; i.e., let the parameters X , f , x, etc.
be standard. Then the standardization of the infinitesimal subdifferential of f at x
coincides with the (zero) subdifferential of f at x, i.e.

∗Df(x) = ∂f(x).

� Given a standard T ∈ L(X,E), infer by transfer that

T ∈ ∗Df(x) ↔ T ∈ Df(x)
↔ (∀ stε ∈ E )(∀x ∈ X)(Tx− Tx ≤ f(x) − f(x) + ε)
↔ (∀ ε ∈ E )(∀x ∈ X)(Tx− Tx ≤ f(x) − f(x) + ε)

↔ T ∈ ∂f(x).

The above uses the equality inf E = 0 which ensues from the assumption that
μ(E ) ∩ ◦E = 0. �

5.6.6. Let F be a standard Kantorovich space and let g : E → F • be an in-
creasing convex operator. If E × epi(g) and epi(f) × G are in general position
then

D(g ◦ f)(x) =
⋃

T∈Dg(f(x))

D(T ◦ f)(x).
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If, moreover, the parameters are standard (with possible exception of x) then

◦D(g ◦ f)(x) =
⋃

T∈◦Dg(f(x))

◦D(T ◦ f)(x).

� Observe that by assumption the monad μ(E ) is an external normal subgroup
in F , i.e.,

ε ∈ μ(E ) → [0, ε] ⊂ μ(E ),
μ(E ) + μ(E ) ⊂ μ(E ).

Using 4.6.3 and the rules for calculating ε-subdifferentials (see 4.2.11 (2)), proceed
successively as follows

D(g ◦ f) (x) =
⋃

ε∈μ(E )

∂ε(g ◦ f) (x)

=
⋃

ε∈μ(E )

⋃

ε1+ε2=ε
ε1≥0,ε2≥0

⋃

T∈∂ε1g(f(x))

∂ε2(T ◦ f) (x)

=
⋃

ε1≥0,ε2≥0
ε1≈0,ε2≈0

⋃

T∈∂ε1g(f(x))

∂ε2(T ◦ f) (x)

=
⋃

ε1≥0,ε1≈0

⋃

T∈∂ε1g(f(x))

⋃

ε2≥0,ε2≈0

∂ε2(T ◦ f) (x)

=
⋃

ε1≥0,ε1≈0

⋃

T∈∂ε1g(f(x))

D(T ◦ f) (x).

Assume the standard environment and take S ∈ ◦D(g ◦ f)(x). Then

(g ◦ f)∗(S) = sup
x∈dom(g◦f)

(Sx− g ◦ f(x)) ≤ Sx− g(f(x)) + ε

for some infinitesimal ε. By transfer and the change-of-variable formula for the
Young–Fenchel transform, there is a standard operator T ∈ ◦L(E, F ) such that T
is positive, i.e. T ∈ L+(E, F ), and moreover

(g ◦ f)∗(S) = (T ◦ f)∗(S) + g∗(T ).

This implies
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ε ≥ sup
x∈dom(f)

(Sx− T ◦ f(x)) + sup
e∈dom(g)

(Te− g(e)) − Sx+ g(f(x))

= sup
x∈dom(f)

(Sx− Sx− (T ◦ f(x) − T ◦ f(x)))

+ sup
e∈dom(g)

(Te− T ◦ f(x) − (g(e) − g(f(x)))).

Put

ε1 := sup
e∈dom(g)

(Te− T ◦ f(x) − (g(e) − g(f(x)))),

ε2 := sup
x∈dom(f)

(Sx− Sx− (T ◦ f(x) − T ◦ f(x))).

Clearly, S ∈ ∂ε2(T ◦ f)(x), i.e., S ∈ ◦D(T ◦ f)(x); and T ∈ ∂ε1(g(f(x)), i.e.,
T ∈ ◦Dg(f(x)) since ε1 ≈ 0 and ε2 ≈ 0. �

5.6.7. Let f1, . . . , fn : X → E• be convex operators and let n be a standard
number. If f1, . . . , fn are in general position then

D(f1 + · · · + fn)(x) = Df1(x) + · · · +Dfn(x)

for x ∈ dom(f1) ∩ · · · ∩ dom(fn).
� The proof consists in applying 5.6.3 and the rules for ε-subdifferentiation

of a sum on observing that the sum of standardly many infinitesimal summands is
infinitesimal too. �

5.6.8. Let f1, . . . , fn : X → E• be convex operators and let n be a standard
number. Assume that f1, . . . , fn are in general position, E is a vector lattice, and
x ∈ dom(f1 ∨ · · · ∨ fn). If F is a standard Kantorovich space and T ∈ L+(E, F ) is
a positive linear operator then S ∈ L(X,F ) is an infinitesimal subgradient of the
operator T ◦ (f1 ∨ · · · ∨ fn) at x if and only if the following system of conditions is
compatible:

T =
n∑

k=1

Tk; Tk ∈ L+(E, F ) (k := 1, . . . , n);

n∑

k=1

Tkx ≈ T (f1(x) ∨ · · · ∨ fn(x)); S ∈
n∑

k=1

D(Tk ◦ fk)(x).

� Define the operators
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(f1, . . . , fn) : X → (En)•, (f1, . . . , fn)(x) := (f1(x), . . . , fn(x));
κ : En → E, κ(e1, . . . , en) := e1 ∨ · · · ∨ en.

Then
T ◦ f1 ∨ · · · ∨ fn = T ◦ κ ◦ (f1, . . . , fn).

Since T ◦ κ is a sublinear operator, we are done on appealing to 5.6.5. �
5.6.9. Let X be a vector space, let E be some Kantorovich space, and let A

be a weakly order bounded set in L(X,E). Look at the regular convex operator

f = εA ◦ 〈A 〉e;

where, as usual, εA is the canonical sublinear operator

εA : l∞(A , E) → E, εA (f) := sup f(A )

and, for e ∈ l∞(A , E), the affine operator 〈A 〉e acts by the rule

〈A 〉ex := 〈A 〉x+ e, 〈A 〉x : T ∈ A → Tx.

5.6.10. Let g : E → F • be an increasing convex operator acting to a stan-
dard Kantorovich space F . Assume that the image f(X) contains an algebraically
internal point of dom(g); and let x be an element in X such that f(x) ∈ dom(g).
Then

D(g ◦ f)(x)

= {T ◦ 〈A 〉 : T ◦ ΔA ∈ Dg(f(x)), T ≥ 0, T ◦ ΔA f(x) ≈ T ◦ 〈A 〉ex}.

� If S ∈ D(g ◦f)(x) then, by 5.6.3, S ∈ ∂ε(g ◦f)(x) for some ε ≈ 0. It remains
to appeal to the respective rule of ε-differentiation. If T ≥ 0, T ◦ ΔA ∈ Dg(f(x)),
and T ◦ ΔA f(x) ≈ T ◦ 〈A 〉ex then, for some ε ≈ 0, T ◦ ΔA ∈ ∂εg(f(x)). Put
δ := T ◦ ΔA f(x) − T ◦ 〈A 〉ex. Then δ ≥ 0 and δ ≈ 0 by hypothesis. Hence,
T ◦ 〈A 〉 ∈ ∂ε+δ(g ◦ f)(x). It remains to observe that ε+ δ ≈ 0. �

5.6.11. Under the assumptions of 5.6.10, let g be a sublinear Maharam oper-
ator [268]. Then

D(g ◦ f)(x) =
⋃

T∈Dg(f(x))

⋃

δ≥0,T δ≈0

T (∂δf(x)).
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� By 5.6.5, we may assume that g := T . If Tδ ≈ 0 and

Cx− Cx ≤ f(x) − f(x) + δ

for all x ∈ X then it is clear that

TC ∈ ∂Tδ(T ◦ f)(x) ⊂ D(T ◦ f)(x).

To complete the proof, take S ∈ D(T ◦ f)(x). By 4.6.3, there is an infinitesimal ε
such that S ∈ ∂ε(T◦f)(x). Appealing to the appropriate rule of ε-subdifferentiation,
find some δ ≥ 0 and C ∈ ∂δf(x) so that Tδ ≤ ε and S = TC. This completes the
proof. �

5.6.12. Let A be some set and let (fα)α∈A be a uniformly regular family of
convex operators. Then

D

(∑

ξ∈Ξ

fξ

)

(x) =
⋃

δ∈l1(Ξ,E)
δ≥0,δ≈0

∑

ξ∈Ξ

∂δ(ξ)fξ(x);

D
(
sup
ξ∈Ξ

fξ
)
(x)

=
⋃{∑

ξ∈Ξ

αξ∂δ(ξ)fξ(x) : 0 ≤ αξ ≤ 1E ,
∑

ξ∈Ξ

αξ = 1E ,

∑

ξ∈Ξ

αξfξ(x) ≈ sup
ξ∈Ξ

fξ(x),
∑

ξ∈Ξ

αξδ(ξ) ≈ 0
}

.

� The claim is immediate from 5.6.11 on recalling the rules for disintegration
(see [279]). �

5.6.13. It is worth observing that the formulas of 5.6.7–5.6.12 admit refine-
ments in analogy with 5.6.6 on assuming the standard environment (with the pos-
sible exception of x). We also emphasize that, proceeding along the above lines, we
may derive the whole spectrum of all formulas of subdifferential calculus (rules for
infimal convolutions, level sets, etc.).

5.6.14. Assume as before that f : X → E• is a convex operator acting to
a standard Kantorovich space E, and let X := X (·) be a generalized point in
dom(f), i.e. a net of elements in dom(f). An operator T in L(X,E) is an infini-
tesimal gradient of f at X provided that

f∗(T ) ≤ lim inf(TX − f(X )) + ε
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for some positive infinitesimal ε. (Of course, we presume the rule TX := T ◦ X
here.) Assuming the standard environment, we see that an infinitesimal subgradient
is merely a support operator at a generalized point.

We agree to denote by the symbol Df(X ) the set of infinitesimal subgradients
of f at X . This set is naturally called the infinitesimal subdifferential of f at X .

We will now derive two main rules for subdifferentiation at a generalized point
which are of profound interest since no exact formulas are available for the respective
ε-subdifferentials.

5.6.15. Let f1, . . . , fn be a collection of standard convex operators in general
position and let a generalized point X belong to dom(f1) ∩ · · · ∩ dom(fn). Then

D(f1 + · · · + fn)(X ) = Df1(X ) + · · · +Dfn(X ).

� Take Tk ∈ Dfk(X ) for k := 1, . . . , n, i.e.,

f∗k (Tk) ≤ lim inf(TkX − fk(X )) + εk

for some infinitesimal ε1, . . . , εn. In this case,

(f1 + · · · + fn)∗(T1 + · · · + Tn) ≤
n∑

k=1

f∗k (Tk)

≤
n∑

k=1

(lim inf(TkX − fk(X )) + εk)

≤ lim inf
n∑

k=1

(TkX − fk(X )) +
n∑

k=1

εk

by the usual properties of the Young–Fenchel transform and lower limit. It remains
to observe that ε1 + · · · + εn ≈ 0 and so the inclusion ⊃ holds in the formula under
proof.

To verify the reverse inclusion, reduce everything to the case n = 2 and take
T ∈ D(f1 + f2)(X ). Then

(f1 + f2)∗(T ) = f∗1 (T1) + f∗2 (T2),
f∗1 (T1) + f∗2 (T2) − lim inf(TX − (f1 + f2)(X )) ≤ ε

for some ε ≈ 0, T1, and T2 such that T1 + T2 = T . Put

δ1 := f∗1 (T1) − lim inf(T1X − f1(X )),
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δ2 := f∗2 (T2) − lim inf(T2X − f2(X )).

For k := 1, 2, it is clear that

0 ≤ sup
x∈dom(fk)

(Tkx− fk(x)) − lim sup (TkX − fk(X )) ≤ δk.

Hence, we are left with verifying that δ1 and δ2 are both infinitesimal. To this end,
note that

δ1 + δ2

≤ ε+ lim inf(TX − (f1 + f2)(X )) −
2∑

k=1

lim inf(TkX − fk(X ))

≤ (ε+ lim sup(T1X − f1(X )) − lim inf(T1X − f1(X )))
∧(ε+ lim sup(T2X − f2(X )) − lim inf(T2X − f2(X ))

≤ (ε+ f∗1 (T1) − lim inf(T1X − f1(X ))
)

∧(ε+ f∗2 (T2) − lim inf(T2X − f2(X ))
) ≤ ε+ δ1 ∧ δ2.

Hence, 0 ≤ δ1 ∨ δ2 ≤ ε, which completes the proof. �
5.6.16. Let F be a standard Kantorovich space and let g : E → F • be an in-

creasing convex operator. If X × epi(g) and epi(f) × F are in general position
then

D(g ◦ f)(X ) =
⋃

T∈Dg(f(X ))

D(T ◦ f)(X )

for a generalized point X in dom(g ◦ f).
� Assume that

(T ◦ f)∗(S) ≤ lim inf(SX − T ◦ f(X )) + ε1,

g∗(T ) ≤ lim inf(T ◦ f(X ) − g ◦ f(X )) + ε2

for some infinitesimals ε1 and ε2. Then

(g ◦ f)∗(S) ≤ (T ◦ f)∗(S) + g∗(T )
≤ lim inf(SX − T ◦ f(X ))+ε1 + lim inf(T ◦ f(X ) − g ◦ f(X )) + ε2

≤ lim inf(SX − g ◦ f(X )) + ε1 + ε2.

Consequently, S ∈ D(g ◦ f)(X ) and the right side of the formula under study
symbolizes the set included into the left side.
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To complete the proof, take S ∈ D(g ◦ f)(X ). Then there are an infinitesimal
ε and an operator T satisfying

(g ◦ f)∗(S) = (T ◦ f)∗(S) + g∗(T ) ≤ lim inf(SX − g ◦ f(X )) + ε.

Put

δ1 := (T ◦ f)∗(S) − lim inf(SX − T ◦ f(X )),
δ2 := g∗(T ) − lim inf(T ◦ f(X ) − g ◦ f(X )).

Using the properties of upper and lower limits, deduce, first, that

δ1 ≥ (T ◦ f)∗(S) − lim sup(SX − T ◦ f(X )) ≥ 0,
δ2 ≥ g∗(T ) − lim sup(T ◦ f(X ) − g ◦ f(X )) ≥ 0

and, second, that

δ1 + δ2

≤ lim inf(SX − g ◦ f(X )) + ε− lim inf(SX − T ◦ f(X ))
− lim inf(T ◦ f(X ) − g ◦ f(X )) ≤ (lim sup(SX − T ◦ f(X ))

− lim inf(SX − T ◦ f(X )) + ε) ∧ (lim sup(T ◦ f(X ) − g ◦ f(X ))
− lim inf(T ◦ f(X ) − gf(X )) + ε) ≤ δ1 ∧ δ2 + ε,

since we obviously have

lim sup(T ◦ f(X ) − g ◦ f(X )) ≤ g∗(T ),
lim sup(SX − T ◦ f(X )) ≤ (T ◦ f)∗(S).

Thus, 0 ≤ δ1 ∨ δ2 ≤ ε, δ1 ≈ 0, and δ2 ≈ 0. This means that T ∈ Dg(f(X )) and
S ∈ D(T ◦ f)(X ). �

5.6.17. We now give an abstraction of the concept of infinitesimal subdiffer-
ential which involves the widest spectrum of external possibilities.

Assume as before that F is a convex operator and B is a possibly external
subset of dom(F ). Put

DF (B) =
⋂

x∈B
DF (x).

The external set DF (B) is the infinitesimal subdifferential of F along B.
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We now take some (generally, external) filterbase B in the effective domain
dom(F ) of a convex operator F . Such a filterbase is sometimes referred to as
generalized point. Define the infinitesimal subdifferential of F along B (at the
generalized point B) by the rule

DF (B) :=
⋃

B∈B

DF (B).

5.6.18. For an operator T in L(X,E), the following are equivalent:
(1) T ∈ DF (B);
(2) (∃B ∈ B)(∀x ∈ B)(∃ε ∈ μ(E ))T ∈ ∂ εF (x);
(3) (∃B ∈ B)(∀ε ∈ ◦E )(∀x ∈ B)T ∈ ∂ εF (x);
(4) (∃B ∈ B)(∀x ∈ B)(∃ε ∈ μ(E ))(F ∗(T ) ≤ Tx− Fx+ ε),

with F ∗ the Young–Fenchel transform of F ;
(5) (∃B ∈ B) (∀x ∈ B) sup

x∈dom(F )

((Tx− Tx) − (Fx− Fx)) ≈ 0.

� Using the definitions, infer

DF (B) =
⋃

B∈B

⋂

x∈B
DF (x) =

⋃

B∈B

⋂

x∈B

⋂

ε∈◦E

∂ εF (x)

=
⋃

B∈B

⋂

ε∈◦E

⋂

x∈B
∂ εF (x),

which amounts to (1) ↔ (3). Citing the Cauchy principle ensures (2) ↔ (3). The
remaining equivalences follow from the definition of the Young–Fenchel transform. �

5.6.19. Let C := {C ⊂ X : (∃B ∈ B)C ⊃ B} be the external filter with
base B. Then DF (C ) = DF (B).

� It is clear that C ⊃ B and so

DF (C ) =
⋃

C∈C

DF (C) ⊃
⋃

B∈B

DF (B) = DF (B).

Now, if T ∈ DF (C ) then

(∀x ∈ C) sup
x∈dom(F )

((Tx− Tx) − (Fx− Fx)) ≈ 0

for some C in C by 5.6.18. The set C includes some member B of the filterbase B
by hypothesis. Appealing to 5.6.18, deduce T ∈ DF (B) ⊂ DF (B). �
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5.6.20. Let B be an internal filter on X . Assume further that f : X → R is
an (everywhere defined) convex function. Given x# ∈ X#, we then have

x# ∈ Df(B) ↔ (∃ε ∈ μ(R+)) f∗(x#) ≤ lim inf (x#(B) − f(B)) + ε

with μ(R+) the set of positive infinitesimals in R.

� To demonstrate the implication to the right, observe that by 5.6.18

f∗(x#) ≤ inf
{〈x | x#〉 − f(x) : x ∈ B

}
+ ε

for some internal B in B and every standard ε > 0.
This implies that

(∀ε ∈ ◦R+) f∗(x#) ≤ lim inf
x∈B

(〈x | x#〉 − f(x)
)

+ ε.

Citing the Cauchy principle, we are done.
Proceed with demonstrating the implication to the left. For this purpose, it

suffices to take some infinitesimal δ > 0 and choose B ∈ B so as to have

lim inf
x∈B

(〈x | x#〉 − f(x)
) ≤ inf(x∗(B) − f(B)) + δ.

We may now refer to 5.6.18. �
5.6.21. Let Z be a standard Kantorovich space. Assume further that C : E →

Z• is an increasing convex operator. If the sets X × epi (G) and epi (F ) × Z are in
general position then, given a filterbase B on dom(F ), we have

D(G ◦ F )(B) =
⋃

S∈DG(F (B))

D(S ◦ F )(B).

� The proof consists in demonstrating two inclusions. To show one of them,
take S ∈ DG(F (B)) and T ∈ D(S ◦ F )(B). By 5.6.18, we then have

(∃B′ ∈ B)(∀x ∈ B′)(∃ε ∈ μ(E ))T ∈ ∂ε(S ◦ F )(x);
(∃B′′ ∈ B)(∀x ∈ B′′)(∃δ ∈ μ(E ))S ∈ ∂δG((S ◦ F )(x)).

Since B is a filterbase, B ⊂ B′ ∩B′′ with some B ∈ B. Moreover, for x ∈ B,
the inequalities hold:

(G ◦ F )∗(T ) ≤ G∗(S) + (S ◦ F )∗(T ) ≤ Tx−G(F (x)) + ε+ δ.
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We here take account of a suitable rule for calculating the Young–Fenchel transform.
Infinitesimals comprise a cone. Hence ε+ δ ≈ 0 and an appeal to 5.6.18 guarantees
the membership T ∈ D(G ◦ F )(B). Consequently, the set on the right side of the
inclusion we prove lies in the set on the left side.

To show the other inclusion which is unproven yet, take T ∈ D(G ◦ F )(B).
By 5.6.18,

(∀x ∈ B) (∃ε ∈ μ(E )) (G ◦ F )∗(T ) ≤ Tx−G(F (x)) + ε

for some B in B. Applying an appropriate exact formula for the Young–Fenchel
transform, find a positive operator S ∈ L+(Y, Z) satisfying

(G ◦ F )∗(T ) = G∗(S) + (S ◦ F )∗(T ).

Given x ∈ B, put

ε1 := G∗(S) − (SF (x) −G ◦ F (x)); ε2 := (S ◦ F )∗(T ) − (Tx− SFx).

It is clear that 0 ≤ ε1 + ε2 ≤ ε. Therefore, ε1 and ε2 are infinitesimals. Finally,
S ∈ DG(F (B)) ⊂ DG(F (B)) and T ∈ D(S ◦ F )(B) ⊂ D(S ◦ F )(B). �

5.6.22. Let F1, . . . , Fn : X → Y • be convex operators, with n a standard
integer. If F1, . . . , Fn are in general position and B a filterbase on dom(F1) ∩ · · · ∩
dom(Fn) then

D(F1 + · · · + Fn)(B) = D(F1)(B) + · · · +D(Fn)(B).

� If Tk ∈ D(Fk(B)) then there are B1, . . . , Bn ∈ B such that Tk ∈ ∂εk(Fk)(x)
for each x in Bk and some infinitesimal εk. Now, if x ∈ B1 ∩ · · · ∩Bn then

T1 + · · · + Tn ∈ ∂ε1+···+εn
(F1 + · · · + Fn)(x).

The sum of standardly many infinitesimals is again an infinitesimal. An appeal
to 5.6.18 corroborates the fact that the set on the right side of the equality under
proof lies in the set on the left side.

Now, take T ∈ D(F1 + · · · + Fn)(B). Involving 5.6.18, observe that

(∀x ∈ B)(∃ε ∈ μ(E ))T ∈ ∂ε(F1 + · · · + Fn)(x)

for some B ∈ B. Given x ∈ B, we may thus choose an infinitesimal ε so as to have

(F1 + · · · + Fn)∗(T ) ≤ Tx− (F1 + · · · + Fn)(x) + ε.
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Using an exact formula for the Young–Fenchel transform, find T1, . . . , Tn in
L(X, Y ) satisfying

T =
n∑

k=1

Tk;
( n∑

k=1

Fk

)∗
(T ) =

n∑

k=1

F ∗k (Tk).

We now put
εk := F ∗k (Tk) − (Tkx− Fkx) (k := 1, . . . , n).

It is clear that εk ≥ 0 and ε1 + · · · + εn ≤ ε. Consequently, εk ≈ 0 and
Tk ∈ DFk(x) for all k := 1, . . . , n. This completes the proof. �

5.6.23. Let F1, . . . , Fn : X → Y • be convex operators, with n a standard
integer. Assume further that F1, . . . , Fn are in general position, Y is a vector
lattice, and B a filterbase on dom(F1 ∨ · · · ∨ Fn). If Z is a standard Kantorovich
space and T , a member of L(Y, Z), is a positive linear operator then S ∈ L(X,Z)
is an infinitesimal subgradient of T ◦ (F1 ∨ · · ·∨Fn) along B if and only if, for some
B ∈ B, the following system of conditions is compatible:

T =
n∑

k=1

Tk; T ∈ L+(Y, Z), k := 1, . . . , n;

n∑

k=1

Tk(Fk(x)) ≈ T (F1(x) ∨ · · · ∨ Fn(x)) (x ∈ B);

S ∈
n∑

k=1

D(Tk ◦ Fk)(B).

� Define the operators

(F1, . . . , Fn) : X → (Y n)•; (F1, . . . , Fn)(x) := (F1(x), . . . , Fn(x));
κ : Y n → Y ; κ(y1, . . . , yn) := y1 ∨ · · · ∨ yn.

We then have
T ◦ F1 ∨ · · · ∨ Fn = T ◦ κ ◦ (F1, . . . , Fn).

Considering 5.6.22, we finish the proof. �
5.6.24. Let X be a vector space. Assume further that Y is some Kantorovich

space and A is a weakly order bounded subset of L(X, Y ). Consider a regular
convex operator F = εA ◦ 〈A 〉y, where εA is as usual the canonical sublinear
operator

εA : l∞(A , E) → E, εA f := sup f(A ) (f ∈ l∞(A , E))
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and the affine operator 〈A 〉y with y ∈ l∞(A , y) acts by the rule

〈A 〉yx := 〈A 〉x+ y; 〈A〉x := A ∈ A �→ Ax.

� Subdifferential calculus implies that the compatibility of the above system
amounts to the membership S ∈ D(G ◦ F )(x) for all x ∈ B. We are thus left with
demonstrating the reverse implication.

Clearly,

D(G ◦ F )(B) = D(G ◦ EA ◦ 〈A 〉y) = ∂(G ◦ EA )(B) ◦ 〈A 〉,
where B := 〈A 〉y(B). It suffices so to represent T ∈ D(G ◦ EA )(B). To this end,
assume that

(∃B ∈ B) (∀x ∈ B) (∃ε ∈ μ(E ))
(G ◦ EA )∗T ≤ T ◦ 〈A 〉yx−G ◦ EA ◦ 〈A 〉yx+ ε.

By the general change-of-variable formulas for the Young–Fenchel transform (The-
orem 3.7.10 in [279]), we have

(G ◦ EA )∗T = G∗(T ◦ ΔA ).

Given x ∈ B, put y := 〈A 〉yx and obtain

ε ≥ (G ◦ EA )∗T + T ◦ EA y − Ty

= G∗(T ◦ ΔA ) +G ◦ EA y − Ty

= sup
y∈dom(G)

(T ◦ ΔA y − T ◦ ΔA ◦ EA ◦ EA y)

−(Gy −G ◦ EA y) + T ◦ ΔA ◦ EA y − Ty ≥ 0.

Hence, T ◦ΔA ∈ DG(F (B)) and T ◦ΔAFx ≈ T ◦〈A 〉yx. The proof is complete. �
5.6.25. The crux of the above scheme is as follows: We find the sought pre-

sentation of a subgradient independently, in a sense, of the choice of a point, using
exactness of the rules for calculating the Young–Fenchel transform. In other words,
the behavior of infinitesimal subgradients analogous to conventional “exact” sub-
gradients strongly resembles that of the ε-subdifferentials reflecting the structure
of the operator under study “in the large,” i.e. globally, on the whole domain of
definition. In consequence, although the rules for calculating infinitesimal subdif-
ferentials mimic the routine formulas of local subdifferentiation, the conditions for
them to hold are noticeably more stringent, coinciding with those “in the large” for
the Young–Fenchel transform or for ε-subdifferentials.

Our scheme also opens an opportunity to abstract the entire spectrum of
the rules for subdifferential calculus (disintegration, Rockafellar’s convolution, level
sets, etc.).
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5.7. Infinitesimal Optimality

In this section we study a new concept of solution to an extremal problem
which rests on infinitesimals. To simplify exposition, we address only the case of
“pointwise.”

5.7.1. A point x ∈ dom(f) is an infinitesimal solution of an unconstrained
program f(x) → inf, with f : X → E•, provided that 0 ∈ Df(x), i.e. x is a feasible
solution and f(x) ≈ inf{f(x) : x ∈ X}. An infinitesimal solution to an arbitrary
program is defined by analogy.

5.7.2. A standard unconstrained program f(x) → inf has an infinitesimal solu-
tion if and only if, first, f(X) is bounded below and, second, there exists a standard
generalized solution (xε)ε∈E of the program under consideration, i.e., xε ∈ dom(f)
and f(xε) ≤ e+ ε for all ε ∈ E , where e := inf f(X) is the value of the program.

� By transfer, idealization, and 5.6.3, infer that

(∃x ∈ X) 0 ∈ Df(x) ↔ (∃x ∈ X)(∀ stε ∈ E )(0 ∈ ∂εf(x))
↔ (∀ st finE0 ⊂ E )(∃x ∈ X)(∀ ε ∈ E0)(0 ∈ ∂εf(x))

↔ (∀ stε ∈ E )(∃xε ∈ X)(0 ∈ ∂εf(xε))
↔ (∀ ε ∈ E )(∃xε ∈ X)(∀x ∈ X)(f(x) ≥ f(xε) − ε),

which completes the proof. �
5.7.3. Consider a regular convex program

g(x) ≤ 0, f(x) → inf .

Thus, g, f : X → E• (for simplicity dom (f) = dom (g) = X), for every x ∈ X
either g(x) ≤ 0 or g(x) ≥ 0, and the element g(x) with some x ∈ X is an order unit
in E.

5.7.4. Assuming the standard environment, a feasible internal point x0 is an
infinitesimal solution to the regular program 5.7.3 if and only if the following system
of conditions is compatible:

α, β ∈ ◦[0, 1E ], α+ β = 1E , ker(α) = 0;
β ◦ g(x) ≈ 0, 0 ∈ D(α ◦ f)(x) +D(β ◦ g)(x).

� ←: In case of compatibility of the system, for a feasible x and some infinites-
imals ε1 and ε2 we have

αf(x) ≤ αf(x) + βg(x) − βg(x) + ε1 + ε2 ≤ αf(x) + ε
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for every standard ε ∈ ◦E . In particular, α(f(x) − f(x)) ≤ αε for ε ∈ ◦E , since α
is a standard mapping. Using the condition ker (α) = 0 and general properties of
multiplicators, we see that x is an infinitesimal solution.

→: Let
e := inf {f(x) : x ∈ X, g(x) ≤ 0}

be the value of the program under consideration. By hypothesis and transfer, e
is a standard element. Using the transfer principle again, by the vector minimax
theorem [279, Theorem 4.1.10 (2)], we find standard multiplicators α, β ∈◦ [0, 1E]
such that

α+ β = 1E ,

0 = inf
x∈X

{α(f(x) − e) + β ◦ g(x)}.

Arguing in a standard way, we check that ker (α) = 0. Moreover, since x is an
infinitesimal solution; therefore, f(x)−e = ε for some infinitesimal ε. Consequently,

−αε ≤ αf(x) − αf(x) + βg(x)

for all x ∈ X . In particular, 0 ≥ βg(x) ≥ −αε ≥ −ε, i.e., βg(x) ≈ 0 and

0 ∈ ∂αε+βg(x)(α ◦ f + β ◦ g) (x) ⊂ D(α ◦ f + β ◦ g) (x),

since αε+ βg(x) ≈ 0. �

5.7.5. Consider a Slater regular program

Ax = Ax, g(x) ≤ 0, f(x) → inf;

i.e., first, A ∈ L(X,X ) is a linear operator with values in some vector space X ,
the mappings f : X → E• and g : X → F • are convex operators (for the sake
of convenience we assume dom(f) = dom(g) = X); second, F is an Archimedean
ordered vector space, E is a standard Kantorovich space of bounded elements; and,
at last, the element g(x) with some feasible point x̄ is a strong order unit in F .

5.7.6. Infinitesimal Optimality Criterion. A feasible point x is an infini-
tesimal solution of a Slater regular program if and only if the following system of
conditions is compatible

γ ∈ L+(F,E), μ ∈ L(X , E), γg(x) ≈ 0,
0 ∈ Df(x) +D(γ ◦ g)(x) + μ ◦A.
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� ←: In case of compatibility of the system, for every feasible point x and
some infinitesimals ε1 and ε2, we have

f(x) ≤ f(x) + ε1 + γg(x) − γg(x) + ε2 − μ(Ax) + μ(Ax)
≤ f(x) + ε1 + ε2 − γg(x) ≤ f(x) + ε

for every standard ε ∈ ◦E .
→: If x is an infinitesimal solution, then x is also an ε-solution for an ap-

propriate infinitesimal ε. It remains to appeal to the corresponding ε-optimality
criterion. �

5.7.7. A feasible point x is an infinitesimal Pareto solution to 5.7.5 provided
that x is a Pareto ε-solution for some infinitesimal ε (with respect to the strong
order unit 1E of the space E), i.e., if f(x) − f(x) ≤ −ε1E for a feasible x then
f(x) − f(x) = ε1E for ε ∈ μ(R+).

5.7.8. Suppose that x is an infinitesimal Pareto solution to a Slater regular
program. Then the following system of conditions is compatible for some linear
functionals α, β, and γ on the spaces E, F , and X respectively:

α > 0, β ≥ 0, βg(x) ≈ 0,
0 ∈ D(α ◦ f)(x) +D(β ◦ g)(x) + γ ◦A.

If, in turn, the above relations are valid for some feasible point x, α(1E) = 1 and
ker (α) ∩E+ = 0, then x is an infinitesimal Pareto solution.

� The first part of the claim ensues from the usual Pareto ε-optimality criterion
on considering the basic properties of infinitesimals.

Now, if the hypothesis of the second part of the claim is valid then, appealing
to the definitions, for every feasible x ∈ X we derive

0 ≤ α(f(x) − f(x)) + βg(x) − βg(x) + ε1 + ε2

≤ α(f(x) − f(x)) + ε1 + ε2 − βg(x)

for appropriate infinitesimals ε1 and ε2. Put ε := ε1 + ε2 − βg(x). It is clear that
ε ≈ 0 and ε ≥ 0. Now if f(x) − f(x) ≤ −ε1E for a feasible x, then we obtain
the equality α(f(x) − f(x)) = ε. In other words, α(f(x) − f(x) − ε1E) = 0 and
f(x) − f(x) = ε1E. This means that x is a Pareto ε-optimal solution. �

5.7.9. Following the above pattern, we may find some tests for infinitesimal
solutions to other basic types of convex programs. We leave these as exercise for
the curious reader.
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5.7.10. Comments.

(1) A complete guide to the problems of nonsmooth analysis we deal
with in this chapter is impossible to submit since this theme is very topical and
even grandiose. We thus supply the reader with a few standard references, while
indicating [279] as a source of details. The following brilliant articles have deter-
mined many principal directions of research in this huge area: [23, 24, 61, 80, 325,
423, 424].

(2) The Renaissance of the theory of local approximation is connected
with Clarke’s discovery of the convex tangent cone which is now named after him
(see [60, 61]).

Clarke analyzed only the finite-dimensional case. The invention of a general
definition in an abstract topological vector space turned out a delicate problem
which was solved by Rockafellar. The radical changes in nonsmooth analysis that
were initiated by the Clarke cone are mirrored in dozens of surveys and monographs.
We list a few of them [23, 61, 79, 80, 325].

(3) Diversity of tangent cones raised the problem of their classification.
Among the pilot studies in this area we must mention the articles of Dolecki
[91, 92] and Ward [517–519]. The classification of tangents of this chapter belongs
to Kutateladze [283, 285, 291].

(4) The regularizing cones of the types R1 and Q1 were suggested by
Kusraev [256, 257, 260] and Thibault [485, 486].

(5) Epiconvergence theory for correspondences is due to optimization.
The book [22] by Attouch played a significant role in propounding this theory. Our
exposition mostly follows [291].

(6) The idea to choose special collections of infinitesimals for construct-
ing tangents was suggested in [290]. Discussing the problems of the Cornet Theorem
we mainly proceed in the wake of Hiriart-Urruty [177].

A general approach to approximation of sums and composites was suggested
in [260, 262]. Our exposition follows Kutateladze [291].

(7) Infinitesimal subdifferentials appeared in a series of articles by Ku-
tateladze. We mention only the first complete exposition of the basics of this theory
in [286].
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Technique of Hyperapproximation

The most important applications of infinitesimal analysis to studying continu-
ous and other infinite objects result from “discretizing” them. This implies a search
for finite or at least finite-dimensional approximants that are infinitely close in some
sense to the original objects. The analogy with the ubiquitous sequential schemes
suggests that the “finiteness” in these approaches should involve actual infinites.

Among new entities we must first of all mention the nonstandard hulls of
normed spaces which were discovered by Luxemburg and the class of measures which
were introduced by Loeb and are known now as Loeb measures in common parlance.
The concept of nonstandard hull enables us to model infinite-dimensional Banach
spaces with hyperfinite-dimensional spaces. The construction of Loeb measure en-
ables us to model the conventional measure spaces with measures on hyperfinite
sets. We combine these ideas in the term “hyperapproximation.”

In this chapter we consider these constructions and their applications to dis-
crete approximation of Banach spaces and hyperapproximation of integral and pseu-
dointegral operators.

Throughout the chapter we work in the framework of the classical and even
radical stances of infinitesimal analysis since the constructions we use often manip-
ulate all types of cantorian sets available in infinitesimal analysis. This in particular
involves the necessity of cluttering the language of exposition with the prefix “hy-
per” for distinguishing between standard and nonstandard finite sets, standard and
nonstandard finite-dimensional vector spaces, etc.

The reader should bear in mind that some type of bilingualism is absolutely
unavoidable in confessing whatever stance of infinitesimal analysis.

Without further specification, we always choose some nonstandard universe
that is sufficiently representative for our needs or work in an appropriate fragment
of such a universe (a superstructure in nonstandard parlance). We always presume
that the necessary form of saturation or κ-saturation is satisfied in the ambient
universe of discourse. We freely use the strong concurrence principle or Nelson’s
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idealization, answering the challenges of the context (cf. 3.5.2–3.5.11). It is worth
observing that this freedom of action is absolutely lawful, revealing the inestimable
advantages of the “nonstandard” practice of doing mathematics.

6.1. Nonstandard Hulls

In this section we describe an important construction of infinitesimal analysis
which serves as one of the most useful tools of further exposition.

6.1.1. Suppose that E is an internal vector space over ∗F where F is a basic
field of scalars, i.e. R or C. In other words, given are the two internal operations
+ : E × E → E and · : ∗F × E → E satisfying the usual axioms of vector spaces.
Since F ⊂ ∗

F; therefore, each internal vector space E is simultaneously an external
vector space over F but neither a normed nor a Hilbert space even if E is such in
the internal universe. Nevertheless, it is possible to associate with each internal
normed or pre-Hilbert some external Banach or Hilbert space.

Let (E, ‖ · ‖) be an internal normed space over ∗F. As usual, an element x in
E is limited or infinitesimal provided that so is ‖x‖. Denote by ltd(E) and μ(E)
the external sets of limited and infinitesimal elements of a normed space E. The
notation μ(E) conforms with the agreements of Chapter 4 because μ(E) coincides
with the monad of the neighborhood filter of the zero of E.

Clearly, ltd(E) is an external vector space over F, and μ(E) is a subspace of
ltd(E). Denote the quotient space ltd(E)/μ(E) by E# and make E# a normed
space by putting

‖πx‖ := ‖x#‖ := st(‖x‖) ∈ F (x ∈ ltd(E)),

where π := (·)# : ltd(E) → E# is the quotient mapping. The external normed
space (E#, ‖ · ‖) is the nonstandard hull of E. If (E, ‖ · ‖) is a standard normed
space then the nonstandard hull of E is by definition the space (∗E)#.

If x ∈ E then π(∗x) = (∗x)# is a member of (∗E)# and, moreover, ‖x‖ =
‖(∗x)#‖. Thus, x �→ (∗x)# is an isometric embedding of E into (∗E)#. The image
of E under this embedding is always identified with E, providing the inclusion
E ⊂ (∗E)#.

Suppose now that E and F are internal normed spaces and T : E → F is an
internal bounded linear operator. Note that

c(T ) := {C ∈ ∗R : (∀x ∈ E)‖Tx‖ ≤ C‖x‖}

is an internal bounded set of reals. Recall that ‖T‖ := inf c(T ) by the definition of
operator norm.
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If ‖T‖ is a limited real, then it follows from the classical normative inequality
‖Tx‖ ≤ ‖T‖ ‖x‖, valid for all x ∈ E, that T (ltd(E)) ⊂ ltd(F ) and T (μ(E)) ⊂ μ(F ).
Therefore, the rule

T#πx := πTx (x ∈ E)

soundly defines the external operator T# : E# → F# that is the quotient of T by
the infinite proximity on E. The operator T# is F-linear and bounded; moreover,
‖T#‖ = st(‖T‖). It is in common parlance to call T# the nonstandard hull of T .

6.1.2. Theorem. The nonstandard hull E# is a Banach space for each internal
(not necessarily complete) normed space E.

� Recall the definitions and notation for the open and closed balls with center
a and radius ε: If X is a normed space, x ∈ X , and ε > 0 then

◦
BX(a, ε) :=

◦
Bε(a) := {x ∈ X : ‖x− a‖ < 1},

BX(a, ε) := Bε(a) := {x ∈ X : ‖x− a‖ ≤ 1}.

As suggested by the nested ball test for completeness (see, for instance, [300,
4.5.7]), take some sequence of balls BE#(x#

n , rn), with xn ∈ E, rn ∈ R for all
n ∈ N, and limn→∞ rn = 0. We may assume that (rn) decreases. Consider the
nested sequence of internal closed balls BE(xn, rn + rn/2n+1) in E. By saturation,
there is some x ∈ E belonging to each of these balls. The element x# is a common
point of the balls BE#(x#

n , rn) for n ∈ N. �
6.1.3. Let E be an internal vector space whose dimension is limited. In this

event E is referred to as hyperfinite-dimensional. Internal hyperfinite-dimensional
spaces will play a key role in what follows and so it is worthwhile to elaborate a few
relevant details.

We first clarify the concept of the sum of hyperfinitely many elements of a vec-
tor space. To this end, rephrase the definition of the sum of finitely many vectors
as a set-theoretic formula and proceed by transfer.

In more detail, if f is a sequence in E (i.e., f : N → E) then the partial sums
g(n) of the series

∑∞
k=0 f(k) are defined by recursion as follows:

Seq(f) ∧ Seq(g) ∧ f(0) = g(0) ∧ (∀k ∈ N)(g(k + 1) = g(k) + f(k + 1)),

with Seq(g) standing for the formal record of the formula: “g is a sequence.”
Abbreviate the above formula to Σ(f, g) and denote the cardinality of a set

M by |M |. We also identify a natural k with the set {0, 1, . . . , k − 1}. Take as E
an internal vector space (or an internal abelian group) and let Y be a hyperfinite
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subset of E. Distinguish some bijection f : {0, . . . , |Y | − 1} → Y and extend f to
the internal sequence f : ∗N → Y by letting f be zero for n > |Y | − 1. Proceed
with defining the sequence g : ∗N → E by using Σ(f, g).

By transfer, g(|Y |−1) is independent of the choice of f , and so we may soundly
put

∑
x∈Y x := g(|Y | − 1). Appealing to the transfer principle again, note that the

so-defined sum of a hyperfinite set enjoys all properties of the sum of finitely many
addends. For example, if {Ym : m < ν} is a hyperfinite internal family of subsets
of Y presenting a partition of Y then

∑

x∈Y
x =

ν−1∑

k=0

∑

x∈Yk

x.

It is now easy to define an internal vector space of hyperfinite dimension as
follows:

Let E be an internal linear space. A hyperfinite internal set {e1, . . . , eΩ}, with
Ω ∈ ∗N, is a basis for E provided that to each x ∈ X there is a unique hyperfinite
internal set {x1, . . . , xΩ} in ∗F satisfying x =

∑Ω
k=1 xkek. If E has a hyperfinite

basis then E is called hyperfinite-dimensional, and the internal cardinality Ω of this
basis is the internal dimension of E; in symbols, dim(E) := Ω.

By transfer, all properties of finite-dimensional vector spaces and their finite
bases carry over to hyperfinite-dimensional vector spaces and their hyperfinite bases.
For example, dim(E) = Ω if and only if there exists an internally linearly indepen-
dent hyperfinite subset Y in E of internal cardinality Ω, and every hyperfinite set
of internal cardinality Ω + 1 is internally linearly dependent.

Clearly, we say that some hyperfinite internal set {y1, . . . , yν} is internally
linearly independent provided that

∑ν
j=0 λjyj �= 0 for every internal finite sequence

{λ1, . . . , λν} with at least one nonzero element.
Note that if a set {y1, . . . , yν} is internally linearly independent, then it is lin-

early independent also in the external universe. Indeed, the external linear depen-
dence property of E means the linear dependence property over F for all standardly
finite subsets of E, and the latter is still linear dependence in the internal universe
since every standardly finite set is internal and F ⊂ ∗

F.
On the other hand, a linearly independent set in the internal universe may fail

to be so externally. For instance, if x ∈ E, x �= 0, and α ∈ ∗F − F then {x, αx}
is a linearly independent set internally but it is linearly dependent in the external
universe since α /∈ F.

Speaking about internal vector spaces, we will imply the interval versions of
linear dependence and independence, dimension, and so on. Therefore, the adjective
“internal” itself will be omitted as a rule.
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6.1.4. The most typical example of a hyperfinite-dimensional vector space is
the space consisting of all internal mappings x : T → ∗

C from some hyperfinite set T
to the field of hypercomplex numbers ∗C. The resulting vector space is furnished
with the internal norm

‖x‖p :=

(
∑

t∈T
|x(t)|p

)1/p

(x ∈ (∗C)T ),

with p ∈ ∗R, 1 ≤ p, and denoted by lp(T ) or lp(n), with n standing for the size
of T .

It is in common parlance to consider the internal inner product

〈x, y〉 :=
∑

t∈T
x(t)y(t)

giving rise to Hilbert norm of x coincident with ‖x‖2; moreover, the index p = 2 is
omitted in the notation for the norm.

In the internal universe all norms on (∗C)T are equivalent by transfer, i.e.,
(∃C1, C2 > 0)(∀x)(C1‖x‖p1 ≤ ‖x‖p2 ≤ C2‖x‖p1). It is worth observing that the
constants C1 and C2 belong to ∗R and so they might be infinitesimal or unlimited
sometimes.

Recall that if E is a normed space (over C for definiteness) then E is usually
treated as a topological space in which the neighborhood filter of an arbitrary
point x has the shape

τE(x) := fil{Bε(x) : ε ∈ R+}.
In this event, ∗E is an internal normed space over ∗C and the neighborhood filter
of an arbitrary point y of ∗E has the shape

τ∗E(y) := fil{Bε(y) : ε ∈ ∗R+}.

We usually drop ∗ while indicating the addition and scalar multiplication as well
as norm and inner product of ∗E.

The space lp(n) is an internal Banach lattice. We note for the sake of complete-
ness that if E is an internal normed vector lattice then E# is naturally equipped
with some order induced by the quotient mapping x �→ x#. Namely, the positive
cone of E# is defined as E# := {x# : 0 ≤ x ∈ ltd(E)}. Moreover:

The nonstandard hull E# of an internal normed vector lattice E is a Banach
lattice with sequentially order continuous norm. Moreover, every increasing and
norm bounded sequence in E# is order bounded.
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If p and n are limited numbers then lp(n)# is a Banach lattice order isomorphic
and isometric to lq(n), where q := st(p) (see 6.1.5). Assume further that p is
unlimited whereas n remains limited. Then the space lp(n)# is isomorphic to l∞(n).
It is possible to show also that, in the case of n unlimited and p ≥ 1 limited, lp(n)
is isomorphic to Lq(μ) for some measure μ. In case both numbers n and p ≥ 1 are
unlimited, lp(n) is isomorphic to L∞(μ).

6.1.5. Theorem. If E is an internal finite-dimensional normed space and n :=
dim(E) is standard then dim(E#) = n. Otherwise, E# is nonseparable.

� Check first that if E# is separable then E# is finite-dimensional. To this
end, put A# := {e# : e ∈ A} ⊂ E# for A ⊂ E. This notation applies both to
external and internal subsets of E. If X is a normed space then we let BX stand
for the unit ball of X , i.e. BX := {x ∈ X : ‖x‖ ≤ 1}. Clearly, BE# = (BE)#.

Indeed, the inclusion (BE)# ⊂ BE# follows from the fact that (∀λ ∈ ∗
R)

(λ ≤ 1 → ◦λ ≤ 1). Take ξ ∈ BE# , i.e., ‖ξ‖ ≤ 1. If ‖ξ‖ < 1 then (∃e ∈ E)(ξ =
e# ∧ ‖e‖ < 1), i.e., e ∈ BE , and so ξ ∈ (BE)#. If ‖ξ‖ = 1 then ξ = e#, where
‖e‖ ≈ 1, and it may happen so that ‖e‖ > 1. However, in this case e′ := e

‖e‖ ≈ e,
implying that e′# = e#. Consequently, ‖e′‖ = 1, and again ξ ∈ (BE)#. Similarly, if

e ∈ ltd(E) then
◦
BE(e, ε)# ⊂ BE#(e#, ε).

To prove that E# is finite-dimensional it suffices to show that the ball BE# is
compact. Since E# is separable by hypothesis, there is a countable dense subset
{e#
k : k ∈ N} of BE# . By above, we may assume that ek ∈ BE for all k ∈ N.

Take an arbitrary ε > 0 and consider the increasing sequence of internal sets

Mn :=
⋃n
k=0

◦
BE(ek, ε) ∩ BE . Show that

⋃
n∈N

Mn = BE. Indeed, if e ∈ BE then
‖e# −e#

n‖ < ε for some n ∈ N, implying that ‖e−en‖ < ε, i.e., e ∈ BE(en, ε) ⊂ Mn.
By saturation, Mn0 = BE for some n0 ∈ ∗N. Therefore,

BE# =
( n0⋃

k=0

◦
BE(ek, ε) ∩BE

)#

=
n0⋃

k=0

( ◦
BE(ek, ε) ∩BE

)#

⊂
n0⋃

k=0

◦
BE#(e#

k , ε) ∩BE# .

This inclusion allows us to conclude that {e#
0 , . . . , e

#
n0

} is an ε-net for BE# .
Show now that if e1, . . . , en ∈ ltd(E), where n ∈ N and e#

1 , . . . , e
#
n are linearly

independent, then e1, . . . , en are linearly independent in E (over ∗F). Indeed, sup-
pose that λ1, . . . , λn ∈ ∗F are not all zero and

∑n
k=1 λkek = 0. If λ := maxk |λk|
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then λ �= 0 and
∑n
k=1 μkek = 0, where μk := λk/λ and |μk| ≤ 1. Since |μk|

is limited; therefore, ◦μk lies in ∗R. It is easy in this case that (
∑n
k=1 μkek)# =∑n

k=1
◦μke#

k = 0. However, ‖μj‖ = 1 for some j, i.e., ◦μj �= 0, which contradicts the
linear independence of e#

1 , . . . , e
#
n .

The above arguments show, in particular, that if the internal dimension of E
is a standard number n, i.e., dim(E) = n; then dim(E#) ≤ n. To prove the reverse
inequality we use an Auerbach basis (see [170]).

A basis {e1, . . . , en} in a normed space X is an Auerbach basis provided that
‖e1‖ = · · · = ‖en‖ = 1 and

∥
∥
∥
∥
∥

n∑

k=1

αkek

∥
∥
∥
∥
∥

≥ |αj| (α1, . . . , αn ∈ F)

for all j := 1, . . . , n. This amounts to the fact that the linear span of the set (ek)k 
=j
is orthogonal to the vector ej on the understanding that the orthogonality of M ⊂ L
to x ∈ L means that ‖x+ αy‖ ≥ ‖x‖ for all α ∈ F and x ∈ M , cf. [128].

It is well known (see, for example, [128]) that each finite-dimensional normed
space has an Auerbach basis. Consequently, such an internal basis exists also in
the internal n-dimensional space E by transfer.

Suppose that {e1, . . . , en} is an Auerbach basis for E. Check that e#
1 , . . . , e

#
n

are linearly independent.
If
∑n
k=1 λke

#
k = 0 then ‖∑n

k=1 λkek‖ ≈ 0, but ‖∑n
k=1 λkek‖ ≥ |λj| for all

j := 1, . . . , n, contradicting the fact that all λk are standard, and at least one of
them is nonzero. This proves that the internal dimension of E equals n; in symbols,
dim(E#) = n. We have so completed the proof of the first claim of the theorem.

Suppose now that the internal dimension of E is greater than each stan-
dard n. Then to such a natural n there is an internal subspace E1 ⊂ E satis-
fying dim(E1) = n. Obviously, E#

1 is embedded in E# isometrically, and so E#

contains some n-dimensional subspace for all n ∈ N. In this event E# is neither
finite-dimensional nor separable. �

6.1.6. Let F(E) stand for the set of all finite-dimensional subspaces of a normed
space E. Given F ∈ F(E), denote the dimension of F by dim(F ). By transfer
∗F(E) consists of some (not necessarily all) hyperfinite-dimensional subspaces of
the internal space ∗E. Moreover, ∗ dim is a mapping from ∗F(E) to ∗N satisfying
∗ dim(F ) = dim(F ) for all F ∈ F(E).

To each vector space E there is some F in ∗F(E) satisfying E ⊂ F ⊂ ∗E. In
other words, there is some hyperfinite-dimensional subspace F ⊂ ∗E that contains
all standard elements of the internal space ∗E.
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� The proof is straightforward by saturation. Indeed, put Ax := {F ∈ ∗F(E) :
x ∈ F} for all x ∈ E. The family (Ax)x∈E of internal sets is nested and so it
possesses the finite intersection property. By saturation, there is some F in ∗F(E)
such that x ∈ F for all x ∈ X . �

Despite simplicity of formulation and proof, the above proposition lays grounds
for numerous applications of infinitesimal analysis in Banach space theory. The
scheme of actions is here as follows:.

Embed E into a hyperfinite-dimensional vector space F . By transfer, we may
establish various facts about the space F and operators in F by proving them for
finite-dimensional subspaces of E and operators in them. Since E lies in F , it fol-
lows that we may use the standard part operation to obtain results about E and
the endomorphisms of E. This scheme is not automatic and sometimes, requires
a rather sophisticate technique for implementation. In particular, the object un-
der consideration may lack the nearstandardness property which is necessary for
using the standard parts and so we are to introduce nearstandardness in an ad hoc
manner, cf. [342].

6.1.7. We now shortly consider what happens with the property of an operator
in passing to nonstandard hulls.

Let E, F , and G be internal normed spaces over the field ∗F (which is the
standardization of the basic field F and coincides with ∗R or ∗C). Assume that
S, T : E → F and R : F → G are limited internal operators. Then

(1) ‖T#‖ = ◦‖T‖;
(2) (S + T )# = S# + T#;
(3) (λT )# = (◦λ)T# for every λ ∈ ltd(∗F);
(4) (R ◦ T )# = R# ◦ T#.

� These are all obvious. �
6.1.8. Suppose that E is an internal vector space with the inner product 〈·, ·〉.

As mentioned above, E# is the nonseparable Hilbert space whose inner product
(·, ·) looks as follows

(x#, y#) := 〈x, y〉 (x, y ∈ E).

If T is an operator between Hilbert spaces then we let T ∗ stand the adjoint
of T (also known as the hermitian conjugate of T ). Let σ(T ) be the spectrum of T
and σp(T ), the point spectrum of T (i.e., the set of eigenvalues of T ).

Assume that E is an internal pre-Hilbert space and T : E → E is an internal
linear operator with limited norm. Then

(1) (T ∗)# = (T#)∗;
(2) If T is hermitian, or normal, or unitary operators then so is T#;
(3) If E is hyperfinite-dimensional then σ(T#) = σp(T#).
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6.1.9. If E is an internal pre-Hilbert space and F is an internal subspace of E
then (F⊥)# = (F#)⊥.

� Let PF be the orthoprojection in E to F , and let PF# be the orthoprojection
of E# to F#. Show that P#

F = PF# .
By 6.1.7 and 6.1.8, P#

F is an orthoprojection. We are left with proving that
P#
F ξ = ξ if and only if ξ ∈ F#.

If ξ = x# and x ∈ F then P#
T x

# = (PFx)# = x# = ξ. Conversely, suppose
that P#

F ξ = ξ. If ξ = y# then (PF y)# = y#, and so PF y−y ≈ 0. Putting x := PF y,
observe that ξ = x#. Since x = PF y ∈ F ; therefore, ξ ∈ F#.

To complete the proof, note that H = F⊥ if and only if PH + PF = I and
PHPF = PFPH = 0. Appealing again to 6.1.7, infer that PH# + PF# = I# and
PH#PF# = PF#PH# = 0#. Hence, H# = (T#)⊥. �

We now provide three auxiliary facts helpful in the sequel. Note that in 6.1.10–
6.1.12 E stands for a hyperfinite-dimensional Hilbert space.

6.1.10. If T is an internal limited normal operator then σ(T#) = {◦λ : λ ∈
σ(T )}.

� Put B := {◦λ : λ ∈ σ(T )}. Clearly, B is a closed subset of C, since σ(T ) is
internal set by 4.2.5. Obviously, B ⊂ σ(T#). Suppose that μ /∈ B. Then there is
a standard real δ > 0 satisfying |μ− ξ| ≥ δ for all ξ ∈ B. Consequently, |μ− ξ| ≥ δ
for all ξ ∈ σ(T ).

Since μ /∈ σ(T ); therefore, (μ− T )−1 is a bounded linear operator. It is clear
that

σ((μ− T )−1) =
{

1
μ− λ

: λ ∈ σ(T )
}

.

Since T is normal, the last equality implies that ‖(μ− T )−1‖ ≤ δ−1, i.e., the norm
of (μ−T )−1 is limited. By 6.1.7 (4), (μ−T )−1# = (μ(IE)# −T#)−1 = (μ−T#)−1,
since (IE)# = IE# is the identity operator on E#. Hence, μ /∈ σ(T#). �

6.1.11. Assume that dim(E) = N ∈ ∗
N and let A : E → E be an internal

hermitian endomorphism whose matrix (akl)Nk,l=1 in some orthonormal basis enjoys

the condition
∑N
k,l=1 |akl|2 < +∞. Then all eigenvalues of A are limited and the

multiplicity of each noninfinitesimal eigenvalue is a standard natural.

� This is immediate from the equality

s∑

k=1

nk|λk|2 =
N∑

k,l=1

|akl|2,

where λ1, . . . , λs is the complete list of distinct eigenvalues of A with respective
multiplicities n1, . . . , ns. �
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6.1.12. Let A : E → E be a bounded hermitian operator and λ ∈ R, a stan-
dard number. Let M stand for the set of eigenvalues of A, infinitely close to λ.
Assume that M is internal and standardly finite; i.e., M = {λ1, . . . , λn} for some
n ∈ N. Assume further that the multiplicity of each λk ∈ M is standard, and
denote by {ϕ1, . . . , ϕm} a complete orthonormal system of eigenvectors with eigen-
values inM . In this case if f ∈ E# is an eigenvector of A# with eigenvalue λ then
f is expressible as a linear combination of the elements ϕ#

1 , . . . , ϕ
#
m.

� Let H be the internal linear span of {ϕ1, . . . , ϕm}. Since m is standard, it
is easy to see that H# ⊂ E# is the linear span of {ϕ#

1 , . . . , ϕ
#
m}. Denote by E#

λ

the eigenspace of A# with eigenvalue λ. Obviously, H# ⊂ E#
λ . If H# �= E#

λ then
(H#)⊥ ∩E#

λ �= 0.
By 6.1.9, H#⊥ = (H⊥)#. By definition, H is an invariant subspace of A, and

so H⊥ is an invariant subspace of A too. Hence, (H⊥)# is an invariant subspace of
A#. Suppose that 0 �= f ∈ (H⊥)# ∩ E#

λ . Then λ is an eigenvalue of the restriction
A|H⊥ of A# to (H⊥)#. Consequently, there is an eigenvalue γ of A|H⊥ . Each
eigenvector with eigenvalue γ is orthogonal to H and, hence, to all ϕi, which is
a contradiction. �

6.1.13. Comments.

(1) It is Luxemburg who discovered the nonstandard hull of a Banach
space [328]. The ultraproducts of Banach spaces, introduced by Dacunha-Castelle
and Krivine [72], are analogs of nonstandard hulls. Consult [160, 167, 170] about
the role of these notions in Banach space theory and further references.

(2) The question of analytical description for nonstandard hulls, we
mentioned in the end of 6.1.4, is studied in detail for the classical Banach spaces;
see [64]. An arbitrary axiomatic external set theory enables us to obtain only results
similar to 6.1.4. Nevertheless, it is possible to elaborated description for nonstan-
dard hulls in a restricted fragment of the von Neumann universe. For instance,
if we assume that the nonstandard universe is ω0-saturated (which is a constraint
from below) and possesses the ω0-isomorphism property (which is a constraint from
above) then the nonstandard hull of the Banach lattice Lp([0, 1]) is isometrically
isomorphic with the lp-sum of k copies of Lp([0, 1]k), with k := 2ω0 . See [165, 170]
for a detailed exposition of this fact and further references.

(3) Recall that some properties of a normed space E are “local” in
the sense that they are defined by the structure and location of finite-dimensional
subspaces of E.

Nonstandard hulls have interesting local properties. For instance, it often hap-
pens so that if some property holds “approximately” on finite-dimensional subspaces
then it holds “exactly” in the nonstandard hull of the ambient space. An example
is the notion of finite representability, see [66, 170]. Dvoretsky had introduced the
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notion of finite representability (the term was minted by James) into Banach space
theory long before the model-theoretic technique has entered the latter.

(4) The problem of conditions for Banach spaces to have isomorphic
nonstandard hulls was addressed by Henson [164]. Using a special first-order lan-
guage, he considered the property of approximate equivalence of Banach spaces
which amounts to isometric isomorphism of their nonstandard hulls [164]; also see
[460, 461].

(5) Propositions 6.1.7 and 6.1.8 are established in [371]. Propositions
6.1.9–6.1.12 are taken from [146]. Proposition 6.1.10, valid for every normal op-
erator in a hyperfinite-dimensional Hilbert space, fails in more general situations
(some counterexamples are given in [528]).

6.2. Discrete Approximation in Banach Space

Study of linear operator equations in Banach space constantly and successfully
use the method of discretization or “discrete approximation” which consists in re-
placing the original equation with some approximate equation in finite dimensions.
This technique involves an important problem of the limit behavior of the spectra
of approximants. The present section suggests an infinitesimal approach to this
area of research.

6.2.1. We start with the definitions of discrete approximation of a Banach
space and a linear operator.

Let X and Xn, with n ∈ N, be some Banach spaces whose norms are denoted
by ‖ · ‖ and ‖ · ‖n. Assume given a dense subspace Y ⊂ X and a sequence of
surjective linear operators (Tn) : Y → Xn satisfying

(1) lim
n→∞ ‖Tn(f)‖n = ‖f‖ (f ∈ Y ).

In this event ((Xn, Tn))n∈N is a discrete approximant to X . The term “strong
discrete approximation” signifies the case in which Y = X .

A sequence (xn)n∈N, with xn ∈ Xn, converges discretely to f in Y provided
that ‖Tnf − xn‖n → 0 as n → ∞.

Let ((Xn, Tn))n∈N be a discrete approximant to X . Assume given a (possibly,
unbounded) linear operator A : X → X and a sequence (An), with An an endo-
morphism of Xn. Denote by DAp(A) the subspace of Y that comprises all f ∈ Y
such that Af ∈ Y and

(2) lim
n→∞ ‖TnAf −AnTnf‖n = 0.

(In other words, (AnTnf) converges discretely to Af .)
We call DAp(A) the approximation domain of A by (An). If DAp(A) is dense

in Y then we say that the sequence of operators (An) converges discretely to A. In
case ((Xn, Tn))n∈N is a strong discrete approximant and ‖TnA − AnTn‖n → 0 as
n → ∞, we speak about uniform discrete convergence.
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6.2.2. If ((Xn, Tn))n∈N is a strong discrete approximant then (Tn)n∈N is a
uniformly bounded sequence: (∃C > 0)(∀n ∈ N)(‖Tn‖n ≤ C).

� This assertion is an instance of the celebrated boundedness principles of
classical functional analysis (see, for instance, in [300, 7.2]). �

6.2.3. Let X and Xn be Hilbert spaces with inner products 〈·, ·〉 and 〈·, ·〉n re-
spectively. Assume that ((Xn, Tn))n∈N is a discrete approximant to X . Distinguish
some unlimited natural N and consider the internal Hilbert space XN . In what
follows we agree to let X stand for the nonstandard hull of X#

N . We now define an
embedding t : X → X .

Let Y ⊂ X be some dense subspace satisfying the definition of 6.2.1. Given
f ∈ Y , put t(f) := TN (f)#. By 6.1.7 (1) and the infinitesimal limit test (cf. The-
orem 2.3.1) ‖f‖ ≈ ‖TN (f)‖N . This obviously implies the equality ‖f‖ = ‖t(f)‖.
Hence, t : Y → X is a linear isometry. Consequently, t has a unique extension by
continuity to the whole X which we will also denote by t.

Consider now a sequence of linear operators (An), with An an endomorphism
of Xn, which converges discretely to a bounded linear operator A : X → X (see
the definition of discrete approximation).

Assume at first that this sequence is uniformly bounded; i.e., (∃C > 0)(∀n ∈ N)
(‖An‖n ≤ C). Then the internal linear operator AN is also bounded and, moreover,
its norm ‖AN‖N is a limited hyperreal. Thus AN determines the bounded linear
operator A#

N : X → X by the rule:

A#
N (x#) = AN (x)# (x ∈ ltd(XN)).

In what follows we denote this operator by A . Obviously, ‖A ‖ = ◦‖AN‖N .

(1) If a sequence of linear operators (An), with An an endomorphism
of Xn, is uniformly bounded then (An) converges discretely to a bounded endomor-
phism A of X if and only if the diagram

X
A−−−−→ X

t

⏐
⏐
# t

⏐
⏐
#

X
A−−−−→ X

commutes for all infinite N .

� From 6.2.1 (2) it follows that ‖ANTNf − TNAf‖N ≈ 0 for all f ∈ Y . This
means that A t(f) = tAf for all f ∈ Y . The subspace Y is dense in X and all
operators in the last equality are bounded, which implies the claim. �
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(2) Assume that a sequence of linear operators (An), with An an en-
domorphism of Xn, is uniformly bounded and converges discretely to a bounded
endomorphism A of X . Then DAp(A) = {f ∈ Y : Af ∈ Y }. In particular, if
Y = X and the equality 6.2.1 (2) holds on some dense subset of X then it holds on
the whole X .

� Immediate from (1). �

6.2.4. From now we assume that, for all n, the spaces Xn are finite-dimensional
and all operators An and A are normal or hermitian. Then A is also normal or
hermitian. In this case in view of 6.1.10 σ(A ) = {◦λ : λ ∈ σ(AN )} and the spectrum
σ(A ) of A is discrete; i.e., σ(A )=σp(A ) or, in other words, σ(A ) consists only of
eigenvalues of A .

We also assume that the sequence (An) converges discretely to A. Obviously
for normal operators the commutativity of the diagram of 6.2.3 (1) implies the
inclusion: σ(A) ⊂ σ(A ). So, the eigenvectors of A that correspond to the points
of σ(A), may be considered as generalized eigenvectors of A. We use below the
following notation: T (λ) := ker(λ− T ) for an arbitrary operator T .

If A is compact operator and A (X ) ⊂ t(X) then
(1) σ(A) = σ(A );
(2) if λ ∈ σ(A) and λ �= 0 then A (λ) = t(A(λ)), and so dim(A (λ)) =

dim(A(λ)).

� We have to show that σ(A ) ⊃ σ(A) and each eigenvector f of A not
belonging to ker(A ) has the shape f = t(x) where x is an eigenvector of A with
the same eigenvalue as f .

Indeed, take λ ∈ σ(A ). It is possible to assume that λ �= 0. Otherwise
λ ∈ σ(A) since A is compact and normal. Since σ(A )=σp(A ), there is some f
in X satisfying A f = λf . By hypothesis A f ∈ t(X), and since λ �= 0 we have
f ∈ t(X).

Hence, there is a unique x ∈ X satisfying f = t(x). Since the diagram
of 6.2.3 (1) commutes, t(Ax) = A (t(x)) = A f = λf . This implies that t(λx) = λf .
Furthermore, since t is injective, we infer that x is an eigenvector of A with eigen-
value λ. �

6.2.5. Under the hypotheses of 6.2.3 if A and AN are hermitian then
(1) σλ := {ν ∈ σ(AN) : ν ≈ λ} is a finite set for each nonzero λ ∈

σ(A ); i.e., σλ = {ν1, . . . , νk} where k ∈ N;

(2) The dimension mj := dim(A(νj)
N ) is finite for all j ≤ m and

∑k
j=1mj = dim(A (λ));

(3) (A(ν1)
N ⊕ · · · ⊕ A

(νm)
N )# = A (λ);
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(4) If the family (xj1, . . . , x
j
mı

) is a Hilbert basis for A(νj)
N for all j :=

1, . . . , k then ((x1
1)#, . . . , (x1

m1
)#, . . . , (xk1)#, . . . , (xkmk

)#) is a Hil-
bert basis for A (λ);

(5) If A(λ) ⊂ DAp(A) then there is a Hilbert basis (y1
1, . . . , y

1
m1
, . . . , yk1 ,

. . . , ykmk
) for A(λ) such that TNy

j
l ≈ xjl for j := 1, . . . , k; l :=

1, . . . , mj.

� It is easy to see that x# ∈ A (λ) whenever ν ≈ λ and x ∈ A
(ν)
N . In case

ν1, . . . , νk ∈ σλ are pairwise distinct, all x1 ∈ A
(ν1)
N , . . . , xk ∈ A

(νk)
N are pairwise

orthogonal and so x#
1 , . . . , x

#
k are pairwise orthogonal too. This proves that k ≤

dim(A (λ)). The reverse inequality was proven in 6.1.6 (3).
The implications (2) → (3) and (3) → (4) are obvious, while (5) follows from

the definition of t. �

6.2.6. A sequence of operators (An) is quasicompact provided that A (X ) ⊂
t(X) for all unlimited N (note that (An) is not assumed convergent discretely to A).

The reason behind this definition is as follows: Assume for a moment that
((Xn, Tn))n∈N is a strong discrete approximant (see 6.2.1). Then the condition
6.2.1 (2) means that, for all unlimited N , the image ANx of each limited x is
infinitely close to TNy for some standard y ∈ X . Observe now that the infinitesimal
test for an operator to be compact reads (cf. 4.3.6): T is a compact operator if and
only if the image of every limited element under T is nearstandard.

We now give one simple sufficient condition of quasicompactness of a sequence
of operators (An) which holds for all Banach spaces X and Xn with n ∈ N (cf. [405]).
This rests on requiring the following property of discrete approximation which we
will often use in the sequel:

(1) sup
n∈N

sup
‖z‖=1

(inf{‖x‖n : Tnx = z}) < +∞.

(2) Assume that a sequence (An) converges discretely to a compact
operator A and, moreover, this convergence is uniform. Assume further that the
discrete approximation ((Xn, Tn))n∈N enjoys the property (1). Then (An) is a
quasicompact sequence.

� Take ξ ∈ X . There is a limited element x in XN satisfying ξ = x#. Since
every Tn is surjective, by transfer, x = TNf for some f ∈ ∗X .

From the hypothesis about ((Xn, Tn))n∈N it follows that f may be chosen
limited. By uniform convergence ‖ANTN − TN

∗A‖N ≈ 0 and so ANx = ANTNf ≈
TN
∗Af .

Since A is compact and f is limited, there is a standard element h ∈ X satis-
fying ∗Af ≈ h. By 6.2.2, ‖TN‖N is limited and so TN ∗Af ≈ TNh, i.e., ANx ≈ TNh
and A (ξ) = t(h). �
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Below in 7.6 and 7.7 we will use strong discrete convergence in the situation
[86] in which there are isometric embeddings ın : Xn → X and Tn := ı−1

n ◦ pn,
where pn : X → ın(Xn) is the corresponding orthoprojection. It is easy to see that
the discrete approximation in this case enjoys the above extra requirement.

Unfortunately, uniform convergence is a rare phenomenon. Therefore, to prove
quasicompactness for (An) is not an easy matter in many interesting cases. We
must first of all find the conditions for x ∈ XN to be infinitesimally close to some
element of the shape TNy with some standard y ∈ X . In 7.6.15 we give one test
useful for the approach we pursue to approximating Schrödinger type operators.

6.2.7. The definition of quasicompactness acquires a rather natural standard
version since condition of the definition of 6.2.6 holds for every unlimited integer N .
Then the routine infinitesimal arguments will allow us to prove the following propo-
sition which holds for arbitrary parameters.

We denote the unit ball of XN with center the origin by BN , keeping the
symbol BN (ε, x) for the ball in XN with center x and radius ε.

If ((Xn, Tn))n∈N is a strong discrete approximant then (An) is a quasicompact
sequence of operators if and only if

(∀ε > 0)(∃finB ⊂ X)(∃n0)(∀N > n0)
(

(AN (BN )) ⊂
⋃

y∈B
BN (ε, TNy)

)
.

� ←: Take an arbitrary standard ε > 0. By transfer, we have the following
inclusion:

AN (BN) ⊂
⋃

y∈B
BN (ε, TNy)

for every unlimited natural N . This implies for x ∈ BN that to each standard
n ∈ N there is a standard yn ∈ X satisfying ‖ANx − TNyn‖N < n−1. Since
‖TNyn − TNym‖N ≈ ‖yn − ym‖ for all standard n and m; therefore, (yn)n∈N is
a Cauchy sequence in X and so (yn)n∈N converges to some standard element y ∈ X .
Now it is obvious that ‖ANx− TNy‖ ≈ 0.

→: Suppose the contrary. By negation,

(∃ε > 0)(∀finB ⊂ X)(∀n0)(∃N > n0)
(

(AN (BN )) �⊂
⋃

y∈B
BN (ε, TNy)

)
.

Take a standard ε0 > 0 satisfying the last formula. Consider a hyperfinite set
B ⊂ ∗X such that X ⊂ B.
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By transfer, from the above formula it follows that there is an unlimited N
satisfying

AN (BN ) �⊂
⋃

y∈B
BN (ε, TNy).

Thus, there is some x in BN such that the distance from x to each element of the
shape TNy with a standard y is greater than or equal to the standard ε0. This
shows that the condition of the definition of quasicompactness in 6.2.6 fails for this
number N . �

6.2.8. Theorem. Let A be a compact hermitian endomorphism of a Hilbert
space X . Assume that ((Xn, Tn))n∈N is a discrete approximant to X , and (An)n∈N

is a quasicompact sequence convergent discretely to A, with An a hermitian endo-
morphism of Xn for all n. Then

(1) The spectrum σ(A) of A coincides with the set of nonisolated limit
points of

⋃
n σ(An);

(2) If 0 �= λ ∈ σ(A) and J is a neighborhood of λ with no points of
σ(A) distinct from λ then λ is the sole nonisolated limit point of
J ∩⋃n σ(An);

(3) If in the context of (2)

Mλ
n :=

∑

ν∈σ(An)∩J A
(ν)
n ,

then dim(Mλ
n ) = dim(A(λ)) = s for all sufficiently large n and there

is a sequence of orthonormal bases (fn1 , . . . , f
n
s ) forMλ

n , convergent
discretely to an orthonormal basis (f1, . . . , fs) for A(λ).

� This is a standard rephrasing of 6.2.4 and 6.2.5. �
Certainly, our arguments fail in the case of unbounded selfadjoint operator A.

Indeed, if (An) converges discretely to A then the norm of AN is unlimited and
we face problems even in defining A#

N (see [250]). However, we may obviate the
obstacles by slightly modifying the results on strong resolvent convergence (cf., for
example, [409, Theorem VIII.19] and also [117, Theorem 5.7.6]). It is worth noting
also that all facts of the theory of unbounded linear operators we use in the sequel
may be found in [409, Chapter VIII].

If λ /∈ σ(A) then we let Rλ(A) := (λ−A)−1 := (λ1−A)−1 denote the resolvent
of A at λ, with 1 standing as usual for the identity operator I on X , the unity of
the endomorphism algebra of X .

6.2.9. If A is selfadjoint and the approximation domain DAp(A) of A by (An)
is an essential domain of A then (Rλ(An)) converges discretely to Rλ(A) for all λ
such that λ /∈ cl(σ(A) ∪⋃n σ(An)).
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� Start with proving the claim for λ := ±i which obviously meets the as-
sumptions. Consider only the case of λ := −i since the case of λ := i is settled
similarly. By definition, it suffices to prove 6.2.1 (2) with R−i(A) and R−i(An) and
some dense subset Y ⊂ X .

Put Y := {(A + i)ϕ : ϕ ∈ DAp(A)}. Then Y is dense in X because DAp(A)
is an essential domain of A. Take an unlimited natural N and note

((A+ i)−1 − (AN + i)−1)(A+ i)ϕ = (AN + i)−1(AN − A)ϕ.

Since ϕ ∈ DAp(A); therefore, (AN −A)ϕ ≈ 0.
Given a subset B of the reals R and λ ∈ C, denote the distance from λ to B

on the plane C by ρ(λ,B). Assign S := cl(σ(A) ∪ ⋃n σ(An)). If λ satisfies the
hypotheses then ρ(λ, S) > 0. By transfer,

‖(AN + i)−1‖ = ρ(λ, σ(AN))−1 ≤ ρ(λ, S)−1 � +∞.

Thus, R−i(AN )(A + i)ϕ ≈ R−i(A)(A + i)ϕ. This proves that R−i(An) converges
discretely to R−i(A).

We prove now that if the claim is valid for some λ0 such that λ /∈ S and if
|λ − λ0| < ρ(λ0, S) then the claim holds for this λ. This will clear do since each
λ /∈ S can be connected either with i or with −i by a smooth curve lying entirely
in C − S. So we may reach λ from i or −i through finitely many circles of radius
less than ρ(λ, S).

The functions Rλ(An) (n ∈ N) and Rλ(A) are analytic in the open disk {λ ∈
C : |λ− λ0| < ρ(λ0, S)}, and expand in the following uniformly convergent series:

(1) Rλ(A) =
∞∑

m=0
(λ− λ0)mRm+1

λ0
(A),

(2) Rλ(An) =
∞∑

m=0
(λ− λ0)mRm+1

λ0
(An).

Demonstrate that TNRλ(A)f ≈ Rλ(AN )TNf for all unlimited N and standard
f ∈ Y . Since this holds for λ0; therefore,

(3)
k∑

m=0
(λ− λ0)mTNRm+1

λ0
(A)f ≈

k∑

m=0
(λ− λ0)mRm+1

λ0
(AN )TNf

for all k ∈ N.
Take an arbitrary standard ε > 0. Then by (1) and (2) there is some n0

satisfying
∥
∥
∥
∥Rλ(A)f −

k∑

m=0

(λ− λ0)mRm+1
λ0

(A)f
∥
∥
∥
∥ < ε

for k > n0. Denote the function on the left part of the last inequality by h. Since
h is standard, ‖TNh‖ ≈ ‖h‖. This implies that
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(4)
∥
∥
∥TNRλ(A)f −

k∑

m=0
(λ− λ0)mTNRm+1

λ0
(A)f

∥
∥
∥
N

≤ ε.

Show now that the convergence of the series in (2) is uniform in n. To this
end, note that

‖Rλ0(An)‖ = max
ν

{ν : ν ∈ σ(An)} = ρ(λ0, σ(An))−1 ≤ ρ(λ0, S)−1.

Thus, q := |λ− λ0|‖Rλ0(An)‖ < 1, implying that

∥
∥
∥
∥

∞∑

m=k+1

(λ− λ0)mRm+1
λ0

(An)
∥
∥
∥
∥ ≤ ρ(λ0, S)−1qk+1

1 − q
→ 0

for k → ∞. Now, since ‖TNf‖N is limited (TNf ≈ f); there is some n1 satisfying

(5)
∥
∥
∥Rλ(An)TNf −

k∑

m=0
(λ− λ0)mRm+1

λ0
(AN )TNf

∥
∥
∥
N
< ε

for k > n1.
Taking a standard k > max{n0, n1}, infer by (3), (4), and (5) that

‖TNRλ(A)f −Rλ(AN )TNf‖N ≤ 2ε.

Since ε > 0 is arbitrary, the proof is complete. �

6.2.10. The following proposition is a simple corollary of the above fact.

If in the conditions of 6.2.9 the resolvents of selfadjoint operators An are com-
pact and (Rλ(A)) is a quasicompact sequence for some real λ /∈ cl(σ(A)∪⋃n σ(An))
then 6.2.8 (1)– (3) are valid.

6.2.11. If ((Xn, Tn))n∈N is a strong discrete approximant satisfying 6.2.6 (1)
then by 6.2.6 (2) the uniform convergence of the sequence of resolvents implies that
this is a quasicompact sequence. The following proposition (cf. [409, Theorem 8.25])
provides a sufficient condition for uniform convergence of resolvents.

Suppose that in the conditions of 6.2.9 the discrete approximant ((Xn, Tn))n∈N

is strong and satisfies 6.2.6 (1) and for some essential domain D ⊂ DAp(A) of A
the following condition holds

lim
n→∞ sup

ϕ∈D,‖ϕ‖A=1

‖(TnA−AnTn)ϕ‖n = 0,

where ‖ϕ‖A := ‖Aϕ‖+‖ϕ‖. Then the convergence of (Rλ(An)) to Rλ(A) is uniform.
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6.2.12. Comments.

(1) The origin of this section is the article [5] by Albeverio, Gordon,
and Khrennikov. The definitions of 6.2.1 specify the concept of discrete convergence
which stems from the works of Stummel [468, 469]. Some aspects of this notion are
discussed in the book [410]. We use the notion of discrete compactness which for
our particular case amounts to discrete compactness as introduced in [410, 7.3].

(2) Discrete approximation in the case of Y = X is also used in [86]
wherein Xn are some spaces of grid functions embedded into L2(Rn) as the spaces
of step functions and the orthoprojections onto the latter serve as Tn. Note that in
this case Tnf differs from the table of f at the knots of the grid even for a continuous
function f .

However, if f is smooth then it is easy to see that the difference vanishes be-
tween Tnf and the table of f as n tends to infinity. The possibility of considering An
as an endomorphism of X (in this case X = L2(Rn)) simplifies the study of the
limit behavior of the spectra of approximants. The key tool for this is the concept
of uniform compactness which means that

⋃
n∈N

An(U), with U the unit ball of
L2(Rn), is relatively compact (see [86]). This concept was suggested in [15].

(3) We consider here only selfadjoint operators with discrete spectra
and compact resolvents but it seems that our approach may be useful in other
cases. Some general results on the limit behavior of the spectra of approximants An
converging discretely to some operator A in the general Banach spaces but in the
case of Y = X (see the definitions of 6.2.1) were obtained by Räbiger and Wolff
[405, 528] also by infinitesimal methods. Gordon in [146] pursues the same approach
in the special case of selfadjoint integral operators on compact groups.

(4) The proof of 6.2.7 involves Card(X)+-saturation, i.e., the properly-
stated concurrence principle. Clearly, in case X is separable, it suffices to use
ω1-saturation of the nonstandard universe.

(5) It is interesting to compare the quasicompactness property of 6.2.6
with the compactness property of the sequence (An) as in [86].

As was mentioned, the environment of [86] assumes some isometric embeddings
ın : Xn → X and Tn := ı−1

n ◦ pn, with pn : X → ın(Xn) the orthoprojection
from X onto ın(Xn). In this event we may identify An with the endomorphism
Ān := ınAnTn of X .

By [86] (An) is a compact sequence, provided that
⋃
n Ān(B), with B the unit

ball of X , is relatively compact. It is easy to see that if (An) is a compact sequence
in the sense of [86] then (An) is quasicompact. Indeed, if x ∈ BN for all infinite
N ∈ ∗N then ıN (x) ∈ B and ĀN ıNx = ıNANx ≈ y for some standard y ∈ X by
the compactness property in the sense of [86] and Theorem 4.3.6.
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6.3. Loeb Measure

The construction of Loeb measure is one of the most noticeable achievements of
infinitesimal analysis which gave rise to applications in many sections of functional
analysis, probability, and stochastic modeling; see [3, 69]. We now present a few
results about the structure of Loeb measure.

6.3.1. Let (X,A , ν) be an internal measure space with ν a finitely additive
measure; more exactly, assume that A is an internal algebra of subsets of an internal
set X and ν : A → ∗

R is an internal finitely additive function on A .
This implies in particular that A ⊂ ∗P(X). Moreover, if {A1, . . . , AΩ} is

a hyperfinite set of members of A , with Ω ∈ ∗
N, then

⋃Ω
k=1Ak ∈ A ; if Ak are

pairwise disjoint then

ν

(
Ω⋃

k=1

Ak

)

=
Ω∑

k=1

ν(Ak).

The union of a hyperfinite family of sets is defined in much the same way as the
sum of a hyperfinite set in 6.1.3. If f : N → P(X) is a sequence in P(X) then we
define the new sequence g : N → P(X) by recursion:

Seq(f) ∧ Seq(g) ∧ f(0) = g(0) ∧ (∀k ∈ N)(g(k+ 1) = g(k) ∪ f(k + 1)).

Abbreviate this formula to
⋃

(f, g), take a hyperfinite set A0 ⊂ A , and put Ω :=
|A0|. Proceed as follows: Distinguish some bijection f : {0, . . . ,Ω − 1} → A0 and
extend it to the internal sequence f : ∗N → A by letting f be zero for n > Ω − 1.
We now define the sequence g : ∗N → A by the rule

⋃
(f, g). By transfer, g(Ω − 1)

is independent of the choice of f . Therefore, we may soundly assign
⋃
A∈A0

A :=
g(Ω − 1). Again by transfer, the so-defined union of a hyperfinite family enjoys all
properties of the conventional finite union.

Consider the external function

◦ν : A �→ ◦(ν(A)) ∈ R
• (A ∈ A ),

where ◦(ν(A)) is as usual the standard part of ν(A) whenever ν(A) is limited and
◦(ν(A)) = +∞ otherwise. It is easy to see that ◦ν is a finitely additive function.

6.3.2. The Loeb measure for ν appears as a unique countably additive exten-
sion of ◦ν to the external σ-algebra σ(A ) generated by A . The existence of this
extension, as will be shown in 6.3.4, ensues from the Lebesgue–Carathéodory Ex-
tension Theorem, whereas the uniqueness of this extension requires a few auxiliary
facts of a technical nature.



Technique of Hyperapproximation 243

(1) Let A0 be a countable subalgebra of A and letB0 be a complete al-
gebra of subsets of X (i.e., a complete subalgebra of P(X)) generated by A0. If
S ⊂ X and for every A ∈ A0 either S ⊂ A or S ∩ A = ∅ then for every B ∈ B0

either S ⊂ B or S ∩B = ∅.

� Call a subset P of X marked provided that P :=
⋂∞
k=1Bk where (Bn) ⊂ A0

and for every member A of A0 either A or the complement of A to X coincides with
one of the sets Bk. Let P stand for the set of all marked subsets of X . Clearly, the
members of P are pairwise disjoint and

⋃
P = X ; i.e., P is a partition of X . By

the definition of marked set, if P ∈ P and A ∈ A0 then either P ⊂ A or P ∩A = ∅.
Hence, A =

⋃{P ∈ P : P ⊂ A} for all A ∈ A0. Note also that B0 consists exactly
of the sets B ⊂ X of the shape B :=

⋃
P ′, with P ′ ⊂ P.

We now take a set S ⊂ X such that for every A ∈ A0 either S ⊂ A or
S ∩ A = ∅. Then the sequence (Bk) of all elements of A0 including S is such that
P :=

⋂
Bk belongs to P. Since S ⊂ P ; therefore, if B ∈ B0 then the above shows

that only two cases are possible: either P ⊂ B implying S ⊂ B or P ∩ B = ∅

implying S ∩B = ∅. �
Let c(A ) stand for the collection of all sets S ⊂ X satisfying the following

condition: There is a countable subalgebra A0 of A such that S belongs to a
complete subalgebra of subsets of X generated A0 (i.e., in a complete subalgebra
of the powerset P(X)). In this event, we say that S is generated by A0. The
following is immediate from the above definitions.

(2) The set c(A ) is a σ-algebra and σ(A ) ⊂ c(A ).

6.3.3. If S ∈ c(A ) then the following dilemma is open:
(1) There is some A ∈ A such that A ⊂ S and ν(A) is an unlimited

real;

(2) There is a sequence (Ak)k∈N ⊂ A such that S ⊂ ⋃k Ak and ν(Ak)
is a limited real for all k ∈ N.

� Let S ∈ c(A0) be a set generated by the countable subalgebra A0 of A . Put
A ′0 := {A ∈ A0 : |ν(A)| � +∞}. If S ⊂ ⋃

A ′0 then (2) holds. In the opposite
case, take p ∈ S −⋃A ′0 and consider the countable set A ′′0 := {A ∈ A0 : p ∈ A}.
Note that A ′′0 has the finite intersection property and consists of sets of unlimited
measure. Put A(n,B) := {A ∈ A : p ∈ A ⊂ B, ν(A) ≥ n}. By the properties of
A ′′0 , the set {A(n,B) : n ∈ N, B ∈ A ′′0 } has the finite intersection property. By
saturation, there is some A in A satisfying A ∈ A(n,B) for all n ∈ N and B ∈ A ′′0 .
Hence, ν(A) is unlimited, p ∈ A, and A ⊂ B for all B ∈ A ′′0 .

Assume that some C in A0 does not included A. Then either p /∈ C or p ∈
X − C, implying that X − C ∈ A ′′0 and so A ⊂ X − C. Thus, if C ∈ A0 then
either A ⊂ C or A∩C = ∅. Since S is generated by A0; therefore, either A ⊂ S or
A ∩ S = ∅ by 6.3.2 (1). Since p ∈ A ∩ S, it follows that A ⊂ S, implying (1).
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Assume that (1) and (2) hold simultaneously. In this event A ⊂ ⋃
k Ak and

ν(A) is unlimited whereas ν(Ak) are all limited. By saturation, A ⊂ A1 ∪ · · · ∪ An
for some n ∈ N. This is however impossible implying ν(A) ≤ ν(A1) + · · · + ν(An)
which is a contradiction. �

6.3.4. Theorem. A finitely additive measure ◦ν : A → R
• admits a unique

countably additive extension λ to the external σ-algebra σ(A ) generated by A .
Moreover:

(1) λ(B) = inf{◦ν(A) : B ⊂ A,A ∈ A } (B ∈ σ(A ));
(2) If λ(B) < +∞ for some B ∈ σ(A ) then λ(B) = sup{◦ν(A) : A ⊂ B,

A ∈ A };
(3) If λ(B) < +∞ for some B ∈ σ(A ) then there is A ∈ A satisfying

λ(A&B) = 0;
(4) To an arbitrary B ∈ σ(A ) either there is A ∈ A such that A ⊂ B

and ◦ν(A) = +∞, or there is a sequence (An)n∈N of sets in A such
that B ⊂ ⋃n∈N

An and
◦ν(An) < +∞ for all n ∈ N.

� The existence of λ follows from the Lebesgue–Carathéodory Extension The-
orem. The validation of the hypotheses of this theorem is trivial. Indeed, take an
increasing sequence of sets (Ak)k∈N in A and suppose that A :=

⋃
k Ak belongs

to A . By saturation, A = Am for some m ∈ ∗N and so ◦ν(Ak) → ◦ν(A).
We now prove (1)–(3) and the claim of uniqueness. Take B ∈ σ(A ). The

Lebesgue–Carathéodory Extension Theorem guarantees in particular that

λ(B) = inf
{ ∞∑

k=1

◦ν(Ak) : Ak ∈ A (k ∈ N), B ⊂
∞⋃

k=1

Ak

}

for all B ∈ σ(A ). Consequently, to each 0 < ε ∈ R there is a sequence of internal
sets (Ak)k∈N, satisfying B ⊂ ⋃∞

k=1Ak and
∑∞

k=1
◦ν(Ak) < λ(B) + ε/2. Since

ν(Ak) < ◦ν(Ak) + ε/2k+1 for all k ∈ N; therefore, given n ∈ N, we may write

ν

( n⋃

k=1

Ak

)

≤
n∑

k=1

ν(Ak) ≤
∞∑

k=1

◦ν(Ak) +
∞∑

k=1

ε/2k+1 < λ(B) + ε.

Extend (Ak)k∈N to some internal sequence (Ak)k∈∗N by 3.5.11 (1). Consider the
internal set {n ∈ ∗N : ν (

⋃n
k=1Ak) < λ(B) + ε}. Since this set contains all stan-

dard naturals, it also contains some unlimited natural Ω by overflow. Put AΩ :=⋃Ω
k=1Ak. By definition, B ⊂ AΩ and ν(AΩ) < λ(B) + ε and so ◦ν(AΩ) ≤ λ(B) + ε.

This proves (1).
Assume that λ(B) < +∞. By what was proven there is an internal set C ∈ A

such that B ⊂ C and ν(C) is finite. Applying (1) to C − B, infer (2). Fur-
thermore, let (Ak)k∈N be an increasing sequence in A satisfying Ak ⊂ B and
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|ν(Ak) −λ(B)| < 1/k. By extension, consider this sequence as a part of an internal
increasing sequence (Ak)k∈∗N with the same property. By overflow, there is an un-
limited hypernatural Ω ∈ ∗N satisfying |ν(AΩ)−λ(B)| < 1/Ω. Then λ(B) = ◦ν(AΩ)
and it is easy to see that λ(AΩ&B) = 0. Infer (4) now from 6.3.3.

We are left with proving uniqueness. Suppose that λ1 and λ2 are two σ-additive
extensions of the measure ◦ν to σ(A ). Since σ(A ) ⊂ c(A), it is possible to apply
6.3.3 to S ∈ σ(A ). In the case of 6.3.3 (1), there is some A ∈ A satisfying A ⊂ S
and ◦ν(A) = ∞, implying that λj(S) = ∞ (j := 1, 2). In the case of 6.3.3 (2),
there is a sequence (Ak)k∈N in A such that S ⊂ ⋃

k Ak and ν(Ak) is limited for
all k ∈ N. Without loss of generality, we may assume that this sequence increases.
By 6.3.4 (1)

λj(S ∩Ak) = inf{◦ν(A) : A ∈ A , S ∩ Ak ⊂ A ⊂ Ak} (j := 1, 2).

Hence we infer in particular that λ1(S ∩ Ak) = λ(S ∩ Ak) for k ∈ N. Since S =⋃
k(S ∩ Ak) and (S ∩ Ak)k∈N is an increasing sequence; therefore, λ1(S) = λ2(S).

Thus, λ1 and λ2 coincide on σ(A ). �
6.3.5. Let S(A ) stand for a completion of σ(A ) with respect to λ, and let νL

stand for the extension of λ to S(A ). We may show that, in case νL(X) < +∞,
the membership B ∈ S(A ) holds if and only if

sup{◦ν(A) : A ⊂ B,A ∈ A } = inf{◦ν(A) : B ⊂ A,A ∈ A } = νL(B).

The triple (X,S(A ), νL), presenting a measure space with the σ-additive measure
νL, is the Loeb measure space (for (X,A , ν)); and νL, the Loeb measure (for ν).

A function f : X → ∗
R is Loeb-measurable provided that f is measurable with

respect to the σ-algebra S(A ). An internal function F : X → ∗
R is A -measurable

if {x ∈ X : F (x) ≤ t} ∈ A for all t ∈ ∗
R. An internal A -measurable function

F : X → ∗
R is a lifting of a function f : X → ∗

R whenever f(x) = ◦F (x) for
νL-almost all x ∈ X .

6.3.6. Theorem. A function f : X → ∗
R is Loeb-measurable if and only if f

has a lifting.

� ←: Take an A -measurable internal function F : X → ∗
R. Given arbitrary

standard r ∈ R, note that

{x ∈ X : ◦F (x) ≤ r} =
⋂

k∈N

{x ∈ X : F (x) ≤ r + 1/k} ∈ σ(A ),

and so the function ◦F is Loeb-measurable. If f(x) = ◦F (x) νL-almost everywhere
then f is Loeb-measurable too.
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→: Assume that f is Loeb-measurable. Consider an arbitrary numbering
(qk)k∈N of the rationals Q; in symbols, Q = {qk : k ∈ N}. Put Bk := {x ∈
X : f(x) ≤ qk}. Choose internal sets Ak ∈ A so that νL(Ak&Bk) = 0 and
Ak ⊂ Al for qk ≤ ql. By extension and overflow, there is an unlimited natural Ω
such that Ak ∈ A and if qk ≤ ql then Ak ⊂ Al for all k, l ≤ Ω. Define some internal
A -measurable function F : X → ∗

R with range {q1, . . . , qΩ} by the condition that
F (x) ≤ qk is equivalent to x ∈ Ak. In more detail, if {q1, . . . , qΩ} is renumbered in
increasing order qk1 < qk2 < · · · < qkΩ then put

F (x) :=

⎧
⎪⎨

⎪⎩

qk1 , if x ∈ Ak1 ,

qkl
, if x ∈ Akl

− Akl−1 (1 < l ≤ Ω),
qkΩ+1, if x /∈ AkΩ .

Clearly, if k ∈ N then F (x) ≤ qk amounts to f(x) ≤ qk for all x /∈ D :=⋃
k∈N

Ak&Bk. Since νL(D) = 0; therefore, ◦F (x) = f(x) for νL-almost all x ∈ X . �
6.3.7. An internal function F is simple if the range im(F ) of F is a hyperfinite

set. Inspection of the proof of Theorem 6.3.6 shows that each Loeb-measurable
function has a lifting that is a simple function. Obviously, a simple internal function
F is A -measurable if and only if F−1({t}) ∈ A for all t ∈ ∗R. In this event to F
there corresponds the internal integral

∫

X

F dν =
∑

t∈im(F )

F (t)ν(F−1({t})).

If A ∈ A then, as usual,
∫
A
F dν =

∫
X
FχA dν, where χA is the characteristic

function of a set A.
Put AN := {x ∈ X : |F (x)| ≥ N}. An internal simple A -measurable function

F : X → ∗
R is called S -integrable provided

∫
AN

F dν ≈ 0 for all unlimited N .
It is possible to prove that the S -integrability of F is equivalent to each of the

following conditions:
(1)

∫
X
F dν is a limited hyperreal number and

∫
A
F dν ≈ 0 whenever

A ∈ A and ν(A) ≈ 0;
(2)

∫
X
◦|F | dνL = ◦(

∫
X

|F | dν) < +∞.
The next two theorems deal with a finite Loeb measure space: νL(X) < +∞.

6.3.8. Theorem. Let (X,A , ν) be an internal measure space with finitely
additive measure ν and let (X,S(A ), νL) be the Loeb measure space for (X,A , ν).
A function f : X → ∗

R is νL-integrable if and only if f has an S -integrable lifting
F : X → ∗

R. In this case
∫

X

f dνL =
◦(∫

X

F dν

)

.
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� Prove first that if f is bounded, Loeb-measurable and possesses a bounded
lifting F then

∫
X
f dνL = ◦∫

X
F dν. To this end, take a simple Loeb measurable

function g with range a finite set {r1, . . . , rn}; moreover, assume that g ≤ f . By
the theorem of 6.3.4, to the set Bk := g−1(rk) there is some Ak ∈ A satisfying
νL(Ak&Bk) = 0. The function G, equal to rk on Ak, is a lifting of g. Moreover,∫
X
g dνL = ◦

∫
X
Gdν since both integrals are finite sums equal to each other.

If a bounded lifting F1 of f satisfies the inequality then, on the one hand,∫
X
GdνL ≤ ∫

X
F1 dν and, on the other hand, |F (x) − F1(x)| ≤ 1/n for νL-almost

all x ∈ X and for all standard n ∈ N. Hence,
∫
X
F dν ≈ ∫

X
F1 dν, implying that

∫

X

g dνL =
◦(∫

X

Gdν

)

≤
◦(∫

X

F1 dν)
)

=
◦(∫

X

F dν

)

.

Hence,
∫
X
f dνL ≤ ◦(

∫
X
F dν). The reverse inequality results on replacing f with

−f and F with −F .
Assume now that f is νL-integrable. Without loss of generality, assume further

that f ≥ 0. (The general case will ensue on using the standard representation of F
as the difference of its positive and negative parts: f = f+ − f−.)

Let F ′ be a lifting of f whose existence follows from Theorem 6.3.6. If Fn :=
F ′ ∧ n then the above implies

◦(∫

X

Fn dν

)

=
∫

X

(f ∧ n) dνL →
∫

X

f dνL.

Applying to (Fn)n∈N the extension and overflow principles, find an unlimited nat-
ural Ω satisfying ◦(

∫
X
FN dν) ≈ ∫

X
f dνL → ∫

X
f dνL for all unlimited naturals

N ≤ Ω. The function F := FΩ is an S -integrable lifting of f .
Conversely, assume given an S -integrable lifting F of f . By underflow, to an

arbitrary 0 < ε ∈ R there is a standard natural n ∈ N such that
∫
F≥m F dν ≤ ε for

each standard m ≥ n. Applying again the above-indicated assertion for a bounded
function, infer that

∫

X

(f ∧ n) dνL ≈
∫

X

(F ∧ n) dν ≤
∫

X

F dν

≤
∫

X

(F ∧ n) dν + ε ≈
∫

X

(f ∧ n) dνL + ε.

Hence, ◦(
∫
X
F dν) is a limited real serving as the limit of the sequence

∫
X

(f∧n) dνL
as n → ∞. This ends the proof. �
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6.3.9. Theorem. Let (X,A , ν) be an internal space with ν a finitely addi-
tive measure. For each simple internal A -measurable function the following are
equivalent:

(1) F is S -measurable;
(2) ◦

∫
X

|F | dν < +∞ and ν(A) ≈ 0 implies
∫
A

|F | dν ≈ 0 for all A ∈ A ;

(3)
∫
X
◦|F | dνL = ◦∫

X
|F | dν.

� The proof proceeds by analogy with no complications. �
6.3.10. We suppose now that X is a hyperfinite set, A := P(X), and ν is

a counting measure multiplied by Δ, i.e., ν(A) := Δ|A| for all A ∈ A , where |A|
stands for the size of A and Δ ∈ ∗R+.

The corresponding Loeb measure space is denoted by (X,SΔ, νΔ), while νΔ is
called the uniform Loeb measure with weight Δ. In the case of uniform Loeb mea-
sures, every internal function F : X → ∗

R is simple and A -measurable; moreover,∫
A
F dν = Δ

∑
x∈A F (x) for all A ∈ A .

The Loeb measure νΔ is finite provided that Δ|X | is a limited real. If Δ :=
|X |−1 then the Loeb measure space (X,SΔ, νΔ) is called canonical and denoted by
(X,S, νL) or (X,SX , νXL ). In the case of a finite Loeb measure, if F : X → ∗

R is
an S -integrable lifting of a function f : X → R then

∫

X

f dνΔ =
◦(

Δ
∑

x∈X
F (x)

)

by Theorem 6.3.8.

6.3.11. We now abstract Theorem 6.3.8 to the case of an infinite Loeb mea-
sure νΔ.

Suppose that (X,SΔ, νΔ) is a Loeb measure space, and M ∈ SΔ enjoys the
property: there is an increasing sequence (Mn)n∈N of internal sets satisfying the
two conditions: M =

⋃
n∈N

Mn and Δ|Mn| � +∞ for all n ∈ N.
In this case we let SMΔ stand for the σ-algebra {A ∩ M : A ∈ SΔ} of subsets

of M and denote the restriction of νΔ to SMΔ by νMΔ . The space Ξ := (M,SMΔ , νMΔ ) is
a σ-finite subspace of the Loeb measure space (X,SΔ, νΔ). We also let A := ∗P(X)
stand for the set of all internal subsets of X .

An internal function F : X → ∗
R is SM -integrable, provided that the following

hold:
(1) Δ

∑
ξ∈X |F (ξ)| � ∞;

(2) (∀A ∈ A)(Δ|A| ≈ 0 → Δ
∑
ξ∈A |F (ξ)| ≈ 0);

(3) (B ∈ A ∧B ⊂ X −M) → Δ
∑
ξ∈B |F (ξ)| ≈ 0.

If X = M and M is an internal set then X = Mn for some n ∈ N by ω1-
saturation. In particular, νΔ(X) < +∞ and so, by 6.3.7, SM -integrability coincides
in this case with S -integrability.
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An internal function F : X → ∗
R is a lifting of a function f : X → ∗

R provided
that f(ξ) = ◦F (ξ) for νMΔ -almost all ξ ∈ M .

6.3.12. We introduce some notation. Let L be the hyperfinite-dimensional
internal vector space of functions F : X → ∗

R furnished with the norm ‖F‖ :=
Δ
∑
ξ∈X |F (ξ)|. If A ∈ A then ‖F‖A := ‖FχA‖ := Δ

∑
ξ∈A |F (ξ)|, where χA is the

characteristic function of A.
Recall that ltd(L ) is the external subspace of L comprising the elements of

limited norm, and μ(L ) ⊂ ltd(L ) is the monad of L comprising the elements
of infinitesimal norm (see 6.1.1). The nonstandard hull L # := ltd(L )/μ(L ) is
a nonseparable Banach space (in the case when the internal cardinality |X | of X
is an unlimited number). Denote by S (M) the subspace of ltd(L ) comprising the
SM -integrable functions.

In the course of this subsection the set M is fixed, so we will write S instead
of S (M) and SM and abbreviate νMΔ to νΔ. Finally, we let F ∼ G symbolize the
relation ‖F −G‖ ≈ 0.

(1) If F ∈ L is an arbitrary function F ∈ L then from ‖F‖ ≈ 0 it
follows that F (ξ) ≈ 0 for νΔ-almost all ξ.

� Assume that there is some A in SΔ such that νΔ(A) > 0 and ◦F (ξ) �= 0 for
all ξ ∈ A. Show that in this case there is some internal B ∈ A satisfying the same
conditions.

Indeed, if νΔ(A) ≤ +∞ then νΔ(A) = sup{νΔ(B) : B ∈ A, B ⊂ A} by
Theorem 6.3.4. If νΔ(A) = +∞ then, appealing again to Theorem 6.3.4, note
that either there is an internal subset B of A satisfying νΔ(B) = +∞ or there is
a sequence (An) of internal sets such that A ⊂ ⋃∞

n=0An and νΔ(An) < +∞ for
all n ∈ N. In the last case νΔ(A ∩ An) → +∞, and so there is some n satisfying
νΔ(A ∩ An) > 0, and again we may apply Theorem 6.3.4.

Indeed, νΔ(B) > 0 for some B ∈ A. Since T := {|F (ξ)| : ξ ∈ B} is an internal
set, it follows that α := ◦(inf T ) > 0 and ◦‖F‖ ≥ ◦(αΔ|B|) = ◦ανΔ(B) > 0. �

(2) If F ∈ S and G ∼ F then G ∈ S .

� If A satisfies one of the conditions (2) or (3) in the definition of 6.3.11 then
‖F‖A ≈ 0, and since ‖F − G‖ ≈ 0, it follows that ‖F − G‖A ≈ 0. Consequently,
‖G‖A ≈ 0. �

The next result follows from similar arguments.

(3) The nonstandard hull S # is a closed subspace of the Banach space
L #.
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6.3.13. Theorem. A function f : X → ∗
R is νMΔ -integrable if and only if f

has an SM -integrable lifting F . In this event

∫

M

f dνMΔ =
◦(

Δ
∑

ξ∈X
F (ξ)

)

.

� It suffices clearly to prove the theorem for f a positive function. Accordingly,
suppose that f ∈ L1(νΔ) and f ≥ 0. Put fn := fχMn

. The sequence (fn) increases
and converges pointwise to the integrable function f , so

(1)
∫

M

fn dνΔ → ∫

M

f dνΔ.

This implies in the limit that

(2)
∫

M

|fn − fm| dνΔ → 0, n,m → +∞.

Since the support of fn lies in the internal set Mn of finite measure, by Theo-
rem 6.3.8 we may find an S -integrable lifting Fn of fn vanishing beyond Mn (since
Fn(ξ) = 0 for ξ ∈ X −Mn by 6.3.11 (3)). Moreover, we have (cf. 6.3.11)

(3)
∫

M

fn dν
M
Δ =

◦(
Δ
∑

ξ∈X
Fn(ξ)

)
.

It now follows from (2) that ◦‖Fn − Fm‖ → 0 as m,n → +∞. By 6.3.12 (3),
there is an internal function F ∈ S satisfying ◦‖Fn − F‖ → 0. Clearly, ◦‖Fn‖ →
◦‖F‖. Passage to the limit in (3) together with (1) implies that (3) holds also for F
and f .

It remains to show that f(ξ) = ◦F (ξ) for νΔ-almost all ξ. To this end, take an
arbitrary natural k > 0. Clearly, ◦‖FnχMk

− FχMk
‖ → 0 as n → ∞. If n > k then

Mn ⊃ Mk, implying that fnχMk
= fkχMk

. Consequently, the relation FnχMk
≈

FkχMk
holds νΔ-almost everywhere. Hence, the relation FnχMk

−FχMk
≈ FkχMk

−
FχMk

also holds νΔ-almost everywhere.
Since the functions in the last relation are S -integrable and supported in the

set Mk of finite measure, it follows that ◦‖FnχMk
− FχMk

‖ = ◦‖FkχMk
− FχMk

‖.
Passing here to the limit as n → ∞, infer that ◦‖FkχMk

− FχMk
‖ = 0 for any k.

By 6.3.12 (1), conclude now that the relation FkχMk
≈ FχMk

holds νΔ-almost
everywhere.

Consequently, the relation fχMk
≈ FχMk

holds νΔ-almost everywhere, im-
plying that the relation f ≈ F |M also holds νΔ-almost everywhere because M =⋃∞
k=0Mk.

Suppose now that F ∈ S and f : M → R is such that f(ξ) = ◦F (ξ) for almost
all ξ ∈ M . Show that f ∈ L1(νΔ) and (3) holds for F and f . Put Fn := FχMk

.
Then the relation fn := fχMk

≈ Fn holds νΔ-almost everywhere. Hence, we may
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apply Theorem 6.3.8 since νΔ(Mn) is finite. This yields
∫

M

|fn| dνΔ = ◦‖Fn‖ ≤ ◦‖F‖.

Since (|fn|) increases and converges to |f |, it follows from the Monotone Conver-
gence Theorem that f ∈ L1(νΔ). By the above, there is an S -integrable internal
function G : X → ∗

R satisfying
∫
M

|fn| dνΔ = ◦‖G‖.
To prove (3) for F and f , it remains to show that ‖F − G‖ ≈ 0. Note first

that if A ∈ A and A ⊂ M then A ⊂ Mn for some number n by ω1-saturation.
Take such a set A and such a number n. Put FM := FχM . Then the relations
f ≈ GM and f ≈ FM hold νΔ-almost everywhere and so the relation FMn

≈ GMn

holds νΔ-almost everywhere too. But then ‖F − G‖A ≈ 0 because F and G are
S -integrable.

Consider the family of formulas Γm,n(A) := {A ∈ A ∧Mn ⊂ A ∧ ‖F −G‖A ≤
m−1}. To each natural N ∈ N, there is some A ∈ A such that Γm,n(A) holds for
all n,m ≤ N . Hence, there is some A ∈ A satisfying all formulas Γm,n(A). But
then M ⊂ A and ‖F − G‖A ≈ 0. Since F,G ∈ S ; therefore, ‖F − G‖X−A ≈ 0.
Consequently, ‖F −G‖ ≈ 0. �

6.3.14. Take p ∈ [1,+∞), and let Lp stand for the internal vector space of
functions F : X → ∗

R under the norm

‖F‖p =
◦(

Δ
∑

ξ∈X
|F (ξ)|p

)1/p

.

Sometimes this space and its norm are denoted lavishly by LX
p,Δ, and ‖·‖p,Δ. Given

F,G ∈ Lp, we write F ∼
p
G whenever ‖F −G‖p ≈ 0. The nonstandard hull L #

p is

defined in exactly the same way as in Section 6.1.
If A ∈ A then ‖F‖p,A = ‖FχA‖p. Denote by Sp(M) the subspace of Lp

consisting of the functions F ∈ Lp such that the power |F |p is SM -integrable.
We will write simply Sp, omitting M when this leads to no confusion. Since

‖F‖p,A = ‖|F |p‖A for every internal function F and every A ∈ A; therefore, Propo-
sitions 6.3.12 (1)–(3) remain valid on replacing L , S , and ‖ · ‖ with Lp, Sp, and
‖ · ‖p respectively.

We also define the complex spaces Lp and Sp in a completely analogous man-
ner. Furthermore, if F : X → C is an internal function then F = ReF + i ImF
and

‖ ReF‖p,A, ‖ ImF‖p,A ≤ ‖F‖p,A ≤ ‖ ReF‖p,A + ‖ ImF‖p,A
for every A ∈ A.
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From the last inequalities it follows that F ∈ Lp (Sp) if and only if ReF ∈
Lp (Sp) and ImF ∈ Lp (Sp).

If f : M → F, with F a basic field of scalars (i.e., R or C) then f ∈ Lp(Ξ) if
and only if there is a lifting F : X → ∗

F of f such that F ∈ Sp(M). Furthermore,
‖f‖p = ◦‖F‖p.

6.3.15. Comments.

(1) The construction of Loeb measure was implemented in [322]. The
content of 6.3.1–6.3.10 is well known; see [3, 69]. Theorem 6.3.4 in the case of finite
measure belongs to Loeb [322]. Henson [166] established uniqueness in the case of
infinite measure as well as the property 6.3.4 (4); the results of 6.3.2 and 6.3.3 are
extracted from [166].

(2) Theorem 6.3.6 belongs to Loeb [322, 323]. A similar characteri-
zation is available for measurable mappings with values in a complete separable
metric space (see [12, 322]). The definition of S -integrable function (6.3.7) was
introduced by Loeb [323]; somewhat earlier Anderson considered the equivalent
condition 6.3.7 (1) in [11].

(3) The concept of a σ-finite subspace of a Loeb measure space was
introduced by Gordon in [145]. The same article reveals Theorem 6.3.13. In 6.3.11–
6.3.14, we proceed along the lines of [146].

6.4. Hyperapproximation of Measure Space

The aim of this section is to show that each standard σ-finite measure space
embeds in the Loeb measure space of an appropriate hyperfinite uniform measure
space. Some arguments below imply that the nonstandard universe enjoys Nelson’s
idealization principle.

6.4.1. We now prove that, given a σ-finite measure space (X,Ω, μ), we may
construct a Loeb measure space (X,SΔ, νΔ) and a σ-finite subspace (M,SMΔ , νMΔ )
of (X,Ω, μ) so that X ⊂ ∗X and to each p ∈ [1,∞) there corresponds an isometric
embedding jp : Lp(μ) → Lp(νMΔ ). Furthermore, if f ∈ Lp(μ) then the internal
function F := ∗f |X belongs to Sp(M) and serves as a lifting of jp(f). This implies
in particular that

∫

X

f dμ =
◦(

Δ
∑

ξ∈X

∗f(ξ)
)

for f ∈ Lp(μ) (more precisely, for each member of the coset f).
Let (Y,Σ, μ) be a standard measure space. An element ξ in ∗Y is random

provided that ξ belongs to no μ-negligible set. In other words, an element ξ ∈ ∗Y
is random whenever ξ /∈ ∗A for each standard A ∈ Σ satisfying μ(A) = 0.
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(1) Almost all elements of ∗Y are random. More precisely, there is an
internal set B ∈ Σ such that μ(∗Y −B) = 0 and every member of B is random.

� Let J be the ideal of μ-negligible sets. By idealization, there is a hyperfinite
set M ⊂ ∗J such that ∗A ∈ M for all standard A ∈ J . Put X :=

⋃
M . Then

X ∈ ∗Y ∗μ(X) = 0. Obviously, if ξ ∈ ∗Y −X then ξ is a random element and Y −X
is a set of full measure. �

(2) Assume that the available nonstandard universe enjoys the concur-
rence principle. Let (X,Y , μ) be a standard measure space. Then there is some
ξ ∈ ∗X satisfying

(∀Y ∈ Y )(μ(Y ) = 0 → ξ ∈ ∗Y ).

� Consider the internal class N := {Y ∈ Y : ∗μ(Y ) = 0}. It is possible to show
by concurrence that there is a hyperfinite family G := {Gn : n < λ}, with λ ∈ ∗N,
such that G ⊂ N and ∗A ∈ N ↔ ∗A ∈ G. By transfer, Y0 :=

⋃{Gn : n < λ} ∈ ∗Y .
Hence, ∗μ(Y0) = 0, implying that ∗μ(∗X − Y0) = ∗μ(∗X) = μ(X). Therefore,
∗X−Y0 �= ∅ (we presume of course that μ(X) > 0). Clearly, each member ∗X−Y0

satisfies the claim. �
The concept of random element extends to τ -standard measure spaces. Sup-

pose to this end that τ is an admissible element and (Y,Σ, λ) is a τ -standard σ-finite
probability space (i.e., λ(Y ) = 1). An element y ∈ Y is τ -random provided that
y /∈ A for every τ -standard λ-negligible set A ∈ Σ.

In particular, if τ is a standard real implying that (Y,Σ, λ) is a standard prob-
ability space then every τ -random element y ∈ ∗Y is random. Of course, τ -random
elements are defined also in each standard space (Y,Σ, λ) given a nonstandard τ .
Claim (1) remains true in the case of τ -standard space.

(3) There is an internal set B ∈ Σ such that μ(∗Y − B) = 0 and the
elements of B are all τ -random.

� The proof repeats the arguments of (1); however, instead of the idealization
principle for τ -standard sets we appeal to the relative idealization principle. �

6.4.2. Suppose now that (Y,Σ, λ) is the product of the τ -standard probability
spaces (Y1,Σ1, λ1) and (Y2,Σ2, λ2). If y = (y1, y2) is a τ -random element of Y
then it is easy to see that yl is a τ -standard element of Yl. The converse fails. For
example, if y1 = y2 and the measure of the diagonal in IY := {(y, y) : y ∈ Y } is
zero then (y1, y2) is not τ -random even if y1 is τ -random, since (y1, y2) belongs to
IY , a τ -standard negligible set.

(1) If y1 is a τ -random element of Y1 and y2 is a (τ, y1)-random element
of Y2 then (y1, y2) is a τ -random element of Y = Y1 × Y2.

� Let A ⊂ Y1 ×Y2 be a τ -standard set with λ(A) = 0. Then Az1 := {z2 ∈ Y2 :
(z1, z2) ∈ A} is (τ, z1)-standard for all z1 ∈ Y1. Put C := {z1 ∈ Y : λ2(Az1) = 0}.
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Then C is τ -standard and λ1(C) = 1 by the Fubini theorem. By hypothesis y1 is a
τ -random element and so y1 ∈ C. Hence, λ2(Ay1) = 0 and y2 /∈ Ay1 because Ay1
is a (τ, y1)-standard set. Thus, (y1, y2) /∈ A, implying that (y1, y2) is a τ -random
element. �

(2) Let (Y,Σ, λ) be a τ -standard probability space. A countable family
(yn)n∈∗Z is an independent sequence of τ -random elements of Y if (yn) is a τ -random
element of the τ -standard space (Y

∗
Z, λ∞), with λ∞ the countable power of λ.

6.4.3. Take an independent sequence (yn)n∈∗Z of τ -random elements of Y . We
are interested as to whether to following representation holds:

(1)
∫

Y

f dλ = lim
n→∞

1
n

n−1∑

k=0

f(yk)

with f an arbitrary τ -standard function.
(2) Let (Y,Σ, λ) be a probability space, and let λ∞ stand for the count-

able power of λ on Y Z. Given an integrable function f : Y → R, denote by Af the
set of sequences (yn)n∈Z ∈ Y Z satisfying (1). Then λ∞(Af ) = 1.

� Let T : Y Z → Y Z be the shift operator or, Bernoulli automorphism:

T ((yn)n∈Z) := (y′n)n∈Z, y′n := yn+1.

It is well known that T is an ergodic operator (cf. [245, Chapter 8, § 1, Theorem 1]),
i.e.,

∫

Y Z

ϕdλ∞ = lim
n→∞

1
n

n−1∑

k=0

ϕ(T ky)

for each function ϕ ∈ L1(λ∞) and almost all y ∈ Y Z.
Let the mapping Π0 : Y Z → Y be defined by the formula Π0((yn)n∈Z) := y0.

By the definition of λ∞, the mapping Π0 is measure-preserving. Hence, if ϕ = f ◦Π0

then
∫
Y Z ϕdλ

∞ =
∫
Y
f dλ. Moreover, ϕ(T ky) = (f ◦ Π0)(T ky) = f(yk), yielding

the claim. �
(3) Theorem. If (yn)n∈∗Z is an independent sequence of τ -random

elements of Y then (1) holds for every τ -standard function f : Y → ∗
R belonging

to L1(λ).
� By relative transfer, from (2) we infer that Af is a τ -standard set of full

measure. Hence, every independent sequence (yn)n∈Z of τ -standard elements lies
in Af . This implies the validity of (1). �

6.4.4. Theorem. If (Y,Σ, δ) is a τ -standard finite measure space then there
is an internal hyperfinite set Y0 ⊂ Y such that

∫

Y

f dδ
τ≈ δ(Y )

|Y0|
∑

y∈Y0

f(y)
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for every τ -standard integrable function f : Y → ∗
R.

� Note first that δ(Y ) is a τ -standard, in general, unlimited hyperreal, since
the condition that δ is finite means exactly that δ(Y ) �= ∞. Pass from the measure
space (Y,Σ, δ) to the probability space (Y,Σ, λ) by setting λ := 1

δ(Y )
δ. Obviously,

the integrals with respect to δ and λ are related as follows:
∫

Y

f dδ = δ(Y )
∫

Y

f dλ.

Let y := (yn)n∈∗Z be an independent sequence of τ -random elements of (Y,Σ, λ)
and let N be some (τ, y)-infinite hypernatural. Since the sequence on the right side
of 6.4.3 (1) is (τ, y)-standard; therefore, from 4.6.4 (1) it follows that

∫

Y

f dλ
(τ,y)≈ 1

N

N−1∑

k=0

f(yk).

Put Y0 := {y0, . . . , yN−1}. It remains to use the above-mentioned relation between

the integrals with respect to δ and λ together with the fact that α
(τ,y)≈ β yields

α
τ≈ β (see 4.6.2). �

6.4.5. We return to considering a standard σ-finite measure space (X,Ω, μ).
Thus, there is an increasing sequence of sets Xn ∈ Ω such that μ(Xn) < +∞ for all
n ∈ N and X =

⋃
n∈N

Xn. If Ωn stands for the σ-algebra {A ∩ Xn : A ∈ Ω} and μn
is the restriction of μ to Ωn then

∫

X

f dμ = lim
n→∞

∫

Xn

fn dμn

for every integrable function f : X → R, with fn := f |Xn
.

Theorem. There exist an internal hyperfinite set X ⊂ ∗X and a hyperreal
Δ ∈ ∗R such that ∫

X

f dμ =
◦(

Δ
∑

ξ∈X

∗f(ξ)
)

for every standard function f ∈ L1(μ).
� Let τ be an unlimited hypernatural. Put (Y,Σ, δ) := (∗Xτ , ∗Ωτ , ∗μτ ). Then

(Y,Σ, δ) satisfies the hypotheses of Theorem 6.4.4. Clearly, ∗fτ is a τ -standard
integrable function on ∗Xτ . Since Y0 ⊂ ∗Xτ (see the definition of Y0 in 6.4.4), it
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follows that ∗fτ |Y0 = ∗f |Y0. Note also that from the above limit relation it follows
that ∫

X

f dμ =
◦∫

∗Xτ

∗fτ dμτ .

This together with Theorem 6.4.4 yields the claim on putting Δ := δ(Y )|Y0|−1

and X := Y0 and using the fact that
∫

X
f dμ is a standard real. �

6.4.6. In the sequel we will need some facts from the theory of normed Boolean
algebras. All these facts can be found in [505]. Let B be a Boolean algebra,
and let m be a strictly positive finitely additive measure on B. Then B satisfies
the countable chain condition or, in the literature of Russian provenance, B has
countable type; i.e., every disjoint subset E of B is at most countable. If B satisfies
the countable chain condition then B is complete. A complete Boolean algebra
with a strictly positive measure is said to be normed. Recall that a measure is by
definition a positive countably additive function on B.

Let (B1, m1) and (B2, m2) be normed Boolean algebras. Every measure-
preserving homomorphism ϕ : B1 → B2 is completely additive; i.e., ϕ(supE) =
supϕ(E) for all E ⊂ B1. This implies that ϕ(B1) is a regular subalgebra of B2,
i.e., for every set A in ϕ(B1) the greatest lower bound of A and the least upper
bound of A, if exist in B2, belong to ϕ(B1).

Suppose now that (Y,Σ, δ) is a finite measure space, and put n(Σ) := {c ∈ Σ :
δ(c) = 0}. Then Σ := Σ/n(Σ) is a normed Boolean algebra with strictly positive
measure δ such that δ([c]) = δ(c), with [c] the coset of an element c ∈ Σ in Σ. The
normed algebra Σ is the Lebesgue algebra of (Y,Σ, δ) in common parlance.

With each measurable function f : Y → R we associate an increasing right-
continuous family (etf )t∈R of elements in Σ which is called the characteristic or
resolution of the identity for f and which is defined as eft := [{y : f(y) ≤ t}]. Note
that sup(eft ) = 1B and inf(eft ) = 0B.

(1) A measurable function f is integrable if and only if the integral∫∞
−∞ t dδ(etf ) converges and

∫

Y

f dδ =

∞∫

−∞
t dδ(etf ).

� This simple fact is well known; cf. [505, Chapter VI, § 3]. �
(2) Assume that (Y,Σ, δ) is a standard finite measure space, Y0 ⊂ ∗Y

satisfies the hypotheses of Theorem 6.4.4 (with τ standard), λ := δ(Y )|Y0|−1

and (Y0, Sλ, νλ) is the corresponding Loeb measure space. Then the mapping
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ψ : Σ → Sλ, acting by the rule ψ([c]) := [∗c ∩ Yn] (c ∈ Σ), is a measure-preserving
monomorphism.

� This is immediate from Theorem 6.4.4 on applying the formula of this the-
orem to the characteristic functions of members of Σ. �

(3) In the context of (2) suppose additionally that h ∈ L1(δ) and H :=
∗h|Y0 . Suppose also that the function h̃ : Y0 → R satisfies the equality h̃(y) = ◦∗h(y)
for all y ∈ Y0. Then h̃ ∈ L1(νλ),

∫
Y
h dδ =

∫
Y0
h̃ dνλ, and H is an S -integrable

function.

� Given a standard t ∈ R, put Ct := {y ∈ Y : h(y) ≤ t}, ct := [Ct] ∈ Σ,
Et := {y ∈ Y0 : h̃(y) ≤ t}, and et := [Et] ∈ Sλ. Then (ct)t∈R is the resolution of
the identity for h in Σ and (et)t∈R is the resolution of the identity for h̃.

Note that the mapping ψ : Σ → Sλ, defined in (2), is a full monomorphism
(that is, its preserves suprema and infima of arbitrary sets). So, if ẽt := ψ(ct) then
(ẽt)t∈R is a resolution of the identity.

By transfer, ẽt = {y ∈ Y0 : ∗h(y) ≤ t}. Using the definition of h̃, infer that
et1 < ẽt2 and ẽt1 < et2 for all standard t1 < t2. This, together with the right-
continuity of the families (et)t∈R and (ẽt)t∈R, implies that et = ẽt for all t. We now
obtain the first two claims from (1) and the fact that ψ is measure-preserving. The
third claim follows from 6.3.7 (1). �

6.4.7. From 6.4.1 it is clear that

μ(A) = ◦(Δ|X ∩ ∗A|)
for all standard A ∈ Ω (here, as usual, ◦t := +∞ whenever t ∈ ∗R and t ≈ +∞.)
This, together with the inequality μ(∗Xn) < +∞, implies that the triple Ξ =
(M,SMΔ , νMΔ ), with Mn := X ∩ ∗Xn for n ∈ N and M :=

⋃
n∈N

Mn, is a σ-finite
subspace of the Loeb measure space (X,SΔ, νΔ).

Theorem. Let (X,Ω, μ) be a standard σ-finite measure space. Assume also
that X =

⋃
n∈N

Xn and μ(Xn) < +∞ for all n ∈ N. Assume further that X ⊂ ∗X
and Δ ∈ ∗R satisfy the conditions of Theorem 6.4.5. PutMn := X∩∗Xn andM :=⋃
n∈N

Mn. If for all p ∈ [1,+∞) and f ∈ Lp(μ) the internal function F (f) := ∗f |X
belongs to Sp(M) and jp(f) = ◦F (f), then jp : Lp(μ) → Lp(νMΔ ) is an isometric
embedding. In particular, if f ∈ L1(μ) then

∫

X

f dμ =
∫

M

j1(f) dνMΔ .

� It suffices to prove the theorem for p = 1 and f ≥ 0.
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We consider the finite Loeb measure space (Mn, SΔn
, νΔn

), on assuming Δn =
μ(Xn)|Mn|−1 ≈ Δ|Mn||Mn|−1 = Δ. In this event the conditions of 6.4.6 (3) hold
on replacing (Y,Σ, δ) with (Xn,Ωn, μn) and Y0 with Mn.

Put fn := fχXn
: X → R and fn := f |Xn

. By 6.4.6 (3), ∗f |Mn
is an S -

integrable lifting of ◦(∗f |Mn
) and

∫

Xn

fn dμn =
∫

Mn

◦(∗f |Mn
) dνΔn

=
◦(

Δn

∑

ξ∈Mn

∗fn(ξ)
)

=
◦(

Δn

∑

ξ∈X

∗fn(ξ)
)

.

The last equality holds because Δ
Δn

≈ 1 and ∗fn(ξ) = 0 for ξ ∈ X−Mn. This implies
also that ∗fn|X is an SM -integrable lifting of j1(fn), and

∫
X
fn dμ =

∫
M
j1(fn) dνMΔ .

Since (j1(fn)) increases and converges pointwise to j1(f), passage to the limit in
the last equality enables us to conclude that this equality remains valid for f and
j1(f) ∈ L1(νΔ). By Theorem 6.4.5,

◦(
Δ
∑

ξ∈X
|∗fn(ξ) − ∗f(ξ)|

)

=
∫

X

|fn − f | dμ → 0.

Since S (M)# is closed in L # (see 6.3.12 (3)), we now conclude that ∗f |X
belongs to S (M), swerving an SM -integrable lifting of the function j1(f). �

6.4.8. For many concrete σ-finite measure spaces (X,Ω, μ) there are embed-
dings Lp(μ) and Lp(νMΔ ) other than we have described in the preceding subsec-
tion on using a σ-finite subspace (M,SMΔ , νMΔ ) of a suitable Loeb measure space
(X,SΔ, νΔ). Most of these embeddings rest on constructing a measure-preserving
mapping ϕ : M → X. Such a mapping ϕ induces the embedding jϕp : Lp(μ) →
Lp(νMΔ ), given p ∈ [1,∞), by the rule jϕp (f) := f ◦ ϕ for all f ∈ Lp(μ). By 6.3.13
and 6.3.14, jϕp (f) has a lifting F ∈ Sp(M) which we call the lifting of f . In
particular, the following is valid.

(1) If f ∈ L1(μ) and F is an SM -integrable lifting of f then

∫

X

f dμ =
◦(

Δ
∑

ξ∈X
F (ξ)

)

.

The interesting problem is worth noting of constructing F from f . This prob-
lem was solved in an especially simple way in the preceding subsections: there is
a suitable hyperfinite set X ⊂ ∗X satisfying



Technique of Hyperapproximation 259

(2) F = ∗f |X for all f ∈ L1(μ).
In the general case, (2) fails even on assuming that X ⊂ ∗X. We now consider

a type of embedding for which (2) holds for a sufficiently broad class of integrable
functions. However, we start with exhibiting a well-known example.

(3) Put X := [0, 1], and let μ be Lebesgue measure on X. Distinguishing
an arbitrary hyperreal Δ ≈ 0, put N := [Δ−1] and X := {kΔ : k = 1, . . . , N}.
In this event, the Loeb measure space (X,SΔ, νΔ) is in fact a probability space:
νΔ(X) = 1, yielding M = X . As a mapping ϕ : X → X we take st (recall that
st(kΔ) = ◦(kΔ)).

It is possible to show that a subset A of [0, 1] is Lebesgue-measurable if and
only if st−1(A ) is Loeb-measurable and μ(A ) = νΔ(st−1(A )). The equality (2)
fails to hold for each Lebesgue-integrable function f . It is easy to see on assuming
that Δ ∈ ∗Q and considering the Dirichlet function.

However, if f is Riemann-integrable on [0, 1] and F satisfies (2), then (1) holds
by 2.3.16. We will show that in this case F := ∗f |X really is an S -integrable lifting
of f . Since f is bounded and the internal uniform measure νΔ is finite, it follows that
F satisfies 6.3.7 (1). Hence, F is S -integrable. If A is the set of discontinuity points
of f then μ(A ) = 0 because f is Riemann-integrable. If kΔ ∈ X−st−1(A ) then f is
continuous at the point ◦(kΔ), so that ∗f(kΔ) ≈ f(◦(kΔ)). Thus, ◦F (ξ) = f(st(ξ))
for almost all ξ ∈ X . Consequently, F is a lifting of f ◦ st, implying that F is
a lifting of f .

6.4.9. Suppose now that X is a separable locally compact Hausdorff topological
space, μ is a Borel measure on X finite at compact sets (μ is regular because X is
separable), and Ω is the completion of the σ-algebra of Borel sets with respect to μ.
Suppose further that X =

⋃
n∈N

Xn, where Xn is a compact and μ(Xn) < +∞ for
all n ∈ N. Then nst (∗X) =

⋃ ∗Xn. Recall that the mapping st : nst (∗X) → X is
determined by the condition st(x) ≈ x for all x ∈ nst (∗X) (see 4.3.4 and 4.3.6).

(1) Suppose that X is a hyperfinite set, j : X → ∗X is an internal
mapping, Δ ∈ ∗R, and M := j−1(nst (∗X)).

The triple (X, j,Δ) is a hyperapproximant or hyperfinite realization of (X,Ω, μ)
provided that the mapping ϕ : (M,SMΔ , νMΔ ) → (X,Ω, μ) acting by the rule ϕ :=
st ◦j|M is measurable and measure-preserving.

Note that M =
⋃
n∈N

j−1(∗Xn), so that in this event (M,SMΔ , νMΔ ) is a σ-finite
subspace of the Loeb measure space (X,SΔ, νΔ).

We will formulate below one sufficient condition for the function F := ∗f ◦ j
be an SM -integrable lifting of f . To this end, we give the following condition
expressing that f has a rather rapid decay at infinity:

(2) (∀B ∈ ∗P(X))
(
B ⊂ X −M → Δ

∑

x∈B
|∗f(j(x))| ≈ 0

)
.

6.4.10. Let (X, j,Δ) be a hyperapproximant to (X,Ω, μ). Assume that f :
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X → R is a μ-integrable bounded function continuous μ-almost everywhere and
satisfying the condition 6.4.9 (2). Then the function F := ∗f ◦j is an SM -integrable
lifting of f and so

∫

X

f dμ =
◦(

Δ
∑

x∈X

∗f(j(x))
)

.

� Show first that F is SM -integrable. Note that 6.3.11 (2) holds because f
is bounded, and 6.3.11 (3) follows from 6.4.9 (2). To verify 6.3.11 (1) put Mn :=
j−1(∗Xn) and observe that ∗f ◦ j|Mn

is an S -integrable function. This is so since f
is bounded and νΔ(Mn) is finite (see 6.3.7 (1)). Arguing as at the end of 6.4.8 (3),
conclude that ∗f ◦ j|Mn

is a lifting of the function f |Xn
. By 6.4.6 (2) this yields

∫

Xn

|f | dμ =
◦(

Δ
∑

x∈Mn

|∗f ◦ j|(x)
)

≤
∫

X

|f | dμ.

Hence, there is a standard constant C such that

Δ
∑

x∈D

|F |(x) < C

for every internal D ⊂ ⋃n∈N
Mn. By countable saturation, we may find an internal

subset D of M satisfying the last inequality. Now 6.3.11 (1) follows on apply-
ing 6.4.9 (2) to B := X − D . Since ∗f ◦ j|Mn

is a lifting of f |Xn
for every n ∈ N;

therefore, ∗f ◦ j is a lifting of f . �
The analogous assertion is, of course, valid for a bounded μ-almost everywhere

continuous function f ∈ Lp(μ), with p ∈ [1,∞).

6.4.11. We now consider an example.
Let Ω be the σ-algebra of Lebesgue-measurable sets on X := R, and let μ

stand for Lebesgue measure on R. Choose an infinite hypernatural N ∈ ∗
N − N

and an unlimited hyperreal Δ ∈ ∗
R − R such that Δ ≈ 0 and NΔ ≈ +∞. For

convenience of notation we assume that N = 2L + 1 and consider the hyperfinite
set X := {kΔ : k = −L, . . . , L}. Put Xn := [−n, n] and consider the identity
embedding j : X → ∗

R. Then Mn = X ∩ ∗[−n, n] and M = X ∩⋃n∈N

∗[−n, n].

(1) It is easy to see that we may rewrite 6.4.9 (2) as

(∀k, l)
(

|k| < |l| < L ∧ |k|Δ ≈ +∞ → Δ
l∑

n=k

|∗f(nΔ)| ≈ 0
)

.
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(2) Since the last relation holds for L satisfying LΔ ≈ +∞, it amounts
to the equality

lim
Δ→0
A→∞

Δ
∑

|k|>A
Δ

|f(kΔ)| = 0.

(3) For absolutely Riemann-integrable functions the last equality is
equivalent to the limit relation

∞∫

−∞
f(x) dx = lim

h→0
h

∞∑

k=−∞
f(kh).

It is known that the case of these functions is rather wide.

6.4.12. Comments.

(1) The main results of this section, including the concepts of a σ-finite
subspace of a Loeb measure space and SM -integrability, are due to Gordon [145,
146]. Many substantial applications of Loeb measure belong to probability, and in
this connection most attention has been focused on studying finite Loeb measures.

Finite Radon measures that are induced by Loeb measures as well as the map-
ping st were studied in [12] and other publications (see the survey [69] and the book
[3]). However, the question of conditions for j ◦ ∗f |X to be a lifting of f was not
addressed.

Another construction of a lifting of the interval [0, 1] may be found in [69]. The
treatment of σ-finite Loeb measures is essential for our further aims because they
are applied in the next chapter to the study of Haar measures on locally compact
abelian groups, and the latter are mostly infinite.

(2) Condition 6.4.9 (2) holds automatically for compactly-supported
functions and is superfluous for finite measure spaces. The presence of a hyper-
approximant in 6.4.9 (2) is a shortcoming. However, 6.4.9 (2) can be reformulated
sometimes (see 6.4.11) in standard terms. Moreover, it often happens that a hy-
perapproximant can be chosen so that 6.4.9 (2) becomes superfluous.

(3) Returning again to the example 6.4.11, choose L and Δ as the
follows: Distinguishing an unlimited hyperreal τ ∈ ∗R, take Δ

τ≈ 0 and L =
[
τ
Δ

]
.

As above, the triple (X, j,Δ) is a hyperapproximant to the measure space (X,Ω, μ),
where X := R, Ω is the σ-algebra of Lebesgue-measurable sets, and μ is Lebesgue
measure. From 4.6.13 it follows that 6.4.10 holds for each absolutely Riemann-
integrable almost everywhere continuous function on R. If f is such a function
then it is easy to see that ∗f ◦ j is SM -integrable on using the S -integrability of
∗f |∗[−n,n] ◦ j for all n ∈ N, the equality of 6.4.10, and the closure of S #

M in L # (see
the proof of Theorem 6.4.7).
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(4) Solovay [452] (also see [195]) introduced the concept of a random
real as a real belonging to no negligible Gödel-constructible set in the Gödel sense.
He successfully used this concept for proving that various propositions in measure
theory are independent of the axioms of ZFC.

Kolmogorov’s complexity theory has the analogous concept (due to Martin-
Löf [354]) of a random 0–1 sequence as a sequence lying in no negligible Markov-
constructible set. Similar concepts of a random element for [0, 1] with Lebesgue
measure and an independent sequence of random elements in this case are intro-
duced in [520] where Theorem 6.4.4 was established in this environment. The proof
rested on the law of large numbers. For a standard finite measure space Theo-
rem 6.4.4 was proved in [163] by rather different arguments.

6.5. Hyperapproximation of Integral Operators

In this section we consider the possibility of approximating an integral operator
by a hyperfinite-rank operator.

6.5.1. Recall that, given a hyperfinite set X , a standard real p ∈ [1,∞], and a
positive hyperreal Δ ∈ ∗R+, we let LX

p,Δ stand for the internal space of functions
F : X → ∗

F (with F either of the fields R and C) under the norm

‖F‖p,Δ :=
◦(

Δ
∑

ξ∈X
|F (ξ)|p

)1/p (
F ∈ L X

p,Δ

)
.

This space is hyperfinite-dimensional since dim(LX
p,Δ) = |X |. The nonstandard

hull (LX
p,Δ)# of LX

p,Δ is an external Banach space which is nonseparable if |X | is an
unlimited hypernatural. If p = 2 then the norm ‖F‖2,Δ is generated by the inner
product (F,G) := Δ

∑
ξ∈X F (ξ)G(ξ), and so (LX

2,Δ)# is a nonseparable Hilbert
space. As above, we abbreviate LX

p,Δ to Lp, since this leads to no confusion.
If (M,SMΔ , νMΔ ) is a σ-finite subspace of the Loeb measure space (X,SΔ, νΔ)

then Sp(M)# is a closed subspace of L #
p (see 6.3.12 (3)). By 6.3.14 this subspace is

isomorphic to Lp(νMΔ ). Such an isomorphism is established by sending each function
f ∈ Lp(νMΔ ) to the coset F# of a lifting F ∈ Sp(M) of f . Bearing this in mind, we
will assumed below that Lp(νMΔ ) ⊂ L #

p .
Suppose now that (Xk,Ωk, μk) for k := 1, 2 are standard σ-finite measure

spaces. Furthermore, assume given two Loeb measure spaces (Xk, SΔk
, νΔk

), σ-
finite subspaces (Mk, S

Mk

Δk
, νMk

Δk
) of these spaces, and jMk

pk
: Lpk

(μk) → Lpk
(νMk

Δk
) ⊂

L #
pk

for some p1, p2 ∈ [1,+∞].
Let A : Lp1(μ1) → Lp2(μ2) be a bounded linear operator. A limited in-

ternal operator A : Lp1 → Lp2 is a hyperfinite-rank approximant or, briefly, hy-
perapproximant to A provided that, given an arbitrary f ∈ Lp1(μ1), we have
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‖G − A(F )‖p2,Δ2 ≈ 0 whenever F ∈ Lp1 is a lifting of f and G ∈ Lp2 is a lift-
ing of A (f). The expressions like “A hyperapproximates A ” are also in common
parlance.

If, as in 6.4.8, the embedding jMp is induced by some internal mapping j : X →
∗X, and ∗f ◦ j serves as a lifting of f then we may view ∗f ◦ j as the table of f
at the knots of the hyperfinite grid j(X) (the equality of 6.4.10 shows that this is
a rather natural standpoint). In this event the operator A hyperapproximates A
if A carries the table of f to some vector infinitely close to the table of the image
A (f) of f under A .

(1) An internal operator A : Lp1 → Lp2 is a hyperapproximant to A :
Lp1(μ1) → Lp2(μ2) if and only if the following diagram commutes:

Lp1(μ1) A−−−−→ Lp2(μ2)

j
M1
p1

⏐
⏐
#

⏐
⏐
#jM2

p2

L #
p1

A#−−−−→ L #
p2
.

(2) Assume that the linear span of M ⊂ Lp1(μ1) is dense in Lp1(μ1).
If A hyperapproximates A for all f ∈ M then A is a hyperapproximant to A .

� If L (M) stands for the linear span of M then by hypothesis the diagram
of (1) commutes on substituting L (M) for Lp1(μ1). By continuity, the original
diagram commutes since L (M) is dense in Lp1(μ1). �

6.5.2. Recall that Ak : Lp1(μ1) → Lp2(μ2) is an integral operator with kernel
k provided that k : X1 × X2 → F is a measurable function such that for every
f ∈ Lp1(μ1) the value g := Ak(f) of Ak at f is determined from the equality

g(s) =
∫

X1

k(s, t)f(t) dμ1(t).

The fact that Ak is an integral operator with kernel k may be rewritten as

Ak(f)(s) =
∫

X1

k(s, t)f(t) dμ1(t) (f ∈ Lp1(μ1)).

Let Ak : Lp1(μ1) → Lp2(μ2) be an integral operator with kernel k. Then the
question naturally arises of whether we may construct a hyperapproximant to A
by using a lifting of the kernel k, if such a lifting exists. We should keep in mind
here that, generally speaking,

(
M1 ×M2, S

M1
Δ1

⊗ SM2
Δ2
, νM1

Δ1
⊗ νM2

Δ2

)
�=
(
M1 ×M2, S

M1×M2
Δ1Δ2

, νM1×M2
Δ1Δ2

)
.
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(The right side of the above is a σ-finite subspace of the Loeb measure space (X1 ×
X2, S

X1×X2
Δ1Δ2

, νX1×X2
Δ1Δ2

).)
However (see [12]), if M1 and M2 are finite Loeb measure spaces (in which case

M1 and M2 may be assumed internal) then SM1
Δ1

⊗SM2
Δ2

⊂ SM1×M2
Δ1Δ2

and the identity
embedding is measure-preserving.

It is easy to see that this result remains true also in the case of σ-finite subspaces
of Loeb measure spaces, because each σ-finite subspace is the disjoint union of
a countable family of finite Loeb measure spaces.

Thus Lr(νM1
Δ1

⊗ νM2
Δ2

) is isometrically embedded in Lr(νM1×M2
Δ1Δ2

) for all r ∈
[1,∞). Since the embedding jMı

r : Lr(μ) → Lr(νMı

Δı
), ı := 1, 2, induces the embed-

ding jM1×M2
r : Lr(μ1 ⊗ μ2) → Lr(νM1

Δ1
⊗ νM2

Δ2
) ⊂ Lr(νM1×M2

Δ1Δ2
), we may conclude

that every function k ∈ Lr(μ1 ⊗ μ2) has a lifting K ∈ Sr(M1 ×M2).
It stands to reason to find the conditions for a matrix K to determine a hyper-

approximant A to A . We will address this problem for Hilbert–Schmidt operators.
Up to the end of this section we agree that (X,Ω, μ) is a σ-finite measure

space, (M,SMΔ , νMΔ ) is a σ-finite subspace of the Loeb measure space (X , SΔ, νΔ).
Moreover, we specify the embedding j2 : Lr(μ) → Lr(νMΔ ).

An integral operator Ak : L2(μ) → L2(μ) with kernel k is a Hilbert–Schmidt
operator provided that k ∈ L2(μ⊗ μ).

The following estimate is well known for every Hilbert–Schmidt operator:

‖Ak‖ ≤
( ∫

X×X

|k|2 dμ⊗ dμ

)1/2

.

Given an internal function K ∈ S2(M × M), define the internal operator AK :
L2 → L2 by the formula

AK(F )(ξ) = Δ
∑

η∈X
K(ξ, η)F (η) (F ∈ L2, ξ ∈ X).

Clearly, the norm of AK satisfies the following inequality:

‖AK‖ ≤
(

Δ2
∑

ξ,η∈X
|K(ξ, η)|2

)1/2

.

6.5.3. Theorem. If Ak : L2(μ) → L2(μ) is the Hilbert–Schmidt operator with
kernel k ∈ L2(μ⊗ μ), and K ∈ S2(M ×M) is a lifting of k (that is, K is a lifting
of jM×M2 (k) ∈ L2(νM×MΔ2 )), then AK : L2 → L2 is a hyperapproximant to Ak.
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� Start with showing the closure in L2(μ ⊗ μ) of the set of k’s meeting the
claim of the theorem.

To this end, suppose that the theorem holds with kn ∈ L2(μ⊗μ) for all n ∈ N.
Suppose also that ‖k − kn‖L2(μ⊗μ) → 0 as n → ∞. Since Ak − Akn

= Ak−kn
by

the definition of Ak, it follows from the estimate for the norm of Ak in 6.5.2 that
‖Ak − Akn

‖ → 0 as n → ∞.
Let Kn ∈ S2(M ×M) be a lifting of kn and let K ∈ S2(M ×M) be a lifting

of k. Then

‖A#
K − A#

Kn
‖ = ◦‖AK − AKn

‖ = ◦‖AK−Kn
‖

≤
◦(

Δ2
∑

ξ,η∈X
|K(ξ, η) −Kn(ξ, η)|2

)1/2

= ‖k − kn‖L2(μ⊗μ) −→
n→∞ 0.

We now use the fact that the diagram of 6.5.1 (2) commutes for Akn
and AKn

.
Take f ∈ L2(μ). Then

j2(Ak(f)) = lim
n→∞ j2(Akn

(f)) = lim
n→∞A

#
Kn

(j2(f)) = A#
K(j2(f)).

To complete the proof of the theorem we have to show that the claim holds
for the functions k of the shape ϕ ⊗ ψ, i.e., ϕ ⊗ ψ(s, t) := ϕ(s)ψ(t). Since linear
combinations of these functions are dense in L2(μ⊗μ), this will complete the proof
in view of 6.5.1 (1).

To this end, put k := ϕ ⊗ ψ, where ϕ, ψ ∈ L2(μ). Denote some liftings of ϕ
and ψ by Φ,Ψ ∈ S2(M), respectively. Assume also that F ∈ ϕ2(M) is a lifting of
a function f ∈ L2(μ) and G ∈ S2(M), a lifting of Ak(f). Obviously, η �→ Ψ(η)F (η)
is a lifting of t �→ ψ(t)f(t).

By using the Cauchy–Bunyakovskĭı–Schwarz inequality and the membership
Ψ, F ∈ S2(M) it is easy to show that ΨF ∈ S (M), yielding

α :=
∫

X

ψ(t)f(t) dμ(t) ≈
∑

η∈X
Ψ(η)F (η) =:β.

Since Ak(f) = αϕ, the lifting G of Ak(f) is equal to αΦ. Also, it follows from
the definition of AK that AK(F ) = βΦ. So, ‖G − AK(F )‖2 = |α − β|‖Φ‖2 ≈ 0,
which completes the proof. �

6.5.4. From 6.5.3 and 6.4.7 we infer the following corollary:
(1) There is a hyperapproximant to each Hilbert–Schmidt operator in

the L2(μ) space with μ a σ-finite measure.
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Suppose now that X is a separable locally compact space, μ is a Borel measure
on X, and Ω is the completion of the Borel σ-algebra with respect to μ.

Suppose that (X, j,Δ) is a hyperapproximant of the measure space (X,Ω, μ)
(see 6.4.9 (1)). We consider the space X × X with the product topology. Obviously,
nst (∗X × ∗X) = nst (∗X) × nst (∗X) and st((ξ, η)) = (st(ξ), st(η)) (ξ, η ∈ nst (∗X)).
This implies that (X × X, j ⊗ j,Δ2) is a hyperapproximant to the measure space
(X × X,Ω ⊗ Ω, μ⊗ μ).

It is an easy matter to check that
(2) If f : X × X → R is a bounded μ⊗μ-almost everywhere continuous

function then the condition 6.4.9 (2) that f has a rather rapid decay at infinity
amounts to the following

(∀B ∈ ∗P(X))(B ⊂ X −M)

→ Δ2

(∑

x∈B

∑

y∈X
|∗f(j(x), j(y))| +

∑

x∈X

∑

y∈B
|∗f(j(x), j(y))|

)

≈ 0.

(3) Assume that X is a separable locally compact topological space
with a Borel measure μ and (X, j,Δ) is a hyperapproximant to the measure space
(X,Ω, μ). If k is each bounded μ ⊗ μ-almost everywhere continuous function such
that k ∈ L2(μ⊗μ) and |k|2 satisfies (2), then the integral operator AK with kernel
K := ∗k|j(X)×j(X) is a hyperapproximant to Ak.

6.5.5. We now give a simple sufficient condition for f : X × X → R to satis-
fy 6.5.4 (2).

(1) Assume that f : X2 → R satisfies the inequality

|f(x, y)| ≤ ϕ1(x)ϕ2(y) (x, y ∈ X),

with ϕ1 and ϕ2 some bounded integrable μ-almost everywhere continuous functions
of a rather rapid decay at infinity (cf. 6.4.9 (2)). Then f satisfies 6.5.4 (2).

� By hypothesis, ϕ1 and ϕ2 satisfy 6.4.9 (2) and 6.4.10. Thus, if B ⊂ X −M
then

Δ2
∑

x∈B

∑

y∈X
|∗f(j(x), j(y))|

≤ Δ
∑

x∈B

∗ϕ1(j(x))Δ
∑

y∈X

∗ϕ2(j(y)) ≈
∫

X

ϕ2 dμΔ
∑

x∈B

∗ϕ1(j(x)) ≈ 0,

which completes the proof. �
This proposition amounts to the following:
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(2) Assume that k ∈ L2(μ⊗μ) is a bounded almost everywhere continu-
ous function such that |k|2 satisfies 6.5.4 (2) (or the inequality of (1)). If f ∈ L2(μ)
is a bounded almost everywhere continuous function of a rather rapid decay at
infinity (cf. 6.4.9 (2)) then

Δ
∑

x∈X

∣
∣
∣
∣

∫

∗X

∗k(j(x), η)∗f(η) d ∗μ(η) − Δ
∑

y∈X

∗k(j(x), j(y))∗f(j(y))
∣
∣
∣
∣

2

≈ 0.

6.5.6. In the particular case of X := R (see 6.4.11), we come to the following
corollary.

(1) Let k ∈ L2(R2) be a bounded almost everywhere continuous func-
tion such that |k|2 satisfies the inequality of 6.5.5 (1) for some absolutely integrable
functions ϕ1 and ϕ2 on R satisfying 6.4.11 (3) (which rephrases a rather rapid de-
cay). Assume that Δ ≈ 0 and L ∈ ∗N are such that LΔ ≈ +∞. Then

Δ
M∑

α=−M

∣
∣
∣
∣

∞∫

−∞

∗k(αΔ, y)∗f(y) dy − Δ
L∑

β=−L

∗k(αΔ, βΔ)∗f(βΔ)
∣
∣
∣
∣

2

≈ 0

for every bounded almost everywhere continuous function f ∈ L2(R) satisfying
6.4.11 (3).

We proceed by putting X := {k ∈ ∗
N : |k| ≤ L}, define j : X → ∗

R by
j(k) := kΔ, and consider K : X2 → ∗

R such that K := ∗k|j(X)×j(X). From (1) it
follows now that AK is a hyperapproximant to Ak (see 6.5.5 (2)).

(2) If τ ≈ +∞, Δ τ≈ 0, and L :=
[
τ
Δ

]
, then the relation of (1) holds for

all bounded almost everywhere continuous functions k ∈ L2(R2) and f ∈ L2(R).

� Arguing by analogy with 4.6.13, infer that

∞∫

−∞

∞∫

−∞
|k(x, y)|2 dx dy =

◦(
Δ2

L∑

α,β=−L
|∗k(αΔ, βΔ)|2

)

.

It is easy to show along the lines of (1) that K belongs to S2(M × M) and is
a lifting of k, even if |k|2 does not satisfy 6.5.4 (2). �

It is worth noting that (1) and (2) remain true on abstracting R to R
n with

an arbitrary n ≥ 1 (in this case k ∈ L2(R2n)).

6.5.7. We now pass to the standard versions of some of the above results.
Clearly, the Nelson algorithm is a natural tool for this matter.
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By way of example we translate 6.5.4 (1). By Theorem 6.4.7, it is possible to
assume that X ⊂ ∗X, and ∗f |X in S2(M) is a lifting of f ∈ L2(μ). We remark
that no similar equality holds in general for lifting K : X2 → ∗

R in S2(M) for
a function k ∈ L2(μ⊗μ), since (X2,Δ) can fail to meet the claim of Theorem 6.4.5
in regard to (X2,Ω ⊗ Ω, μ⊗ μ). Nevertheless, such a lifting K exists in view of the
remarks on 6.5.2.

Let (X,Ω, μ) be a σ-finite measure space, and let k ∈ L2(μ⊗μ). Then, to each
finite set Φ ⊂ L2(μ) and each ε > 0, there are X ⊂ X, Δ ∈ R, and K : X2 → R

such that ∣
∣
∣
∣

∫∫

X2

|k|2 dμ− Δ2
∑

x,y

|K(x, y)|2
∣
∣
∣
∣ < ε,

and

Δ
∑

x∈X

∣
∣
∣
∣

∫

X

k(x, η)f(η) dμ(η) − Δ
∑

y∈X
K(x, y)f(y)

∣
∣
∣
∣

2

< ε

for all f ∈ Φ.

� Note that 6.5.4 (1) may be rewritten as follows:
Let (X,Ω, μ) be a standard σ-finite measure space, and let k ∈ L2(μ ⊗ μ) be

standard. Then

(∃finX ⊂ X)(∃Δ ∈ R+)(∃K : X2 → R)(∀stf ∈ L2(μ))(∀st0 < ε ∈ R)
(∣
∣
∣
∣

∫∫

X2

|k|2 dμ⊗ μ− Δ2
∑

x,y∈X
|K(x, y)|2

∣
∣
∣
∣ < ε

∧ Δ
∑

x∈X

∣
∣
∣
∣

∫

X

k(x, η)f(η) dμ(η) − Δ
∑

y∈X
K(x, y)f(y)

∣
∣
∣
∣

2

< ε

)

.

Denote the matrix of this formula by W and proceed by idealization to obtain
the equivalent proposition

(∀stΦ ∈ Pfin(L2(μ)))(∀stΞ ∈ Pfin(R+))(∃finX ⊂ X)(∃Δ ∈ R+)
(∃K : X2 → R)(∀f ∈ Φ)(∀ε ∈ Ξ) W .

Since (X,Ω, μ) and k are standard, we may remove the superscript st from
the first two quantifiers by transfer. Passing from Ξ to ε := min(Ξ) enables us
to replace the second quantifier by (∀ε ∈ R+). Thus, we may eliminated the last
quantifier. �
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A more careful inspection of the above translation shows that while the non-
standard entities X , Δ, and K in 6.5.4 (1) depend only on the elements of L2(μ)
and L2(μ ⊗ μ), which are cosets, rather than on their constituents, and while the
k ∈ L2(μ⊗μ) is regarded as a coset (i.e., X , Δ, and K do not depend on the choice
of a constituent in the coset k). Observe also that Φ in this formula is a finite set
of square-integrable functions.

In fact, Proposition 6.5.7 is not an exact analog of 6.5.4 (1), since the first
inequality of this proposition is only one of the consequences of the fact that K in
S (M) is a lifting of k. Since the phrase “K in S (M) is a lifting of k” manipulates
with strictly external entities, it cannot be translated into the language of IST, but
it might give rise to various internal consequences strengthening 6.5.7.

6.5.8. We now consider a standard version of 6.5.6 (2). Denote by Hm the
space of almost everywhere continuous bounded functions in L2(Rm) (we imply
Lebesgue measure on R

m).

If Φ ⊂ H1 and K ⊂ H2 are finite sets of functions then to each n ∈ N there
are L ∈ N and Δ ∈ R+ satisfying LΔ > n, Δ < n−1, and

Δ
L∑

α=−L

∣
∣
∣
∣

∞∫

−∞
k(αΔ, η)f(η) dη− Δ

L∑

β=−L
k(αΔ, βΔ)f(βΔ)

∣
∣
∣
∣

2

<
1
n

for all f ∈ Φ and k ∈ K .

� Rewrite 6.5.6 (2) as follows:

(∃L ∈ N)(∃Δ ∈ R+)
(

LΔ ≈ +∞ ∧ Δ ≈ 0 ∧ (∀stf ∈ H1)(∀stk ∈ H2)

(

Δ
M∑

α=−M

∣
∣
∣
∣

∞∫

−∞

∗k(αΔ, y)∗f(y) dy − Δ
L∑

β=−L

∗k(αΔ, βΔ)∗f(βΔ)
∣
∣
∣
∣

2

≈ 0
))

.

Deciphering the symbol ≈, obtain

(∃L ∈ N)(∃Δ ∈ R+)(∀stn ∈ N)(∀stf ∈ H1)(∀stk ∈ H2)
(

LΔ > n ∧ Δ < n−1

∧
(

Δ
L∑

α=−L

∣
∣
∣
∣

∞∫

−∞
k(αΔ, η)f(η) dη − Δ

L∑

β=−L
k(αΔ, βΔ)f(βΔ)

∣
∣
∣
∣

2

<
1
n

))

.

In much the same way as before, it is easy to eliminate the predicate st. �
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6.5.9. To formulate a standard version of 6.5.6 (1) is even simpler. To this end,
denote by H̃1 the set of functions f ∈ H1 with |f |2 satisfying 6.4.11 (2), and let H̃2

stand for the set comprising k ∈ H2 such that |k|2 enjoys the inequality of 6.5.5 (1)
for some ϕ1 and ϕ2 satisfying 6.4.11 (2). (The set H̃m is defined similarly.)

If f ∈ H̃1 and k ∈ H̃2 then

lim
Δ→0
LΔ→∞

Δ
L∑

α=−L

∣
∣
∣
∣

∞∫

−∞
k(αΔ, η)f(η) dη − Δ

L∑

β=−L
k(αΔ, βΔ)f(βΔ)

∣
∣
∣
∣

2

= 0.

� The relevant formula of 6.5.6 (1) may be rewritten in IST as

(∀L ∈ N)(∀Δ ∈ R+)
(

LΔ ≈ +∞ ∧ Δ ≈ 0 → (∀stf ∈ H̃1)(∀stk ∈ H̃2)

(

Δ
L∑

α=−L

∣
∣
∣
∣

∞∫

−∞
k(αΔ, η)f(η) dη − Δ

L∑

β=−L
k(αΔ, βΔ)f(βΔ)

∣
∣
∣
∣

2

≈ 0
))

.

Since a ≈ 0 ↔ (∀stn ∈ N)(|a| < 1/n), by predicate logic arrive at the following
equivalent formula

(∀stf ∈ H̃1)(∀stk ∈ H̃2)(∀stn ∈ N)(∀L ∈ N)(∀Δ ∈ R+)
(LΔ ≈ +∞ ∧ Δ ≈ 0 → W ),

with W denoting the inequality of 6.5.5 (1).
Writing the predicates LΔ ≈ +∞ and Δ ≈ 0 in IST, by idealization and

transfer arrive at the proposition

(∀f ∈ H̃1)(∀k ∈ H̃2)(∀n ∈ N)(∃finN ⊂ N)(∀L ∈ N)(∀Δ ∈ R+)
(∀m ∈ N )((Δ < 1/m ∧ LΔ > m) → W ),

which completes the proof. �
6.5.10. We consider a standard version of the definition of a hyperapproximant

to an arbitrary bounded linear operator A : Lp(R) → Lq(R), where p, q ≥ 1.
Denote by H̃ (r) the space of bounded almost everywhere continuous functions

f ∈ Lr(R) such that |f |2 satisfies 6.4.11 (2). Note that H̃ (r) is dense in Lr(R)
(r ≥ 1). We also assume that A satisfies the condition:
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(1) {f ∈ H̃ (p) : A (f) ∈ H̃ (q)} is dense in Lp(R).
Let T := {TL,Δ : L ∈ N,Δ ∈ R+}, with TL,Δ := (tα,β)Lα,β=−L, be a matrix

pencil depending on two parameters and uniformly bounded in norm. Each of the
matrices TL,Δ has size N ×N , with N := 2L+ 1.

(2) A matrix pencil T approximates a bounded linear operator A :
Lp(R) → Lq(R) satisfying (1) provided that

lim
Δ→0
LΔ→∞

Δ
L∑

α=−L

∣
∣
∣
∣A (f)(αΔ) −

L∑

β=−L
tαβf(βΔ)

∣
∣
∣
∣

q

= 0

for all f ∈ H̃ (p) ∩ A −1(H̃ (q)).
(3) Assume that T is a matrix pencil satisfying the above-stated con-

ditions. Then T approximates a bounded operator A : Lp(R) → Lq(R) if and
only if for all L ∈ ∗

N and Δ ∈ ∗
R+ with Δ ≈ 0 and LΔ ≈ +∞ the operator

∗TL,Δ : LX
Δ,p → LX

Δ,q, with X := {−L, . . . , L}, is a hyperapproximant to A .

� This is immediate from 6.5.10 (1) and the infinitesimal limit test (cf. 2.3.1). �
(4) Assume that the equality of (2) holds for all functions f belonging

to some set M ⊂ H̃ (p) ∩ A −1(H̃ (q)), whose linear span is dense in Lp(R). Then
this equality holds for all f ∈ H̃ (p) ∩ A −1(H̃ (q)).

� This follows from 6.5.1 (1). �
6.5.11. Comments.

(1) The results of this section are due to Gordon and published in [140,
146]. Our presentation follows [146].

(2) The proposition “A has a hyperapproximant” is expressible in the
language of IST. Therefore, we may rephrase this proposition in the standard math-
ematical terms by the Nelson algorithm. In full generality, such a reformulation is
rather bulky. However, it means essentially that there are a sequence of finite-
dimensional spaces and a sequence of finite-rank operators such that the relevant
sequences of finite grids (comprising the knots of tables of the consecutive spaces),
the sequence of meshsizes Δ such that the table of a function at the knots of each
grid is a vector in the respective space, the integral of a function f is approximated
with the sum of the values of f at the knots with meshsize Δ, and the values of the
finite-rank operator at the table of f converge to the table of A (f); cf. 6.5.10 (2).

(3) The results, analogous to Theorem 6.5.3 and its corollaries, can be
abstracted to some other classes of integral operators on imposing the conditions
on k under which the integral operator with kernel k is bounded from Lp to Lq (for
example, see [227]).
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(4) The infinitesimal definition of hyperapproximation in 6.5.1 is essen-
tially more general than 6.5.10 (2) even in the case of the Lp(R) spaces, since the
former abstains in general from presuming the existence of a standard matrix pencil
T satisfying the conditions prior to 6.5.10 (2). The distinction between these defini-
tions transpires on comparison between 6.5.8 and 6.5.9. The latter may be refined
by a complete translation of 6.5.6 (2) into the standard language on considering
that Δ

τ≈ 0. However, this refinement involves bulky and bizarre formulas.

(5) In the sequel we will need the case in which the table of f in the
approximation of A is taken on a uniform grid with meshsize Δ, whereas the table
of A (f) is taken with meshsize Δ1. Of course, Δ1 → 0 and LΔ1 → ∞ (for instance,
put Δ1 := ((2L+ 1)Δ)−1). The general definition of 6.5.10 obviously encompasses
this case. Therefore, 6.4.9 (2) and 6.5.10 (3, 4) remain valid after slight changes.

(6) It is possible to abstract 6.4.9 (2) and 6.5.10 (3, 4) to the case in
which we hyperapproximate an operator A : Lp(μ) → Lq(μ), with μ a σ-finite
measure on a separable locally compact topological space X, by using hyperapprox-
imation the corresponding measure space on X (see 6.5.4 (3)).

Here it is necessary to give a standard version of the definition of hyperapprox-
imant to a measure space as some collection of a family X of finite sets, mappings
j : X → X, and reals Δ satisfying appropriate conditions. As was noted, the main
difficulties on this way are encountered in translating 6.4.9 (2) and 6.5.4 (2) to the
standard language.

We will return to similar questions in the next chapter when addressing hyper-
approximation of locally compact abelian groups.

6.6. Pseudointegral Operators and Random Loeb
Measures

We need a somewhat stronger version of the theorem of 6.4.6. Namely, it is
desirable now that the integral of each integrable function be approximated by the
sum over a hyperfinite set to within a given infinitesimal ε.

6.6.1. Theorem. Let (X ,Ω, μ) be a standard σ-finite measure space and
let ε be a strictly positive infinitesimal. Then there are an internal hyperfinite set
X ⊆ ∗X and a hyperreal Δ ∈ ∗R such that

∣
∣
∣
∣

∫

X

f dμ− Δ
∑

ξ∈X

∗f(ξ)
∣
∣
∣
∣ < ε

for all f ∈ L1(μ).
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� Let k be some ε-infinite integer. Then (∗Xk,
∗Ωk, ∗μk) satisfies the conditions

of Theorem 6.4.4, and so there is an internal hyperfinite set X ⊆ ∗Xk such that

∫

∗Xk

h dμk − μk(∗Xk)
|X |

∑

ξ∈X
h(ξ)

is k-infinite for every k-standard integrable function h : ∗Xk → ∗
R. In particular,

if f ∈ L1(μ) then ∗fk is a k-standard integrable function on ∗Xk; therefore, the
hyperreal ∫

∗Xk

∗fk dμk − μk(∗Xk)
|X |

∑

ξ∈X

∗fk(ξ)

is k-infinitesimal and, consequently, it is ε-infinitesimal.
Furthermore, from the equality

∫

X

f dμ = lim
n→∞

∫

Xn

fn dμn

it follows that
∫

X
f dμ−∫∗Xk

∗fk dμk is ε-infinitesimal. Since ∗fk|X = ∗f |X ; there-
fore, the difference ∫

X

f dμ− μk(∗Xk)
|X |

∑

ξ∈X

∗fk(ξ)

is ε-infinitesimal too and so its modulus is at most ε. �

6.6.2. In the context of Theorem 6.6.1 we say that the couple (X,Δ) approxi-
mates μ to within ε.

The proof of Theorem 6.6.1 proceeds exclusively by transfer and saturation,
we may replace standardness by relative standardness.

More precisely, if τ is a distinguished internal set, (X ,Ω, μ) is a τ -standard σ-
finite measure space μ, and ε is a positive τ -infinitesimal; then there are an internal
hyperfinite set X ⊆ ∗X and a hyperreal Δ ∈ ∗R such that

∣
∣
∣
∣

∫

∗X

F d∗μ− Δ
∑

ξ∈X
F (ξ)

∣
∣
∣
∣ < ε

for every τ -standard integrable function F . In particular, this remains valid for
every infinitesimal ε.
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6.6.3. We assume that X is an arbitrary set, A is some σ-algebra of subsets
of X , and (λy)y∈Y is a standard family of σ-finite measures on A . The family
(λy)y∈Y may be viewed as the function λ : A ×Y → R satisfying λy(A) := λ(A, y)
for all y ∈ Y and A ∈ A . Let L1 stand for the set of all measurable functions
on X measurable with respect to each measure of the family (λy)y∈Y . The family
(λy)y∈Y generates the pseudointegral operator T on L1 by the rule: if f ∈ L1 then
Tf is the function from Y to R, acting as

(Tf)(y) =
∫

X

f dλy (f ∈ L1).

In the next subsection we will show that we may approximate a pseudointegral
operator with a matrix to within infinitesimal.

Denote the vector space of all real functions on Y by F (Y ). Given a hy-
perfinite collection X := (x1, . . . , xn) ⊆ ∗X , we let the symbol πX stand for the
“projection” from L1 to ∗Rn which sends each function f ∈ L1 to the table of f ,
i.e., the vector

(∗f(x1), . . . , ∗f(xn)
)
.

6.6.4. Theorem. In Y ⊆ Y there are finite collections of elements X :=
(x1, . . . , xn) ⊆ ∗X and Y := (y1, . . . , ym) ⊆ ∗Y together with a matrix A = (aıj)
of size n×m such that πY (∗Tf) ≈ AπX(∗f) for every function f ∈ L1; i.e.,

∫

∗X

∗f d∗λyı
≈

n∑

j=1

aıj
∗f(xj) (ı := 1, . . . , m).

In other words, the following diagram commutes to within infinitesimal:

L1(X ) T−−−−→ F (Y )

πX

⏐
⏐
# πY

⏐
⏐
#

∗
R
n A−−−−→ ∗

R
m

� Take a strictly positive infinitesimal ε. For all λ ∈ Y from Theorem 6.6.1 it
follows that there are a hyperfinite sequence X(y) of elements in ∗X and a positive
hyperreal Δ(y) such that | ∫

X
f dλy−Δ(y)

∑
X(y) f | ≤ ε for every standard function

f ∈ L1. This gives rise to the functions

X : Y →
⋃

n∈∗N

∗X n and Δ : Y → ∗
R.
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By extension we may assume that these functions are given on ∗Y . If y ∈ ∗Y and
F ∈ ∗L1 then agree to say that Φ(y, F ) holds whenever

∣
∣
∣
∣

∫

∗X

F d∗λy − Δ(y)
∑

X(y)

F

∣
∣
∣
∣ ≤ ε.

Given y ∈ Y , consider the internal set By := {F ∈ ∗L1 : Φ(y, F )}. Note that
∗f ∈ By for all f ∈ L1 and y ∈ Y . Furthermore, to each finite collection
(y1, f1), . . . , (yk, fk) ∈ Y × L1 there is an internal set ∗L1 containing all fm and
lying in each Bym

, m := 1, . . . , k. As such a set we may take By1 ∩ · · · ∩ Byk
. By

saturation it follows now that there is an internal set B satisfying f ∈ B ⊆ Fy for
all (y, f) ∈ Y × L1. In particular, Φ(y, F ) holds for all y ∈ Y and F ∈ Φ.

Let Y0 stand for the set of y ∈ ∗Y such that Φ(y, F ) holds for all F ∈ B.
Clearly, Y0 is an internal set including Y . On the other hand, there is a hyperfinite
set Y1 ⊆ ∗Y including Y . Put Y := Y0 ∩Y1. Then Y is a hyperfinite internal subset
of ∗Y including Y . Moreover, Φ(y, F ) holds for all y ∈ Y and F ∈ B. In particular,
Φ(y, ∗f) holds for all y ∈ Y and f ∈ L1. Order Y somehow to obtain the tuple
(y1, . . . , ym). As X we take the concatenation of the tuples Xy1 , . . . , Xym

, i.e., the
tuple consisting of the tuples Xy1 , . . . , Xym

located consecutively. For definiteness,
assume that X := (x1, . . . , xn) and the elements of the tuple Xyl

take the places
from sl+1 to sl+m in X . Define the “step” matrix A of size m× n as follows:

aıj =
{

Δyı
, in case sı < j ≤ sı+1,

0 otherwise.
Given f ∈ L1, for all ı := 1, . . . , m we then see that

∣
∣
∣
∣

∫

∗X

∗f d∗λyı
−

n∑

j=1

aıj
∗f(xj)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

∗X

∗f d∗λy − Δ(yı)
∑

X(yı)

∗f
∣
∣
∣
∣ ≤ ε,

i.e.,
∫
∗X
∗f d∗λyı

≈ ∑n
j=1 aıj

∗f(xj). The proof is complete. �
6.6.5. We now consider a particular instance of a pseudointegral operator:

an integral operator with kernel K(x, y). Suppose that, in the context of Theo-
rem 6.6.4 we have some σ-finite measure on the σ-algebra A such that, for all
y ∈ Y , the measure λy is absolutely continuous with respect to μ with the density
Ky := K(·, y) ∈ L∞(μ). Then

(Tf)(y) =
∫

X

f dλy =
∫

X

fKy dμ.

In this event we may slightly strengthen Theorem 6.6.4. Namely, we may apply
Theorem 6.6.1 to obtain a hyperfinite set X and a hyperreal Δ so as to approximate
μ up to ε. As the matrix we may now take the table of the kernel at the knots of
the grid X × Y with weight Δ.
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6.6.6. Theorem. Suppose that the couple (X,Δ) approximates μ. Then there
is a finite tuple Y = (y1, . . . , ym) ⊆ ∗Y such that Y ⊆ Y and πY (∗Tf) ≈ AπX(∗f),
with aıj := ΔK(xı, yj).

� The proof proceeds along the lines of that of Theorem 6.6.4.
Let Ψ(y, F ) stand for the internal formula

∣
∣
∣
∣

∫

F d∗λy − Δ
∑

X

∗f∗Ky

∣
∣
∣
∣ ≤ ε.

Given f ∈ L1 and y ∈ Y , note that

∣
∣
∣
∣

∫

X

f dλy − Δ
∑

X

∗f∗Ky

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X

fKy dμ− Δ
∑

X

∗f∗Ky

∣
∣
∣
∣ ≤ ε,

i.e., Ψ(y, ∗f) for all y ∈ Y and f ∈ L1.
Put Cy := {F ∈ L1 : Ψ(y, F )}. Then there is an internal set C ⊆ ∗L1 such

that Ψ(y, F ) holds for all y ∈ Y and F ∈ C and, moreover, L1 ⊆ C. Also, there is
a hyperfinite internal tuple Y := (y1, . . . , ym) such that Y ⊆ Y and Ψ(y, ∗f) holds
for all y ∈ Y and f ∈ L1. Then

∫

∗X

∗f dλyi
≈ Δ

∑

X

fKyı
=

n∑

j=1

aıjf(xj)

for all ı := 1, . . . , m. �

6.6.7. It is worth observing that the proofs of Theorems 6.6.4 and 6.6.6 give
a somewhat stronger result: The matrix A of these theorems approximates T to
within a given infinitesimal ε. Moreover, since the hyperfinite Y includes Y ; there-
fore, the table of a standard function g on Y is completely determined from the
table of ∗g on Y . This implies in particular that the projection πY preserves the
supremum of a bounded standard function on Y , i.e., supy∈Y g(y) = ◦maxπY (g).
On the other hand, the projection πX in Theorem 6.6.6 preserves the L1-norm
of f in L1, i.e.,

∫
X f dμ = ◦(Δ

∑
X
∗f). Consequently, if we furnish ∗Rm with

the sup-norm then Theorem 6.6.6 implies that to each couple (X,Δ) approxi-
mating μ to within ε, there is a hyperfinite Y such that Y ⊆ Y ⊆ ∗Y and
‖πY (∗Tf) −AπX(∗f)‖ ≤ ε for all f ∈ L1.

The next theorem clarifies Theorem 6.6.6. As in the latter, T stands for an
integral operator from L1 to F (Y ) with kernel K, and ε > 0 is a given infinitesimal.
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6.6.8. Theorem. To each hyperfinite Y ⊆ ∗Y there is a couple (X,Δ) approx-
imating μ and satisfying ‖πY (∗Tf) − AπX(∗f)‖ ≤ ε for all f ∈ L1 (the matrix A
is the same as in Theorem 6.6.4).

� Put Y := {y1, . . . , ym}. If ı := 1, . . . , m then Kyı
belongs to the set

{Ky1 , . . . , Kym
} and so this set is Y -standard. The space (X ,A , μ) is standard

and so Y -standard. By 6.6.2 there are a hyperfinite family X ⊆ ∗X and a positive
hyperreal Δ satisfying ∣

∣
∣
∣

∫

∗X

F d∗μ− Δ
∑

X

F

∣
∣
∣
∣ ≤ ε

for every Y -standard integrable function F .
If f ∈ L1 then ∗fKy is a Y -standard integrable function; consequently,

∣
∣
∣
∣

∫

∗X

∗f d∗λy − Δ
∑

X

fKy

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

∗X

∗fKy d
∗μ− Δ

∑

X

fKy

∣
∣
∣
∣ ≤ ε,

which completes the proof. �
6.6.9. We now abstract the Loeb construction to a random measure which is

defined in the following environment: Assume that X is an arbitrary set, A is an
algebra of subsets of X , and (Y,B, ν) is a measure space with ν finitely additive.
A random measure (random finitely additive measure) is a function λ : A ×Y → R

satisfying the two conditions:

(1) λA := λ(A, ·) : Y → R is B-measurable for all A ∈ A ;
(2) λy := λ(·, y) is a measure (finitely additive measure) on A for

almost all y ∈ Y .
In the sequel, (X,A ) and (Y,B, ν) are internal sets, with λ an internal finitely

additive random measure on A × Y .
By definition, Y contains some subset Y0 of full measure such that λy is a

finitely additive measure for all y ∈ Y0. Assume further that (Y,BL, νL) stands for
the Loeb measure space for (Y,B, ν). Given λy (y ∈ Y0), consider the corresponding
Loeb measure (λy)L. Observe that the domain of (λy)L includes σ(A ) by the
definition of Loeb measure. Define the function λL : σ(A ) × Y → R as follows:
Put λL(A, y) := (λy)L(A) for A ∈ σ(A ) and y ∈ Y0, while defining λL on Y − Y0

arbitrarily.

6.6.10. Theorem. The function λL constructed above is a random measure
with respect to the spaces (X, σ(A )) and (Y,BL, νL).

� By definition λLy := (λy)L is a countable additive measure for νL-almost all
y ∈ Y .
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It suffices to show that λLA is BL-measurable for all A ∈ σ(A ). To this end,
denote by M the set of A ∈ σ(A ) such that λLA is a BL-measurable function.

Clearly, A ⊆ M . Indeed, given A ∈ A , note that λLA(y) = λLy (A) = ◦λy(A) =
◦λA(y) for all y ∈ Y0. Thus, λA is a lifting of λLA, it follows that the function λLA is
BL-measurable by Theorem 6.3.6.

We now let (An)n∈N be a monotone sequence of sets in M , and put A :=
limn→∞ An. Then A ∈ σ(A ). Since λLy (A) = limn→∞ λLy (An) for all y ∈ Y0, the
function λLA is BL-measurable as the almost everywhere limit of the sequence of
BL-measurable functions (λLAn

).
Thus, M is a monotone class. Since every class containing some algebra con-

tains the σ-algebra generated by this algebra; therefore, M = σ(A ). �
6.6.11. We have constructed a random Loeb measure on the σ-algebra σ(A ).

Recall that by construction a Loeb measure is defined on the σ-algebra generated
by the original algebra after that it is extended to the completion of this σ-algebra.
The next example demonstrates that such an extension is impossible in general in
the case of a random Loeb measure. Even if the completion of σ(A) with respect to
each measure λLy is the same for all y ∈ Y , the extension of λL on this completion
can fail to be a random measure.

Let Y be a hyperfinite set, and let ν be the uniform probability measure on the
algebra B of all internal subsets of Y . It is known in this case that BL differs from
the powerset P(Y ). Let N be a BL-nonmeasurable subset Y . Assign X := Y ,
A := B, and

λ(A, y) :=
{

1, if y ∈ A,

0 otherwise

for all y ∈ Y .
Obviously, λ is a random measure with respect to (X,A ) and (Y,B, ν); fur-

thermore, for each y ∈ Y the corresponding Loeb measure (λy)L is defined on the
whole P(X). Therefore, we may naturally to extend λL onto P(X)×Y by putting
λL(A, y) := (λy)L(A). However, the function λL on P(X) × Y is not a random
measure since λLN = χN is not BL-measurable.

6.6.12. We further show that each random measure may be treated as a vector
measure and the above constructed Loeb extension of a random measure is in a sense
the Loeb extension of a vector measure.

(1) Recall that the nonstandard hull of V # of an internal normed vector
space V is the quotient space V1/V2 where V1 := ltd(V ) and V2 := μ(V ); cf. 6.1.1.
We will proceed by analogy.

Assume that F is an internal finitely additive V -valued measure on an internal
measurable space (X,A ). Assume also that the image of F lies in some subspace V1.
Then the function F# : A → V #, acting by the rule F#(A) := F (V )#, is countably
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additive, i.e., a measure on A . It would be natural to call a vector Loeb measure
an extension of F# to the completion of σ(A ). In contrast with the scalar case,
we cannot however guarantee that F# extends to σ(A ). Nevertheless, we happen
to show that if F is the vector measure corresponding to a random measure, this
extension is always possible.

(2) Let (Y,B, ν) be an internal measure space and let (Y,BL, νL) stand
for the corresponding Loeb measure space. Denote by L0(ν) the space of B-
measurable functions from Y to ∗R. As usual, we identify functions that equal
ν-almost everywhere.

We consider the external subspaces V1 and V2 of L0(ν) consisting of νL-almost
everywhere limited functions and νL-almost everywhere infinitesimal functions, re-
spectively; i.e., f ∈ V1 (f ∈ V2) whenever there is U ∈ BL such that νL(Y −U) = 0
and f(y) is limited (infinitesimal) for all y ∈ U . This definition is sound since if
f ∈ V1 (f ∈ V2) and g(y) = f(y) for ν-almost all y then g(y) = f(y), implying that
g also belongs to V1 (respectively, to V2).

The quotient space V1/V2 is the nonstandard hull of L0(ν)#.
We may identify the nonstandard hull L0(ν)# with the space L0(νL) of BL-

measurable functions from Y to R. Namely, we map a coset f + V2 ∈ V1/V2 to ◦f ,
Theorem 6.3.6 implies that this is a linear isomorphism. Consequently,

L0(ν)# = L0(νL).

(3) Assume as before that λ is an internal random measure with respect
to (X,A ) and (Y,B, ν). Assume further that λ(A, y) is limited for all A ∈ A and
almost all y ∈ Y . Let λL be an extension of λ as prompt by Theorem 6.6.10.
Note that these two random measures can be considered as the vector measures
Λ : A → L0(ν) and ΛL : σ(A ) → L0(νL) acting by the rules Λ(A) := λA and
ΛL(A) := λLA.

6.6.13. Theorem. The measure Λ# (see 6.6.12 (1)) is defined soundly and ad-
mits an extension to σ(A ); i.e., there is a vector Loeb measure for Λ. Furthermore,
such an extension of Λ# agrees with ΛL on σ(A ).

� Since λ(A, y) is limited for almost all y ∈ Y , it follows that the function
Λ(A) := λA belongs to V1 for all A ∈ A . Hence, Λ# is defined on A . Keeping in
mind the identification of 6.6.12 (2), for all A ∈ A we infer that

Λ#(A) = Λ(A)# = (λA)# = ◦λA = λLA = ΛL(A),

with equality holding almost everywhere. Therefore, Λ# coincides with ΛL on A .
Since the measure ΛL is defined on σ(A), we conclude that ΛL is an extension of
Λ# to σ(A ). �
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6.6.14. Comments.

(1) The pseudointegral operators were introduced by Arveson [20] for
studying operator algebras on L2. They were further studied by Fakhoury [115]
(in L1) and Kalton [208] (in Lp for 0 < p ≤ 1). Various aspects of pseudointegral
operators are reflected in [208–211, 441–443, 455–459, 522–524]. Preliminaries to
pseudointegral operators are collected in [268].

(2) The main results of this section belong to Troitskĭı [490].
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Infinitesimals in Harmonic Analysis

In this chapter we elaborate on the technique of hyperapproximation of the
Fourier transform on a locally compact abelian group.

We start with the Fourier transform on the reals

F : L2(R) → L2(R).

In this case the matrix of the discrete Fourier transform is applied to the table of
a function f on a grid with knots −LΔ1, . . . , LΔ1. This vector is compared with
the table of the Fourier transform F (f) of F on a grid with knots −LΔ, . . . , LΔ.
We seek the conditions under which the norm of the difference of these two vectors
vanishes as Δ and Δ1 tend to zero and LΔ and LΔ1 tend to infinity (or, in other
words, this difference is infinitesimal whenever Δ and Δ1 are infinitesimals and LΔ
and LΔ1 are infinites). The answer depends essentially on interplay between L, Δ,
and Δ1.

In fact, the results of 7.1 for the Fourier transform on the reals have a group-
theoretic nature, enabling us to abstract them to separable locally compact abelian
groups. Hyperapproximation of a locally compact abelian group G is then applied
to discrete approximation of the Hilbert space of square-integrable functions on G.

Finally, we apply all these constructions to hyperapproximation of an operator
by hyperapproximation of its symbol. We also state results about the limit behavior
of Hilbert–Schmidt operators and Schrödinger-type operators.

7.1. Hyperapproximation of the Fourier Transform on
the Reals

In this section we consider the possibility of approximating the Fourier trans-
form F : L2(R) → L2(R) by a discrete Fourier transform.
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7.1.1. As regards this section, we agree that X := {k ∈ ∗Z : −L ≤ k ≤ L}
and N := 2L + 1, with L an infinite hypernatural (i.e., L ≈ +∞); Δ and Δ′ are
strictly positive infinitesimals such that NΔ ≈ +∞ and NΔ′ ≈ +∞; the functions
j : X → ∗

R and j′ : X → ∗
R are defined by the rules j(k) := kΔ and j′(k) := kΔ′.

Thus, (X, j,Δ) and (X, j′,Δ′) are hyperapproximants to the measure space
(R,Ω, dx), where Ω is the σ-algebra of Lebesgue-measurable sets, and dx is Lebesgue
measure on R (cf. 6.4.9 (1)).

Consider the internal hyperfinite-dimensional space C
X and put Ek(m) :=

δkm for all k,m ∈ X , so distinguishing the basis {Ek : k ∈ X} for C
X . Each

endomorphism A of C
X will be given by the matrix of A relative to this basis.

We equip C
X with the two inner products (·, ·)Δ and (·, ·)Δ′ that are determined

from the conditions (Ek, Em)Δ := Δδkm and (Ek, Em)Δ′ := Δ′δkm. We also let
L2Δ stand for C

X equipped with the inner product (·, ·)Δ while denoting C
X with

the inner product (·, ·)Δ′ by L2Δ′ .
The operator Φ : C

X → C
X with matrix (exp(−2πiαβ/N))Lα,β=−L is a discrete

Fourier transform. In the sequel we will consider the discrete Fourier transform
ΦΔ := ΔΦ : L2Δ → L2Δ′ . It is easy to check that

(ΦΔ(F ),ΦΔ(G))Δ′ = NΔΔ′(F,G)Δ.

Thus, ‖ΦΔ‖ = NΔΔ′, and so Φ#
Δ : L #

2Δ → L #
2Δ′ is a nonzero operator on condition

that 0 < NΔΔ′ < +∞.
Unless otherwise stated, it is assumed in this section that NΔΔ′ ≈ 1. The case

of equality holding is especially distinguished by using the notation Δ̂ := (NΔ)−1

for Δ′. The triple (X, ĵ, Δ̂) is a hyperapproximant to the measure space (R,Ω, dx)
in this case.

Put M := j−1(nst (∗R)) and ϕ := st ◦j|M : M → R. Then ϕ induces a mapping
j2 : L2(R) → L2(νMΔ ) ⊂ L #

2,Δ. Recall that if f ∈ L2(R) then j2(f) = F#, where
F ∈ S2(M) is a lifting of f ◦ϕ also called a lifting of f for brevity. Furthermore, if
f is bounded and almost everywhere continuous with |f |2 satisfying 6.4.11 (2) then
we may take as F the vector XΔ(f) ∈ C

X , with entries XΔ(f)k := ∗f(kΔ) for
k ∈ X (cf. 6.4.11).

The entities M ′, ϕ′, j′2, and XΔ′(f) (as well as M̂ , ϕ̂, ĵ2, and X
Δ̂

(f)) appear
likewise on substituting Δ′ (respectively, Δ̂) for Δ.

Finally, we let F : L2(R) → L2(R) stand for the Fourier transform on the
reals:

F (f)(y) :=

∞∫

−∞
f(x) exp(−2πixy) dx.

7.1.2. Theorem. If NΔΔ′ ≈ 1 then the discrete Fourier transform ΦΔ :
L2,Δ → L2,Δ′ is a hyperapproximant to F : L2(R) → L2(R).
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� Let M stand for the set of the characteristic functions of all intervals [0, a]
and [−a, 0], with a > 0. Then the linear span of M is dense in L2(R) and so we
may appeal to 6.5.1 (2).

Put f := χ[0,a] and let T be an infinite hypernatural satisfying

(T − 1)Δ ≤ a < TΔ.

In view of the definition of hyperapproximant, we are left with proving that

Δ′
L∑

k=−L

∣
∣
∣
∣Δ

T−1∑

n=0

exp(−2πink/N) −
a∫

0

exp(−2πixkΔ′) dx
∣
∣
∣
∣

2

≈ 0.

It suffices clearly to consider only the terms under the sign
∑L
k=1. Moreover, we

may replace
∫ a
0

with
∫ TΔ

0
since NΔΔ′ ≈ 1 by hypothesis. Therefore,

Δ′
L∑

k=−L

∣
∣
∣
∣

TΔ∫

a

exp(−2πixkΔ′) dx
∣
∣
∣
∣

2

≤ NΔ2Δ′ ≈ Δ ≈ 0.

Simple calculation shows that we are left with proving that

Δ′
L∑

k=−L
|Δ(1 − exp(−2πikT/N))(1 − exp(−2πik/N))−1

−(2πikΔ′)−1(1 − exp(−2πikTΔΔ′))|2 ≈ 0.

Replacing Δ′ with Δ̂ := (NΔ)−1, we obtain

Δ
N

L∑

k=1

|1 − exp(−2πikT/N)|2|(1 − exp(−2πik/N))−1 −N/(2πik)|2 ≈ 0.

The last formula is obviously valid. Indeed, 0 < 2πk/N < π for all k ∈ [1, L].
Hence, the function (1 − exp(−iϕ))−1 − (iϕ)−1 has a finite limit as ϕ → 0, and
so f is bounded on [0, π]. This implies that the validity of the formula we discuss
follows from the approximate equality

Δ′
L∑

k=1

|(2πikΔ′)−1(1 − exp(−2πikTΔΔ′))

−NΔ(2πik)−1(1 − exp(−2πikT/N))|2 ≈ 0,
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which in turn is a consequence of the following two formulas:

1
Δ′

L∑

k=1

k−2|(NΔΔ′ − 1)(1 − exp(2πikT/N))|2 ≈ 0

and
1

Δ′

L∑

k=1

k−2| exp(−2πikTΔΔ′) − exp(−2πikT/N)|2 ≈ 0.

We will prove the first of them, since the second is proved similarly.
Put α := NΔΔ′ − 1 ≈ 0 and a := TΔ ≈ a. Then the formula under test

amounts to the following

α2

Δ′

L∑

k=1

1
k2

sin2 πka

NΔ
≈ 0.

If α2MΔ′ ≈ 0 then the last formula holds since a is limited and sin2 x ≤ x2.
If α2MΔ′ �≈ 0 then we put S :=

[
1
αΔ′
]
. In this case SΔ′ is limited and α2SΔ′ ≈ 0.

Hence, S < M .
We now infer that

α2

Δ′

L∑

k=1

1
k2

sin2 πka

NΔ
=
α2

Δ′

S∑

k=1

1
k2

sin2 πka

NΔ
+
α2

Δ′

L∑

k=S+1

1
k2

sin2 πka

NΔ
.

The first term on the right side is infinitesimal because α2SΔ′ ≈ 0, and the second
term is infinitesimal too since

α2

Δ′

L∑

k=S+1

1
k2

≤ α2

Δ′
(S−1 −M−1)

while SΔ′ and MΔ′ are unlimited. �
7.1.3. We now consider two corollaries of Theorem 7.1.2.

(1) If NΔΔ′ ≈ 2πh, where h > 0 is a standard real then the discrete
Fourier transform ΦΔ : L2,Δ → L2,Δ′ is a hyperapproximant to the Fourier trans-
form Fh : L2(R) → L2(R) acting by the rule

Fh(f)(y) :=

∞∫

−∞
f(x) exp(−ixy/h) dx.

� This is immediate by passing from f ∈ L2(R) to the function ϕ defined as
ϕ(t) := f(2πht) and replacing Δ with Δ/2πh. �
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(2) Suppose that f and F (f) are bounded almost everywhere contin-
uous functions, with |f |2 and |F (f)|2 satisfying the condition

lim
Δ→0
A→∞

Δ
∑

|k|>A
Δ

∣
∣f(kΔ)

∣
∣ = 0.

Then

lim
n→∞Δ′n

n∑

k=−n

∣
∣
∣
∣

∞∫

−∞
f(x) exp(−2πixkΔ′n) dx

−Δn

n∑

m=−n
f(mΔn) exp(−2πikm/n)

∣
∣
∣
∣

2

= 0

for all sequences (Δn) and (Δ′n) such that Δn → 0, Δ′n → 0, and nΔnΔ′n → 1/2
as n → ∞.

� This is a standard version of Theorem 7.1.2 immediate from 6.5.10 (3) (also
see 6.5.11 (5)). �

(3) We now compare the results on hyperapproximation of the Fourier
transform with the results on hyperapproximation of Hilbert–Schmidt operators
(cf. 6.5).

The Fourier transform F is an integral operator with kernel kF (x, y) :=
exp(−2πixy) a bounded analytic function.

If we consider a Hilbert–Schmidt operator A whose kernel k ∈ L2(R2) is
a bounded almost everywhere continuous function with |k|2 satisfying the con-
dition of 6.5.5 (1) (i.e., k ∈ H̃2) then the operator Ak : L2,Δ → L2,Δ with matrix
(Δ∗k(αΔ, βΔ))Lα,β=−L is a hyperapproximant to A with kernel k.

The discrete Fourier transform ΦΔ, regarded as an operator from L2,Δ to
L2,Δ, becomes a hyperapproximant to F provided that NΔ2 = 1 (or NΔ2 ≈ 1);
cf. Theorem 7.1.2. In this event the matrix of ΦΔ takes the shape

Ak :=
(
ΔkF (αΔ, βΔ)

)L
α,β=−L.

The next proposition shows that if we refuse to maintain the above relations between
N and Δ then the matrix Ak may cease determining a hyperapproximant to F .

7.1.4. If NΔ2 = 2 then the operator B : L2,Δ → L2,Δ with matrix Ak is not
a hyperapproximant to the Fourier transform F .
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� Rewrite the matrix of B as

(
Δ exp(−4πinm/N)

)L
n,m=−L.

Put f := χ[
0;

√
3/2
] and show that

◦(‖B(XΔ(f)) −XΔ(F (f))‖Δ) > 0.

Choose an infinite hypernatural T so that (T − 1)Δ ≤ √
3/2 < TΔ. Easy calcula-

tions show that the claim will follow from the inequality

◦(
Δ3

L∑

m=L−T
|1 − exp(−4πimT/N)|2|(1 − exp(−4πim/N))−1 −N/(4πim)|2

)

> 0.

Since T/N ≈ 0, it is easy that the sum under the standard part operation is at
least

(

Δ3
L∑

m=L−T
sin2 2πmT

N

)(

sin2 2πm
N

)−1

.

Check now that the standard part of the last hyperreal is strictly positive.
To this end, note that sin2(2πm/N) decreases in m for L − T ≤ m ≤ L. Put
S := [2T/3]. Then there are some infinitesimals γ and δ such that πT−3π/4π−γ ≤
2πmT/N ≤ πT −π/2−δ for all M−T ≤ m ≤ M−S implying that sin2(2πmT/N)
increases in this interval. Therefore, all terms increase with the so-distinguished
indices. Further, the term with index m := L − T is at least DΔ−2 for some
standard real D > 0. It is now obvious that the whole sum is at least D(T − S)Δ
which is not infinitesimal. �

7.1.5. Theorem 7.1.2 will be now abstracted to some class of tempered distri-
butions. In this subsection we put N := 2L + 1 and let Δ satisfy the additional
condition 0 < ◦(NΔ2) < +∞. If 0 < ◦(NΔΔ′) < +∞ then this condition also
satisfies for N and Δ′.

We start with studying how to assign some element of ∗CX with a given dis-
tribution. To this end, consider the operator Dd : L2,Δ → L2,Δ with matrix
((2Δ)−1dnk)Ln,k=−L having the entries

dnk :=

⎧
⎪⎨

⎪⎩

1, if k = n� 1,
−1, if k = n −· 1,

0 otherwise,
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where the symbols � and −· stand for addition and subtraction in the additive
group of the ring ∗Z/N∗Z with the underlying set {−L, . . . , L}. In other words, if
G := DdF then G(k) = (F (k + 1) − F (k − 1))(2Δ)−1. Clearly, ‖Dd‖ ≈ +∞, and
so it is impossible to speak of D#

d . To proceed further, we prove a few auxiliary
propositions.

(1) If G(n) = Dn
d F then

G(n)(k) =
1

(2Δ)n

n∑

r=0

(−1)r
(
n

r

)

F (k � n −· 2r).

Furthermore, if |k| ≤ L − n, then symbols � and −· may be replaced with + and
−, respectively.

(2) If
Δ−2F (±(L− t)) ≈ 0

for all standard s and t then G(n)(±(L−m)) ≈ 0 for all standard n and m.
(3) If f ∈ S(R) then Δ−s∗f(±(L− t)Δ) ≈ 0 for all standard s and t.

� Since LΔ ≈ +∞ and t is standard; therefore, (L− t)Δ ≈ +∞. Considering
that f ∈ S(R), obtain [(L − t)Δ]−s ∗f(±(L − t)Δ) ≈ 0. Thus, 0 ≈ Δ−s[(L − t)
Δ2]s ∗f(±(L− t)Δ). We are done on using the condition 0 < ◦(NΔ2) < +∞. �

(4) If f belongs to the Schwartz space S(R) and n is a standard natural
then

‖Dn
dXΔ(f) −XΔ(f (n))‖2,Δ ≈ 0.

� By (2) and (3),

Δ
∑

|k|>L−n
|(Dn

dXΔ(f))(k) −XΔ(f (n))(k)|2 ≈ 0.

In view of (1) it suffices to show that

0 ≈ S = Δ
L−n∑

k=−L+n

∣
∣
∣
∣

1
(2Δ)n

n∑

r=0

(−1)r
(
n

r

)
∗f((k + n− 2r)Δ) − ∗f (n)(kΔ)

∣
∣
∣
∣

2

.

By the Taylor Theorem,

f(kΔ + (n− 2r)Δ) =
n∑

s=0

f (s)(kΔ)
s!

(n− 2r)sΔs

+
f (n+1)(ξr)

(n+ 1)!
(n− 2r)n+1Δn+1.
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Hence,

1
(2Δ)n

n∑

r=0

(−1)r
(
n

r

)

f((k + n− 2r)Δ)

=
1

(2Δ)n

n∑

s=0

f (s)(kΔ)
s!

Δs
n∑

r=0

(−1)r
(
n

r

)

(n− 2r)s

+
Δ
2n

n∑

r=0

f (n+1)(ξr)
(n+ 1)!

(n− 2r)n+1.

Using the easy formula

n∑

r=0

(−1)rrs
(
n

r

)

=
{

0, if s < n,

(−1)nn!, if s = n,

infer that the first term on the right side of the penultimate formula is equal to
f (n)(kΔ). Since f (n+1) is bounded on R, the modulus of the second term on the
right side is bounded above by BΔ with B a standard real. Consequently, S ≤
Δ · 2(L− n)B2Δ2 and we are done on appealing to (1). �

7.1.6. We now define the sequence (L (n))n∈N of external subspaces of L2,Δ

as follows:

L (0) :=
{

F ∈ L2,Δ : (∀ sta)(∃ stC)
(

Δ
[a/Δ]∑

k=−[a/Δ]

|F (k)|2 < C

)}

;

L (n+1) := Dd(L (n));

L (σ) :=
∞⊕

n=0

L (n).

Assume that F ∈ ∗CX is such that

◦(
Δ

L∑

k=−L
F (k)∗f(kΔ)

)

= ◦(F,XΔ(f)) < +∞

for every standard f ∈ C∞0 (R).
The formula

ψΔ
F (f) := ◦(F,XΔ(f))Δ

defines a (possibly discontinuous) linear functional ψΔ
F : C∞0 (R) → C.
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Theorem. The following hold:
(1) ψΔ

F ∈ (C∞0 (R))′ for all F ∈ L (σ);
(2) If f ∈ (C∞0 (R))′ and f = ϕ(k) for some regular distribution ϕ

(k ≥ 0) then there is some F in L (σ) satisfying ψΔ
F = f ;

(3) ψΔ
DdF

= (ψΔ
F )′ for all F ∈ L (σ).

� Given A ≤ L, put (F,G)AΔ := Δ
∑A
k=−A F (k)G(k). Suppose that f, fn ∈

C∞0 (R) and fn → f in C∞0 (R) as n → ∞. Then there is a standard real a > 0 such
that the supports supp(fn) and supp(f) lie in [−a, a] and (fn) converges uniformly
to f . Since the supports of fn and f are compact; therefore, ‖fn‖L2 and ‖f‖L2 are
limited and ‖f − fn‖L2 → 0 as n → ∞.

Put A := [a/2]. Then

‖f‖L2 = ◦‖XΔ(f)‖A2,Δ, ‖fn‖L2 = ◦‖XΔ(fn)‖A2,Δ,
◦‖XΔ(f − fn)‖A2,Δ −→

n→∞ 0.

Now, if F ∈ L (0), then

|ψΔ
F (f)| = |◦(F,XΔ(f))Δ| = |◦(F,XΔ(f))AΔ| ≤ ◦‖F‖A2,Δ◦‖XΔ(f)‖A2,Δ.

From the definition of L (0) it follows that ◦‖F‖A2,Δ is limited as well ◦‖XΔ(f)‖A2,Δ
(we have seen this earlier). Hence, ψΔ

F (f) is limited for all f ∈ C∞0 (R). By analogy,
ψΔ
F (fn − f) → 0 as n → ∞, and so ψΔ

F ∈ (C∞0 (R))′.
Note further that (Dn

d F,XΔ(f)) = (−1)n(F,Dn
dXΔ(f)). From 7.1.5 (4) it

follows that Dn
dXΔ(f) = XΔ(f (n)) + T , where ‖T‖2,Δ ≈ 0. Moreover, since

supp f (n) ⊂ [−a, a]; therefore, XΔ(f (n))(k) = 0 for |k| > A.
As follows from 7.1.5 (1), Dn

dXΔ(f)(k) = 0 for |k| > A+n. Since n is standard,
infer that T (k) = 0 for |k| > [b/Δ] and each standard b > a. Thus, if B = [b/Δ]
then (F, T )Δ = (F, T )BΔ ≈ 0, because ‖F‖B2,Δ is limited and ‖T‖B2,Δ = ‖T‖2,Δ ≈ 0.

Hence, (Dn
d F,XΔ(f)) ≈ (−1)n(F,XΔ(f (n))), implying that ψΔ

Dn
d
F (f) = ψ

Δ(n)
F (f).

This yields (1) and (3).
To prove (2) it suffices to observe that there is no loss of generality in assuming

ϕ continuous, implying that XΔ(ϕ) ∈ L (0). �
7.1.7. Put C(0) := ltd(L2,Δ); C(n+1) := DdC

(n), and

C(σ) :=
∞⊕

n=0

C(n).

Obviously, C(0) ⊂ L (0), and so C(n) ⊂ L (n) for all n. Therefore, C(σ) ⊂ L (σ).
The next two propositions may be proven along the lines of the proof of the above
theorem.
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(1) If F ∈ C(σ) then ψΔ
F is a tempered distribution.

(2) If f = ϕ(k) and ϕ ∈ L2(R) then there is an element F in C(σ)

satisfying f = ψΔ
F .

Supposing that Δ′ enjoys the condition NΔΔ′ ≈ 1, we again consider the
discrete Fourier transform ΦΔ : L2,Δ → L2,Δ′ . Since ΦΔ has a limited norm;
therefore, ΦΔ(C(0)) = ltd(L2,Δ′) = Ĉ(0) and Φ−1

Δ (Ĉ(0)) = C(0).
Put Md := ΦΔDdΦ−1

Δ : L2,Δ′ → L2,Δ′ and define the sequence (Ĉ(n))n∈N of
external subspaces of L2,Δ′ by letting Ĉ(n+1) := Md

(
Ĉ(n)

)
. It is now obvious that

ΦΔ(C(n)) = Ĉ(n) and Ĉ(σ) =
⊕∞

n=0 Ĉ(n) = ΦΔC(σ). Straightforward calculation
shows that the operator Md may be given by the matrix

(
i

Δ
sin

2πβ
N

δαβ

)L

α,β=−L
.

Given G ∈ C
X and f ∈ C∞0 (R), we define ψΔ′

G (f) as in 7.1.6 on replacing Δ
with Δ′ and F with G.

7.1.8. If f ∈ S(R) then

◦‖M n
d (XΔ′(f)) −XΔ′(M n(f))‖ = 0.

� Considering the formulas of 7.1.7 for the matrix of Md, we are left with
demonstrating only that

Δ′
L∑

β=−L

∣
∣
∣
∣

(
1
Δ

sin
2πβ
N

)n
f(βΔ′) − (2πβΔ′)nf(βΔ′)

∣
∣
∣
∣

2

≈ 0.

Show first that if T < L but TΔ′ ≈ +∞ then

W := Δ′
∑

|β|>T
|f(βΔ′)|2 1

Δ2n

∣
∣
∣
∣

(

sin
2πβ
N

)n
− (2πβΔΔ′)n

∣
∣
∣
∣

2

≈ 0.

Indeed, since NΔΔ′ ≈ 1, there is some standard C satisfying

∣
∣
∣
∣

(

sin
2πβ
N

)n
− (2πβΔΔ′)n

∣
∣
∣
∣

2

=
∣
∣
∣
∣
β

N

∣
∣
∣
∣

2n∣∣
∣
∣

(
β

N

)−n(
sin

2πβ
N

)n
− (2πNΔΔ′)n

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣
β

N

∣
∣
∣
∣

2n

.
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This enables us to estimate W as follows:

W ≤ C1Δ′
∑

|β|>T
|f(βΔ′)|2|βΔ′|2n.

Put ϕ(x) := x2nf(x). Since f(x) ∈ S(R); therefore, ϕ(x) ∈ L2(R). Moreover, ϕ is
a bounded continuous function satisfying the equality under proof. Consequently,
the internal function G : X → C, given by G(β) := ∗f(βΔ′)(βΔ′)n, is a lifting of
ϕ, and G ∈ S2(M). This implies that the right side of the above upper estimate
for W is in fact an infinitesimal, yielding W ≈ 0.

By 4.6.11 there is some a ≈ +∞ such that NΔ′
a≈ +∞ and NΔΔ′ − 1

a≈ 0.
Put T := [a/Δ′]. Then T satisfies the preceding conditions, and so to complete the
proof it suffices in view of the boundedness of f to show that

W1 := Δ′
T∑

β=1

∣
∣
∣
∣

(
1
Δ

sin
2πβ
N

)n
− (2πβΔ′)n

∣
∣
∣
∣

2

≈ 0.

If 1 ≤ β ≤ T then 0 < β/N < a/(NΔ′)
a≈ 0, implying that is

(

sin
2πβ
N

)(
2πβ
N

)−1

= 1 − αβ ,

where αβ
a≈ 0. Hence, Δ−n

(
sin 2πβ

N

)n = (1 − αβ)(2πβΔ′)n(NΔΔ′)−n. By the

choice of a there is some δ
a≈ 0 satisfying (NΔΔ′)−n = 1 + δ. Finally,

Δ−n
(

sin
2πβ
N

)n
= (1 + γβ)(2πβΔ′)n,

where γβ
a≈ 0. If γ = max{|γβ| : 1 ≤ β ≤ T} then γ

a≈ 0, yielding

W1 ≤ Δ′γ2
T∑

β=1

(2πβΔ′)2n ≤ Δ′γ2(2π)n(TΔ′)2n ≤ (2π)nγ2a2nΔ′ ≈ 0,

which completes the proof. �
7.1.9. Theorem. The following hold:

(1) ψΔ′
G ∈ (S(R))′ for all G ∈ Ĉ(σ);

(2) F (ψΔ
F ) = ψΔ′

ΦΔ(F ) for all F ∈ C(σ).
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� (1): This is proved in much the same way as the theorem of 7.1.6.
(2): Denote the differentiation operator in S(R) by D and let M := FDF−1.

Then M (f)(x) := 2πixf(x). It obviously suffices to check (2) for F := Dn
dG,

where G ∈ C(σ). In this event, everything results however from the next chain of
equalities:

ψΔ′
ΦΔ(F )(f) = ◦(ΦΔ(Dn

dG), XΔ′(f)) = ◦(Dn
dG,Φ

−1
Δ (XΔ′(f)))

= (−1)n◦(G,Dn
d Φ−1

Δ XΔ′(f))
= (−1)n◦(G,Φ−1

Δ MdXΔ′(f))
= (−1)n◦(G,Φ−1

Δ XΔ′(M n(f)))
= (−1)n◦(G,XΔ′(F−1M n(f)))
= (−1)n◦(G,XΔ(DnF−1(f)))
= (−1)n◦(G,Dn

dXΔ(F−1(f)))
= ◦(Dn

dG,XΔ(F−1(f))) = ◦(F,XΔ(F−1(f)))
= ψΔ

F (F−1(f))(FψΔ
F )(f).

The proof is complete. �
7.1.10. Comments.

(1) The condition NΔΔ′ ≈ 1 of Theorem 7.1.2 arises also in the cele-
brated Kotel′nikov Theorem asserting that if the spectrum of a bounded function f
belongs to the interval [−a, a] then f is completely determined from its values on
the set {nλ : −∞ < n < +∞}, with λ ≤ (2a)−1, by the formula

f(t) =
∞∑

k=−∞
f(kλ)

sin 2πa(t− kλ)
2πa(t− kλ)

.

In our case, the values of f are calculated at the points kΔ, with Δ ≈ 1/(NΔ′),
and it is easy to see that NΔ′ is exactly the length of the interval where we con-
sider F (f).

(2) The condition NΔΔ′ ≈ 2πh of 7.1.3 (1) is closely tied with the
uncertainty principle of quantum mechanics.

Consider the one-parameter groups of unitary operators U(u) := exp(−iuP )
and V (v) := exp(−ivQ), where Q and P are the coordinate and momentum opera-
tors; i.e., Q is the multiplication by the independent variable, and P := h

i
d
dx

, where
h > 0 is a distinguished standard real, the Planck constant. We recall in this event
that U(u)ϕ(x) = ϕ(x − uh), V (v)ϕ(x) = exp(−ivx)ϕ(x) and the commutation
relations

U(u)V (v) = exp(ihuv)V (v)U(u)
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hold which may be regarded as one of the form of the uncertainty principle.
Define the hyperfinite-rank operators Ud, Vd : C

X → C
X with (UdF )(k) :=

F (k −· 1) and Vd the diagonal matrix

(exp(−2πink/N)δnk)Ln,k=−L.

It is easy to check that the operators Urd and V md satisfy the following commutation
relations:

UrdV
m
d = exp(2πirm/N)Vmd Urd (r,m ∈ ∗Z/N∗Z).

If exp(2πirm/N) ≈ exp(πihuv) then the last relation transforms into the above
commutation relation for U and V . However, for the condition exp(2πirm/N) ≈
exp(πihuv) to hold we need relate the quantities r, m, u, and v; the details are
collected in the following proposition.

(3) If r,m ∈ ∗Z/N∗Z are such that rΔ ≈ uh and 2πmΔ̂ ≈ v, with u
and v standard reals; then U rd and V

m
d : L2,Δ → L2,Δ are hyperapproximants to

U(u) and V (v), respectively.
� As M in 6.5.1 (2) we take the set of the characteristic functions of the closed

intervals. By definition it is clear that U(u)(χ[a,b]) = χ[a+uh,b+uh]. Note that if kΔ
and mΔ are nearstandard then |k|, |m|, and |k − m| are all less than L. Hence,
k −· m = k −m and Urd (F )(k) = F (k − r). If f = χ[a,b] then

XΔ(f)(n) =
{

0, if nΔ /∈ ∗[a, b],
1, if nΔ ∈ ∗[a, b],

implying that

Urd (XΔ(f))(n) =
{

0, if nΔ /∈ ∗[a+ rΔ, b+ rΔ],
1, if nΔ ∈ ∗[a+ rΔ, b+ rΔ].

Similarly,

XΔ(U(u)(f))(n) =
{

0, if nΔ /∈ ∗[a+ uh, b+ uh],
1, if nΔ ∈ ∗[a+ uh, b+ uh].

It is now obvious that

Δ
L∑

k=−L
|Urd (XΔ(f))(n) −XΔ(U(u)(f))(n)|2 = 2Δ

[|(uh− rΔ)/Δ|] ≈ 0,

since uh ≈ rΔ.
Clearly, V (v) = F−1

h U−1(v)Fh (cf. 7.1.3 (1)) and Vd = Φ−1
Δ U−1

d ΦΔ. Put
Δ1 := 2πpΔ̂ and regard U−1

d as an operator from L2,Δ1 to L2,Δ1 . By hypothe-
ses, mΔ1 ≈ vh and, as was proven, U−md is a hyperapproximant to U−1(v). By
7.1.3 (1), the operator ΦΔ : L2,Δ → L2,Δ1 is a hyperapproximant to Fh; i.e.,
V md := Φ−1

Δ U−md ΦΔ is a hyperapproximant to F−1
h U−1(v)Fh = V (v). �
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(4) Theorem 7.1.9 suggests an approach to approximating the Fourier
transform of tempered distributions by the discrete Fourier transform. Unfortu-
nately, this approach is successful only the primitives of the functions in L2(R).
Fortunately, this class may be enriched as shown by the following example.

Assume that ϕ = 1. Hence, ϕ is a regular distribution and by 7.1.8, ϕ = ψΔ
F ,

where F := XΔ(f), i.e., F (k) = 1 for all k ∈ X . Since F (1) = δ; therefore,
ΦΔ(F )(k) = NΔδk0. Consequently, if G := ΦΔ(F ) then ψΔ′

G (f) = ◦(G,XΔ(f))Δ′

= ◦(NΔΔ′∗f(0)) = f(0) = δ(f), implying that F (ψF ) = ψΔ′
ΦΔ(F ).

7.2. A Nonstandard Hull of a Hyperfinite Group

In this section we study a construction that assign to a hyperfinite group some
locally compact group.

7.2.1. We consider the additive group G of the ring ∗Z/N∗Z with the under-
lying set {−L, . . . , L}; cf. 7.1.1. Clearly, G is an internal hyperfinite abelian group.
Distinguish the two natural external subgroups G0 := {k ∈ G : kΔ ≈ 0} and
Gf := {k ∈ G : ◦|kΔ| < +∞} of G. It is easy to see that G0 is the intersection
of a countable family of internal sets and Gf , the union of a countable family of
internal sets:

G0 =
⋂

n∈N

j−1(∗(−n−1, n−1)), Gf =
⋃

n∈N

j−1(∗[−n, n]).

Further, the mapping st : Gf → R is an epimorphism, and ker(st) = G0, i.e., is
R � Gf/G0.

Suppose that A is an internal set coincident with j−1(∗(a, b)) for some a, b ∈ R.
In this event st(A) = [a, b]. We now define the external set A◦ := {c ∈ A : c+G0 ⊂
A}. It is easy to check that st(A◦) = (a, b). A similar definition of A◦ applies to an
arbitrary internal set A. In this event it is an easy matter to that st(A) is closed
and st(A◦) is open. Thus,

{st(A◦) : A is an internal subset of Gf}
is a base for the topology of R. We also see that ◦(Δ|j−1(∗[a, b])|) = b − a. This
implies straightforwardly that (Gf , S

Gf

Δ , ν
Gf

Δ ) is a σ-finite subspace of the Loeb
measure space (G, SΔ, νΔ) (cf. 6.3.11).

In this case ν
Gf

Δ is an invariant measure on Gf . Moreover, the preceding
equality shows that st : Gf → R is measure-preserving provided that we view
Lebesgue measure as the Haar measure on R.

Let Ĝ stand for the character group of G. Then the internal mapping n �→ χn,
with χn(m) := exp(2πimn/N) for n,m ∈ G, is an isomorphism from G to Ĝ. This
claim follows by transfer since it holds for every standard N .
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In order for a character χn : G → ∗
C to induce a character κ : R → C by

composition with the homomorphism st it is necessary and sufficient that χn|G0 ≈ 1.
With this in mind, we naturally distinguish the external subgroup Hf := {χ ∈ Ĝ :
χ|G0 ≈ 1} of Ĝ and define the monomorphism ŝt : Hf → R̂ by the rule ŝt(χ)(n) :=
◦χ(◦(nΔ)) for n ∈ N and χ ∈ Ĝ. Thereby, ker(ŝt) = H0 := {χ ∈ Hf : χ|Gf

≈ 1}
and so Hf/H0 ⊂ R̂.

(1) If n ∈ G then

χn ∈ Hf ↔ ◦(|nΔ̂|) < +∞;

χn ∈ H0 ↔ nΔ̂ ≈ 0,

with Δ̂ := (NΔ)−1.

� Indeed, if nΔ̂ is a limited hyperreal then χn(m) = exp(2πimn/N) =
exp(2πimΔnΔ̂) ≈ 1, because mΔ ≈ 0.

Conversely, suppose that nΔ̂ is unlimited. Put m := [N/(2π)]. Clearly,
mΔ̂ ≈ 0. In this case χn(m) = exp 2π

(
N
2π

)
Δ n
NΔ

≈ −1, because 0 ≤ α < 1, which
is a contradiction. The proof of the other equivalence proceeds by analogy. �

Thus, the groups Ĝf and Ĝ0 are constructed just like the groups Gf and G0,
and so Ĝf/Ĝ0

∼= R̂ ∼= R.
The Fourier transform F : L2(G) → L2(Ĝ) for an arbitrary locally compact

abelian group G is defined as F (f)(χ) := (f, χ̂). Therefore, Theorem 7.1.2 clearly
admits a group-theoretic interpretation. We so proceed to the general situation.

Let G be an internal hyperfinite abelian group, and let G0 and Gf be subgroups
of G such that G0 ⊂ Gf and the following hold:

(A) There is a sequence (An)n∈N of internal sets such that An ⊂ Gf for
all n ∈ N and G0 =

⋂{An : n ∈ N};
(B) There is a sequence (Bn)n∈N of internal sets such that Bn ⊃ G0 for

all n ∈ N and Gf =
⋃{Bn : n ∈ N}.

Observe that these subgroups G0 and Gf may be internal as well as external.

(2) If G0 and Gf are subgroups of G, with G0 ⊂ Gf , satisfying (A) and (B)
then there is a countable sequence (Cn)n∈Z of symmetric internal subsets of G such
that:

(a)
⋂
n∈Z

Cn = G0;
(b)

⋃
n∈Z

Cn = Gf ;
(c) Cn + Cn ⊂ Cn+1 (n ∈ Z).

Further, if F is an internal subset of G then
(d) F ⊂ Gf ↔ (∃n ∈ Z)(F ⊂ Cn);
(e) F ⊇ G0 ↔ (∃n ∈ Z)(F ⊇ Cn).
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� These auxiliary facts are easy by saturation. �
In the sequel we will work with some sequence (Cn)n∈Z satisfying the conditions

of (2). If F ⊂ Gf , then we put
◦
F := {g ∈ Gf : g + G0 ⊂ F}. The following is

immediate from (2).

(3) If F is an internal subset of Gf then (∀g ∈ G)(g ∈
◦
F ↔ (∃m ∈ Z)

(g + Cm ⊂ F )).

We denote the family of all internal subsets ofGf by In(Gf ) and put In0(Gf ) :=
{F ∈ In(Gf ) : G0 ⊂ F}. Put G# := Gf/G0 and let j : Gf → G# denote the
quotient homomorphism. If g ∈ Gf and A ⊂ Gf then instead of j(g) and j(A) we
will write g# and A#, respectively.

7.2.2. Theorem. The following hold:

(1) The family U := {
◦
F# : F ∈ In(Gf )} is a neighborhood base of zero

for some uniform topology compatible with the group structure
on G#. This topology is called canonical below;

(2) If F ∈ In(Gf ) then F# is closed;
(3) The topological group G# is complete.

� (1): From the general theory of topological groups (see, for instance, [402])
it follows that some system U of subsets of an abelian group is a neighborhood base
of zero whenever the following hold:

(a)
⋂{U : U ∈ U} = {e};

(b) (∀U, V ∈ U))(∃W ∈ U)(W ⊂ U ∩ V );

(c) (∀U ∈ U)(∃V ∈ U)(V − V ⊂ U);

(d) (∀U ∈ U)(∀ξ ∈ U)(∃V ∈ U)(V + ξ ⊂ U).
We now check this in our environment.
(a): If g# ∈ ⋂{

◦
F# : F ∈ In0(Gf )} then

(
(g+G0)∩

◦
F �= ∅

)
for all F ∈ In0(Gf )

as follows from the fact that j−1(g#) = g+G0 and j−1(
◦
F#) =

◦
F +G0 =

◦
F (see the

definition of
◦
F ). Consequently, there is some g1 ∈ G0 satisfying (g+ g1 +G0 ⊂ F ),

and so g ∈ F . Thus, g ∈ ⋂ In0(Gf ) = G0.

(b): This ensues from the inclusion (F1 ∩ F2)◦# ⊂
◦
F#

1 ∩
◦
F#

2 , which is checked
as above.

(c): If F ∈ In0(Gf ) then there is some n ∈ Z satisfying Cn + Cn + Cn ⊂ F

by 7.2.1 (2). Therefore, Cn+Cn+G0 ⊂ F , and hence
◦
Cn+

◦
Cn ⊂

◦
F . Consequently,

(
◦
Cn +

◦
Cn)# =

◦
C#
n +

◦
C#
n ⊂

◦
F#. Since Cn is symmetric; therefore,

◦
C#
n = −

◦
C#
n .

(d): This is checked by analogy.
(2): Let F ∈ In(Gf ). We will show that F# is closed.
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If g# /∈ F# then (g + G0) ∩ F = ∅, and so (g + Cn) ∩ F = ∅ for some n ∈ Z

(by ω+-saturation). Thus, (g + Cn−1 + G0) ∩ F = ∅ by 7.2.1 (2), implying that

(g# +C#
n−1) ∩F# = ∅. Hence, (g# +

◦
C#
n−1) ∩F# = ∅ because

◦
Cn−1 ⊂ Cn−1. This

proves that F# is closed since
◦
C#
n−1 ∈ U.

(3): It follows from 7.2.1 (2), that the canonical topology on G# satisfies the
first axiom of countability. It suffices so to show that every Cauchy sequence in G#

converges.
Let (g#

n )n∈N be a Cauchy sequence in G#. By definition, to each m ∈ Z there

is ν(m) ∈ N such that g#
n1

− g#
n2

∈
◦
C#
m for all n1, n2 > ν(m).

Consider the countable family

Γ := {Am,n : n > ν(m), n,m ∈ N},

where
Am,n = {g : gn − g ∈ Cm+1},

and show that Γ has the finite intersection property. To this end, take

S := {Am1,n1 , . . . , Amk,nk
}

and choose n > max{ν(m1), . . . , ν(mk)}. Then g#
nı

− g#
n ∈

◦
C#
mı

. Therefore, gnı
−

gn + g ∈
◦
Cmı

for some g ∈ G0.
Thus, gnı

−gn+g+G0 ⊂ Cmı
. Since g+G0 = G0, it follows that gnı

−gn ∈ Cmı

(ı := 1, . . . , k), and so gn ∈ ⋂S. By ω+-saturation,
⋂

Γ is nonempty and there is

some g ∈ ⋂Γ. Considering that Cm+1 ⊂
◦
Cm+2 which is immediately from 7.2.1 (2),

conclude that g#
n → g# as n → ∞. �

Recall that an internal finite set A is standardly finite whenever the size |A| of
A is a standard natural; cf. 3.7.7. We also let (∗) stand for the condition holds

(∀F1, F2 ∈ In0(Gf )
)(
F1 ⊂ F2 → (∃B ⊂ F2)(|B| ∈ N ∧ F1 +B ⊇ F2)

)
.

7.2.3. Theorem. The following hold:
(1) The canonical topology on G# is locally compact and separable if

and only if (∗) is valid;
(2) On assuming (∗), G# is compact (discrete) if and only if Gf (re-

spectively G0) is an internal subgroup of G.

� (1): Assuming (∗), show that G# is locally compact. It suffices to prove that
F# is compact for every F ∈ In0(Gf ). The closure of F# was shown in 7.2.2. Prove
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that to each neighborhood U of zero in G# there is a finite set {v1, . . . , vk} ⊂ F#

satisfying
⋃k
ı=1(vı + U) ⊃ F#.

By 7.2.1 (2) we may choose n ∈ Z so that Cn ⊂ F and
◦
C#
n ⊂ U . Then

Cn−1 ⊂
◦
Cn, since Cn−1 + Cn−1 ⊂ Cn and G0 ⊂ Cn−1. The condition (∗) implies

that there is a finite set B ⊂ F satisfying Cn−1 + B ⊃ F . Then
◦
Cn + B ⊃ F and

◦
C#
n+B# ⊃ F#. Of course, B# is finite since B is standardly finite. The separability

of G# follows from its metrizability and the fact that G# =
⋃{C#

n : n ∈ Z}, with
each C#

n compact.
Suppose conversely that G# is locally compact and separable. It is easy to see

that there is some n0 ∈ Z such that C#
n is compact for all n ≤ n0. Show that F# is

compact for every F ∈ In(Gf ). Put V :=
◦
C#
n0−1. Then

⋃{g# + V : g ∈ Gf} = G#.
By separability, there is a sequence {gn} satisfying G# =

⋃
n(g#

n + V ), and so

Gf =
⋃

n

(gn +
◦
Cn0−1 +G0) ⊂

⋃

n

(gn + Cn0) ⊂ Gf .

Consequently, F ⊂ ⋃
n(gn + Cn0) and, by ω1-saturation, there is a finite set

{n1, . . . , nk} satisfying F ⊂ ⋃k
ı=1 gnı

+ Cn0 . Thus, F# ⊂ ⋃k
ı=1 gnı

+ Cn0 , which
also implies that F# is compact. Suppose now that G0 ⊂ F1 ⊂ F2 and let n ≤ n0

be such that Cn ⊂ F1. There are g1, . . . , gk such that g#
1 , . . . , g

#
k ∈ F#

2 and
⋃k
ı=1 gı +

◦
Cn−1 ⊃ F2. If h1, . . . , hk ∈ F2 and hı − gı ∈ G0 then hı +G0 = gı +G0.

Hence,

F2 +G0 ⊂
k⋃

ı=1

(gı +
◦
Cn−1 +G0) ⊂

k⋃

ı=1

(hı + Cn) ⊂ {h1, . . . , hk} + F1.

Putting B := {h1, . . . , hk}, we arrive at (∗).
(2): Suppose now that G# is compact. Given F ∈ In0(Gf ), find g1, . . . , gk ∈ Gf

satisfying

G# =
k⋃

ı=1

(g#
ı +

◦
F#) =

( k⋃

ı=1

(gı +
◦
F )
)#

=
( k⋃

ı=1

(F + gı)
)#

(
◦
F ⊂ F ⊂ Gf ).

Obviously, K :=
⋃k
ı=1(F + gı) ⊂ Gf is internal and K# = G#. Hence, Gf =

K +G0 ⊂ K + F ⊂ Gf . Thus, Gf = K + F is an internal set too.
Suppose conversely that Gf is an internal subgroup of G. Show that G# is

compact on assuming (∗), of course. It suffices to demonstrate that

(∀n ∈ Z)(∃B ⊂ Gf )
(

|B| ∈ N ∧ G# =
⋃

g∈B
(g# +

◦
C#
n)
)

.
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By 7.2.1 (2), Cn−1 ⊂
◦
Cn and by (∗) there is a standardly finite B such that

Gf = B + Cn−1 = B +
◦
Cn =

⋃

g∈B
g +

◦
Cn.

Now G# =
⋃
g∈B(g# +

◦
C#
n). We are done on omitting the simple proof of the last

claim of (2). �
It is worth noting that, in the context of Theorem 7.2.3, F# is compact for all

F ∈ In(Gf ).

7.2.4. We now list a few auxiliary facts about the entities under study which
we will use in the sequel.

(1) If F ⊂ Gf then g +
◦
F = (g + F )◦, j−1(j(

◦
F )) =

◦
F , (g +

◦
F )# =

g# +
◦
F#, and

◦
F# = c(Gf −F )#, where c(A) stands for the complement of a set A.

(2) If F ∈ In(Gf ) then
◦
F# is open and {

◦
F# : F ∈ In(Gf )} is a base

for the canonical topology of G#.

It is worth noting that we will proceed in the context of Theorem 7.2.3 by
implication.

(3) If F1, F2 ∈ In0(Gf ) then 0 < ◦(|F1|/|F2|) < +∞.
� By Theorem 7.2.3 there is a standardly finite B (i.e., |B| ∈ N) such that

F1 +B ⊃ F1 ∪F2 ⊃ F2. Then |F2| ≤ |F1 +B| ≤ |F1||B|, and so ◦(|F2|/|F1|) < +∞.
Similarly, ◦(|F1|/|F2|) < +∞, which completes the proof. �

(4) A hyperreal Δ ∈ ∗R+ is a normalizing factor for a triple (G,G0, Gf )
provided that 0 < ◦(Δ|F |) < +∞ for all F ∈ In0(Gf ).

It is immediately from (3) that if F ∈ In0(Gf ) then Δ := |F |−1 ∈ ∗
R+ is

a normalizing factor. Consequently, there is a normalizing factor for each triple
(G,G0, Gf ) satisfying the conditions of Theorem 7.2.3. It is also clear that, in case
Δ is a normalizing factor, for Δ′ to be a normalizing factor it is necessary and
sufficient that 0 < ◦( Δ

Δ′
)
< +∞. Moreover, (3) shows that if Δ is a normalizing

factor for (G,G0, Gf ) then (Gf , S
Gf

Δ , ν
Gf

Δ ) is a σ-finite subspace of the Loeb measure
space (G, SΔ, νΔ).

For the sake of simplicity, we agree to write S instead of SGf

Δ and νΔ instead
of νGf

Δ .
(5) If A ∈ S and g ∈ Gf then g +A ∈ S and νΔ(g + A) = νΔ(A).

� Obvious. �
(6) Let B stand for the Borel σ-algebra of G#. Then j−1(B) ∈ S for

all B ∈ B.
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� By (1) it suffices to show that j−1((Gf −F )#) ∈ S for F ∈ In(Gf ). We thus
complete the proof by the chain of equalities

j−1((Gf − F )#) = Gf − F +G0 =
⋃

n∈Z

(Cn − F ) +
⋂

m∈Z

Cm,

⋃

n∈Z

(Cn − F ) +
⋂

m∈Z

Cm =
⋃

n∈Z

(Cn − F +
⋂

m∈Z

Cm),

Cn − F +
⋂

m∈Z

Cm =
⋂

m∈Z

(Cn − F + Cm).

Observe that this final equality rests on ω+-saturation. �
We now define the measure μΔ on B by putting

μΔ(B) := νΔ(j−1(B)).

From (5) it is immediate that μΔ is an invariant measure, while μΔ is regular
because G# is separable. Thus, μΔ is a Haar measure on G#. We denote by L the
completion of the σ-algebra B with respect to μΔ. The extension of μΔ to L is
again denoted by μΔ.

7.2.5. Theorem. The following hold:
(1) A subset A of G# belongs to L if and only if j−1(A) ∈ S.

(2) μΔ(B) = νΔ(j−1(B)) for all B ∈ L.

� The fact that j−1(A) ∈ S (A ∈ L) and μΔ(A) = νΔ(j−1(A)) hold follows
immediately from the completeness of the Loeb measure νΔ.

It obviously suffices to prove the converse for A ⊂ G# such that j−1(A) ⊂ F ∈
In0(Gf ). To show that A ∈ L and μΔ(A) = νΔ(j−1(A)) holds, it suffices to check
that μin(A) = μout(A) = νΔ(j−1(A)), where μin(A) and μout(A) are the inner and
outer Haar measures of A.

Since νΔ(F ) is limited and, hence, so is νΔ(j−1(A)); to each standard ε > 0
there is an internal set D ⊂ j−1(A) satisfying νΔ(D) ≥ νΔ(j−1(A)) − ε. Since
D# ⊂ A and D# is closed; therefore, μin(A) ≥ νΔ(j−1(A)).

Suppose now that H ∈ In0(Gf ) is such that A ⊂
◦
H# (for example, we may

take F + F as H) and put B :=
◦
H# − A. Then j−1(B) =

◦
H − j−1(A) and

νΔ(j−1(A)) + νΔ(j−1(B)) = νΔ(
◦
H) = μΔ(

◦
H#), since j−1(

◦
H#) =

◦
H by 7.2.4 (1).

This implies that μin(A) + μin(B) ≥ μΔ(
◦
H#). On the other hand, it follows from
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the regularity of μΔ that

μΔ(
◦
H#) = sup{μΔ(E) : E ⊂

◦
H#, E is closed}

≥ sup{μΔ(C) + μΔ(D) : C ⊂ A, D ⊂ B, C and D are closed}
= sup{μΔ(C) : C ⊂ A, C is closed}
+ sup{μΔ(D) : D ⊂ B, D is closed}
=μin(A) + μin(B).

Thus, μin(A) + μin(B) = μΔ(
◦
H#). Now, if ε > 0 then there is a closed subset C

of B satisfying μΔ(C) ≥ μin(B) −ε. Since A lies in the open set
◦
H# −C; therefore,

μout(A) ≤ μΔ(
◦
H# − C) = μΔ(

◦
H#) − μΔ(C)

≤ μΔ(
◦
H#) − μin(B) + ε = μin(A) + ε.

Thus, μout(A) = μin(A), implying easily that μΔ(A) = νΔ(j−1(A)). �

7.2.6. Theorem 7.2.5 shows that j : Gf → G# is a measure-preserving map-
ping. If f : G# → R is a μΔ-measurable function then f ◦ j : Gf → R is a νΔ-
measurable function. A lifting ϕ of the latter is called a lifting of f . Thus, an
internal function ϕ : G → ∗

R is a lifting of f whenever f(g#) = ◦ϕ(g) for νΔ-
almost all g ∈ Gf .

If ϕ ∈ Sp(Gf ) then ϕ is an Sp-integrable lifting of f . A somewhat more precise
expression “ϕ is an Sp,Δ-lifting of f” is also in common parlance.

A function f belongs to Lp(μΔ), with p ∈ [1,∞], if and only if f has an
Sp,Δ-integrable lifting ϕ : G → ∗

R.

Furthermore,
∫

G#

f dμΔ =
◦(

Δ
∑

g∈G
ϕ(g)

)

and
∫

G#

|f |p dμΔ =
◦(

Δ
∑

g∈G
|ϕ(g)|p

)

for all p ∈ [1,∞]
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7.2.7. Let G∧ := Ĝ be the internal character group of G. Since G is hyperfinite;
by transfer we infer that G∧ is isomorphic to G and so G∧ is an internal hyperfinite
abelian group.

Following [402], we represent the group S1 (more exactly, the underlying set
of S1 which is the unit circle) as the interval [−1

2
, 1

2
] with addition modulo 1. We

take in S1 the countable family {Λk : k := 1, 2, . . .} of neighborhoods about zero,
with Λk := (− 1

3k
, 1

3k
). In the sequel we need a few auxiliary facts.

(1) If γ ∈ Λ1, 2γ ∈ Λ1, . . . , kγ ∈ Λ1 then γ ∈ Λk.
� Obvious; cf. [402]. �
We now define the two external subgroups H0 ⊂ Hf of G∧ by the formulas

α ∈ H0 ↔ (∀g ∈ Gf )(α(g) ≈ 0),
α ∈ Hf ↔ (∀g ∈ G0)(α(g) ≈ 0).

We will also use the countable family {W (Cn,Λk) : n ∈ Z, k ∈ N} of internal
subsets of W (Cn,Λk) ⊂ G∧ such that

α ∈ W (Cn,Λk) ↔ (∀g ∈ Cn)(α(g) ∈ Λk).

Given F ∈ In(Gf ), we define W (F,Λk) similarly.
(2) H0 =

⋂
n,kW (Cn,Λk) and Hf =

⋃
nW (Cn,Λ1).

� The first equality is rather obvious and so we prove the second.
Suppose that α ∈ W (Cn,Λ1), and m ∈ Z is such that kCm ⊂ Cn. In this event

if g ∈ Cm then α(g), 2α(g), . . . , kα(g) ∈ Λ1, and so α(g) ∈ Λk by (1). Consequently,
α(g) ∈ Λk for all k and g ∈ G0, implying that α(g) ≈ 0 and α ∈ Hf .

Conversely, let α ∈ Hf , and assume that α /∈ W (Cn,Λ1) for all n. Then to
each n there is g in Cn satisfying (|α(g)| ≥ 1

3 ). By ω1-saturation, there is some g
in G0 such that (|α(g)| ≥ 1

3
), which contradicts the membership α ∈ Hf . �

Thus, the triple (G∧, H0, Hf ) satisfies the same conditions as (G,G0, Gf ), and
so we may define the canonical topology on G∧# = Hf/H0. It follows from Theo-
rem 7.2.3 that G∧# is complete (with respect to the corresponding uniformity). If
α ∈ Hf then we let α# stand for the image of α in G∧#.

(3) Let the internal function f : G → ∗
C be such that f(g1) ≈ f(g2)

whenever g1, g2 and g1−g2 ∈ G0 while
◦|f(g)| < +∞ for g ∈ Gf . Then the function

f̃ : G# → C, with f̃(g#) := ◦f(g) for all g ∈ Gf , is uniformly continuous on G
#.

� Obvious. �
We now define the mapping ψ : G∧# → G#∧ by putting

ψ(α#)(g#) := ◦(α(g))

for all α ∈ Hf and g ∈ Gf . The membership ψ(α#) ∈ G#∧ follows from (3). Also,
it is an easy matter to show that ψ is soundly defined monomorphism.
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7.2.8. Theorem. The mapping ψ : G∧# → ψ(G∧#) ⊂ G#∧ is a topological
isomorphism.

� Recall (see, for instance, [402]), that the topology on the dual group G#∧ of
G# is determined by the neighborhood base of zero comprising all sets of the shape
W (F ,Λk), where

W (F ,Λk) := {h ∈ G#∧ : (∀ξ ∈ F )(h(ξ) ∈ Λk)},

with F a compact set in G# and k ∈ N.
It is now easy to see that {W (C#

n ,Λk) : n ∈ Z, k ∈ N} is also a neighborhood
base of zero in G#∧.

The easy inclusions

◦ψ(
◦
W (Cn,Λk+1)) ⊂ W (C#

n ,Λk),
ψ−1(W (C#

n ,Λk+1)) ⊂ W (Cn,Λk)#

imply that ψ and ψ−1 are continuous. �
7.2.9. Two corollaries of Theorem 7.2.8 are now in order.

(1) The image ψ(G∧#) of ψ is a closed subgroup of G#∧.

� This is immediate since G∧# is complete and ψ is uniformly continuous. �
(2) G#∧ is a separable locally compact group.

Conjecture. If (G,G0, Gf ) satisfies the conditions of Theorem 7.2.3 then ψ :
G∧# → G#∧ is a topological isomorphism, i.e.,

ψ(G∧#) = G#∧.

7.2.10. For brevity we let H := G∧ and identify H# with ψ(H#) by putting
h#(g#) := ◦(h(g)) for all h ∈ Hf and g ∈ Gf . Thus, G∧# = H# and H# is a closed
subgroup of G#∧. Assign

G′0 := {g ∈ G : (∀α ∈ Hf )(α(g) ≈ 0)},
G′f := {g ∈ G : (∀α ∈ H0)(α(g) ≈ 0)}.

Obviously, G′0 ⊃ G0 and G′f ⊃ Gf . Put G#′ := G′f/G
′
0.

(1) Theorem. In the above context,

H# = G#∧ ↔ G′0 ∩Gf = G0.
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� Since G = H∧, we may apply Theorem 7.2.8 and 7.2.9 (1) to the couple
(G′0, G

′
f ) and infer that G#′ is a closed subgroup of H#∧. Since H# is a closed

subgroup of G#∧, the Pontryagin Duality Theorem (see [402]) yields

H#∧ = G#/Ann(H#),

where Ann(H#) := {ξ ∈ G# : (∀h ∈ H#)(h(ξ) = 0)}.
Let g#′ stand for the canonical image of g ∈ G′f in G#′. Since g#′ is a character

of H#, there is an element g1 ∈ Gf satisfying g#′(h#) = g#
1 (h#) for all h ∈ Hf .

Hence, h(g − g1) ≈ 0 for all h ∈ Hf , implying that g − g1 ∈ G′0. Therefore,
(∀g ∈ G′f )(∃g1 ∈ Gf )(g − g1 ∈ G′0), and so G#′ = Gf/Gf ∩G′0.

Suppose now that Gf ∩G′0 = G0. Then G#′ = G#, and so Ann(H#) = 0 since
H#∧ = G#/Ann(H#). Hence, H# = G#∧.

Suppose conversely that H# = G#∧, i.e., H#∧ = G#∧∧ and so H#∧ = G#.
Then Ann(H#) = 0. If, nevertheless, g ∈ G′0 ∩ Gf − G0 then g# ∈ Ann(H#) and
g# �= 0, which would be a contradiction. �

(2) G#′ = H#∧.

� Since Gf ⊂ G′f , the group H ′0 = {h ∈ H : (∀g ∈ G′f )(h(g) ≈ 0)} lies in H0.
We are done on applying (1). �

7.2.11. Let S1 stand as usual for the unit circle. If χ : G → ∗S1 is an internal
character of G satisfying χ|G0 ≈ 0, then there is some character χ̃ : G# → S1 such
that χ̃(g#) = ◦χ(g) for all g ∈ Gf . We note that the equality G#∧ = G∧# means
that every character h : G# → S1 has the shape of χ̃. We will derive some sufficient
conditions for this equality to hold. We start with an auxiliary proposition.

(1) If K is an internal hyperfinite abelian group, and X : K → S1 is
an internal character of K satisfying X(g) ≈ 1 for all g ∈ K then X ≡ 1.

� Let |K| = N . Then X(g)N = 1, i.e., X(g) = exp(2πimX(g)/N). Obviously,
mX : G → Z/NZ is a group homomorphism. Therefore, mX(G) is a cyclic subgroup
of Z/NZ, and so there is d divisible by N such thatNmX(G) = {kd : 0 ≤ k < N/d}.

If N/d is even then, putting k := N/2d, we find that

exp(2πikd/N) = exp(πi) = −1,

which contradicts the hypothesis. If N/d is odd then we put k := (N/d− 1)/2. In
this event exp(2πikd/N) = − exp(−πid/N) ≈ −1 whenever d/N ≈ 0. If d/N �≈ 0
then N/d is some standard number, say, m and exp(2πikd/N) = − exp(−πi/m) �≈ 1
for m �= 1. Thus, N = d, and we may conclude that mX(G) = 0, i.e., X ≡ 1. �

(2) If G# is a discrete or compact group then G#∧ = G∧#.
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� Let G# be a discrete group. Then by the second part of Theorem 7.2.3 G0

is an internal subgroup of G. By (1), Hf = {h ∈ G∧ : (∀g ∈ G0)(h(g) = 0)}.
Hence, Hf is an internal subgroup of H := G∧. Moreover, G′0 := {g ∈ G : (∀h ∈
Hf )(h(g) = 0)} is an internal subgroup of G. Further, Hf = Ann(G0) and G′0 =
Ann(Hf ). By transfer and the theorem on duality of annihilators, G0 = G′0. The
case of a compact group G# (that is, of an internal group Gf ) is settled in the next
section. �

(3) If there is a subgroup K ∈ In0(Gf ) then G#∧ = G∧#.

� Note first that the triples (G0, K,G) and (K,Gf , G) satisfy all conditions of
Theorem 7.2.3. Hence, K# = K/G0 is a compact subgroup of G#, and Gf/K is a
discrete group. Therefore, we may apply (2) to these groups. We show now that
G′0 ∩Gf = G0. If not, then g0 ∈ G′0 ∩Gf −G0, and two cases are possible.

(a): g0 ∈ K: By (2) there is an internal character X : K → ∗S1 such that
X |G0 ≈ 0 and X(g0) �≈ 0. By transfer X may be extended to some internal
character κ ∈ Hf . Further, κ(g0) � 0, contradicting the fact that g0 ∈ G′0.

(b): g0 /∈ K: Again by (2) there is an internal character h : G → ∗S1 such that
h|K ≈ 1 and h(g0) � 1. Thus, h ∈ Hf contradicting the membership g0 ∈ G′0.

Note that both cases use the fact that the characters of a locally compact
abelian group separate its points. �

In the sequel we let (G,G0, Gf ) stand for a triple of groups of the environment
of Theorem 7.2.3.

7.2.12. Theorem. The group G# has an open compact subgroup if and only
if there is an internal subgroup K ∈ In0(Gf ). Furthermore, K# is an open compact
subgroup of G#.

� If K ∈ In0(Gf ), then K + G0 = K, which implies that K# is an open set.
The compactness of K# is established in 7.2.3. Obviously, if K is a subgroup of G
then K# is a subgroup of G#.

Conversely, suppose that U ⊂ G# is an open compact subgroup. We show that
j−1(U) is an internal set. Let F ∈ In0(Gf ) be such that F# ⊂ U . For example, we

may take Cn−1 to be F if
◦
C#
n ⊂ U (see 7.2.1 (2)). Such a Cn exists because U is

open.

Since U is compact, there is g#
1 , . . . , g

#
n ∈ U satisfying U =

⋃n
ı=1(g#

ı +
◦
F#).

Since U is a subgroup and F# ⊂ U ; therefore, U =
⋃n
ı=1(g#

ı + F#). Hence,

j−1(U) = (
⋃n
ı=1 gı +

◦
F ) ⊂ ⋃nı=1 gı + F ⊂ j−1(U), which completes the proof. �

7.2.13. Let Δ be a normalizing factor of (G,G0, Gf ) (cf. 7.2.4 (4)). As above
in 7.1.1, put Δ̂ := (Δ|G|)−1. Recall that L2,Δ(G) is an internal hyperfinite-
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dimensional space in the space ∗CG with the inner product

(ϕ, ψ)Δ := Δ
∑

g∈G
ϕ(g)ψ(g)

for all internal ϕ, ψ ∈ ∗CG. The L
2,Δ̂

(Ĝ) space is defined similarly.

The discrete Fourier transform ΦGΔ : L2,Δ(G) → L
2,Δ̂

(Ĝ) is defined as

ΦGΔ(ϕ)(χ) := (ϕ, χ)Δ
(
ϕ ∈ L2,Δ(G), χ ∈ Ĝ

)
.

Clearly, the discrete Fourier transform ΦGΔ preserves the inner product.
A triple of groups (G,G0, Gf ) is admissible provided that the following hold:

(1) G#∧ = G∧#;
(2) Δ̂ is a normalizing factor for the triple (Ĝ,H0, Hf ) in 7.2.7;
(3) ΦGΔ is a hyperapproximant to the Fourier transform FG#

Δ : L2(μΔ)
→ L2(μ

Δ̂
), defined as

FG#

Δ (f)(κ) :=
∫

f(g)κ(g)dμ(g) (κ ∈ G#∧).

Theorem 7.1.2 shows that the triple (G,G0, Gf ) of 7.1.1 is admissible.

7.2.14. Theorem. If there is a subgroup K belonging to In0(Gf ) then the
group (G,G0, Gf ) is admissible.

� Show first that Δ̂ is a normalizing factor for Ĝ. To this end, consider the
subgroup K⊥ := {χ ∈ Ĝ : χ|K = 1}. It follows from 7.2.11 (1) that H0 ⊂ K⊥ ⊂ Hf .
We are thus left with demonstrating that 0 < ◦(Δ̂|K⊥|) < +∞. To this end,
note that K̂ = Ĝ/K⊥ (see 7.2.4 (3)). Hence, |K⊥| = |Ĝ|/|K̂| = |G|/|K| and so
Δ̂|K⊥| = (Δ|K|)−1, whereas 0 < ◦(Δ|K|) < +∞ because Δ is a normalizing factor
for (G,G0, Gf ) and K ∈ In0(Gf ).

We know that K# is an open compact subgroup of G# by Theorem 7.2.12.
Therefore, it is discrete; and G#/K# is countable since G# is separable. Assume
that {ξk : k ∈ N} is complete system of representatives of the cosets of G#/K# and
κ ∈ K#∧. Define the function fkκ : G# → C as follows: Given η ∈ G#, put

fkκ(η) :=
{

0, if η /∈ ξk +K#,

κ(η − ξk), if η ∈ ξk +K#.

Let M := {fkκ : k ∈ N ,κ ∈ K#∧}. Since linear combinations of characters are
dense in L2(K#) and L2(G#) =

⊕∞
k=0 L2(ξk +K#), the linear span of M is dense

in L2(G#), and we may apply 6.5.1 (2).
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Let {xk : k ∈ N} ⊂ Gf be such that x#
k = ξk for all k ∈ N. Choose κ0 ∈ K#∧

and some χ0 ∈ K̂ so that χ0|G0 ≈ 1 and χ̃0 = κ0 (cf. Theorem 7.2.11 (2)). Define
the internal function ϕkχ0 : G → ∗

C by putting

ϕkχ0(y) :=
{

0, if y /∈ xk +K,

χ0(y − xk), if y ∈ xk +K,

for all y ∈ G.
Since K + G0 = K, it follows easily that ◦ϕkχ0(y) = fkκ0(y#) for all y ∈ Gf ;

in other words, ϕkχ0 is a lifting of the function fkκ0 . Since ϕkχ0 is bounded and
supported in the internal set xk+K ⊂ Gf ; therefore, ϕkχ0 ∈ S2,Δ(G). By 6.5.1 (2)
it suffices to show that ΦGΔ(ϕkχ0) is an S

2,Δ̂
-integrable lifting FG#

Δ (fkκ0). Given
κ ∈ G#∧ and χ ∈ G∧, straightforward calculation yields

FG#

Δ (fkκ0)(κ) =
{

κ(ξk)μΔ(K#), if κ|K# = κ0,
0, if κ|K# �= κ0;

ΦGΔ(ϕkχ0)(χ) =
{
χ(xk)Δ|K|, if χ|K = χ0,

0, if χ|K �= χ0.

Since j−1(K#) = K; therefore, μΔ(K#) = ◦(Δ|K|). If κ := χ̃ then it obviously
follows that κ|K# = κ0 ↔ χ|K = χ0 (cf. 7.2.11 (1)).

It is now clear that ◦ΦGΔ(ϕkχ0) = FG#

Δ (fkκ0)(κ̃) and ΦGΔ(ϕkχ) is a lifting of
FG#

Δ (fkκ), because χ̃ coincides with χ#.
The internal function ΦGΔ(ϕkχ0) is bounded and supported in the internal set

{χ ∈ G∧ : χ|K = χ0} ⊂ Hf , and so ΦGΔ(ϕkχ0) ∈ S
2,Δ̂

(Hf ). �

7.3. The Case of a Compact Nonstandard Hull

This section deals with a group G such that G# is a compact group.

7.3.1. Assume that G is an internal hyperfinite group, and G0 is a subgroup
of G presented as the intersection of a countable family of internal sets and such
that to each F satisfying G0 ⊂ F ⊂ G, there is a standardly finite subset B of G
enjoying the property F +B = G. In this event G# is a compact group according
to Theorem 7.2.3.

An internal function ϕ : G → ∗
C is S-continuous provided that ϕ(g1) ≈ ϕ(g2)

for all g1, g2 ∈ G satisfying g1 − g2 ∈ G0.
By 7.2.7 (3), if ϕ : G → ∗

C is a pointwise limited S-continuous function, the
former attribute meaning that ◦|ϕ(g)| < +∞ for all g ∈ G; then the function
ϕ̃ : G# → C, acting by the rule ϕ̃(g#) = ◦ϕ(g) for all g ∈ G, is continuous.
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We will show in 7.3.4 that each continuous function from G# to C admits the
above representation. To this end, two auxiliary facts are in order.

Denote by CS(G) the set of all pointwise limited S-continuous internal func-
tions ϕ : G → ∗

C. Clearly, CS(G) is an external subalgebra of the internal algebra
∗
C
G. Put G := {ϕ̃ : ϕ ∈ CS(G)}. Note that G is a subalgebra of C(G#). The

following result is a “discrete” version of the Urysohn Theorem.

7.3.2. If x, y ∈ G and x − y /∈ G0 then there is some ϕ in CS(G) such that
ϕ(x) = 0 and ϕ(y) = 1.

� By ω+-saturation, y /∈ x+Ck for some k ∈ Z (cf. 7.2.1 (2)). Given n ∈ Z, put
V0 := Ck and Vn := Ck−n. Then (Vn)n∈N is a sequence of symmetric internal sets
satisfying Vn+1 + Vn+1 ⊂ Vn. By extension, there is an internal sequence (Bn)n∈∗N

of symmetric subsets of G such that Bn+1 +Bn+1 ⊂ Bn for all n ∈ ∗N and Bk = Vk
for all standard k ∈ N.

Distinguish an infinite N ∈ ∗
N. Suppose that 0 ≤ m < n ≤ N , and let

Vm,n := Bm+1 + · · · + Bn. By induction on n it is immediately from the inclusion
Bn+1 +Bn+1 ⊂ Bn that Vm,n +Bn ⊂ Bm. Consider the rationals of the shape

r =
a1

2
+
a2

22
+ · · · +

an
2n
, aı ∈ {0, 1}.

Given a ∈ {0, 1}, put

Ba :=
{
B, if a = 1,
0, if a = 0.

Assign Wr := Ba1
1 + Ba2

2 + · · · + Ban
n . Then Wr ⊂ B1 + B2 + · · · + Bn = V0N ⊂

B0 = V0 = Ck. Hence, y /∈ x+B0 and so y /∈ x+Wr. Clearly, Wr ⊂ Wr′ for r < r′.
Define the internal function ϕ : G → ∗

R by the rule ϕ(g) := min{r : g ∈ x+ Wr}.
If g /∈ Wr+x for all rationals r of the above shape then ϕ(g) = 1 and, in particular,
ϕ(y) = 1. Since x ∈ x+ 0, it follows that ϕ(x) = 0.

Show now that |ϕ(u) − ϕ(v)| ≤ 1
2k−1 for u − v ∈ Bk and k ∈ [0, N ]. This

will imply that ϕ is S-continuous for if u − v ∈ G0 then u − v ∈ Bk for every
standard k. Since Bk is symmetric, we may assume that ϕ(u) < ϕ(v) and observe
that ϕ(v)−ϕ(u) ≤ 1

2k−1 . Note also that ϕ(u) < 1 because maxϕ = 1. Assume that
q ∈ {1, 2, . . . , 2k}, with k ≤ N , satisfies q−1

2k ≤ ϕ(u) < q
2k . If q = 2k or q = 2k − 1

then 1 − ϕ(u) ≤ 1
2k−1 and ϕ(v) − ϕ(u) ≤ 1

2k−1 because ϕ(v) ≤ 1.
Suppose now that q < 2k−1 − 1 and r = q

2k . Then ϕ(u) < r which amounts to
u ∈ Wr + x by the definition of ϕ. Since v − u ∈ Bk; therefore, v ∈ Wr + Bk + x.
In this event r = a1

2 + · · · + ak

2k , with am ∈ {0, 1}, and, moreover, there is some m
satisfying am = 0 because q < 2k − 1. Choose the greatest m with this property.
Considering the inclusion Bs +Bs ⊂ Bs−1, infer

Wr +Bk = Ba1
1 + · · · +B

aı+1
ı+1 + · · · +Bak

k +Bk ⊂ Ba1
1 + · · · +B

aı−1
ı−1 +Bı.
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At the same time, r′ := r + 1
2k = a1

2 + · · · + aı−1
2ı−1 + 1

2k . Thus, Wr +Bk = Wr′ , and
so v ∈ Wr′ +x and ϕ(v) ≤ r+ 1

2k . Finally, r− 1
2k ≤ ϕ(u) < ϕ(v) ≤ r+ 1

2k , implying
that ϕ(v) − ϕ(u) ≤ 1

2k−1 . �
7.3.3. The subalgebra G is uniformly closed in C(G#).
� Note first that, given ψ ∈ CS(G), we obviously have

sup{ψ̃(ξ) : ξ ∈ G#} = ◦max{ψ(g) : g ∈ G}.

Thus, if {ϕ̃n} is a sequence of functions converging in C(G#) to some function
f then ◦max{|ϕn(g) − ϕm(g)| : g ∈ G} → 0 as n,m → ∞. Therefore, there is
a standard function N satisfying

max
{|ϕn1(g) − ϕn2(g)| : g ∈ G

}
<

1
m

for all n1, n2 > N(m). We now consider the family of internal sets

{{ϕ : max{|ϕn(g) − ϕ(g)| : g ∈ G} < 1/m} : n > N(m)
}
.

which possesses the finite intersection property by the choice of N .
By ω+-saturation, there is an internal function ϕ : G → ∗

C satisfying

◦max{|ϕn(g) − ϕ(g)| : g ∈ G} −→
n→∞ 0.

It is clear that ϕ is pointwise limited and S-continuous. Hence, ϕ̃n → ϕ̃ as n → ∞.
Finally, ϕ̃ = f . �

7.3.4. Theorem. Each continuous function f : G# → C has the shape f = ϕ̃
with ϕ : G → ∗

C some S-continuous and pointwise limited function.

� To prove, it suffices to show that G is a uniformly closed subalgebra sepa-
rating the points of G#. The closure is contained in 7.3.3, while the separatedness
is immediate from 7.3.2.

Indeed, assume that ξ, η ∈ G# and ξ �= η. If ξ = x# and η = y# then x−y /∈ G0

and by 7.3.2 there is some ϕ in CS(G) satisfying ϕ(x) = 0 and ϕ(y) = 1. But then
ϕ̃(ξ) = 0, whereas ϕ̃(η) = 1. �

7.3.5. We continue presenting auxiliary propositions.
(1) If Theorem 7.3.4 applies to each of the triples (G′, G′0, G′f ) and

(G′′, G′′0 , G
′′
f ) then so is (G′ ×G′′, G′0 ×G′′0 , G

′
f ×G′′f ). In this event, (G′ ×G′′)# is

topologically isomorphic to G′# ×G′′#.
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� The proof is easy and thus omitted. �
From 7.3.5 (1) it follows then in the case of Gf = G under consideration that

(G×G)# := (G×G)/(G0×G0) is topologically isomorphic to G# ×G# := (G/G0)×
(G/G0).

(2) Assume that K : G#2 → C is a continuous function and K := k̃,
with k : G × G → ∗

C an S-continuous internal function. Given g ∈ G, define the
function Kg# : G# → C by the rule Kg#(·) := K(g#, ·), and also define the internal
function kg : G → ∗

C by the rule kg(·) := k(g, ·). Then kg is S-continuous, and
Kg# = k̃g.

� Obvious. �
(3) If f : G# → C is an even continuous function then there is an

internal even S-continuous function ϕ satisfying f = ϕ̃. Moreover, if K : G#2 → C

and k : G2 → ∗
C are defined by the rules K(ξ, η) := f(ξ − η) and k(g1, g2) :=

ϕ(g1 − g2) then K = k̃.

� Given f = ψ̃, with ψ : G → ∗
C an internal S-continuous function, put

ϕ(g) := 1
2 (ψ(g) + ψ(−g)). �

7.3.6. We now turn to interplay between integral equations on G# and simul-
taneous linear algebraic equations on G.

First of all we recall that since G# is a compact group; every Haar measure μ
is finite and we may treat μ as a probability measure on assuming that μ(G#) = 1.
This measure is in correspondence to the uniform Loeb measure on G with weight
Δ := |G|−1. It follows from the definition of a lifting of a measurable function
f : G# → C (see 7.2.5 and 7.2.6) that if f = ϕ̃ for some pointwise limited S-
continuous function ϕ then ϕ is a lifting of f . Further, ϕ ∈ Sp(G) for every
p ∈ [1,∞).

In case Δ = |G|−1 we simply write L2(G) instead of L2,Δ(G). Distinguishing
the canonical orthonormal basis (eh)h∈G for L2(G), with eh(g) := |G|1/2δhg, we
now turn to the equations of the form

(1) ϕ(g) = λ|G|−1
∑

h∈G
k(g, h)ϕ(h),

where k is a pointwise limited internal symmetric function.
If this equation has a nonzero solution then λ is an eigenvalue. Each solution is

referred to as an eigenfunction with eigenvalue λ. Thus, the eigenvalues of (1) are
the reciprocals of the nonzero eigenvalues of the operator A given in the canonical
orthonormal basis by the matrix (agh)g,h∈G with agh := |G|−1k(g, h).

We also consider the corresponding integral equation on the group G#:
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(2) f(ξ) = γ
∫

G#

k̃(ξ, η)f(η) dμ(η),

with γ a standard real.

7.3.7. Assume that k : G2 → ∗
C is a pointwise limited S-continuous internal

function and ϕ : G → ∗
C is a pointwise limited internal function. Define the

internal function ψ : G → ∗
C by the formula

ψ(g) := |G|−1
∑

h∈G
k(g, h)ϕ(h) (g ∈ G).

Then ψ is pointwise limited and S-continuous. Moreover, if ϕ is an S-continuous
function then

ψ̃(ξ) =
∫

G#

ϕ̃(η)k̃(ξ, η) dμ(η) (ξ ∈ G#).

� The function ψ is pointwise limited since so are k and ϕ. By 7.3.5 (3) and
the S-continuity of k we see that k(g1, h) − k(g2, h) ≈ 0 for all h ∈ G whenever
g1 −g2 ∈ G0. In other words, there is some infinitesimal α ≈ 0 satisfying |k(g1, h)−
k(g2, h)| ≤ α for all h ∈ G. Let C > 0 be a standard real, for which |ϕ(h)| ≤ C for
all h ∈ G. Then |ψ(g1) − ψ(g2)| ≤ Cα ≈ 0, implying that ψ is S-continuous. The
second assertion follows from Theorem 6.5.3. �

7.3.8. We now list a few useful properties of the eigenvalues of the equa-
tion 7.3.6 (1).

(1) The equation 7.3.6 (1) has no infinitesimal eigenvalues. If λ is a lim-
ited eigenvalue and Rλ is the eigenspace with eigenvalue λ then dim(Rλ) ∈ N, i.e.,
dim(Rλ) is a standard natural.

� Since k is pointwise limited, ◦
∑
g,h∈G |agh|2 < +∞. Hence, A meets the

hypotheses of 6.1.11 and so the claim follows. �
Below we assume that the pointwise limited symmetric internal function k

in 7.3.6 (1) is S-continuous.

(2) If λ is a limited eigenvalue then to each eigenfunction ϕ ∈ Rλ there
is an S-continuous pointwise limited function proportional to ϕ.

� If ϕ ∈ Rλ and ϕ �= 0 then ϕ1 := ϕ/max{|ϕ(g)| : g ∈ G} is bounded and
ϕ1 ∈ Rλ. We are done on applying 7.3.7. �

If ϕ ∈ L2(G) then ‖ϕ‖2 = |G|−1
∑
g∈G |ϕ(g)|2 and ‖ϕ‖∞ = max{|ϕ(g)| :

g ∈ G}. Thus, ‖ϕ‖ ≤ ‖ϕ‖∞. Note nevertheless the following:

(3) If ϕ is an eigenfunction of the equation 7.3.6 (1) with a limited
eigenvalue λ and ‖ϕ‖ = 1 then ϕ is S-continuous.
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� Suppose that ϕ1 := Cϕ is an S-continuous eigenfunction of 7.3.6 (1) satisfy-
ing ‖ϕ1‖∞ = 1 (which is available by (2)). Then ‖ϕ̃‖∞ = 1, yielding

∫
G# |ϕ̃1|2 dμ

> 0. However, ϕ1 is a lifting of ϕ̃1 and ◦‖ϕ1‖2 =
∫
G# |ϕ̃1|2 dμ by the pointwise

limitedness of these functions and 7.2.6. Thus, 0 < ◦‖ϕ1‖ < +∞. Note now that
ϕ2 = ϕ1/‖ϕ1‖ is an S-continuous and pointwise limited function, with ‖ϕ2‖ = 1.
Since ϕ2 = C1ϕ, ‖ϕ‖ = 1, and C1 > 0; therefore, it follows that C1 = 1 implying
that ϕ2 = ϕ. �

The claim of 7.3.8 (3) holds clearly for every eigenfunction ϕ satisfying 0 <
◦‖ϕ‖ < +∞.

7.3.9. Let f : G# → C be a continuous solution of the integral equation
7.3.6 (2), with γ a standard number, γ �= 0.
Then there are a standard natural n, some eigenvalues λ1, . . . , λn of 7.3.5 (1)

and pointwise limited S-continuous eigenfunctions ϕ1, . . . , ϕn such that λı ≈ γ and
ϕı ∈ Rλı

for all ı := 1, . . . , n and f is a linear combination of ϕ̃1, . . . , ϕ̃n.

� By Theorem 6.5.3 (cf. 7.3.7) the above operator A with matrix agh :=
|G|−1/2k(g, h) in the canonical orthonormal basis of L2(G) is a hyperapproximant
to the integral operator A with kernel k̃ : G#2 → C. This means that the following
diagram commutes:

L2(G#) A−−−−→ L2(G#)

j2

⏐
⏐
#

⏐
⏐
#j2

L2(G)# A−−−−→ L2(G)#

Recall that the mapping j2 assigns to each function f ∈ L2(G#) the coset of
an S2(G)-lifting of it; i.e., the S2(G)-lifting of f ◦ j, where j : G → G# is the
quotient homomorphism. The diagram makes it clear that j2(f) is an eigenvector
of A# with the eigenvalue γ−1. By 6.1.10, there is some eigenvalue λ−1 ≈ γ−1

of A. By 7.3.8 (3), every normalized eigenfunction ϕ of A with eigenvalue λ−1 is
S-continuous (0 < ◦|λ−1| < +∞). Moreover, ϕ̃ is an eigenfunction of A , with
eigenvalue γ−1 by 7.3.7.

Since A is a compact operator; therefore, the eigenvalue γ−1 of A has finite
multiplicity. Hence, there is only a standardly finite number of eigenvalues of A
infinitely close to γ−1, each of standardly finite multiplicity. This means that the
conditions of 6.1.12 are fulfilled.

Hence, to some standard n there are λ1, . . . , λn ≈ γ−1 and pairwise orthonor-
mal ϕ1, . . . , ϕn ∈ L2(G) such that ϕk ∈ Rλ−1

k
for all k ≤ n and j2(f) =

∑n
k=1 Ckϕ

#
k .

Since ϕk is S-continuous, ϕk is an S2(G)-lifting of ϕ̃k. Hence ϕ#
k = j2(ϕ̃k), and so

f =
n∑

k=1

Ckϕ̃k. �
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Closing this section, we address the problem of the general form of irreducible
unitary representations of G#.

Let V be an internal Hilbert space. A unitary representation T of a group
G in V (i.e., T is a homomorphism from G to the bounded endomorphism space
B(V ), with T (g) a unitary operator for every g ∈ G) is S-continuous provided that
‖T (g)−IV ‖ ≈ 0 for all g ∈ G0, with IV standing as usual with the identity mapping
in V . Such a mapping T : G → B(V ) is a hyperrepresentation provided that if V is
an internal hyperfinite-dimensional Hilbert space: in symbols, dim(V ) = n ∈ ∗N.

In the sequel we deal only with hyperrepresentations. If dim(V ) is a standard
hypernatural then each S-continuous irreducible unitary representation T : G →
∗B(V ) determines the continuous representation T̃ of G# by the rule T̃ (g#) :=
◦T (g). This T̃ is a unitary representation too. Moreover, the character κ of T̃ may
be written as χ̃, with χ a character of T . Therefore, ‖κ‖ = ◦‖χ‖ = 1, since T is
irreducible. This implies that T̃ is irreducible too.

It is worth noting that the converse is also true. Precisely, we have the following
abstraction of Theorem 7.2.11 (2) for commutative groups.

7.3.10. Theorem. Each S-continuous irreducible unitary representation T
of G generates an irreducible unitary representation T̃ of G# by the formula T̃ (g#)
:= ◦T (g) for all g ∈ G. Conversely, each irreducible unitary representation of G#

has the shape T̃ for some S-continuous irreducible unitary representation T of G.

� To prove the first claim it suffices to show that each S-continuous irreducible
unitary representation has finite rank. This will be done in 7.3.11.

The second claim follows from 7.3.12 by the well-known properties of irreducible
unitary representations of a compact group (for example, see [377; Chapter 6, Sec-
tion 32]). �

7.3.11. Every S-continuous irreducible unitary representation of G has stan-
dardly finite rank.

� Given ξ ∈ V , consider the sesquilinear form

ϕξ(η, ζ) := |G|−1
∑

g∈G
(T (g)ξ, η)(T (g)ξ, ζ).

Let Bξ : V → V be the linear operator acting by the rule ϕξ(η, ζ) := (Bξη, ζ).
Simple calculation shows that Bξ commutes with every operator T (g), and so

by the Schur Lemma Bξ = α(ξ)I, with α(ξ) ∈ ∗C.
Therefore, ϕξ(η, ζ) = α(ξ)(η, ζ). Putting η := ζ, find ϕξ(ζ, ζ) = α(ξ)‖ζ‖2 =

α(ζ)‖ξ‖2. The last equality implies that there is some hyperreal D in ∗R such that
α(ξ) = D‖ξ‖2 for all ξ ∈ V . Assume that the vector ξ is a norm-one vector. Then
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ϕξ(ξ, ξ) = α(ξ) = D. Hence,

D = |G|−1
∑

g∈G
|(T (g)ξ, ξ)|2

for every norm-one vector ξ ∈ V .
Show now that ◦D > 0. To this end, consider the internal function ψ : G → ∗

R

given by ψ(g) := |(T (g)ξ, ξ)|2. It is easy that ψ is S-continuous. Consequently,
‖ψ̃‖2 = ◦‖ψ‖2 = D, where the left side implies the L2(G#) norm. The definition of
ψ yields ψ(e) = 1, where e is the identity of G. Consequently, ψ̃(e#) = 1. Since ψ̃
is a continuous function; therefore, ‖ψ‖ > 0 as required.

Now, let θ1, . . . , θn ∈ V form some orthonormal basis for V . Then

|G|−1
∑

g∈G
|(T (g)θk, θ1)|2 = ϕθk

(θ1, θ1) = α(θk)‖θ1‖2 = D.

Since T (g) is a unitary operator, the family {T (g)θk : k := 1, . . . , n} is an orthonor-
mal basis; i.e.,

n∑

k=1

|(T (g)θk, θ1)|2 = ‖θ1‖2 = 1.

Summing the last equality over g and multiplying by |G|−1, from the previous
equality we infer that nD = 1. The standardness of n is now clear since ◦D > 1. �

7.3.12. The linear span of all functions ψ̃, with ψ(g) a matrix entry of some
S-continuous irreducible unitary representation of G, is dense in C(G#).

� Inspection of the proof of Theorem 32 of [402] shows that the linear span of
eigenfunctions of all integral equations with kernels like f(x−y), with f : G# → C a
continuous even function, is dense in C(G#). By 7.3.5 (3) and 7.3.9, the linear space
of linear combinations of functions like ϕ̃, with ϕ an S-continuous eigenfunction of
some equation of the form 7.3.6 (1) with 0 < ◦|λ| < +∞ and k(g, h) := f(g−h) for
an appropriate S-continuous even function f : G → ∗

C, is dense in C(G#).
The rest of the proof proceeds in fact along the lines of the proof of Theorem 32

in [402] and is presented here only for the sake of completeness.
We so assume that k(g, h) := f(g − h) in 7.3.5 (1) for an even continuous

function f : G# → C. By 7.3.8 (1), the dimension of Rλ is standardly finite. Let
ϕ1, . . . , ϕn form a complete orthonormal system of eigenfunctions of 7.3.6 (1). More-
over, we may and will presume the latter S-continuous. Obviously, if ϕ(g) ∈ Rλ,
then ϕ(a+g) ∈ Rλ for all a ∈ G. Thus, ϕ1(a+g), . . . , ϕn(a+g) also comprise a com-
plete orthonormal system of eigenfunctions of 7.3.6 (1), and so there is a unitary
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matrix U(a) := (uıj(a))nı,j=1 satisfying

ϕı(a+ g) =
n∑

j=1

uıj(a)ϕj(g).

Show now that {U(a) : a ∈ G} is a representation of G. Indeed, uıj(a + b) =∑n
k=1 uık(a)ukj(b). Since {ϕı : ı := 1, . . . , n} is orthonormal,

uıj(a) = |G|−1
∑

g∈G
ϕı(a+ g)ϕj(g).

Since ϕı are pointwise limited and S-continuous, the last equality implies that
uıj(a) is S-continuous. Since U(·) is a unitary representation of G, there is a unitary
matrix V such that U(a) = V X(a)V −1 for all a ∈ G, with

X(a) :=

⎛

⎜
⎝

T1(a) 0
. . .

0 Tn(a)

⎞

⎟
⎠ ,

and Tı is an irreducible unitary representation of G for all ı := 1, . . . , n.
Since X(a) = V −1U(a)V , all matrix entries of each representation Tı are stan-

dardly finite linear combinations of S-continuous functions, that is, the representa-
tions Tı are themselves S-continuous. Similarly, the entries uıj are standardly finite
linear combinations of matrix entries of Tı’s with limited coefficients.

Putting g := 0 in the above expression for ϕı(a + g) infer that each ϕı is a
standardly finite linear combination of uıj’s with limited coefficients, and hence also
of some matrix entries ψk of the representations Tı’s. Clearly, if ϕı =

∑n
j=1Cjψj

then ϕ̃ı =
∑n
j=1
◦(Cj)ψ̃j. �

7.3.13. Comments.

(1) By Theorem 7.2.3, G# is a compact group if and only if Gf is
an internal subgroup of G. We may thus assume without loss of generality that
Gf = G. By 7.2.11 it suffices to show that each character κ ∈ G#∧ has the shape χ̃
with some χ ∈ G∧ satisfying the condition χ|G0 ≈ 1 (cf. 7.2.7 (3)). The last is easy
since the system of all character like χ̃ is complete. This completeness ensues in turn
from a slight modification of the Peter–Weyl Theorem asserting the completeness
of the character set of irreducible representations of a compact group (cf. [402]).

(2) It is worth noting that all considerations of this section but the
results on the character group remain valid on assuming that G is internal hyper-
finite nonabelian group, while the external subgroups G0 and Gf , with G0 ⊂ Gf ,
satisfying the conditions (A) and (B) of 7.2.1, are normal subgroups of G.
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(3) The proof of 7.3.11 is analogous to that of Theorem 22.13 in [174]
asserting that each irreducible representation of a compact group has finite rank.
However the context of 7.3.11 is easier since we deal her with hyperfinite groups
which may be treated as finite groups in many aspects.

7.4. Hyperapproximation of Locally Compact Abelian
Groups

In this section we turn to hyperapproximation of a topological group which
is in fact the main topic of Chapter 7. Most results concern the case of locally
compact abelian group.

7.4.1. Recall that if G is a topological abelian group, then the monad μG(0)
of G (i.e. the monad of the neighborhood filter of zero) and the nearstandard part
nst (∗G) of G are determined by the formulas

μG(0) :=
⋂

{∗U : 0 ∈ U, U ⊂ G, U is open},

nst (∗G) := {ξ ∈ ∗G : (∃η ∈ G)(ξ ≈ η)},

with ξ1
G≈ ξ2 := ξ1 ≈ ξ2 meaning that ξ1 − ξ2 ∈ μG(0).

The mapping st : nst (∗G) → G, acting by the rule st(ξ) ≈ ξ for all ξ ∈ nst (∗G),
is an epimorphism with kernel μG(0), and so, G ∼= nst (∗G)/μG(0). We simply write

μ(0) and ξ1 ≈ ξ2 instead of μG(0) and ξ1
G≈ ξ2 when this leads to no confusion.

Now the main definition is in order.
Assume that G is a standard topological group, G is an internal hyperfinite

group, and j : G → ∗G is an internal mapping. The couple (G, j) is a hyperapprox-
imant of G provided that the following hold:

(1) To each ξ ∈ nst (∗G) there is some g in G satisfying j(g) ≈ ξ;
(2) If g1, g2 ∈ j−1(nst (∗G)) then j(g1 + g2) ≈ j(g1) + j(g2);
(3) If g ∈ j−1(nst (∗G)) then j(−g) ≈ −j(g);
(4) j(0) = 0.

We could have postulated that j(0) ≈ 0 in (4) of course, but we may the exact
equality by an obvious change while keeping (1)–(3) intact.

It is worth noting that the above definition does not presume that the group
G under study nor any hyperapproximant to it are abelian, whereas we still use the
symbols + and 0 for denoting the group operation and the neutral element of G.
However, if G is abelian then a hyperapproximant of G is also presumed abelian.

Put Gf := j−1(nst (∗G)), G0 := j−1(μ(0)), and j̃ := st ◦j|Gf
. Then the condi-

tions (1)–(4) amount to requiring that j̃ : Gf → G be an epimorphism with kernel
ker(j̃) = G0. We let j stand for the induced isomorphism j̃ between G# := Gf/G0

and G. The quotient homomorphism of Gf onto G# is denoted simply by #.
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7.4.2. Say that (G, j) is a nice hyperapproximant to a separable locally com-
pact abelian group G provided that the corresponding triple (G,G0, Gf ) is admis-
sible (cf. 7.2.13).

As a helpful example of nice hyperapproximation, we consider the additive
group G := {−L, . . . , L} of the ring ∗Z/N∗Z, where N := 2L + 1 is an infinite
hypernatural and Δ ≈ 0 is a strictly positive infinitesimal satisfying NΔ ≈ +∞.
Define the mapping j : G → ∗

R by putting j(k) := kΔ for all k ∈ G. Obviously,
(G, j) is a hyperapproximant to the additive group of the reals R. Theorem 7.1.2,
together with 7.2.1 (1), shows that this (G, j) is also a nice hyperfinite approximant.

7.4.3. If G is a separable locally compact group and (G, j) is its hyperap-
proximant then the triple (G,G0, Gf ) satisfies the conditions of Theorem 7.2.3.
Moreover, j : G# → G is a topological isomorphism.

� Since G is locally compact and separable, assume that G =
⋃∞
n=1 Un where

each Un is a relatively compact open set. It is then easy that Gf =
⋃∞
n=1 j

−1(∗Un).
By exact analogy, if {Vn : n ∈ N} is a countable neighborhood base of zero of
G consisting of relatively compact sets then G0 =

⋂
n∈N

j−1(∗Vn). Therefore, Gf
is a countable union and G0 is a countable intersection of internal sets, which
implies that G# admits the canonical topology by Theorem 7.2.2. The hypotheses
of Theorem 7.2.3 follow on observing that G# is a locally compact group. We are
left with proving that j and j−1 are continuous at zero.

Given a neighborhood V about the zero of G, find a relatively compact neigh-
borhood about the zero of V 1 so that V 1 ⊂ V . Consider the internal set F :=
j−1(∗V 1). Clearly, G0 ⊂ F and so

◦
F# is a neighborhood about the zero of G#. The

continuity of j at zero follows from the easy relation j(
◦
F#) ⊂ V 1 ⊂ V .

Take a neighborhood about the zero of G# of the shape
◦
F#, with F an in-

ternal subset of Gf including G0. Since G0 =
⋂{j−1(∗U) : U is a neighborhood

about the zero of G}, by ω+-saturation we infer that there is a relatively standard
neighborhood U about the zero of G satisfying j−1(∗U) ⊂ F . Let V be a neighbor-
hood about the zero of G such that V + V + V ⊂ U . From the obvious inclusion
V ⊂ V + V , it follows that j−1(∗V ) + j−1(∗V ) ⊂ j−1(∗U). Therefore, if ξ ∈ V and

j−1(ξ) = g# or, which is the same, j(g) ≈ ξ) then g ∈
◦
F . Hence, j−1(V ) ⊂

◦
F#. �

7.4.4. Theorem. Each separable locally compact abelian group with a com-
pact and open subgroup possesses a nice hyperapproximant.

� Theorems 7.2.12 and 7.2.14 show that in this case every hyperapproximant
is nice, and so it suffices to prove the existence of some hyperapproximant.

(1) Assume that G is a separable locally compact abelian group with
a compact and open subgroup U . Denote the quotient group G/U by D and consider
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the short exact sequence U ⊂ G
π→ D , with π the quotient homomorphism. By

ω+-saturation and the countability of D there is a hyperfinite set T ⊂ ∗D satisfying
D ⊂ T . Let ∗D(T ) stand for the internal subgroup of ∗D generated by T and put
H := ∗π−1(∗D(T )). Thus, the following diagram commutes

U
⊂−−−−→ G

π−−−−→ D

id

⏐
⏐
# id

⏐
⏐
# id

⏐
⏐
#

U
⊂−−−−→ H

ε−−−−→ ∗D(T ) ,

with the bottom row a short exact sequence and ε := ∗π|∗H an internal mapping.
Recall that a finitely generated abelian group splits in the direct sum of a free

subgroup and a finite subgroup (see [305; § 10, Theorem 8]). By transfer, infer
that ∗D(T ) = D1 ⊕ D2, where D1 is a hyperfinite abelian group and D2 is a (non-
standardly) free abelian hyperfinitely generated group. Putting Hı := ε−1(Dı) for
ı := 1, 2, note that H = H1 +H2 and H1 ∩H2 = ∗U while the following are exact
sequences:

∗U ⊂ H1
ε1→ D1; ∗U ⊂ H2

ε2→ D2,

with εı := ε|Hı
for ı := 1, 2.

Look at these sequences thoroughly. Start with the first of them, applying
transfer to the van Kampen Theorem (see [174, Chapter 2, Theorem 9.5]). Given
an infinitesimal neighborhood V of zero (which means V ⊂ μ(0))) with V ⊂ ∗U ,
find a hypernatural k, a hyperfinite group R, and a continuous epimorphism ϕ :
∗U → ∗Sk ⊕R satisfying ker(ϕ) ⊂ V . Here S is the unit circle.

(2) Let R be a normal subgroup of a group L with the quotient group
L/R isomorphic H. In this event L is an extension of R by H; in symbols,
Ext(H,R) := L.

In these terms, the above means that H1 is an extension of ∗U by D1. Since
ϕ is an epimorphism, there is an extension L of ∗Sk ⊕ R by D1, so that for some
internal group L and an internal homomorphism γ : H1 → L the following diagram
commutes:

∗U ⊂−−−−→ H1
ε1−−−−→ D1

ϕ

⏐
⏐
#

⏐
⏐
#γ

⏐
⏐
#id

∗Sk ⊕R
κ−−−−→ L

δ−−−−→ D1 ,

with the bottom row a short exact sequence. This commutative diagram implies
that γ is an epimorphism.
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The easy equality Ext(D1, S
k ⊕ R) = Ext(D1, S

k) ⊕ Ext(D1, R) implies the
existence of the two short exact sequences

∗Sk κ1→L1
δ1→ D1,

R
κ2→L2

δ2→ D1,

yielding the bottom row of the above diagram to within isomorphism as follows:
L := {(l1, l2) ∈ L1 ⊕ L2 : δ1(l1) = δ2(l2)}, κ := (κ1,κ2), δ(l1, l2) := δ1(l1) =
δ2(l2). Since ∗Sk is a divisible group, the first of these sequences splits; i.e., there
is a monomorphism χ : D1 → L1 serving as a right inverse of δ1. The group L2 is
hyperfinite since so is each of the groups R and D1.

Note that ϕ is open as a continuous epimorphism of compact groups, and so
ϕ(V ) is a neighborhood about the zero of ∗Sk ⊕R, implying that ϕ(V ) ∩ ∗Sk is a
neighborhood about the zero of ∗Sk. Given an arbitrarily small ε > 0, we may find
in the unit circle S a finite subgroup that is an ε-net for S. Consequently, there
is a hyperfinite subgroup F ⊂ ∗Sk satisfying F + (ϕ(V ) ∩ ∗Sk) = ∗Sk. We now
consider the hyperfinite subgroup M ⊂ L given by

M := {(κ1(f) + χ(d), l) : f ∈ F, d ∈ D1, l ∈ L2, δ2(l) = d}.
Since γ is an epimorphism; therefore, γ−1(m) �= ∅ for all m ∈ M . Choose a member
gm from each set γ−1(m) by internal choice, and put G1 := {gm : m ∈ M}. Define
the operation +1 in G1 by the rule gm1 +1 gm2 := gm1+m2 . Thus, γ(gm1 +1 gm2) =
γ(gm1) + γ(gm2) = m1 + m2. Obviously, (G1,+1) is a hyperfinite abelian group.
We will need a few properties of (G1,+1).

(3) If m,m1, m2 ∈ M then gm1 +1 gm2 ≈ gm1 + gm2 and −1gm ≈ −gm.
� Since γ(gm1 +1 gm2) = γ(gm1)+γ(gm2), the commutative diagram (2) yields

ε1(gm1 +1 gm2 − gm1 − gm2) = 0, i.e., gm1 +1 gm2 − gm1 − gm2 ∈ ∗U . Using the
left square of this diagram and the fact that κ is a monomorphism, infer that
ϕ(gm1 +1 gm2 − gm1 − gm2) = 0. The last formula may be rewritten as gm1 +1

gm2 − gm1 − gm2 ∈ V ⊂ μ(0), which proves the first claim. The proof of the claim
assertion proceeds along the same lines. �

(4) To each h ∈ H1 there is some g in G1 satisfying g ≈ h.

� Take an arbitrary element h ∈ H1. Using the structure of the group L and
the splitting of (2) ∗Sk κ1→ L1

δ1→ D1, find that γ(h) = (κ1(s) + χ(d), l), where
l ∈ L2 and δ2(l) = d. Since F + (ϕ(V ) ∩ ∗Sk) = ∗Sk, there is some f in F
satisfying s − f ∈ ϕ(V ) ∩ ∗Sk. But then m = (κ1(f) + χ(d), l) ∈ M . Show now
that gm ≈ h. To this end note that ε1(h) = ε1(gm) = d, and so l − gm ∈ ∗U .
Moreover, γ(l) − γ(gm) = (κ1(f − s), 0) = κ((f − s, 0)) = κϕ(l − gm). Thus,
ϕ(l − gm) = (f − s, 0) ∈ ϕ(V ) ∩ ∗Sk ⊂ ϕ(V ), implying that l − gm ∈ ϕ−1(ϕ(V )) =
V + ker(ϕ) ⊂ V + V ⊂ μ(0). �



320 Chapter 7

(5) The group GU := ∗U∩G1 is a subgroup of G1. The couple (GU , ↪→),
with ↪→ the identity embedding of GU into

∗U , is a hyperapproximant to U .
� This is immediate from (3) and (4) since U is a compact and open subgroup

of G. �
(6) We turn now to inspecting the exact sequence ∗U ↪→ H2

ε2→ D2;
cf. (1).

Let νı : ∗D(T ) → Dı be the quotient mapping. Choose a hypernatural m such
that (ν2(T ) − ν2(T )) ∩mD2 = 0. The existence of m is easy by transfer since if P
is a finite subset of a free finitely generated abelian group H then there is a natural
m satisfying P ∩mH ⊂ 0.

Put Q := D2/mD2. Then Q is a hyperfinite abelian group. Denote the quotient
homomorphism from D2 onto Q by λ. By construction, ν2(T ) is injective. By
internal choice, take an element dq in each λ−1(q), with q ∈ Q, so that if λ−1(q) ∩
ν2(T ) �= ∅ then dq ∈ ν2(T ) (this dq is unique because λ is a monomorphism on
ν2(T )). Put G3 := {dq : q ∈ Q}. Define some operation +3 over G3 by the rule
dq1 +3 dq2 := dq1+q2 . Thus, λ(dq1 +3 dq2) = λ(dq1) + λ(dq2).

(7) To each d ∈ D there is some q in Q satisfying ν2(d) = dq. If
dq1 , dq2 ∈ ν2(D) then dq1 +3 dq2 = dq1 + dq2 .

Note that + on the right side of the last equality stands for addition in D2

while ν2(D) is an external subgroup of D2 in general.
� The first claim follows from the definition of dq since ν2(D) ⊂ ν2(T ). If

dq1 , dq2 ∈ ν2(D) then dq1 + dq2 ∈ ν2(D). Put dq1 + dq2 := dq3 . Since λ is a
homomorphism; therefore, q3 = λ(dq1 + dq2) = λ(dq1) + λ(dq2) = q1 + q2. On the
other hand, λ(dq1 +3 dq2) = λ(dq1)+λ(dq2) = q1 +q2 = q3. Thus, λ−1(q3)∩ν2(T ) =
{dq1 + dq2}, and so dq3 = dq1 + dq2 = dq1 +3 dq2 . �

(8) Denote the restriction of the group operation +1 to GU by +U .
Since D2 is a free abelian group, the sequence ∗U ⊂ H2

ε2→ D2 splits; i.e. there is
a monomorphism μ2 : D2 → H2 which is a right inverse of ε2. Consider the set
G2 := {g + μ(dq) : g ∈ GU , q ∈ Q} and define the operation +2 on G2 by putting
(g1 +μ(dq1)) +2 (g2 +μ(dq2)) := g1 +U g2 +m(dq1 +3 dq2). Since H2 = ∗U ⊕μ2(D2)
and GU ⊂ ∗U , it is easy to see that (G2,+2) is a hyperfinite abelian group and
G2 ∩ ∗U = GU .

(9) Suppose now that G = G1 × G2. Define j : G → ∗G by the rule
j((g1, g2)) := g1 + g2. Then (G, j) is a hyperapproximant to G.

� Take ξ ∈ G. Since G ⊂ H = H1 + H2 (cf. (1)); therefore, ξ = h1 + h2,
with h1 ∈ H1 and h2 ∈ H2. By the diagram of (1), d := π(ξ) = ε1(h1) + ε2(h2).
Thus, ε2(h2) = ν2(d) ∈ ν2(D) because d ∈ D . By (7), ν2(d) = dq. Hence, there is
some g in ∗U satisfying h2 = g + μ(dq). By (5), GU approximates ∗U , and since
U is compact, there is some g0 in GU such that g0 ≈ g. Hence, g2 = g0 + μ(dq) ≈
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g + μ(dq) = h2 and g2 ∈ G2. By (3) there is some g1 in G1 satisfying g1 ≈ h1.
Consequently, g1+g2 ≈ h1+h2 = ξ. This ensures the first condition of the definition
of hyperapproximant (cf. 7.4.1 (1)). Since the fourth condition is obvious, it remains
to verify 7.4.1 (2) and 7.4.1 (3).

Suppose that g1 + g2 ≈ ξ ∈ G and g′1 + g′2 ≈ ξ′ ∈ G, with g1, g
′
1 ∈ G1 and

g2, g
′
2 ∈ G2. The claim is that g1 +1 g

′
1 +g2 +2 g

′
2 ≈ ξ+ξ′. By (3), g1 +1 g

′
1 ≈ g1 +g′1.

Consequently, it suffices to show that g2 +2 g
′
2 ≈ g2 +g′2. To this end, put d := π(ξ).

Since g1 + g2 ≈ ξ; therefore, g1 + g2 − ξ ∈ ∗U and so ε(g1 + g2) = d (see the
diagram of (1)). From gı ∈ Hı it follows that ε2(g2) = ν2(d) ∈ ν2(D). Similarly,
ε2(g′2) = ν2(d′2) ∈ ν2(D), with d′ := π(ξ′). This implies easily that g2 = g̃+μ(ν2(d))
and g′2 = g̃′+μ(ν2(d′)). By (7) note now that g2+2g

′
2 = g̃+U g̃

′+μ(ν2(d)+ν2(d′)) =
g̃+U g̃

′+ μ(ν2(d)) + μ(ν2(d′)). Also, by (5) g̃+U g̃
′ ≈ g̃+ g̃′, which yields 7.4.1 (2).

Check 7.4.1 (3) by analogy. �
We have thus completed the proof of Theorem 7.4.4. �

7.4.5. Theorem. Each separable locally compact abelian group possesses
a nice hyperapproximant.

� Each locally compact abelian group is presented as the product of R
m for

some m ≥ 0 and a group with a compact and open subgroup (for example, see [151;
Chapter 2, § 10.3, Theorem 1]). It is also clear that if G1 and G2 are separable
locally compact abelian groups with nice hyperapproximants then G1 × G2 also
possesses a nice hyperapproximant. We are done on appealing to Theorem 7.4.4
and recalling 7.4.2. �

7.4.6. Let (G, j) be a hyperapproximant to a group G. If U ⊂ G is a relatively
compact neighborhood about zero then G0 ⊂ j−1(∗U) ⊂ Gf , implying that Δ :=
|j−1(∗U)|−1 is a normalizing factor of the triple (G,G0, Gf ) (cf. 7.2.4 (4)). The
external subgroups G0 and Gf , determined by the hyperapproximant (G, j) of G,
lead in turn to the external subgroups H0, Hf ⊂ Ĝ (cf. 7.2.7).

If (G, j) is a hyperapproximant to G then it is natural to approximate the
dual Ĝ of G by Ĝ. If (Ĝ, ı) is a hyperapproximant to Ĝ then Ĝf = ı−1(nst (∗Ĝ))
and Ĝ0 = ı−1μ

Ĝ
(1). Here 1 is the neutral element of Ĝ, i.e., the identically one

character on G.
Let (G, j) and (Ĝ, ı) be hyperapproximants to the separable locally compact

abelian groups G and Ĝ, respectively. The couple (Ĝ, ı) is a dual of (G, j) provided
that the following hold:

(1) H0 ⊂ Ĝ0;
(2) ı(h)(j(g)) ≈ h(g) for all h ∈ Ĝf and g ∈ Gf .

Note that if G is a compact group then Gf = G and (1) holds automatically
by 7.2.11 (1).
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The Loeb measure νΔ on G induces the Haar measure μΔ on G#. The topo-
logical isomorphism j transforms μΔ into the Haar measure μΔ on G. Obviously,
every Haar measure on G is obtainable in this manner.

If f : G → R is a measurable function then each lifting of f ◦ j is shortly called
a lifting of f (cf. 7.2.6).

7.4.7. Let (G, j) be a hyperapproximant to a separable locally compact abelian
group G and Δ a normalizing factor of the triple (G,G0, Gf ). Assume that p ∈
[1,∞) is standard and f : G → C. Then f ∈ Lp(G) if and only if f has an Sp,Δ-
integrable lifting. Further, if p = 1 and ϕ : G → ∗

C is an S1,Δ-integrable lifting
of f then

∫

f dμΔ =
◦(

Δ
∑

g∈G
ϕ(g)

)

.

� This is an easy rephrasing of 7.2.6. �
It now follows directly from 6.4.9.(1) that the triple (G, j,Δ) is a hyperapprox-

imant to the measure space (G, μΔ) and Proposition 6.4.10 reads:

7.4.8. If in the context of 7.4.7 f ∈ L1(G) is a bounded Haar almost every-
where continuous function satisfying the condition

(∀B ∈ ∗P(G))
(

B ⊂ G−Gf → Δ
∑

g∈G
|∗f(j(g))| ≈ 0

)

,

then ϕ := ∗f ◦ j is an S1,Δ-integrable lifting of f and

∫

f dμΔ =
◦(

Δ
∑

g∈G

∗f(j(g))
)

.

7.4.9. Assume that χ ∈ ∗Ĝ and κ ∈ Ĝ. Then χ
Ĝ≈ κ if and only if χ(ξ) ≈ κ(ξ)

for all ξ ∈ nst (∗G).

� Suppose that χ ≈ ∗
κ. If ξ ∈ nst (∗G) then ξ ≈ η ∈ G. If u is a relatively

compact neighborhood of η in G then ξ ∈ u. By hypothesis, (χ− ∗κ ∈ ∗W (u,Λk))
for every standard k (see the proof of Theorem 7.2.8), which means that χ(ξ) ≈
∗
κ(ξ).

Conversely, suppose that χ(ξ) ≈ ∗κ(ξ) for all ξ ∈ nst (∗G). In this event if F is
a compact subset of G, then ∗F ⊂ nst (∗G). Hence, (χ(ξ) ≈ ∗

κ(ξ)) for all ξ ∈ ∗F ,
and so χ− ∗κ ∈ ∗W (F,Λk) for every standard k. �
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7.4.10. Theorem. Assume that (G, j) is a nice hyperapproximant to a separa-
ble locally compact abelian G and (Ĝ, ı) is a dual hyperapproximant to Ĝ. Assume
further that Δ is a normalizing factor of the triple (G,G0, Gf ) constructed from
(G, j). Then the following hold:

(1) (|G| · Δ)−1 is a normalizing factor of the triple (Ĝ, Ĝ0, Ĝf ) con-
structed from (Ĝ, ı);

(2) If F : L2(G, μΔ) → L2(Ĝ, μ
Δ̂

) is the Fourier transform then F
preserves the inner product;

(3) The discrete Fourier transform ΦGΔ : L2,Δ(G) → L
2,Δ̂

(Ĝ) is a hy-
perapproximant to F .

� (1): Show first that H0 = Ĝ0 and Hf = Ĝf . If h ∈ Ĝ0 then ı(h) ≈ 1, and
so ı(h)(ξ) ≈ 1 for all ξ ∈ nst (∗G) by 7.4.9. Consequently, ı(h)(j(g)) ≈ 1 for all
g ∈ Gf , implying that h(g) ≈ 1 by 7.4.6 (2). Hence, h ∈ H0. Thus, Ĝ0 ⊂ H0 while
the reverse inclusion is the claim of 7.4.6 (1).

The inclusion Ĝf ⊂ Hf is an easy consequence of 7.2.6 (2) and 7.4.9. The
reverse inclusion has a somewhat more complicated proof.

Take h ∈ Hf . Then h̃ ∈ G#∧ (recall that h̃(g#) = ◦h(g)). Given ı, determine
ı in exactly the same manner as j is determined from j. Now, ı : Ĝ# → Ĝ is a
topological isomorphism by 7.4.3. Put κ := h̃ ◦ j−1 ∈ Ĝ. Since Ĝ# = Ĝf/Ĝ0,
there is some h1 in Ĝf satisfying ı(h#

1 ) = h̃ ◦ j−1. If g ∈ Gf then ı(h#
1 )(j(g#)) =

st ı(h1)(st j(g)) ≈ ı(h1)j(g) ≈ h1(g) by 7.4.6 (2). On the other hand,

ı(h#
1 )(j(g#)) = h̃j−1(j(g#)) = h̃(g#) ≈ h(g).

Thus, h(g) ≈ h1(g) for all g ∈ Gf . This means that h · h1 ∈ H0 = Ĝ0 ⊂ Ĝf .
Since h1 ∈ Ĝf , it follows that h ∈ Ĝf , which proves the second of the equalities in
question. Item (1) is now clear since (G, j) is a nice hyperapproximant.

(2): This is immediate from (3).
(3): Let γ : L2(G#, μ) → L2,Δ(G)# stand for the embedding induced by the

natural homomorphism # : Gf → G#. In more detail, γ sends each function
f ∈ L2(G#, μΔ) to the coset of an L2,Δ(Gf )-lifting of f , i.e., of f ◦ # in L2,Δ(G)#.

Similarly, let γ̃ : L2(G#∧, μ
Δ̂

) → L
2,Δ̂

(Ĝ)# stand for the embedding induced

by the natural homomorphism #̂ : Ĝf → Ĝ#. Since (G, j) is a nice hyperap-
proximant; therefore, the equalities we have just established (1) show that Ĝ# is
canonically isomorphic to G#∧, with the isomorphism associating the character h̃
with an element h# ∈ G#∧ for h ∈ Ĝf = Hf . Moreover, recalling the definition of
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admissible triple in 7.2.13, we easily infer that the following diagram commutes:

L2(G#, μΔ)
FG#

Δ−−−−→ L2(G#∧, μ#
Δ)

γ

⏐
⏐
#

⏐
⏐
#γ̂

L2,Δ(G)#
(ΦG

Δ)#−−−−→ L
2,Δ̂

(Ĝ)#

Since the topological isomorphisms j and ı carry the measures μΔ onG# and μ
Δ̂

on G#∧ to the measures μΔ on G and μ
Δ̂

on Ĝ, respectively. Therefore, we arrive at
the isomorphisms j∗ : L2(G, μΔ) → L2(G#, μΔ) and ı∗ : L2(Ĝ, μ

Δ̂
) → L2(Ĝ#, μ

Δ̂
)

such that j∗(f) := f ◦ j and ı∗(ϕ) := ϕ ◦ ı.
Furthermore, the diagram commutes:

L2(G, μΔ) F−−−−→ L2(Ĝ, μ
Δ̂

)

j∗
⏐
⏐
#

⏐
⏐
#ı∗

L2(G#, μΔ)
FG#

Δ−−−−→ L2(G#∧, μ
Δ̂

)

It follows immediately from the definitions that γ ◦ j∗(f) is the coset of an
S2,Δ-lifting of f , i.e., γ ◦ j∗(f) = j2,Δ(f). Similarly, γ̂ ◦ ı∗ = j

2,Δ̂
, and j2,Δ and

j
2,Δ̂

are induced by j and ı, respectively. Comparing the preceding diagrams, we
see that the following diagram commutes

L2(G, μΔ) F−−−−→ L2(Ĝ, μ
Δ̂

)

j2,Δ

⏐
⏐
#

⏐
⏐
#j2,Δ̂

L2,Δ(G#, μΔ)
(ΦG

Δ)#−−−−→ L
2,Δ̂

(G#∧)

yielding (3). �
7.4.11. We note first that since the couple (G, j) in 7.4.1 is a nonstandard

object, Nelson’s algorithm is not applicable to the proposition “(G, j) is a hyperap-
proximant to G,” because this algorithm deals only with the formulas containing
only standard parameters. To obviate this obstacle, we will proceed with the fol-
lowing definition.

A standard sequence ((Gn, jn))n∈N, with Gn a finite abelian group and jn
a mapping of Gn into G for n ∈ N, is a sequential approximant or approximating
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sequence to a separable locally compact abelian group G provided that (GN , jN ) is
a hyperapproximant to G for all N ≈ +∞.

Let ((Ĝn, ĵn))n∈N be a sequential approximant to Ĝ. We call it a dual for
((Gn, jn))n∈N provided that (ĜN , ĵN ) is a dual hyperapproximant to (GN , jN ) for
all N ≈ +∞.

A function f : G → C is rapidly decreasing or has rapid decay with respect
to a sequential approximant ((Gn, jn))n∈N to G provided that for each relatively
compact neighborhood U about the zero of G and each infinite N ∈ ∗N the condition
holds (cf. 7.4.8)

(∀B ∈ ∗P(G))
(

B ⊂ G−Gf → Δ
∑

g∈G
|∗f(j(g))| ≈ 0

)

,

with Δ := |j−1
N (∗U)| · |Gn|−1.

The Nelson algorithm fully applies to these definitions. However, it is impos-
sible to obtain each hyperapproximant from some sequential approximant partic-
ularly in case the nonstandard universe ∗V (R) is not an ultrapower of V (R) with
respect to some ultrafilter on N. However, a thorough inspection of the proof of
Theorem 7.4.4 shows that there is some sequential approximant to each separable
locally compact abelian group.

In the propositions to follow K and K̂ stand for the families of all compact
subsets of G and Ĝ, while T0 and T̂0 are some bases for the neighborhood filters
about the zeros of G and Ĝ, respectively.

7.4.12. Assume that to each n ∈ N there are a sequence of finite abelian groups
Gn and a mapping jn : Gn → G, with G a separable locally compact abelian group
and T0 a base of relatively compact neighborhood filter about the zero of G. Then
((Gn, jn))n∈N is a sequential approximant to G if and only if the following hold:

(1) (∀ξ ∈ G)(∀U ∈ T0)(∃f ∈ ∏n∈N
Gn)(∃n0 ∈ N)(∀n > n0)

((ξ − jn(fn) ∈ U);
(2) (∀K ⊂ K )(∀U ∈ T0)(∃m ∈ N)(∀n > m)(∀g, h ∈ Gn)

((jn(g), jn(h) ∈ K → (jn(g + h) − jn(g) − jn(h) ∈ U)
∧ (jn(g) + jn(−g) ∈ U)).

� This is immediate by the Nelson algorithm on considering that nst (∗G) =⋃{∗K : K ⊂ G is compact}. �

7.4.13. Let ((Gn, jn))n∈N be a sequential approximant to the separable locally
compact abelian group G. Then the following hold:

(1) f : G → C is a rapidly decreasing function with respect to this
sequence if and only if
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(∀U ∈ T0)(∀ε > 0)(∃n0 ∈ N)(∃K ∈ K )(∀n > n0)
(∀B ⊂ j−1

n (G −K)) 1
|j−1

n (U)|
∑
g∈B |f(jn(g))| < ε;

(2) To each Haar measure μ on G there is some U in T0 satisfying

∫

f dμ = lim
n→∞

1
|j−1
n (U)|

∑

g∈Gn

|f(jn(g))|

for all bounded μ-almost everywhere continuous function f : G → C

of rapid decay with respect to ((Gn, jn))n∈N.

� To prove (1) apply the Nelson algorithm to the definition of rapidly increasing
function. To prove (2), do the same with 7.4.8. �

7.4.14. Let ((Ĝn, ĵn))n∈N and ((Gn, jn))n∈N be the same as in 7.4.11. Then

((Ĝn, ĵn))n∈N is dual to ((Gn, jn))n∈N if and only if the following hold:

(1) (∀V ∈ T̂0)(∃n0 ∈ N)(∃K ∈ K )(∃ε > 0)
(∀n > n0)(∀χ ∈ Ĝn)(∀g ∈ j−1

n (K)(|χ(g) − 1| < ε → ĵn(χ) ∈ V );
(2) (∀K ∈ K )(∀L ∈ K̂ )(∀ε > 0)(∃n0 ∈ N)(∀n > n0)

(∀g ∈ j−1
n (K))(∀χ ∈ ĵ−1

n (L)(|ĵn(χ)(jn(g)) − χ(g)| < ε).

� To prove, apply the Nelson algorithm to definition of dual hyperapproximant
in 7.4.6. �

7.4.15. Let ((Gn, jn))n∈N be a sequential approximant to a separable locally

compact abelian group G and let ((Ĝn, ĵn))n∈N be a dual sequential approximant

to Ĝ. Suppose that μ is a Haar measure on G and F : L2(G) → L2(Ĝ) is the
Fourier transform on G. Suppose further that U ∈ T0 corresponds to μ in accord
to 7.4.13 (2).

In this event if f and |F (f)| are bounded and Haar almost everywhere con-
tinuous functions with |f |2 and |F (f)|2 of rapid decay with respect to the above
sequential approximants then

lim
n→∞

|j−1
n (U)|
|Gn|

∑

χ∈Ĝn

∣
∣
∣
∣

∫

G

f(ξ)ĵn(χ)(ξ) dμ(ξ)

− 1
|j−1
n (U)|

∑

g∈Gn

f(jn(g))χ(g)
∣
∣
∣
∣

2

= 0.

� To prove, apply the Nelson algorithm to Theorem 7.4.10. �
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7.4.16. Comments.

(1) The results of this section belong to Gordon [140, 142, 144, 146].

(2) If G is a compact group then Gf = G and each standard finite-rank
S-continuous unitary representation of G determines (as explained in the previous
section) a unitary representation T̃ of G# of the same rank. This representation
gives rise to an equivalent representation T̃ ◦j of G. Theorem 7.3.10 shows that if G
possesses a hyperapproximant (G, j) then each irreducible unitary representation
of G takes the same shape with some S-continuous irreducible unitary representa-
tion T of G.

(3) The main results of this section are stated for separable locally
compact abelian groups. However, we may omit the separability assumption in
most cases on assuming that the λ+-saturation rather than ω+-saturation of the
nonstandard universe, with λ the weight of G (which is by definition the least of
the cardinals of bases for the topology of G).

(4) We may construct a dual approximant to the character group in
the cases of the unit circle and a discrete group. This, together with a thorough
inspection of the proof of Theorem 7.4.4, shows that each separable locally compact
abelian group with a compact and open subgroup possesses a couple of dual hy-
perapproximants. Therefore, the same holds for all locally compact abelian groups
since we may construct dual hyperapproximants to R straightforwardly (cf. 7.1).

(5) If |f |2 obeys the conditions of 7.4.8, while |F (f)|2 meets the same
conditions on replacing G, G,Δ, Gf with Ĝ, Ĝ, Δ̂, Ĝf , respectively; then 7.4.10 (3)
amounts to the following:

(Δ|G|)−1
∑

h∈Ĝ
|F (f)(ı(h)) − ΦΔ(∗f ◦ j)(h)|2 ≈ 0,

which reads in more detail as:

(Δ|G|)−1
∑

h∈Ĝ

∣
∣
∣
∣

∫

∗G

∗f(ξ) · ı(h)(ξ)dμΔ(ξ) − Δ
∑

g∈G

∗f(j(g)) · h(g)
∣
∣
∣
∣

2

≈ 0.

7.5. Examples of Hyperapproximation

We now consider hyperapproximation of particular groups: the additive group
of the reals R, the unit circle, the τ -adic solenoid, the additive group of τ -adic
integers, and profinite abelian groups.
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7.5.1. We start with returning the nice hyperapproximant to the additive group
of R as given in 7.4.2. We let G := {−L, . . . , L} stand for the additive group of
the ring ∗Z/N∗Z, where N := 2L+ 1, NΔ ≈ +∞, Δ ≈ 0, and j : G → ∗

R acts as
j(k) := kΔ. In this case the dual group Ĝ is isomorphic to G as shown by assigning
to each n ∈ G the character χn with χn(m) := exp(2πinm/N). The group R̂

is isomorphic to R as shown by assigning to each t ∈ R the character κt with
κt(x) := exp(2πitx). A dual hyperapproximant (Ĝ, ι) is defined by ı(n) := n

NΔ , or,
more precisely, ı(χn)(x) := exp( 2πin

NΔ
x).

From 7.2.1 (1) we infer 7.4.1 (1). It is easy to verify 7.4.1 (2). Indeed, j(m) =
mΔ ≈ x and ı(m) = m

NΔ ≈ t, so that

exp(2πitx) = exp 2πiı(m)(j(n)) ≈ exp(2πimn/N).

The corresponding hyperapproximant to the Fourier transform was thoroughly in-
spected in 7.1.

7.5.2. We now construct a hyperapproximant to the unit circle S, also denoted
by S1. It is convenient to represent S1 in the form of the interval [−1/2, 1/2) as
was done before. We consider addition modulo 1 as the group operation +S on S.

The dual group Ŝ is isomorphic to the additive group Z by assigning to n ∈ Z

the character κn(x) := exp(2πinx).
We take asG the same group {−L, . . . , L} as in 7.5.1, whereN := 2L+1 ≈ +∞,

and we define the mapping j : G → ∗S by j(m) := m/N for m ∈ G. The mapping
ı : Ĝ → ∗

Z is defined on the dual hyperapproximant (Ĝ, ı) by ı(n) := n; more
precisely, ı(χn) := κn, where χn is the character defined in 7.5.1. Since Z is
a discrete group, Ĝ0 = 0 and Ĝf = Z. Since S is compact, it suffices to verify only
7.4.1 (2) which is just as trivial as before. Applying Theorem 7.4.10 to this case,
we come to the following:

(1) Let f : [−1/2, 1/2) → C be a Riemann-integrable function. Then

L∑

n=−L

∣
∣
∣
∣

1/2∫

−1/2

f(x) exp(−2πinx) dx− 1
N

L∑

m=−L
f(m/N) exp(−2πimn/N)

∣
∣
∣
∣

2

≈ 0

whenever N := 2L+ 1 is an infinite hypernatural.
By a suitable change of variables we come to the following:

(2) Assume that f is a Riemann-integrable function on [−l, l], while N
and Δ satisfy N := 2L+ 1 ≈ +∞ and ◦(NΔ) = 2l. Then

L∑

n=−L

∣
∣
∣
∣

l∫

−l
f(x) exp(πinx/l) dx− Δ

L∑

m=−L
f(mΔ) exp(−2πimn/N)

∣
∣
∣
∣

2

≈ 0.
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7.5.3. In the following two subsections we construct hyperapproximants to
profinite abelian groups.

So, we consider a standard sequence ((Kn, ϕn))n∈N, where Kn is a finite abelian
group and ϕn : Kn+1 → Kn is an epimorphism for all n ∈ N.

Let (K,ψ) := lim←−(Kn, ϕn) be the projective limit of ((Kn, ϕn))n∈N. This means
that K is a group and there is a sequence of surjective homomorphisms ψ :=
(ψn)n∈N, with ψn : K → Kn such that ϕn ◦ ψn+1 = ψn for all n ∈ N. The
topology of (K,ψ) is induced from

∏
nKn. Given N ≈ +∞, put G := ∗KN . Then

∗ψN : K → ∗KN = G is an epimorphism.

(1) Let j : G → ∗K be an internal mapping (not a homomorphism in
general) that is a right inverse of ∗ψN with j(0) = 0. Then (G, j) is a hyperapprox-
imant to K.

� By the definition of the topology of K, we have the following description for
infinite proximity on ∗K:

(∀α, β ∈ ∗K)(α
K≈ β ↔ (∀ stn)(∗ψn(α) = ∗ψn(β))).

The group K is compact, so 7.4.1 (1) is satisfied and we are left with showing
that 7.4.1 (2) and 7.4.1 (3), because 7.4.1 (4) holds by definition. Given n > m, we
introduce the homomorphism ϕnm : Kn → Km by the rule ϕnm := ϕn−1 ◦ · · · ◦ϕm.
Then ϕn,n−1 = ϕn−1 and ϕnm ◦ ψn = ψm. Hence, given a standard n in N, we
successively infer

∗ψn(j(a+ b)) = ∗ϕNn ◦ ∗ψN (j(a+ b))

= ∗ϕNn(a+ b) = ∗ϕNn(a) + ∗ϕNn(b).

Similarly,

∗ψn(j(a) + j(b)) = ∗ψn(j(a)) + ∗ψn(j(b)) = ∗ϕNn(a) + ∗ϕNn(b),

which yields 7.4.1 (2) on considering the above description of infinite proximity
on ∗K. By analogy we derive 7.4.1 (3) so completing the proof. �

(2) In the context of (1)

G0 = {a ∈ G : (∀ stn)(∗ϕNn(a) = 0)},

with ϕnm : Kn → Km, and K � G/G0 = G#.
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7.5.4. If (K,ψ) := lim←−(Kn, ϕn) then the dual K̂ takes the shape lim←−(K̂n, ϕ̂n),

with ϕ̂n : K̂n → K̂n+1 acting by the rule ϕ̂n(χ) := χ ◦ ϕn (χ ∈ K̂n).
The embeddings ψ̂n : K̂n → K̂ are defined similarly. Given n > m, we define

the embeddings ϕ̂nm : K̂m → K̂n as ϕ̂nm(χ) := χ ◦ ϕnm for all χ ∈ K̂n, which
yields ϕ̂nm = ϕ̂m ◦ · · · ◦ ϕ̂n−1 and ψ̂m = ψ̂n ◦ ϕ̂nm.

(1) Assume that (G, j) is the hyperapproximant of K defined as in
7.5.3 (1); i.e., G := KN and j : G → ∗K is the right inverse of ∗ψN . Then (K̂, ψ̂N )
is a hyperapproximant of K̂ dual to (G, j).

� Note first that 7.4.1 (2–4) hold automatically because ψ̂N is a homomor-
phism. Since K̂ is the inductive limit of (K̂n); therefore, K̂ =

⋃
n∈N

An, with
An := {χ ◦ ψn : χ ∈ K̂n}. By transfer, ∗K̂ =

⋃
n∈∗N

An. Since K̂n is a stan-
dard finite set, it follows that ∗An = {χ ◦ ∗ψn : χ ∈ K̂n}. Thus, each stan-
dard element κ ∈ ∗K̂ has the shape κ = χ ◦ ∗ψn for some standard n and
χ ∈ K̂N . Consequently, ∗ϕ̂nM (χ) ∈ K̂n and ψ̂N (∗ϕ̂nN (χ)) = κ, which yields
7.4.1 (1). We have 7.4.6 (1) automatically because K is compact. If χ ∈ K̂n, then
∗ψ̂N (χ)(j(a)) = χ(∗ψN (j(a))) = χ(a), yielding 7.4.6 (2). �

(2) In the context of 7.5.3 (1) and (1), assume that f : K → C is
a bounded and Haar almost everywhere continuous function. Then

∑

χ∈K̂N

∣
∣
∣
∣

∫

∗K

f(α)χ(ψN (α)) d∗μK(α) − |KN |−1
∑

a∈KN

f(j(a))χ(a)
∣
∣
∣
∣

2

≈ 0,

with μK standing for the Haar measure on K satisfying μK(K) = 1.

� Straightforward from 7.4.10 and 7.4.16 (5). �

7.5.5. We now apply the results of the preceding subsection to the constructing
a hyperapproximant to the ring Δτ of τ -adic integers (see [151, 174]).

We let the symbol a | b denote the fact that b divides a, while rem(a, b) will
stand for the remainder from dividing a by b.

Let τ := (an)n∈N be a standard sequence of naturals such that an > 1 and
an |an+1. Denote by An the ring Z/anZ which in our case is conveniently regarded
as the ring of smallest positive residues modulo an, i.e., An = {0, 1, . . . , an − 1}.

Let ϕn : An+1 → An be the epimorphism, sending a ∈ An+1 to the remain-
der from dividing a by an; in symbols, ϕn(a) := rem(a, an). The ring Δτ :=
lim←−(An+1, ϕn) is the ring of τ -adic integers.

We define the embedding ν : Z → Δτ by putting ν(a)n := rem(a, an) for all
a ∈ N and n ∈ Z.
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Then the sequence ν(a) belongs to
∏
n∈N

An and ϕn(ν(a)n+1) = ν(a)n, and so
ν(a) ∈ Δτ . It is easy that ν(Z) is dense in Δτ . Put jn := ν|An

: An → Δτ . Then
jn is a right inverse of ψn : Δτ → An. Indeed, if ξ := (ξn)n∈N ∈ Δτ then ψn(ξ) = ξ.
Since rem(a, an) = a for a ∈ An, infer that ψn(ν(a)) = a.

If N ≈ +∞ then the couple (∗AN , ∗jN ) is a hyperapproximant to Δτ . More-
over, Δτ is topologically isomorphic to

∗AN/G0, with

G0 := {a ∈ ∗AN : (∀ stn)(an |a)}.

� Immediate from 7.5.3 (1, 2). �

7.5.6. We now describe the dual Δ̂τ (see [174]). Assign Q
(τ) := { man

: m ∈
Z, n ∈ N}. Since an |am for n ≤ m, it follows that Q

(τ) is a subgroup of the additive
group Q. Obviously, Z ⊂ Q

(τ). Put Z
(τ) := Q

(τ)/Z.
It is well known that Δ̂τ

∼= Z
(τ). To describe an isomorphism we introduce the

following notation. If ξ := (ξn)n∈N ∈ Δτ then we write ξn = rem(ξ, an). This agrees
with the case in which ξ = ν(a) for some a ∈ Z; i.e., rem(a, an) = rem(ν(a), an).

In what follows, we identify ν(a) with a, implying that Z ⊂ Δτ . Then the
equality ξ = ηan + rem(ξ, an) holds for some η ∈ Δτ .

Put {ξ/an} := (rem(ξ, an))/an ∈ Q
(τ). It is then easy that {Cξ/an} ≡

C{ξ/an} (mod Z) and {ξ/an + η} = {ξ/an}, with C ∈ Z and η ∈ Δτ .
Assume now that (C/an) is the coset of C/an ∈ Q

(τ) in Z
(τ). Then the

character χ(C/an) ∈ Δ̂τ is given by the formula

χ(C/an)(ξ) = exp(2πi{ξ/an}) (ξ ∈ Δτ ).

We now describe the embedding ψ̂n : Ân → Δ̂τ .
In the case under consideration Ân is isomorphic to An by sending each m to

the character χm ∈ Ân given by χm(a) := exp(2πima/an) for a ∈ An.
Hence,

ψ̂n(χm)(ξ) = χm(ψn(ξ)) = χn(rem(ξ, an))
= exp(2πim rem(ξ, an)/an) = exp(2πi{mξ/an}).

Carrying out appropriate identifications, we may assume that ψ̂n : An → Z
(τ) is

given by the formula ψ̂n(m) = (m/an).

For an arbitraryN ≈ +∞, the couple (∗AN , ∗ψ̂N ) is a hyperapproximant of Δ̂τ

dual to (∗AN , ∗jN ).
� Follows from 7.4.10. �
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(1) If N ≈ +∞ and f : Δτ → C is a standard bounded function
that is continuous almost everywhere with respect to the Haar measure μτ , with
μτ (Δτ ) = 1, then

∗aN−1∑

k=0

∣
∣
∣
∣

∫

∗Δτ

∗f(ξ) exp(−2πi{kξ/∗aN}) dμτ(ξ)

−a−1
N

∗aN−1∑

n=0

∗f(n) exp(−2πikn/∗aN )
∣
∣
∣
∣

2

≈ 0.

� Follows from 7.4.4 (5). �

7.5.7. In the forthcoming two subsections we hyperapproximate the τ -adic
solenoid. Recall (see [151, 174]) that the τ -adic solenoid Στ is represented as [0, 1)×
Δτ , with the group operation +τ defined as

(x, ξ) +τ (y, η) := ({x+ y}, ξ + η + [x+ y]),

with [a] and {a} standing for the integral and fractional parts of a real a. The
topology on Στ is given by the system (Vn)n∈N of neighborhoods about zero, with

Vn := {(x, ξ) : 0 ≤ x < 1/an, (∀k ≤ n)(rem(x, ak) = 0)}
⋃

{(x, ξ) : 1 − 1/an < x < 1, (∀k ≤ n)(rem(x+ 1, ak) = 0)}

(recall that τ := {an : n ∈ N}).
The above readily yields the following description for the infinitesimals in Στ .

(1) If (x, ξ) ∈ ∗Στ then

(x, ξ)
Στ≈ 0 ↔ x ≈ 0 ∧ ξ

Δτ≈ 0 ∨ x ≈ 1 ∧ ξ + 1
Δτ≈ 0.

Distinguishing some N ≈ +∞, put G := ∗Z/∗a2
N
∗
Z = {0, 1, . . . , ∗a2

N − 1} and
introduce the mapping j : G → Στ by the rule

j(a) := ({a/aN}, [a/aN ]) (a ∈ G).

As in the preceding subsection, we assume that Z ⊂ Δτ . In this event, [a/aN ] < aN .

(2) The couple (G, j) is a hyperapproximant to the τ -adic solenoid Στ .
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� Since a+G b ≡ a+ b (mod a2
N ); therefore, a+G b ≡ a+ b (mod aN ), and so

{(a+G b)/aN} = (rem(a+G b, aN))/aN
= (rem(a+ b, aN ))/aN = {{a/aN} + {b/aN}}.

We will show that [(a +G b)/aN ]
Δτ≈ [(a + b)/aN ] = [a/aN ] + [b/aN ] + [{a/aN} +

{b/aN}]. By (1) this implies that j(a+G b)
Στ≈ j(a) + j(b).

Put a := q(a)aN + r(a) and b := q(b)aN + r(b), i.e., q(a) = [a/aN ] and q(b) =
[b/aN ]. Let a + b := q(a + b)aN + r(a + b). If q(a + b) = saN + r then a + b =
sa2
N + raN + r(a+ b) and raN + r(a+ b) ≤ (aN − 1)aN + aN − 1 = a2

N − 1. Thus,
a +G b = rem((a + b), a2

N) = raN + r(a + b), and so q(a +G b) = r. Therefore,
q(a + b) ≡ q(a +G b) (mod aN ). Since an | aN for all standard n, it follows that
q(a+ b) ≈ q(a+G b).

To prove the relation j(−G a) ≈ j(a) it suffices to represent a as a = qaN + r,
use the fact that −G a = a2

N − a, and settle the two cases r = 0 and r �= 0.
To show that (G, j) is a hyperapproximant to Στ it remains to prove (cf. 7.4.1)

that to each couple (x, ξ) ∈ Στ there is some a in G satisfying j(a) ≈ (x, ξ).
To this end, choose some r < aN such that r/aN ≤ x < (r + 1)/aN and put
q := rem(∗x, aN). Then q < aN , and we are done on letting a := qaN + r. �

By 7.5.5 and (1), Στ � G/G0, with

G0 =
{
a ∈ G : {a/aN} ≈ 0 ∧ [a/aN ]

Δτ≈ 0 ∨ {a/aN} ≈ 1 ∧ [a/aN ] + 1
Δτ≈ 0

}
.

We may also provide a more concise description for G0.
(3) G0 = {a ∈ G : (∀ stn)(exp(2πia/(aNan))) ≈ 1)}.

� Given a standard n, assume that exp(2πia/(aNan)) ≈ 1. Then there is
some k ∈ Z satisfying (a/(aNan) ≈ k). If a := qaN + r then a/(aNan) = (q +
r/aN )/an ≈ k ∈ ∗Z. Since an is standard, it follows that q + r/aN ≈ kan ∈ ∗Z,
where q ∈ ∗Z and 0 ≤ r/aN < 1, so that the two cases r/aN ≈ 0 and r/aN ≈ 1
are possible. In the first case q ≈ kan and q = kan, because both numbers are

integers. Therefore, r/aN ≈ 0 and q
Δτ≈ 0, and so a ∈ G0. In the second case of

r/aN ≈ 1 if q �≡ −1 (mod an) then q + 1 = tan + s, where 0 < s < an. Therefore,
q + r/aN = s − 1 + tan + r/aN ≈ s + tan ≈ kan. Then s/an + t ≈ k, which is
impossible if s �= 0. Thus, q ≡ −1 (mod an), and again a ∈ G0.

Suppose conversely that a ∈ G0 and a := qaN + r. The two cases are in order:

(a) r/aN ≈ 0, q
Δτ≈ 0; (b) r/aN ≈ 1, q

Δτ≈ 0. In the first case exp(2πia/(aNan)) =
exp(2πi(a/an + r/(aNan))) = exp(2πia/(aNan)) ≈ 1, since q/an ∈ ∗Z. The second
case is settled similarly. �
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(4) If τ is a standard sequence (an)n∈N of naturals with an > 1 and
an |an+1, G := {0, 1, . . . , a2

N − 1} is the additive group of ∗Z/a2
N
∗
Z, and G0 = {a ∈

G : (∀ stn)(exp(2πia/(aNan))) ≈ 1}; then the τ -adic solenoid Στ is topologically
isomorphic to G# := G/G0.

7.5.8. We now construct a dual hyperapproximant of Σ̂τ . It is well known
that Σ̂τ � Q

(τ) := {m/an : m ∈ Z, n ∈ N}. We may exhibit an isomorphism by
associating with each α := m/an ∈ Q

(τ) the character κα ∈ Σ̂τ such that

κα(x, ξ) := exp(2πiα(x+ rem(ξ, an))) (x ∈ [0, 1], ξ ∈ Δτ )

(see [151, 174]).
As in the case of an arbitrary finite group, Ĝ is isomorphic to G by sending

each b ∈ G to the character χb with χb(a) := exp(2πiab/a2
N) for all a ∈ G. As a

dual hyperapproximant to the hyperapproximant of Στ constructed above, consider
the couple (G, ı) with ı : G → ∗

Q
(τ) acting by the rule ı(b) := b/aN . More

precisely, ı : Ĝ → Σ̂τ carries each χb ∈ Ĝ to the character κb/an
∈ ∗Σ̂τ , on

assuming that G is presented as the group of absolutely smallest residues, i.e.,
G = {−1

2
a2
N , . . . ,

1
2
a2
N − 1}.

To check 7.4.1 (1–4) is an easy matter in this case. As regards 7.4.6 (1, 2) it
suffices again to validate the second condition, which holds now as equality. Indeed,
if a ∈ G and a := qaN+r then [a/aN ] = q < aN , i.e., rem([a/aN ], aN) = [a/aN ] = q.
Now κı(b)(j(a)) = exp(2πi(b/aN)(r/aN + q)) = exp(2πiab/a2

N) = χb(a).

Let f : Στ → C be a bounded almost everywhere continuous function with
respect to the Haar measure μΣτ

, with μΣτ
(Στ ) = 1. If N ≈ +∞ then

(1)
∫

Στ

f dμτ =
◦
(

1
a2

N

a2
N−1∑

k=0

f({k/aN}, [k/aN ])
)

;

(2)
a2

N/2−1∑

m=−a2
N
/2

∣
∣
∫

Στ

f(x, ξ) exp(−2πi(m/aN )(x+ rem(ξ, aN))dμΣτ

− 1
a2

N

a2
N−1∑

k=0

f({k/aN}, [k/aN ]) exp(−2πikm/a2
N )
∣
∣2 ≈ 0.

� The claim follows from 7.4.10 and 7.4.16 (5). �
7.5.9. We now construct a hyperapproximant to the additive group of the field

Qp of p-adic numbers, with p a standard prime integer.
Assume given M and N with M,N,N − M ≈ +∞. As a hyperfinite abelian

group G we consider the additive group of the ring ∗Z/pN ∗Z, which is conveniently
represented here as the group of smallest positive residues G := {0, 1, . . . , pN − 1}.
We also define the mapping j : G → ∗

Qp, by putting j(n) := n/pM ∈ ∗Q ⊂ Qp for
n ∈ G.
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(1) If n ∈ G then

j(n) ∈ nst (∗Qp) ↔ (∃ stk ∈ N)(pM−k |n).

Moreover, if

n = a−kpM−k + a−k+1p
M−k+1 + · · · + aN−M−1p

N−1,

with 0 ≤ aı < p, then

j̃(n) = st(j(n)) =
∞∑

ı=−k
aıp

ı.

(Recall that j̃ := st ◦j|Gf
, cf. 7.4.1.)

� If pM−k | n then n has the shape of the statement and the claim follows
from the fact that N −M − 1 is an infinite hypernatural. Conversely, suppose that
np−M ≈ ξ ∈ Qp and |ξ|p = pk, with k ∈ Z. Since |np−M−ξ|p ≈ 0, there is an infinite
b ∈ ∗N such that np−M − ξ = pbε1 where ε1 is the unit of ∗Zp. By assumption,
ξ = p−kε2, where ε2 is the unit of Zp. This implies that n = pM−kε2 + pM+bε1.
Since k is standard; therefore, M − k < M + b, implying that pM−k |n in ∗Zp and,
hence, also in Z. �

(2) The couple (G, j) is a hyperapproximant to the additive group Q
+
p

of Qp. Moreover,

Gf = {n ∈ G : (∃ stk)(pM−k |n)},
G0 = {n ∈ G : (∀ stk)(pM+k |n)}.

� The sought equalities follow from (1). To verify 7.4.1 (1–4) it suffices to show
that j̃ : Gf → Qp is an epimorphism.

Denote the addition of G by ⊕. Let n = n1 ⊕ n2, i.e., n1 + n2 = n + tpM .
Then |n1p

−M +n2p
−M −np−M |p ≤ pN−M , and so j̃(n1 +n2) = j̃(n1 ⊕n2) because

N −M is infinite.
Since st : nst (∗Qp) → Qp is a homomorphism, obtain j̃(n1+n2) = j̃(n1)+j̃(n2).

This proves that j̃ is a homomorphism. To verify that j̃ is surjective, note that if
ξ =

∑∞
ı=−k aıp

ı then, defining n as in (1), we find that j(n) ≈ ξ. �
(3) Q

+
p � Gf/G0 = G#.

Let G(0) := {n ∈ G : pM |n}. Then G(0) is an internal subgroup of G satisfying
G0 ⊂ G(0) ⊂ Gf . Since |G(0)| = pN−M , we may take Δ := pM−N as a normalizing
factor of the triple (G,G0, Gf ).

(4) The equality j̃(G(0)) = Zp holds. Moreover, the normalizing factor
Δ := pM−N induces on Qp the Haar measure μΔ with μΔ(Zp) = 1 (this measure is
denoted by μp in the sequel).



336 Chapter 7

7.5.10. We now derive a standard version of the condition for an S1,Δ-integr-
able lifting to exist as stated in 7.4.8.

(1) For f : Qp → C to satisfy the condition (cf. 7.4.8)

(∀B ∈ ∗P(G))
(

B ⊂ G−Gf → Δ
∑

g∈G
|∗f(j(g))| ≈ 0

)

,

it is necessary and sufficient that the relation

lim
m,n→∞

1
pn

∑

0≤k<pm+n+l

pl
�k

|f(k/pm+l)| = 0

holds uniformly in l.

� If B ⊂ G−Gf then pM−k � L for all n ∈ B and every standard k. The latter
amounts to the condition that pM−L � n for some infinite L. Thus, B ⊂ G−Bf if
and only if B ⊂ BL := {n : pM−L � n}. However, BL is an internal set for every
infinite L. Hence, the hypothesis may be reformulated as follows: If L is an infinite
hypernatural such that L < M < N and N −M is also infinite then

1
pN−M

∑

0≤k<pN

pM−L
�k

|∗f(k/pM)| ≈ 0.

Putting n := N −M , m := L, and l := M − L, infer that

1
pn

∑

0≤k<pm+n+l

pl
�k

|∗f(k/pm+l)| ≈ 0

for all infinite m and n and for every l. The last relation yields the claim. �
(2) If f : Qp → C is a bounded and Haar almost everywhere continuous

function satisfying (1), then f is integrable and

∫

Qp

f dμp =
◦( 1
pN−M

∑

0≤k<pN

∗f(k/pM )
)

,

or, standardly, ∫

Qp

f dμp = lim
m,n→∞

1
pn

∑

0≤k<pm+n

∗f(k/pm).
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7.5.11. We now construct a dual hyperapproximant to Q̂
+
p . Recall that Q̂

+
p

is isomorphic with Q
+
p by sending with each ξ ∈ Q

+
p to the character κξ(η) :=

exp(2πi{ξη}), with {ζ} the fractional part of a p-adic number ζ. Identifying Q̂
+
p

and Q
+
p in this manner, we construct a hyperapproximant (G, ĵ) to Qp by letting

ĵ(n) := n/pN−M for n ∈ G.

(1) The couple (G, ĵ) is a hyperapproximant to the dual Q̂+
p of (G, j).

� The claim about hyperapproximation for (G, ĵ) was established in 7.5.9 (2).
We are left with checking that (G, ĵ) is dual to (G, j) (see 7.4.6). To verify 7.4.6 (2)
is an easy matter:

κj(m)(ĵ(n)) = exp(2πi{ĵ(n)j(m)}) = exp(2πi{nm/pN})

= exp(2πinm/pN ) = χm(n).

To verify 7.4.6 (1), it suffices to show that

(∀m)(((∃ stk)(pM−k | m) → exp(2πimn/pN ) ≈ 1)
→ (∀ stk)(pN−M+k | n)).

Were this false, we would find some k satisfying n = qpN−M+k + r and 0 < r <
pN−M+k . The two cases are possible.

(1): ◦(r/pN−M+k) = 0. Put a := [pN−M+k/(2r)] and m := apM−k (obviously,
m < pN ). Then

exp(2πimn/pN )
= exp(2πi[pN−M+k/(2r)](r/pN−M+k)) ≈ exp(πi) = −1,

which is a contradiction.
(2): ◦(r/pN−M+k) = α and 0 < α ≤ 1. Putting m := pM−k−1, infer that

exp(2πimn/pN ) ≈ exp(2πiα/p) �= 1, and we again arrive at a contradiction. �
(2) Consider the Fourier transform F : L2(Qp) → L2(Qp) with

F (f)(ξ) :=
∫

Qp

f(η) exp(−2πi{ξη}) dμp(η).

Let f ∈ L2(Qp) be such that |f |2 and |F (f)|2 are bounded almost everywhere
continuous functions satisfying 7.5.10 (1). Then

1
pM

pN−1∑

k=0

∣
∣
∣
∣

∫

Qp

f(η) exp(−2πi{ηk/pN−M}) dμp(η)

− 1
pN−M

pN−1∑

n=0

f(n/pM) exp(−2πikn/pN )
∣
∣
∣
∣

2

≈ 0,



338 Chapter 7

whenever N,M,N −M ≈ +∞.
� The claim follows from Theorem 7.4.10 and 7.4.16 (5). �
7.5.12. The field of p-adic numbers is abstracted to the ring Qα of α-adic

numbers, where α = {an : n ∈ Z} is a doubly infinite sequence of naturals such
that an |an+1 for n ≥ 0 and an+1 |an for n < 0. This ring is described in detail in
[151; Chapter 2, § 3.7]. It is shown in [174] that the group Q̂

+
α is isomorphic to Q

+

α̂
,

with α̂(n) := α(−n).

Let M,N ≈ +∞, and let G := {0, 1, . . . , ∗aM∗aN − 1} be the additive group
of ∗Z/∗(aMaN )∗Z. Suppose that j : G → Q

+
α and ĵ : G → Q

+

α̂
are defined by the

rules j(a) := aa−1
−M and ĵ(a) := aa−1

N for a ∈ G.

Then the couple (G, j) is a hyperapproximant to Q
+
α , and the couple (Ĝ, ĵ) is

a dual hyperapproximant to Q
+

α̂
. Moreover,

Gf := {a ∈ G : (∃ stk ∈ Z)(a−Ma
sgn k
k |a)},

G0 := {a ∈ G : (∀ stk ∈ Z)(a−Ma
sgn k
k |a)},

and Δ := a−1
N is a normalizing factor for the triple (G,G0, Gf ). Similar definitions

apply to Ĝf , Ĝ0, and Δ̂ := a−1
−M , a normalizing factor for the triple (G, Ĝ0, Ĝf ).

� The proof of this proposition is analogous to 7.5.9–7.5.11. �
7.5.13. Comments.

(1) Hyperapproximation of the unit circle (cf. 7.5.2) was studied in
detail by Luxemburg in [329]; however, the concept of hyperapproximant was not
suggested. The article [329] in particular contains 7.5.2 (2) for continuous functions
as well as many interesting applications of infinitesimal analysis to Fourier series.
However, the approach of [329] was limited since the theory of Loeb measure and
the technique of saturation were not available at that time.

(2) Propositions 7.5.3 (1, 2) remain valid in case Kn is a ring. In this
event K and G are rings too, and the mapping j from G to ∗K is an “almost
homomorphism,” i.e., in addition to the already-mentioned properties, j maintains
the relation j(ab) ≈ j(a)j(b) for all a and b. Moreover, the set G0, as defined in
7.5.3 (2), will be a two-sided ideal.

(3) Proposition 7.4.8 shows that, given f satisfying 7.5.6 (1), we have

∫

Δτ

f(ξ) dμτ(ξ) =
◦( 1
aN

∗aN−1∑

n=0

∗f(n)
)

,
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which amounts to the standard equality
∫

Δτ

f(ξ) dμτ(ξ) = lim
N→∞

1
aN

aN−1∑

n=0

f(n).

(4) If f is continuous then we obtain a stronger equality:
∫

Δτ

f(ξ) dμτ(ξ) = lim
N→∞

1
N

N−1∑

n=0

f(n).

This follows from the strict ergodicity of the shift by 1 in Δτ which ensues in turn
from the inequality χ(1) �= 1 holding for every nontrivial character χ ∈ Δ̃τ (see [245;
Chapter 4, § 1, Theorem 1]). In regard to the sequence τ := {(n+ 1)! : n ∈ N}, this
equality was derived within analytic number theory for a slightly broader function
class containing all functions in 7.5.6 (1) (for instance, see [403]). This result shows
that for f to be bounded and almost everywhere continuous the condition is not
necessary that ∗f ◦ j be a lifting of f (here f is defined on a compact abelian group
G, and (G, j) is a hyperapproximant to G).

(5) If we take as τ the sequence (pn+1)n∈N then Δτ is the ring Zp of
p-adic integers. Consequently (cf. 7.5.5), Zp � Kp/Kp0, where Kp = ∗

Z/pN ∗Z,
Kp0 := {a ∈ Kp : (∀ stn)(pn |a)}, and N ≈ +∞.

(6) The ring Δ := Δ{(n+1)!:n∈N}, referred sometimes to as the ring of
polyadic integers, plays a rather important role in number theory. From 7.5.5 it
follows that Δ � K/K0, with

K := ∗Z/N !∗Z,
K0 := {a ∈ K : (∀ stn)(n |a)}

and N ≈ +∞.
Hyperapproximation enables us to give a simple proof to the fact that Δ �∏

p∈P Zp, with P the set of all prime numbers (cf. [146]).
(7) Clearly, the mapping of 7.5.11 fails to approximate the multiplica-

tion of Qp in contrast to the case of Zp.
Indeed, let m and n in G be presented as m := pM−1 and n := pM+1. Then

j(m) = p−1 and j(n) = p, and so j(m)j(n) = 1. The two cases are possible: If
2M ≤ N then j(mn) = pM ≈ 0. On the other hand, if 2M > N then, since we
discuss the addition of Z/pNZ, we obtain mn = pM−(N−M). Here mn /∈ Gf for
N −M is infinite.

By analogy we may prove that the hyperapproximant of 7.5.1 to the additive
group of the field R fails to hyperapproximate the multiplication of R for whatev-
er Δ.
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(8) Vershik and Gordon [503] proved the approximability of a nilpotent
Lie group whose Lie algebra has a basis with rational structure constants and
studied the class of discrete groups approximable by finite groups in detail.

The article [503] raised the question of approximability of classical simple Lie
groups, in particular, SO(3). The article [6] by Alekseev, Glebskĭı, and Gordon
gives a negative answer to this question by proving that for a compact Lie group G
to be approximable by finite groups it is necessary and sufficient that to each ε > 0
there is a finite subgroup H of G serving as a ε-net for G with respect to some
metric that defines the topology of G. This article [6] also contains the definition
of approximability of normed commutative Hopf algebras [6] by finite-dimensional
bialgebras as well as a proof that a compact group is approximable if and only if
its commutative Hopf algebra is approximable by finite-dimensional commutative
Hopf algebras.

7.6. Discrete Approximation of Function Spaces on
a Locally Compact Abelian Group

Using the results of 7.4, we proceed with discrete approximation of the Hilbert
function space over a locally compact abelian group.

In the sequel we let G stand for the primal locally compact group, while de-
noting the dual of G by Ĝ.

7.6.1. We distinguish some (left)invariant metric ρ on G, which enables us to
rephrase the definition of sequential approximant 7.4.11 as follows:

A sequence ((Gn, jn))n∈N of couples of finite groups Gn and maps jn : Gn → G
is a sequential approximant or approximating sequence to G provided that to all
ε > 0 and all compact K ⊂ G there is N > 0 such that for all n > N the following
hold:

(1) jn(Gn) is an ε-net for K;
(2) If ◦n is the multiplication on Gn then

ρ(jn(g1 ◦n g±1
2 ), jn(g1)jn(g2)±1) < ε for all g1, g2 ∈ j−1

n (K);
(3) jn(en) = e, with en and e the units of Gn and G, respectively.

A locally compact group G is approximable provided that G possesses a se-
quential approximant.

Recall that if μ is the (distinguished) Haar measure on G and ((Gn, jn))n∈N is
a sequential approximant to G then every bounded μ-almost everywhere continuous
function f : G → C of rapid decay is integrable and

∫

G

f dμ = lim
n→∞Δn

∑

g∈Gn

f(jn(g)),
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with Δn := μ(U)

|j−1
n (U)| (see 7.4.13 (1) which distinguishes some compact neighborhood

U about the zero of U such that μ(U) = 1). The numerical sequence (Δn) is
a sequential normalizing factor for ((Gn, jn))n∈N. As a sequential normalizing factor
we may take each sequence (Δ′n) equivalent to (Δn).

Given a compact group G, we put Δn := |Gn|−1, while we let Δn := 1 if G is
a discrete group.

We now consider a dual couple of sequential approximants ((Gn, jn))n∈N and
((Ĝn, ĵn))n∈N for G, cf. 7.4.14. If (Δn) is a sequential normalizing factor for
((Gn, jn))n∈N (with respect to μ) then (Δ̂n), with Δ̂n := (|Gn|Δn)−1, is a se-
quential normalizing factor for ((Ĝn, ĵn))n∈N (with respect to the Haar measure μ̂).
Note that if Gn is a finite abelian group then the dual Ĝn of Gn is isomorphic to
Gn and so |Gn| = |Ĝn|.

The Fourier transform Fn : L2(Gn) → L2(Ĝn) acts by the rule

Fn(ϕ)(χ) := Δn

∑

g∈Gn

ϕ(g)χ(g),

while the inverse Fourier transform F−1
n takes the shape

F−1
n (ψ)(g) = Δ̂n

∑

χ∈Ĝn

ψ(χ)χ(g).

We will also denote the Fourier transform of f by f̂ .
Given p ≥ 1, we let Sp(G) stand for the space comprising f : G → C such

that |f |p is a bounded μ-almost everywhere continuous function of rapid decay. If
f ∈ S2(G) then we put Tnf := f ◦ jn : Gn → C and T̂nf̂ := f̂ ◦ ĵn : Ĝn → C .
(Thus, Tnf is the table of f at the knots of jn(Gn), while T̂nf̂ is the table of f̂ at
the knots of ĵn(Ĝn).) By 7.4.15

lim
n→∞ Δ̂n

∑

χ∈Ĝn

|T̂nf̂(χ) − Fn(Tnf)(χ)|2 = 0.

7.6.2. In the sequel we let Lp(Gn) and Lp(Ĝn) stand for the spaces C
Gn and

C
Ĝn furnished with the respective norms

‖ϕ‖(p)
n :=

⎛

⎝Δn

∑

g∈Gn

|ϕ(g)|p
⎞

⎠

1/p

, ‖ψ‖(p)
n :=

⎛

⎝ Δ̂n

∑

χ∈Ĝn

|ψ(χ)|p
⎞

⎠

1/p

.
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In case p = 2 we denote them by Xn and X̂n, omitting the subscript p = 2 in the
symbols of their norms. By analogy, we put X := L2(G) and X̂ := L2(Ĝ). Finally,
we let Y (Ŷ ) stand for S2(G), a dense subspace of X (for S2(Ĝ), a dense subspace
of X̂, respectively). We imply a distinguished couple of sequential approximants
((Gn, jn))n∈N and ((Ĝn, ĵn))n∈N.

The sequences ((Lp(Gn), Tn))n∈N and ((Lp(Ĝn), T̂n))n∈N are discrete approxi-
mants to Lp(μ) and Lp(μ̂) respectively.

� Immediate from 7.4.10 and 7.4.13 (2). �

7.6.3. In the sequel we confine exposition to the case of a group with a compact
and open subgroup. We start with a discrete group G. In this event X = l2(G)
and the definition of sequential approximant simplifies significantly.

If G is a discrete group and ((Gn, jn))n∈N is a sequential approximant to G
(cf. 7.4.11 and 7.4.12) then

(1) lim−→ jn(Gn) = G;

(2) (∀a, b ∈ G)(∃n0 ∈ N )(∀n > n0)(∀g, h ∈ Gn)
(jn(g) = a, jn(h) = b → jn(g ◦n h±1) = ab±1);

(3) jn(en) = e.

Since the Haar integral of a function f on a discrete group produces the sum
of the values of f , we may write the integrability condition as

(4) (∀f ∈ l1(G))(∀ε > 0)(∃finK ⊂ G)
( ∑

ξ∈G−K
|f(ξ)| < ε

)
.

From (1) it is straightforward that

(5) (∀finK ⊂ G)(∃n0 ∈ N )(∀n > n0)(jn(Gn) ⊃ K).

A subset of a discrete group is compact whenever it is finite. Consequently,
Δn = 1 with Δn a normalizing factor. From (4) and (5) we readily infer that every
integrable function has rapid decay. Hence, Y = X , and ((Xn, Tn))n∈N is a strong
discrete approximant.

It is an easy matter to construct an isometric embedding ın : Xn → X serving
as a right inverse of Tn and satisfying the condition

sup
n

sup
‖z‖=1

(inf{‖x‖n : Tnx = z}) < +∞.

Indeed, we may put

ın(ϕ)(ξ) :=
{
ϕ(g), ξ = jn(g),
0, ξ /∈ jn(Gn).
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7.6.4. We now address the general case of a locally compact abelian group G
with a compact and open subgroup K.

Put L := G/K. Then L is a discrete group and L̂ ⊂ Ĝ, since L̂ = {p ∈ Ĝ :
p|K = 1}. Let μ stand as before for the Haar measure on G satisfying μ(K) = 1.
Then the dual Haar measure μ̂ on Ĝ enjoys the property μ̂(L̂) = 1. The discrete
group K̂ is isomorphic to Ĝ/L̂. Let {al : l ∈ L} be a selection of pairwise distinct
representatives of the cosets of G/K and let {ph : h ∈ K̂} be a selection of pairwise
distinct representatives of the cosets comprising Ĝ/L̂. Note that ph(k) = h(k) for
all k ∈ K.

(1) If a ∈ G and p ∈ Ĝ then there is a unique quadruple of l ∈ L,
k ∈ K, h ∈ K̂, and s ∈ L̂ such that

a = al + k, p = ph + s, p(a) = ph(al)s(l)h(k).

Take ϕ ∈ L2(G) and l ∈ L. Denote by ϕl a function in L2(K) such that
ϕl(k) = ϕ(al + k). Obviously, ‖ϕ‖2 =

∑
l∈L ‖ϕl‖2. Using the Fourier transform

on the compact group K, we arrive at the formula ϕl(k) =
∑
h∈K̂ clhh(k). The

correspondence ϕ ↔ (clh)
l∈L,h∈K̂, which is denoted in the sequel by ι, is a unitary

isomorphism between the Hilbert spaces L2(G) and l2(L× K̂), where

l2(L× K̂) :=
{

(clh)
l∈L,h∈K̂ :

∑

l∈L,h∈K̂
|clh|2 < +∞

}

.

Clearly, ι depends on the particular choice of {al : l ∈ L} for G/K.
By analogy, given ψ ∈ L2(Ĝ) and h ∈ K̂, we define ψh ∈ L2(L̂) by the

rule ψh(s) := ψ(ph + s). Then ψh(s) =
∑
l∈L dlhs(l) and the correspondence

ψ ↔ (dlh)
l∈L,h∈K̂, which is denoted in the sequel by ι̂, is again a unitary isomor-

phism between the Hilbert spaces L2(L̂) and l2(L×K̂). This isomorphism depends
again on the particular choice of a selection {ph : h ∈ K̂} of pairwise distinct
representatives of the cosets comprising Ĝ/L̂. Thus,

ψ(ph + s) =
∑

l∈L
dhls(l)

for ψ ∈ L2(Ĝ).
Take ϕ ∈ L2(G) and insert the expression for p(a) from 7.6.4 (1) in the Fourier

transform
ϕ̂(p) =

∫

G

ϕ(g)p(g)dμ(g).
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Then
ϕ̂(ph + s) =

∑

l∈L

∫

K

ϕl(k)ph(al)s(l)h(k)dμ(k).

Since
∫
K
ϕl(k)h(k) dμ(k) = clh and s(l) = s(−l), infer that

ϕ̂(ph + s) =
∑

l∈L
ph(a−l)c−lhs(l).

Comparing the last formula with the above representation for ψ(ph + s), we arrive
at the following conclusion:.

(2) The Fourier transform F : L2(G) → L2(Ĝ) amounts to the unitary
operator in l2(L× K̂) with matrix

f(h, l, h′, l′) = ph′(l′)δh,h′δ−l,l′ .

Denote by Dtest the subspace of L2(G) comprising ϕ such that ϕ and ϕ̂ are
both compactly supported. Assume also that D̂test stands for the subspace of L2(Ĝ)
which is defined by exactly the same property. Clearly, F (Dtest) = D̂test.

7.6.5. Suppose that ϕ ∈ L2(G), ι(f) = (clh)
l∈L,h∈K̂ , and

ι̂(f̂) = (dlh)
l∈L,h∈K̂ .

Then ϕ ∈ Dtest if and only if there are finite sets A ⊂ L and B ⊂ K̂ such that
clh = 0 for (l, h) /∈ A×B. In this event there also exist finite sets R ⊂ L and S ⊂ K̂
such that dlh = 0 for (l, h) /∈ R× S.

� The claim follows on observing that the matrix f(h, l, h′, l′) has a sole nonzero
entry in each row and each column. �

Let ((Gn, jn))n∈N and (Ĝn, ĵn))n∈N be a dual couple of sequential approximants
to G.

7.6.6. There is an index n0 ∈ N such that, for all n > n0, the sets Kn :=
j−1
n (K) and L̂n := ĵ−1

n (L̂) are subgroups of Gn and Ĝn; ((Kn, jn|Kn
))n∈N and

((L̂n, ĵn|
L̂n

))n∈N are sequential approximants to K and L̂; and L̂n is the dual of

Ln := Gn/Kn.

� Take N ≈ +∞. We must check that KN := j−1
N (∗K) is a subgroup of GN .

Assume that jN (a) ∈ ∗K and jN (b) ∈ ∗K. Then jN (a± b) ≈ jN (a) ± jN (b) ∈ ∗K,
implying that jN (a±b) ∈ ∗K, since K is a compact and open subgroup. Therefore,
KN is a subgroup.
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Further, (KN , jN |KN
) obviously meets the conditions 7.4.1 (1, 2), which proves

that ((Kn, jn|Kn
))n∈N is a sequential approximant to K; cf. 7.4.11. The claim about

the dual sequential approximant is established by analogy.
We are left with demonstrating that L̂N is the dual of LN := GN/KN , which

amounts to the equivalence

ĵN (κ) ∈ ∗L̂ ↔ κ|KN
≡ 1

holding for all κ ∈ ĜN .
If ĵN (κ) ∈ ∗L̂ then ĵN (κ)|∗K ≡ 1. Hence, 1 = ĵN (κ)(jN (g)) ≈ κ(g) for g ∈ KN .

Note that κ and g are nearstandard since L̂ and K are compact. Consequently,
κ|KN

≈ 1 and κ|KN
≡ 1 by 7.2.11 (1).

Assume conversely that κ|KN
≡ 1. Then κ(g) = 1 for all g ∈ GN satisfying

jN (g) ≈ 0. This, along the lines of the proof of 7.4.10, implies that ĵN (κ) ∈
nst (∗Ĝ). Let k ∈ ∗K. Then there is some g in KN satisfying jN (g) ≈ k. Therefore,
ĵN (κ)(k) ≈ ĵN (κ)(jN (g)) ≈ κ(g) = 1, and so jN (κ)|∗K ≈ 1. Since K̂ is a discrete
group, conclude that jN (κ)|∗K ≡ 1. �

7.6.7. In what follows, Kn and L̂n are subgroups of Gn and Ĝn for all n ∈ N.
A sequential approximant ((Ln, j′n))n∈N of a discrete group L is compatible

with a sequential approximant ((Gn, jn))n∈N provided that to each finite set B ⊂ L
there is an index n0 ∈ N satisfying the condition: j′n(λ) = l ∈ B implies j−1

n (l) = λ
for all n > n0 and λ ∈ Ln.

We may rephrase this as follows:
A sequential approximant ((Ln, j′n))n∈N to a discrete group L is compatible

with a sequential approximant ((Gn, jn))n∈N if and only if, given N ≈ +∞ and
a standard l ∈ L, we have j′N (λ) = l ↔ j−1

N (l) = λ for all λ ∈ LN .

A sequential approximant ((Ĝn, ĵn))n∈N to Ĝ is a dual to a sequential approx-
imant ((Gn, jn))n∈N to G if and only if the following hold for all N ≈ +∞:

(1) If χ ∈ ĜN is such that χ(g) ≈ 1 for all g ∈ j−1
n (nst (∗G)) then

ĵN (χ) ≈ 0;
(2) If jN (g) ∈ nst (∗G) and ĵN (χ) ∈ nst (∗Ĝ) then ĵN (χ)(jN (g)) ≈

χ(g).

� This is immediate from 7.4.6 and 7.4.11. �

7.6.8. A dual sequential approximant ((Ln, j′n))n∈N to some sequential ap-

proximant ((L̂n, ĵn|
L̂n

))n∈N to L̂ is compatible with ((Gn, jn))n∈N.

A dual sequential approximant ((K̂n, ĵ
′
n))n∈N, with K̂n := Ĝn/L̂n, to a sequen-

tial approximant ((Kn, jn|Kn
))n∈N is compatible with ((Ĝn, ĵn))n∈N.
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� Take λ ∈ LN and j′N (λ) = l ∈ L. Note that ĵN (κ)(l) ≈ κ(λ) for κ ∈ L̂N
by the definition of dual sequential approximant in 7.6.7. We have to prove that
j−1
N (l) = λ. To this end, observe that there is a sole element λ′ ∈ GN satisfying
jN (λ′) = l. Indeed, if jN (λ′) = jN (λ′′) = l then jN (a − b) ≈ jN (a) − jN (b) ∈ ∗K
for a ∈ λ′ and b ∈ λ′′. Since K is compact and open; therefore, jN (a− b) ∈ K, and
so a − b ∈ KN and λ′ = λ′′. Clearly, κ(λ) ≈ κ(λ′) for all κ ∈ L̂N and, arguing as
in the proof of Theorem 7.4.10, we arrive at the equality λ′ = λ. �

7.6.9. Let {al : l ∈ L} be a selection of pairwise distinct representatives of
the cosets comprising G/K. Assume given ε > 0 and a finite set B ⊂ L. Then for
all sufficiently large n ∈ N there is a selection {αλ : λ ∈ Ln} of pairwise distinct
representatives of the cosets comprising Gn/Kn such that ρ(aj′n(λ), αλ) < ε for all

λ ∈ j′n
−1(B). Here ((Ln, j′n))n∈N is a sequential approximant to L compatible with

((Gn, jn))n∈N.

� Clearly, the claim may be rephrased nonstandardly as follows:
Let {al : l ∈ L} be a selection of pairwise distinct representatives of the cosets

comprising G/K. Then to each N ≈ +∞ there is a selection {αλ : λ ∈ LN}
of pairwise distinct representatives of the cosets comprising GN/KN such that
jN (αλ) ≈ al for all λ ∈ j′−1

N (L), with j′N (λ) = l.
Put R := j−1

N (∗{al : l ∈ L}) ⊂ GN . Define the internal equivalence ∼ on R by
the rule g ∼ h ↔ g − h ∈ KN and assign R′ := R/ ∼. Also, define the internal set
S ⊂ R′ by putting S := {r ∈ R′ : |r| = 1}, and assign S′ :=

⋃
S. Then j−1

N (al) ∈ S′

for every standard l ∈ L.
Put S′′ := {λ ∈ LN : (∃g ∈ S′)(g ∈ λ)} and let T stand for a selection of

pairwise distinct representatives of the cosets belonging to L− S′′. It is then clear
that S′ ∩ T = ∅ and S′ ∪ T is a selection of pairwise distinct representatives of the
cosets belonging to LN . �

7.6.10. Example. Let G be the additive group of Qp, the field of p-adic
numbers.

Choose two sequences of integers r, s → ∞ and put n := r+s. Assume further
that Gn is the additive group of the ring Z/pnZ := {0, 1, . . . , pn−1} (this particular
presentation of this ring is material for what follows). Define jn : Gn → Qp by the
rule jn(k) := k

pr . Then ((Gn, jn))n∈N is a sequential approximant to G; cf. 7.5.9.

The dual group Ĝ := Q̂p is isomorphic with Qp. An arbitrary character of
Qp takes the shape χξ(η) := exp(2πi{ξη}) for ξ ∈ Qp, with ξ → χξ a topological
isomorphism. We may thus identify Qp with Q̂p and consider a dual sequential
approximant as another sequential approximant to Qp. We also identify Gn with
Ĝn. Then the dual sequential approximant ((Gn, ĵn))n∈N is given by the formula
ĵn(m) := m

ps ; cf. 7.5.10.
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As a compact and open subgroup K of G we take the additive group of Zp, the
ring of p-adic integers. Then Kn := j−1

n (K) = prGn := {kpr : k := 0, 1, . . . , ps− 1}.
To define the quotient group L := G/K, we denote by Q

(p) the additive group
of the rationals of the shape m

pl , with l > 0. Clearly, L is isomorphic to Q
(p)/Z. The

quotient group Ln := Gn/Kn is isomorphic to Z/prZ := {0, 1, . . . , pr − 1}. Define
the embedding j′n : Ln → L by the rule j′n(t) := t

pr . It is an easy matter to check
that ((Ln, j′n))n∈N is a sequential approximant to L compatible with the sequential
approximant ((Gn, jn))n∈N.

The sets { k
pl : k < pl, k|p} and {0, 1, . . . , pr − 1} are complete families of

pairwise distinct representatives of the cosets comprising G/K and Ln := Gn/Kn

respectively, which meet the hypothesis of 7.6.9. We omit the simple proof of this
fact.

In accord with the above identifications, we have L̂ = Zp = K and K̂ = L.
Therefore, L̂n = {0, 1, . . . , pr−1} � {kps : k = 0, 1, . . . , pr−1}, K̂n = {0, 1, . . . , ps−
1}; and if ĵ′n : K̂n → L is given by the rule ĵ′n(u) := u

ps then ((K̂n, ĵ′n))n∈N is a

sequential approximant to Ĝ/L̂ := K̂ = L compatible with the sequential approxi-
mant ((Gn, ĵn))n∈N.

The set {0, 1, . . . , ps−1} is a selection of pairwise distinct representative of the
cosets comprising K̂n := Gn/L̂n, which meets the hypothesis of 7.6.9 with respect
to this sequential approximant.

(1) The matrix of the Fourier transform (in the context of 7.6.4 (2)) is
as follows:

f((m, l), (u, v), (m′, l′), (u′, v′))

= exp
(

−2πim′u′

pl′+v′

)

δ(m,l),(m′,l′)δ(pv−u,v),(u′,v′).

� Put Γp := {(m, l) : m|p, 0 ≤ m < pl}. On easy grounds, we may identify
l2(L × K̂) with l2(Γ2

p). Since the equality u
pv = pv−u

pv holds in Q
(p), we complete

the proof. �
Analogous considerations apply to the finite Fourier transform Fn : L2(Gn) →

L2(Ĝn). More precisely,

(2) The matrix of the finite Fourier transform Fn (in the context of
7.6.4 (2)) is as follows:

f(l, v, l′, v′) = exp
(

−2πil′v′

pn

)

δpr−l,l′δvv′ .
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� Identify L2(Gn) with l2(Ln × K̂n) by the rule

ϕ(l + kpr) :=
ps−1∑

h=0

clh exp
2πikh
ps

(ϕ ∈ L2(Gn), 0 ≤ l < pr − 1, 0 ≤ k < ps − 1).

Also, identify L2(Ĝn) with l2(Ln × K̂n) by the rule

ψ(v + tps) :=
pr−1∑

l=0

dlv exp
2πitl
pr

(ψ ∈ L2(Ĝn), 0 ≤ v < ps − 1, 0 ≤ t < pr − 1).

We thus come to the chain of equalities:

Fn(ϕ) = ϕ̂(v + tps) =
1
ps

pn−1∑

u=0

ϕ(u) exp
(

−2πiu(v + tps)
pn

)

=
1
ps

pr−1∑

l=0

ps−1∑

k=0

ps−1∑

h=0

clh exp
(

2πikh
ps

)

exp
(

−2πi(l + kpr)(v + tps)
pn

)

=
pr−1∑

l=0

clv exp
(

−2πilv
pn

)

exp
(

−2πilt
pr

)

,

completing the proof. �

7.6.11. If ((Xn, Tn))n∈N is a discrete approximant then it usually fails to be
strong. However, we may slightly change ((Xn, Tn))n∈N to make it strong. In this
subsection we construct a strong discrete approximant ((Xn, Sn))n∈N to a space
X which enjoys 6.2.6 (1) as well as the property ‖Tnf − Snf‖n → 0 holding for
all f belonging to some dense subset of Y . Clearly, in this event the strong discrete
approximant with Sn determines the same embedding t : X → X as the discrete
approximant with Tn.

Some strong discrete approximant in the case of R
n was constructed in [86].

Here we consider only the case of a group with a compact and open subgroup. As
was mentioned in 7.6.3, if G is a discrete group then every discrete approximant
((Xn, Tn))n∈N is strong, with 6.2.6 (1) holding.
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(1) Let G be a compact group. Then the normalizing factor takes the
shape Δn := |Gn|−1. In this event the discrete approximant ((Xn, Tn))n∈N may fail
to be strong. The dense subspace Y ⊆ X consists of bounded almost everywhere
continuous functions and it is easy to check that Tn is not extendible to the whole
of X in general. We define Sn : X → Xn by the rule:

Sn(f)(g) :=
∑

χ∈Ĝn

f̂(ĵn(χ))χ(g).

(2) Assume now that G is a locally compact abelian group with a com-
pact and open subgroup K. Assume further that L := G/K, while ((Gn, jn))n∈N

and ((Ĝn, ĵn))n∈N is a dual couple of sequential approximants to G. Suppose that
Kn meets the hypothesis of 7.6.6, Ln := Gn/Kn, and ((Ln, j′n))n∈N is a sequential
approximant to L compatible with ((Gn, jn))n∈N.

Distinguish a selection {al : l ∈ L} of pairwise distinct representatives of the
cosets comprising L. Dropping to a subsequence, if need be, we may assume by
7.6.9 that to each n ∈ N there is a selection {αλ : λ ∈ Ln} of pairwise distinct
representatives of the cosets comprising Ln such that

lim
n→∞ jn(αj′n−1(l)) = al (l ∈ L).

Denote by S′n the same operator from L2(K) to L2(Kn) as in (1). We also define
Sn : X → Xn as

Snϕ(αλ + ξ) := S′nϕj′n(λ)(ξ) (ξ ∈ Kn, λ ∈ Ln).

Here, as well as above, ϕl(k) := ϕ(al + k).

7.6.12. In case the group under study is compact, ((Xn, Sn))n∈N is a strong
discrete approximant to X such that ‖Tnf −Snf‖n → 0 for all f ∈ Y and 6.2.6 (1)
holds.

� Since {χ(g) : χ ∈ Ĝn} is an orthonormal basis for Xn; therefore, ‖Sn(f)‖2 =
∑
χ∈Ĝn

|f̂(ĵn(χ))|2. The group Ĝn is discrete and so the discrete approximant

((X̂n, T̂n))n∈N to X̂ will be strong. Hence,

lim
n→∞

∑

χ∈Ĝn

|f̂(ĵn(χ))|2 = ‖f̂‖2 = ‖f‖2,

and so, ‖Sn(f)‖ → ‖f‖.
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If f ∈ Y then, on applying Theorem 7.4.15 to the inverse Fourier transform,
infer that ‖Tn(f) − F−1

n T̂nf̂‖ → 0 as n → ∞. Now, by the definition of the inverse
Fourier transform F−1

n T̂nf̂ = Sn(f).
To demonstrate that 6.2.6 (1) holds for the discrete approximant ((Xn, Sn))n∈N,

define the embedding ın : Xn → X by the rule

ın(ϕ)(ξ) :=
∑

χ∈Ĝn

Fn(ϕ)(χ)ĵn(χ)(ξ).

Then ın(Xn) = {∑
χ∈Ĝn

cχĵn(χ)}. Moreover, it is easy that ın(Sn(f)) = f for all
f ∈ ın(Xn). Therefore, if pn : X → ın(Xn) is an orthoprojection then Sn = ı−1

n ◦pn,
yielding 6.2.6 (1). �

7.6.13. In case we study a locally compact group with a compact and open
subgroup, ((Xn, Sn))n∈N is a strong discrete approximant to X satisfying 6.2.6.(1).
Moreover, ‖Tnϕ− Snϕ‖n → 0 as n → ∞ for all ϕ ∈ S2(G).

� As shown above, the correspondence ϕ ↔ {ϕl : l ∈ L} implements a uni-
tary isomorphism between the Hilbert spaces X and

∏
l∈LX

(l), where each X(l)

coincides with L2(K). By analogy, the correspondence ψ ↔ {ψλ : λ ∈ Ln}, with
ψλ(ξ) := ψ(αλ + ξ), implements a unitary isomorphism between the Hilbert spaces
Xn and

∏
l∈LX

(λ)
n , where each X

(λ)
n coincides with L2(Kn). Identifying unitarily

isomorphic Hilbert spaces, obtain

Sn ({ϕl : l ∈ L)} =
{
S′nϕjn(λ) : λ ∈ Ln

}
.

This yields the first part of the claim since S′n satisfies 7.6.12.
To prove the second part, we first assume that ϕ is a compactly supported con-

tinuous function. Then there is a standard finite set A ⊂ L such that ϕ(al + k) = 0
for all k ∈ K whenever l /∈ A. Take N ≈ +∞. It suffices to show only that
‖TNϕ − SNϕ‖ ≈ 0. Let {αλ : λ ∈ LN} be a selection of pairwise distinct repre-
sentatives of the cosets comprising LN such that the nonstandard version of 7.6.9
holds. Given g ∈ KN , we then see that TNϕ(αλ + g) = ϕ ◦ jN (αλ + g) �= 0
if and only if j′N (λ) ∈ A. If j′N (λ) = l ∈ A then, considering the definition
of hyperapproximant in 7.4.1 (2) and the relation jN (αλ) ≈ al, we may write
TNϕ(αλ + g) = ϕ(jN (αλ + g)) ≈ ϕ(jN (αλ) + jN (g)) ≈ ϕ(al + jM (g)) = TNϕl(g).
We also use here the fact that a compactly supported continuous function ϕ is
uniformly continuous, and so from α ≈ β it follows that ϕ(α) ≈ ϕ(β) even for
nonstandard α and β; cf. 2.3.12. Now, the definition of Sn in 7.6.11 (2) yields
SNϕ(αλ + g) = S′Nϕl(g). If j′N (λ) = l ∈ A then TNϕl ≈ S′nϕl by 7.6.12, and if
j′N (λ) = l /∈ A then ϕl = 0 and so S′Nϕl = 0. Since the size of A is standardly
finite; therefore, ‖TNϕ− SNϕ‖N ≈ 0.
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Let ϕ be an arbitrary member of S2(G). Distinguish an arbitrary standard
real ε > 0. Then there is a compactly supported continuous function ψ satisfying
‖ϕ − ψ‖ < ε. By the definition of discrete approximation, ‖TN (ϕ) − TN (ψ)‖N =
‖TN (ϕ − ψ)‖N ≈ ‖ϕ − ψ‖. By the same reason, ‖SN (ϕ) − SN (ψ)‖N ≈ ‖ϕ − ψ‖,
implying that ‖TN (ϕ) − TN (ψ)‖N + ‖SN (ϕ) − SN (ψ)‖N < 2ε. Moreover, ‖TNϕ−
SNϕ‖N ≤ ‖TN (ϕ) − TN (ψ)‖N + ‖TN (ψ) − SN (ψ)‖N + ‖SN (ϕ) − SN (ψ)‖N < 5ε
because ‖TN (ψ)−SN(ψ)‖N ≈ 0. Since ε > 0 is an arbitrary standard real; therefore,
‖TNϕ− SNϕ‖N ≈ 0. �

By analogy we may define Ŝn : L2(Ĝ) → L2(Gn) satisfying 7.6.13. Assume that
{πν : ν ∈ K̂n} is a selection of pairwise distinct representatives of the cosets com-
prising Ĝn/L̂n such that 7.6.9 holds for the sequential approximant ((Ĝn, ĵn))n∈N,
and Ŝ′n : L2(L̂) → L2(L̂n) is an operator satisfying 7.6.11 for the sequential approx-
imant ((L̂n, ĵn|

L̂n
))n∈N to L̂. Then Ŝnψ(πν + η) = Ŝ′nψĵ′n(ν)

(η) for all ν ∈ K̂n and

η ∈ L̂n.

7.6.14. We now return to 7.6.10. If ϕ ∈ L2(Qp) is an almost everywhere
continuous function then we have the chain of equalities

(Tnϕ)(j+ kpr) = ϕ(jn(j+ kpr)) = ϕ(
j

pr
+ k)

= ϕ(l,m)(k) =
∑

(u,v)∈Γp

c(l,m)(u,v) exp
(

2πiku
pv

)

,

with (l,m) ∈ Γp and l/pm = j/pr.
To calculate Snϕ, note that L = Ẑp and so ĵ′n : K̂n → L is a dual approximant

of jn|Kn
. Using 7.6.11 (1), obtain

Snϕ(j+ kpr) = S′nϕj′n(j)(jn(kpr)) = S′nϕ(l,m)(k)

=
∑

w∈K̂n

c
(l,m)ĵ′n(w)

exp
2πiwk
ps

=
∑

v≤s

∑

(u,v)∈Γp

c(l,m)(u,v) exp
(

2πiku
pv

)

.

If ϕ ∈ Dtest (cf. 7.6.5) while r and s satisfy the relationsm > r, v > s, c(l,m)(u,v) = 0,
and n = r + s, then the above expressions for Sn and Tn yield Snϕ = Tnϕ.

Comparing 7.6.10 (1) and 7.6.10 (2) with the expression for Sn, infer that
Ŝn(f̂) = Fn(Snf) for all f ∈ L2(Qp). Moreover, if f ∈ Dtest then T̂n(f̂) = Fn(Tnf).
Since Dtest is dense in X , we have established Theorem 7.4.15 in the case under
consideration.
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7.6.15. Given N ≈ +∞, we define the space X := X#
N and the operator

t : X → X as in 6.2.3. Here XN := L2(GN ) and X := L2(G) (cf. 7.6.2). Proposi-
tion 6.2.4 shows that it is important to know the condition for ϕ ∈ X

(b)
N to satisfy

the containment ϕ# ∈ tX .
We say that ϕ ∈ X

(b)
N is proxy-standard; in symbols, ϕ ∈ proxy(X(b)

N ) provided
that there is some f ∈ X satisfying ϕ# = t(f). We will use the notations:

H(GN ) := GN − j−1
N (proxy(∗G)), H(ĜN ) := GN − ĵ−1

N (proxy(∗Ĝ)),

H(LN ) := LN − j′−1
N (L), H(K̂N ) := K̂N − ĵ′

−1

N (K̂).

Theorem. An element ϕ ∈ X
(b)
N is proxy-standard if and only if the following

hold:
(1) ΔN

∑
g∈B |ϕ(g)|2 ≈ 0 for every internal subset B of H(GN );

(2) Δ̂N

∑
χ∈C |FN (ϕ)(χ)|2 ≈ 0 for every internal subset C of H(ĜN ).

� →: Assume that ϕ := t(f). Since Dtest is dense in X , we may suppose that
to each standard ε > 0 there is some ψ in Dtest satisfying

ΔN

∑

g∈GN

|ϕ(g) − ψ(jN (g))|2 < ε.

The Fourier transform is an isometry, and ψ̂ ◦ ĵN ≈ FN (ψ ◦ jN ) by Theorem 7.4.10.
Hence,

Δ̂N

∑

χ∈ĜN

|FN (ϕ)(χ) − ψ̂(ĵN (χ))|2 < ε.

Clearly, the same estimates hold in the case when summation ranges over some
internal subsets of GN and ĜN . The functions ψ and ψ̂ are compactly supported,
and so ∗ suppψ ⊂ proxy(∗G) and ∗ supp ψ̂ ⊂ proxy(∗Ĝ). Consequently, given
arbitrary internal sets B ⊂ H(GN ) and C ⊂ H(ĜN ), we have ψ ◦ jN |B = 0 and
ψ̂ ◦ jN |C = 0. The above estimates now yield

ΔN

∑

g∈B
|ϕ(g)|2 < ε, Δ̂N

∑

χ∈C
|FN (ϕ)(χ)|2 < ε.

Since ε > 0 is an arbitrary standard real, the proof of necessity is complete.
←: Assume now that ϕ enjoys the conditions (1) and (2). Distinguish some

complete families {αλ : λ ∈ LN} and {πν : ν ∈ K̂N} of pairwise distinct repre-
sentatives of the cosets comprising LN and ĜN/L̂N respectively, which satisfy the
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nonstandard version of 7.6.9 (cf. the proofs of 7.6.8 and 7.6.9). If λ ∈ LN and
k ∈ KN then

ϕ(αλ + k) =
∑

ν∈K̂N

σλ,νν(k).

To complete the prove, we need two auxiliary facts.
(A) If P ⊂ H(LN ) and Q ⊂ H(K̂N ) are internal then

∑

λ∈P

∑

ν∈K̂N

|σλν |2 ≈ 0,
∑

ν∈Q

∑

λ∈LN

|σλ,ν |2 ≈ 0.

� Note in this case that the normalizing factors take the shape ΔN := |KN |−1

and Δ̂N := |LN |−1; cf. 7.6.1 (as K we take some relatively compact open neigh-
borhood about the zero of G). Let P ⊂ H(LN ) be an internal set. Then B =
P + KN ⊂ H(GN ). Since {ν(k) : ν ∈ KN} is an orthonormal basis for L2(KN ),
infer from (A) that:

0 ≈ |KN |−1
∑

g∈B
|ϕ(g)|2 = |KN |−1

∑

λ∈P

∑

k∈KN

|ϕ(αλ + k)|2

= |KN |−1
∑

λ∈P

∑

k∈KN

∣
∣
∑

ν∈K̂N

σλνν(k)
∣
∣2 =

∑

λ∈P

∑

ν∈K̂N

|σλν |2.

Similarly, given ν ∈ K̂N and γ ∈ L̂N , note that

FN (ϕ)(πν + γ) =
∑

λ∈L̂N

σ̂λ,νγ(λ).

Hence, ∑

ν∈Q

∑

λ∈LN

|σ̂λ,ν |2 ≈ 0

for each internal subset Q of H(K̂N ).
Repeating the calculations that led to the formula of 7.6.4 (2) for the Fourier

transform FN , obtain σ̂λ,ν = πν(αλ)σ−λν . Hence, |σ̂λ,ν | = |σ−λν |, yielding the
second of the equalities in question. �

The groups L and K are countable since G is separable. Therefore, there are
increasing sequences of finite subsets A′m ⊂ L and B′m ⊂ K̂ such that L =

⋃
m∈N

A′m
and K̂ =

⋃
m∈N

B′m. Put Am := j′−1
N (A′m) and Bm := ĵ′

−1

N (B′m). Define the
sequence (ϕm)m∈N ⊂ XN by the rule

ϕm(αλ + k) :=

{ ∑

ν∈Bm

σλνν(k), if λ ∈ Am,

0, if λ /∈ Am.
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(B) The following holds in X :

ϕ# = lim
m→∞ϕ

#
m.

� It suffices to check that to each standard ε > 0 there is a standard natural
m0 satisfying ‖ϕ − ϕm‖ < ε for all m > m0. In much the same way as this is
done for L2(G), we may easily demonstrate that the correspondence ϕ ↔ {σλ,ν :
λ ∈ LN , ν ∈ K̂N} implements a unitary isomorphism between the Hilbert spaces
L2(GN ) and l2(LN × K̂N ). Therefore,

‖ϕ− ϕm‖2 =
∑

(λ,ν)∈LN×K̂N−Am×Bm

|σλν |2.

It is clear that L ⊂ A′M ⊂ ∗L and K̂ ⊂ B′M ⊂ ∗K̂ for every M ≈ +∞. Also, P :=
LN −AM ⊂ H(LN ) and Q := K̂N −BM ⊂ H(K̂N ). If S ⊂ LN × K̂N −AM ×BM
then ∑

(λ,ν)∈S
|σλν |2 ≤

∑

(λ,ν)∈P×K̂N

|σλν |2 +
∑

(λ,ν)∈LN×Q
|σλν |2.

The two sums on the right side of the above equality are infinitesimal by (A), and
so ‖ϕ−ϕM‖2 ≈ 0. Consider the internal set C := {m ∈ ∗N : ‖ϕ−ϕm‖ < ε}. As we
have just established, C contains all infinite hypernaturals M . By underflow, there
is some natural m0 such that C contains all m > m0, which ends the proof. �

Since ‖ϕ‖ is limited,
∑

λ∈L̂N
|σλν |2 is limited too, implying that so is each of

the hyperreals σλν . Given l ∈ L and h ∈ K̂, put clh := ◦σ
j′−1

N
(l)ĵ′

−1
N (k)

and define

fm ∈ Dtest for m ∈ N by the rule

fm(al + ξ) :=

⎧
⎨

⎩

∑

h∈B′
m

clhh(ξ), if l ∈ A′m,

0, if l /∈ A′m.

Using 7.6.9 and 7.6.12, infer that

SN (fm)(αλ + k) =

{ ∑

ν∈Bm

c
jN (λ)ĵ′N (ν)

ν(k), if λ ∈ Am,

0, if λ /∈ Am,

and SN (fm) ≈ TN (fm). Therefore, SN (fm)# = t(fm). At the same time,

‖SN (fm) − ϕm‖2 =
∑

λ∈Am

∑

ν∈Bm

|σλν − c
jN (λ)ĵ′N (ν)

|2.

This is an infinitesimal since σλν ≈ c
jN (λ)ĵ′N (ν)

and the size of Am×Bm is standardly

finite. From (B) it follows now that ϕ# = limm→∞ t(fm), yielding ϕ# ∈ t(X). �
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7.6.16. Comments.

(1) The results of this section are taken from the article [5] by Albev-
erio, Gordon, and Khrennikov.

(2) As regards 7.6.10 (2), it is worth noting that the celebrated Cooley–
Tukey algorithm for the fast Fourier transform rests on exactly the same calcula-
tions; cf. [25].

(3) Inspecting 7.6.10, we observe that the analogous considerations ap-
ply to each of the groups Qa, where a := (an)n∈Z is an arbitrary sequence of
naturals (see the definitions in [174] wherein these groups are denoted by Ωa). A
couple of dual sequential approximants to Qa is described in the Introduction to the
book [146]. It is well known (for instance, see [151]) that each totally disconnected
locally compact abelian group is isomorphic to Qa with a suitable a.

(4) Theorem 7.4.15, together with the construction of a strong discrete
approximant and Proposition 7.6.12, yields Theorem 6.1 in [85] of approximation
of locally compact abelian groups by finite groups in the sense of Weyl systems in
the case of a group with a compact and open subgroup. To derive Theorem 6.1
of [85] from Theorem 7.4.15 in the case of R

n, it is necessary to use the strong
approximant of L2(Rn) that is given in [86].

7.7. Hyperapproximation of Pseudodifferential
Operators

In this section we hyperapproximate pseudodifferential operators on a locally
compact abelian group with a compact open subgroup.

7.7.1. Let G be a locally compact abelian group and let Ĝ be the dual of G.
(1) Given a sufficiently good function f : G× Ĝ → C, we may define a

(possible unbounded) linear operator Af : L2(G) → L2(G) by the rule

Afψ(x) :=
∫

Ĝ

f(x, χ)ψ̂(χ)χ(x)dμ̂(χ) (ψ ∈ L2(G)).

We say that Af is a pseudodifferential operator with symbol f .

(2) An nth approximant A(n)
f : C

(Gn) → C
(Gn) to Af is defined as

A
(n)
f ϕ(x) := Δ̂n

∑

χ∈Ĝn

f(jn(x), ĵn(χ))Fn(ϕ)(χ)χ(x) (ϕ ∈ Xn, x ∈ Gn).

We confine exposition to the case of G a group with a compact and open sub-
group K. As before, L := G/K, and we distinguish some selections {al : l ∈ L}
and {ph : h ∈ K̂} of pairwise distinct representatives of the cosets comprising L

and K̂ := Ĝ/L̂.
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(3) Clearly, the mappings (jn, ĵn) : Gn×Ĝn → G×Ĝ define a sequential
approximant toG×Ĝ. Denote by S(2)

n : L2(Gn×Ĝn) → L2(G×Ĝ) the mapping that
is defined in 7.6.13 for this approximant. Therefore, ((L2(Gn × Ĝn), S(2)

n ))n∈N is a
strong discrete approximant to L2(G× Ĝ) and we may define another approximant
for Af by the rule:

B
(n)
f ϕ(x) := Δ̂n

∑

χ∈Ĝn

(S(2)
n f)(x, χ)Fn(ϕ)(χ)χ(x).

7.7.2. For Af to be a Hilbert–Schmidt operator it is necessary and sufficient
that f ∈ L2(G× Ĝ). In this event,

‖Af‖ ≤
∫∫

G×Ĝ

|f(x, χ)|2 dμ⊗ μ̂(x, χ).

� The claim, almost evident as stated, is well known in the classical theory of
pseudodifferential operators (for instance, see [33]).

Indeed, the proof is immediate on observing that the kernel of Af has the shape
K(x, y) := (F

Ĝ
f)(x, x− y), with F

Ĝ
the Fourier transform in the second variable.

Hence, ‖K(x, y)‖L2(G2) = ‖f(x, χ)‖
L2(G×Ĝ)

. �

7.7.3. Theorem. If Af is a Hilbert–Schmidt operator then
(1) The sequence (B(n)

f ) in 7.7.1 (3) is uniformly bounded, i.e.,

(∃n0)(∀n > n0)
(

|Bn‖ ≤ ‖f(x, χ)‖
L2(G×Ĝ)

)
;

(2) The sequence (B(n)
f ) converges discretely to Af with respect to the

strong discrete approximant ((Xn, Sn))n∈N in 7.6.13; moreover, this
convergence is uniform;

(3) If f ∈ S2(G× Ĝ) (with the notation of 7.6.1) then ‖An−Bn‖ → 0.
Moreover, (1) and (2) hold for (A(n)

f ).

� The proof proceeds in a few steps.
(a): Take N ≈ +∞. Clearly, ‖Bn‖ ≤ ‖S(2)

n f‖n for all n ∈ ∗N. We recall here in
particular that ‖Fn‖ = 1 and |χ(x)| = 1. By the definition of discrete approximant,
‖S(2)

N f‖N ≈ ‖f‖. If f ∈ S2(G× Ĝ) then ‖S(2)
N f − TNf‖N ≈ 0. This yields (1) and

(3), and so we are left with (2).
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(b): Let ı and ı̂ stand for the unitary isomorphisms of 7.6.4 (1) between L2(G)
and l2(L× K̂) and between L2(Ĝ) and l2(L× K̂). Then Af , as an endomorphism
of l2(L× K̂), takes the shape

(ıAfϕ)(l, h) =
∑

h′,l′
(̃ıf)(l, h′, l + l′, h− h′)ph′(al)(̂ıϕ̂)(l′, h′).

� Indeed, given ϕ ∈ L2(G), find

ϕ̂(phs) =
∑

l∈L
(̂ıϕ̂)(l, h)s(l),

Afϕ(al + k) =
∑

h∈K̂
(ıAfϕ)(l, h)h(k).

Similarly,
f(al + k, ph + s) =

∑

h′∈K̂

∑

l′∈L
(̃ıf)(l, h, l′, h′) ¯s(l′)h′(k),

with ı̃f := (ı⊗ ı̂)f . Simple calculations, resting on 7.6.4 (1) and 7.7.1 (1), yield the
claim. �

(c): Distinguish some selections of pairwise distinct representatives {αλ : λ ∈
LN} and {πν : ν ∈ K̂N} of the cosets comprising LN and K̂N so as to satisfy the
nonstandard version of 7.6.9 (cf. the proof of 7.6.9). Then

(ıB(N)
f ϕ)(λ, ν) =

∑

ν′,λ′
(̃ıf)(j′N (λ), ĵ′N (ν′), j′N (λ+ λ′), ĵ′N (ν − ν′))

×pıν′(αλ)(̂ıNFN (ϕ))(λ′, ν′).

� Indeed, it is obvious that if K× L̂ is a compact and open subgroup of G×Ĝ.
Moreover, L × K̂ = G × Ĝ/K × L̂ and {(al, ph) : l ∈ L, h ∈ K̂} is a selection of
pairwise distinct representatives of the cosets comprising L and K̂. Furthermore,
{(αλ, πν) : λ ∈ LN , ν ∈ K̂N} is a selection of pairwise distinct representatives of the
cosets comprising LN × K̂N = GN × ĜN/KN × L̂N which satisfies the nonstandard
version of 7.6.9. It is easy to see then that

S
(2)
N f(αλ + ξ, πν + η)

=
∑

λ′∈LN

∑

ν′∈K̂N

(̃ıf)(j′N (λ), ĵ′N(ν), j′N (λ′)ĵ′N (ν′))η(λ′)ν′(ξ),
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where ((LN , j′N ))n∈N is some sequential approximant to L compatible with the
sequential approximant ((GN , jN ))n∈N (see the definition in 7.6.7). Moreover,
((K̂N , ĵ′N ))n∈N is a sequential approximant to K̂ dual to the sequential approx-
imant ((KN , jN |KN

))n∈N to K.
As above, the unitary isomorphisms ıN : L2(GN ) → l2(LN × K̂N ) and ı̂N :

L2(ĜN ) → l2(LN × K̂N ) are defined by the rules

ϕ(αλ + ξ) :=
∑

ν∈K̂N

(ıNϕ)(λ, ν)ν(ξ),

ψ(πν + η) :=
∑

λ∈LN

(̂ıNψ)(λ, ν)η(λ).

Arguing as in (b), complete the proof. �
(d): If ψ ∈ L2(G) then ‖ıNB(N)

f SNψ − ıNSNAfψ‖ ≈ 0.

� We start with auxiliary calculations. It is immediate by definition that
(d1) (ıNSNψ)(λ, ν) = (ıψ)(j′N (λ), ĵ′N (ν)).

By 7.6.4 (2),
(d2) ı̂ψ̂(j′N (λ), ĵ′N(ν)) = ıψ(−j′N (la), ĵ′N(ν))p

ĵ′
N

(ν)
(a−j′

N
(λ)).

Analogous calculations, together with (d1), yield
(d3) (̂ıNFN (SNψ))(λ, ν) = (ıψ)(j′N (−λ), ĵ′N (ν))πν(α−λ).

From (b), (d1), (c), and (d3) we infer the two formulas:

(d4) ıNSNAfψ)(λ, ν) =
∑
l′,h′ (̃ıf)(j′N (λ), h′, j′N (λ)

+l′, ĵ′N (ν) − h′)ph′(aj′N (λ))̂ıψ̂(l′, h′);

(d5) (ıB(N)
f SNψ)(λ, ν)

=
∑
ν′,λ′ (̃ıf)(j′N (λ), ĵ′N (ν′), j′N (λ+ λ′), ĵ′N (ν − ν′))πν′(αλ)

(ıψ)(j′N (−λ′), ĵ′N (ν′))πν′(α−λ′).
Assume now that f ∈ D

(2)
test. This implies that there are some finite sets A ⊂ L

and B ⊂ K̂ such that (̃ıf)(l, h, l′, h′) = 0 whenever (l, h, l′, h′) /∈ (A×B)2.
The space D(2)

test is dense in L2(G× Ĝ). Choose standard finite sets A1 and B1

so that (A−A) ∪A ⊂ A1 ⊂ L and (B−B) ∪B ⊂ B1 ⊂ K̂. Put C := j′−1
N (A1) and

D := ĵ′
−1

N (B1).
From (d4) it is then clear that (ıNSNAfψ)(λ, ν) = 0 for (λ, ν) /∈ C×D. Hence

we must confine the domains of l and h′ to A1 and B1 respectively. Since the finite
sets A1 and B1 are standard, from 7.6.3 it follows that j′N (α±α′) = j′N (α)±j′N (α′)
and ĵ′N (β ± β′) = ĵ′N (β) ± ĵ′N (β′) for α, α′ ∈ C and β, β′ ∈ D.

These observations, together with (b), show that we may rewrite (d4) as follows:
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(d6) (ıNSNAfψ)(λ, ν)
=
∑
λ′∈C

∑
ν′∈D (̃ıf)(j′N (λ), ĵ′N (ν′), j′N (λ+ λ′), ĵ′N (ν − ν′))

×(ıψ)(−j′N (λ), ĵ′N (ν))p
ĵ′N (ν′)(aj′N (λ))pĵ′N (ν′)(a−j′N (λ′)).

By the same reason, we may assume that the variables λ′ and ν′ in the sum on
the right side of (d5) range over C and D respectively, while (ıB(N)

f SNψ)(λ, ν) = 0
for (λ, ν) /∈ C ×D.

Comparing (d4) and (d6), note that the terms under the summation sign differ
in the coefficients πν′(αλ)πν′(α−λ′) in (d5) and

p
ĵ′N (ν′)(aj′N (λ))pĵ′N (ν′)(a−j′N (λ′))

in (d6). However, these coefficients are infinitely close to one another by the non-
standard version of 7.6.9. Consequently, the left sides of (d5) and (d6) are infinitely
close to one another since the sums on the right sides have standardly many nonzero
terms. This implies (d), and 7.7.3 (2) for f ∈ D

(2)
test. �

The general case results from the following auxiliary proposition.
(e): If 7.7.3 (2) holds for Af , with f ranging over some dense subset Y of

L2(G× Ĝ), then 7.7.3 (2) holds for all f ∈ L2(G× Ĝ).

� It suffices to prove that ‖SNAf −B
(N)
f SN‖ ≈ 0. Take an arbitrary standard

ε > 0 and choose ψ ∈ Y so that ‖f − ψ‖ < ε. Then

‖SNAf −B
(N)
f SN‖ ≤ ‖SNAf − SNAψ‖

+‖SNAψ −B
(N)
ψ SN‖ + ‖B(N)

ψ SN −B
(N)
f SN‖.

Note further that ‖SNAψ −B
(N)
ψ SN‖ ≈ 0 by hypothesis. By 6.2.2, ‖SN‖ is limited,

and so

‖SNAf − SNAψ‖ ≤ ◦‖SN‖‖Af−ψ‖ ≤ ◦‖SN‖‖f − ψ‖ ≤ ◦‖SN‖ε,
‖B(N)

ψ SN −B
(N)
f SN‖ ≤ ‖B(N)

ψ−f‖◦‖SN‖ ≤ ◦‖SN‖‖f − ψ‖ ≤ ◦‖SN‖ε.
The arbitrary choice of ε > 0 completes the proof of (e). �

We have happily completed the proof of Theorem 7.7.3 �
7.7.4. If Af is a Hilbert–Schmidt hermitian operator then the following hold:

(1) The spectrum σ(Af) coincides with the set of nonisolated limit
points of

⋃
n σ(B(n)

f );
(2) If 0 �= λ ∈ σ(Af ) and J is a neighborhood about λ containing no

points of σ(Af) but λ then λ is the only nonisolated limit point of
J ∩⋃n σ(B(n)

f ).
� Immediate from 7.7.3 and 6.2.8, on recalling 6.2.3 (1) and 7.6.13. �
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7.7.5. The operators A(n)
f and B

(n)
f may fail to be hermitian even in the case

when Af is selfadjoint. This compels us in this context to formulate the rest of
Theorem 6.2.8 as follows:

In the context of 7.7.4, assume additionally that Af is selfadjoint and the se-
quence (C(n)), with C(n) a hermitian endomorphism of Xn, possesses the property:

‖B(n)
f − C(n)‖n → 0 as n → ∞. Then the following hold:

(1) If

Mλ
n :=

∑

ν∈σ(C(n))∩J
C(n)(ν)

(cf. 7.7.4 (2)) then

dim(Mλ
n ) = dim(Af (λ)) = s

for all sufficiently large n, and there is a sequence of orthonor-
mal bases (fn1 , . . . , f

n
s )n∈N for M

λ
n converging discretely to some

orthonormal basis (f1, . . . , fs) for Af (λ) with respect to the dis-
crete approximant ((Xn, Tn))n∈N;

(2) In the context of (1), if f1, . . . , fs ∈ S2(G) then the sequence of
orthonormal bases ((fn1 , . . . , f

n
s ))n∈N converges discretely to the or-

thogonal basis (f1, . . . , fs) with respect to the discrete approximant
((Xn, Tn))n∈N.

7.7.6. We now address the so-called Schrödinger-type operators.
Let f : G× Ĝ → C take the shape

f(x, χ) := a(x) + b(χ) (x ∈ G, χ ∈ Ĝ).

If a(x) ≥ 0 and a(x) → ∞ as x → ∞ then Af is a Schrödinger-type operator.
Up to the end of this section, we assume that a(·) and b(·) are almost ev-

erywhere continuous locally bounded real functions on G and Ĝ respectively, with
a(x) → ∞ as x → ∞ and b(χ) → ∞ as χ → ∞. We also suppose that G and the
sequential approximant to G under study satisfy all hypotheses of 7.7.5.

It is easy to see that the definition of Af in 7.7.1 (1) leads in this context to

Afψ(x) = a(x)ψ(x) +
∨
b ∗ ψ(x),

where ∗ is the convolution on L1(G) and
∨
b is the inverse Fourier transform of the

function b treated as a distribution on Ĝ.
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Similarly, the discrete approximant of 7.7.1 (2) now satisfies the formula

A
(n)
f ϕ(x) = a(jn(x))ϕ(x) + F (−1)

n (b ◦ ĵn) ∗ ϕ(x).

Under the assumptions we made, each Schrödinger-type operator on a locally com-
pact abelian group with compact and open subgroup has discrete spectrum con-
sisting of real eigenvalues of finite multiplicity:

α1 ≤ λ2 ≤ · · · ≤ λk · · · → ∞; k → ∞.

The proof may be supplied along the lines of [506], wherein this was proven for Qp.
It is also easy to see that the operators A(n)

f are selfadjoint in this environment.

7.7.7. Theorem. Assume that Af is a Schrödinger-type operator such that a
and b satisfy the conditions of 7.7.6 and the approximation domain of Af by the

sequence (A(n)
f ) of 7.7.1 (2) is an essential domain of Af . Then the following hold:
(1) The spectrum σ(Af ) comprises the nonisolated limit points of the

set
⋃
n σ(A(n)

f );
(2) If J is a neighborhood of λ containing no points σ(Af) but λ then

λ is the only nonisolated limit point of J ∩⋃n σ(A(n)
f );

(3) In the context of (2), if

Mλ
n :=

∑

ν∈σ(A
(n)
f

)∩J
A

(n)
f

(ν)

then dim(Mλ
n ) = dim(Af (λ)) = s for all sufficiently large n and

there is a sequence of orthonormal bases ((fn1 , . . . , f
n
s ))n∈N for M

λ
n

converging discretely to an orthonormal basis (f1, . . . , fs) for Af (λ)

with respect to the discrete approximant ((Xn, Sn))n∈N (and also
with respect to the discrete approximant ((Xn, Tn))n∈N provided
that the eigenfunctions of Af belong to S (G)).

� Without loss of generality, we may assume a and b positive functions. Then
Af and A

(n)
f are positive operators satisfying −1 /∈ cl(σ(Af) ∪ ⋃n σ(A(n)

f ). By

6.2.10 it suffices to prove that (R−1(A(n)
f )) is a quasicompact sequence.

So, given N ≈ +∞ and ψ ∈ Xn, we will prove that if ‖(A(N)
f + I)ψ‖N is

limited then ψ satisfies the conditions of Theorem 7.6.15. Since ‖R−1(A(N)
f )‖ ≤ 1;

therefore, ‖ψ‖N is limited, implying that ((A(N)
f + I)ψ, ψ) is limited too. However,

((A(N)
f + I)ψ, ψ) = (a · ψ, ψ) + (F (−1)

N (b) ∗ ψ, ψ) + (ψ, ψ),

(F (−1)
N (b) ∗ ψ, ψ) = (b · FN (ψ),FN(ψ)),
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and so (aψ, ψ) and (bFN (ψ), FN(ψ)) are limited hyperreals. Assume now by way
of contradiction that the first condition of Theorem 7.6.15 fails. Then there are an
internal set B ⊂ H(GN ) and a standard hyperreal c > 0 satisfying the inequality
ΔN

∑
x∈B |ψ(x)|2 > c. Since a(x) → ∞ as x → ∞, we may find L ≈ ∞ satisfying

a(x) > L for all x ∈ B. The above implies that

(aψ, ψ) ≥ ΔN

∑

x∈B
a(x)|ψ(x)|2 ≥ Lc,

which contradicts the limitedness of (aψ, ψ).
The second condition of Theorem 7.6.15 is checked by analogy. �
We now describe a class of Schrödinger-type operators satisfying the conditions

of Theorem 7.7.7.
We will use the unitary isomorphisms ı and ı̂ defined in the proof of Theo-

rem 7.7.3. Despite the fact that a /∈ L2(G) and b /∈ L2(Ĝ), we denote by ıa and ı̂ b
the functions in l2(L× K̂) such that

a(al + k) =
∑

h∈K̂
(ıa)(l, h)h(k);

b(ph + s) =
∑

l∈L
(̂ı b)(l, h)s(l).

7.7.8. Let Af be a Schrödinger-type operator. Assume also that a and b
meet the above requirements and, moreover, S(l) := {h ∈ K̂ : (ıa)(l, h) �= 0} and
T (h) := {l ∈ L : (̂ı b)(l, h) �= 0} are finite sets for all l ∈ L and h ∈ K̂. Then Dtest

is an essential domain of Af serving as the approximation domain of Af by (A(n)
f ).

� Recall that the space Dtest comprises the functions ϕ ∈ L2(G) such that ϕ
and ϕ̂ are compactly supported. This implies that there are finite sets A[ϕ] ⊂ L

and B[ϕ] ⊂ K̂ satisfying (ıϕ)(l, h) = 0 for (l, h) /∈ A[ϕ] ×B[ϕ].
We proceed by simple calculation resting on 7.6.4 (2), which yields
(1) (ıAfϕ)(l, h) =

∑

h′∈B[ϕ]

(ıa)(l, h′ − h)(ıϕ)(l, h′)

+
∑

l′∈A[ϕ]

(̂ı b)(l − l′, h)(ıϕ)(l′, h)ph(a−l)ph(al′).

This formula shows that Afϕ ∈ Dtest and, moreover,

A[Afϕ] ⊂ A[ϕ] ∪
(
A[ϕ] +

⋃

h∈B[ϕ]

T (h)
)

= A′[ϕ];

B[Afϕ] ⊂ B[ϕ] ∪
(
B[ϕ] −

⋃

l∈A[ϕ]

S(l)
)

= B′[ϕ].
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If ϕ ∈ D(Af ) then ıAfϕ satisfies (1) with A[ϕ] = L and B[ϕ] = K̂.
Given finite sets A ⊂ L and B ⊂ K̂, denote by P (A,B) the orthoprojection

from L2(G) to the subspace of functions ϕ satisfying A[ϕ] ⊂ A and B[ϕ] ⊂ B.
Then, it is easy from (1) that P (A,B)Afϕ = AfP (A′, B′)ϕ, with

A′ := A ∪
(
A−

⋃

h∈B
T (h)

)
, B′ := B ∪

(
B +

⋃

l∈A
S(l)

)
.

Given ε > 0, we may find finite sets A ⊂ L and B ⊂ K̂ such that ‖P (A,B)ϕ −
ϕ‖ < ε and ‖P (A,B)Afϕ − Afϕ‖ < ε. Since A ⊂ A′ and B ⊂ B′; therefore,
‖P (A′, B′)ϕ − ϕ‖ < ε. Hence, if ψ := P (A′, B′)ϕ then ψ ∈ Dtest and, moreover,
‖ϕ− ψ‖ < ε and ‖Afϕ−Afψ‖ < ε. Thus, Dtest is an essential domain of Af .

We are left with proving that SN (Afψ) ≈ A
(N)
f SNψ for all N ≈ +∞ and each

standard ψ ∈ Dtest. To this end, we conveniently rewrite the definitions of Af and
A

(n)
f in 7.7.6 as follows:

Afψ(x) = a(x)ψ(x) + F−1(bψ̂)(x),

A
(N)
f ϕ(x) = a(jN (x))ϕ(x) + F−1

N (bFNϕ)(x).

The supports of ψ and ψ̂ enjoy the obvious relations:

suppψ ⊂
⋃

l∈A[ψ]

al +K = C, supp ψ̂ ⊂
⋃

h∈B[ψ]

ph + L̂ = D.

From 7.7.3 (d1), (d2) it follows that

(2) suppSNψ ⊂ ⋃{αλ +KN : λ ∈ j′−1
N (A[ψ])} = CN ,

suppFNSNψ ⊂ ⋃{πν + L̂N : ν ∈ ĵ′
−1

N (B[ψ])} = DN .
However, SNAfψ = SN (aψ) + SNF−1(bψ̂) and

A
(N)
f SNψ = a ◦ jN · SNψ + F−1

N (b ◦ ĵN · FNSNψ).

Since ψ is compactly supported; therefore, a ·ψ belongs to the subspace Y of 7.6.12,
and so SN (a ·ψ) ≈ TN (a ·ψ) = a ◦ jN ·ψ ◦ jN . Since a is bounded on C, we further
infer that

‖a ◦ jN · SNψ − a ◦ jN · ψ ◦ jN‖2
N

= ΔN

∑

x∈CN

|a(jN (x))(SNψ(x) − ψ(jN (x))|2 ≈ 0.
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Consequently, SN (a · ψ) ≈ a ◦ jN · SNψ, and we are left with proving only that
SNF−1(b · ψ̂) ≈ F−1

N (b ◦ ĵN · FNSNψ).
Since Afψ ∈ Dtest ⊂ Y and, as we have just established, a · ψ ∈ Y ; therefore,

F−1(b · ψ̂) ∈ Y , implying that SNF−1(b · ψ̂) ≈ TNF−1(b · ψ̂) = F−1(b · ψ̂) ◦ jN .
It is also clear that FNSNψ ≈ FNTNψ ≈ ψ̂ ◦ ĵN since SNψ ≈ TNψ and FN is
bounded.

Note that supp ψ̂ ◦ ĵN ⊂ DN . Using (2) and the boundedness of b on D, we
finally obtain b ◦ ĵN · FNSNψ ≈ b ◦ ĵN · ψ̂ ◦ ĵN , which implies that F−1

N (b ◦ ĵN ·
FNSNψ) ≈ F−1

N (b ◦ ĵN · ψ̂ ◦ ĵN ) ≈ F−1(b · ψ̂) ◦ jN . �

7.7.9. We now return to the example of 7.6.10, where G := Qp and Ĝ := Qp

to within isomorphism. The article [506] treats the Schrödinder-type operator with
symbol

f(x, χ) := a(|x|p) + b(|χ|p).
If a(|x|p) → ∞ as x → ∞ and b(|χ|p) → ∞ as χ → ∞ then such an operator
satisfies the conditions of 7.7.8 since a and b are constant functions on the cosets
of Qp/Zp, implying that the sets S(l) and T (h) in 7.7.8 are singletons.

Using the dual couple of sequential approximants to Qp which is described in
7.6.10, we may easily write out the nth approximant A(n)

f defined in 7.7.6. Namely,
given n := r + s, we have

A
(n)
f ϕ(k) = a(pr|k|p) +

1
pn

n−1∑

j,m=0

b(ps|m|p)ϕ(k − j) exp
2πijm
n

.

7.7.10. The concept of Weyl symbol may be abstracted to the case of a locally
compact abelian group G if G admits division by 2. This means that to each x ∈ G
there is some y ∈ G satisfying y + y = x and from y + y = 0 it follows that y = 0
for all y ∈ G. In this event we denote y by 1

2y := y/2 and assume that the mapping
x �→ 1

2x is continuous on G. Note that if G admits division by 2 then so does Ĝ;
i.e., 1

2χ(x) := χ( 1
2x).

The operator Wf with Weyl symbol f : G× Ĝ → C is defined by the rule

Wf :=
∫∫

G×Ĝ

f̃(y, γ)UyVγγy/2dμ⊗ μ̂(y, γ),

with
f̃(y, γ) :=

∫∫

G×Ĝ

f(x, χ)χ(γ)γ(x) dμ⊗ μ̂(x, χ).
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Clearly, Wf is a symmetric operator if and only if f is a real function. If f has the
shape a(x) + b(χ) then Af = Wf .

It is an easy matter to calculate the kernel Kf (x, y) of Wf . To this end, denote
by f (2)(x, y) the inverse Fourier transform of f(·, ·) with respect to the second
variable; i.e., f (2)(x, y) :=

∫
Ĝ
f(x, χ)χ(y)dμ̂(χ). Then Kf (x, y) = f (2)(x+y

2
, y − x).

If the entries Gn of the sequential approximant ((Gn, jn))n∈N also admit divi-
sion by 2 then we will say that the sequential approximant ((Gn, jn))n∈N approxi-
mates the division by 2 on G whenever

(∀ε > 0)(∀K ∈ K )(∃N > 0)(∀n > N)(∀g ∈ j
(−1)
N (K))

ρ(jn(g/2), jn(x)/2) < ε.

It is easy to see that if p is an odd prime then the sequential approximant of 7.6.10
approximates the division by 2 on Qp.

If the division by 2 is approximable then we may define some sequential ap-
proximant (W (n)

f ) as follows: Define fn : Gn × Ĝn → C as

fn(g, κ) := f(jn(g), ĵn(κ)),

and let f̂n stand for the finite Fourier transform of fn:

f̂n(h, χ) :=
1

|Gn|
∑

g,κ

fn(g, κ)χ(g)κ(h).

Then
W

(n)
f :=

1
|Gn|

∑

h,χ

f̂n(h, χ)UhVχχ(h/2),

with (Uhϕ)(g) := ϕ(g + h) and (Vχϕ)(g) := χ(g)ϕ(g).
Let f (2)

n stand for the inverse Fourier transform of fn with respect to the second
variable; i.e.,

f (2)
n (g, s) := Δ̂n

∑

κ

fn(g, κ)κ(s).

Then

(W (n)
f ϕ)(s) = Δn

∑

g

f (2)
n

(
s+ g

2
, g − s

)

ϕ(g).

7.7.11. If f ∈ S2(G × Ĝ) then the sequence (W (n)
f ) converges discretely to

Wf with respect to the strong discrete approximant ((Xn, Sn))n∈N in 7.6.13 and
this convergence is uniform.
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� The proof proceeds along the lines of 7.7.3. �
Propositions 7.7.4 and 7.7.5 are also applicable in this environment. Moreover,

the proposition of 7.7.5 holds for the sequence (W (n)
f ), since each W (n)

f is hermitian
as follows from the fact that fn is a real function.

7.7.12. Comments.

(1) The pseudodifferential operator Af with symbol f is usually defined
as

Af :=
∫ ∫

G×Ĝ

f̃(h, ξ)VhUξdμ̂(h)dμ(ξ),

with f̃ := FG⊗F
Ĝ

(f). It is easy to show by routine calculations with the formula
∫
Ĝ
χ(ξ)dμ̂(χ) = δ(ξ), where

∫
G
ϕ(ξ)δ(ξ)dμ(ξ) = ϕ(0), well-known in the distribu-

tion theory on locally compact abelian groups that if ψ ∈ L2(G) then the value Afψ
may be found by the formula in 7.7.1. It is also easy to justify these calculations
rigorously, but this is immaterial for the aims of this section and so we use the
definition of 7.7.1.

(2) Similar calculations lead to an analogous formula for the nth appro-
ximant:

A
(n)
f =

1
|Gn|

∑

g∈Gn,χ∈Ĝn

f̃n(γχ, g)X(g, χ),

with f̃n := FGn
⊗ F

Ĝn
(fn) and fn(g, χ) := f(jn(g), ĵn(χ)).

(3) Note that in case G := R the symbol of (1) is not the Weyl symbol
(symmetric symbol) of an operator but rather the so-called qp-symbol. See [506]
about the qp-symbols of operators in L2(Qn

p ) spaces.
The interrelation between the qp-symbols of A and A∗ is not simple. Also,

the conditions for the symbol f to make Af selfadjoint are rather complicated,
Moreover, these conditions do not guarantee that A(n)

f or B(n)
f will be selfadjoint

for a selfadjoint Af . The theory of pseudodifferential operators in L2(Rn) also
considers symmetric or Weyl symbols. The operator Wf with Weyl symbol f is
selfadjoint if and only if f is a real function [33].

(4) The content of this section is taken from the article [5] by Albeverio,
Gordon, and Khrennikov.
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Exercises and Unsolved Problems

This chapter collects not only simple questions for drill but also topics for
serious research intended mostly at the graduate and postgraduate levels. Some
problems need a creative thought to clarify and specify them. In short, this selection
is rather haphazard, appearing in statu nascendi.

The problems in [271, 273–276, 278, 280] are the core of this chapter.

8.1. Nonstandard Hulls and Loeb Measures

8.1.1. The concept of nonstandard hull, stemming from the seminal works by
Luxemburg, is a topical object of intensive study.

Many interesting facts are now in stock on the structure of the nonstandard
hulls of Banach spaces and topological vector spaces (cf. [71, 187, 188, 466]). Howev-
er, much is still unravelled in the interaction of the main constructions and concepts
of Banach space theory and the various instances of nonstandard hulls. There is
no detailed description for the nonstandard hulls of many function and operator
spaces we deal with in functional analysis. We will give a few relevant statements.

By X# we denote the nonstandard hull of a normed space X ; i.e. the quotient
space of the external subspace of limited elements ltd(X) by the monad μ(X) of the
neighborhood filter about the origin of X , cf. 6.1.1. The prerequisites to functional
analysis may be found in [83, 84, 227, 397].

Problem 1. Find conditions for X# to possess the Krĕın–Milman property in
terms of X .

Look at [274] for a close bunch of problems related to the Krĕın–Milman The-
orem and its abstraction to Kantorovich spaces.

Problem 2. Find conditions for X# to possess the Radon–Nikodỳm property
in terms of X .
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Problem 3. Study other geometric properties of the nonstandard hull of a Ba-
nach space such as smoothness, rotundity, the Asplund property, etc.

Problem 4. What is the stalkwise nonstandard hull of a continuous (measur-
able) Banach bundle? The same problem for the corresponding space of continuous
(measurable) sections.

Problem 5. Describe the nonstandard hulls of various classes of bounded
linear operators such as Radon–Nikodỳm operators, radonifying operators, order
summing, p-absolutely summing and similar operators, etc.

8.1.2. The vector space M(ν) of cosets of measurable functions on a finite
measure space (Ω,B, ν) possesses the metric

ρ(f, g) :=
∫

Ω

|f − g|
1 + |f − g| dν.

Furnished with the metric topology, M(ν) becomes a topological vector space.
Consider the nonstandard hull M(ν)# := ltd(M(ν))/μρ(0), with μρ(0) := {f ∈

M(ν) : ρ(f, 0) ≈ 0} and ltd(M(ν)) := {f ∈ M(ν) : εf ∈ μρ(0) for ε ≈ 0}. Let
(Ω,BL, νL) stand for the corresponding Loeb measure space. Then M(ν)# and
M(νL) are isometric spaces.

Problem 6. What is the matter with the space of Bochner measurable vector-
functions M(ν,X)? The same problem for Gelfand measurable and Pettis measur-
able functions.

Assume that E is an order ideal in M(ν); i.e., E is a subspace of M(ν) and,
given f ∈ M(ν) and g ∈ E, the inequality |f | ≤ |g| implies that f ∈ E. Denote by
E(X) the space of f ∈ M(ν,X) such that the function v(f) : t �→ ‖f(t)‖ (t ∈ Q)
belongs to E, implying identification of equivalent functions. If E is a Banach
lattice then E(X) is a Banach space under the mixed norm |‖f‖| = ‖v(f)‖E.

Problem 7. Describe the nonstandard hull of E(X).

8.1.3. Assume that (X,Σ, μ) is a finite measure space. Consider a hyperfi-
nite set M ⊂ ∗X , satisfying μ(A) = |A ∩M |/|M |. Let (M,SL, νL) stand for the
corresponding Loeb measure space.

Problem 8. Is it true that under a suitable embedding ϕ : Σ/μ → SL/νL
the regular subalgebra ϕ(Σ/μ) is splittable? If this is so, describe the internal sets
that correspond to the complementary factor (presenting, so to say, the “purely
nonstandard” members of SL/νL).

Problem 9. The same problem for embedding an interval with Lebesgue mea-
sure in some Loeb measure space.
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Problem 10. The same problem for the spaces implied in Problems 70 and 71.

8.1.4. Let (X,A , λ) and (Y,B, ν) be standard finite measure spaces. A func-
tion μ : A × Y → R is a random measure if

(1) the function μ(A, ·) is B-measurable for all A ∈ A ;
(2) the function μ(·, y) is a finite positive measure on A for ν-almost

all y ∈ Y .
Problem 11. Suggest a definition of random Loeb measure μL so that it

serves as a random measure for (X,AL, λL) and (Y,BL, νL).

Problem 12. Describe interplay between the integral operators
∫
f(x) dμ(x, ·)

and
∫
f(x) dμL(x, ·)? What is the analog of S-integrability here?

Some solution to Problems 11 and 12, belonging to Troitskĭı [490], is presented
in Section 6.6.

Problem 13. Suggest a definition of vector-lattice-valued Loeb measure (in
the absence of any topology). Do it so that the random Loeb measure of Problem 11
correlates with the concept of Loeb measure for the vector measure A �→ μ(A, ·).

8.1.5. The next three problems are invoked by the article [18], belonging to
the theory of spaces of differentiable functions (cf. [78, 131, 132, 356, 357]).

Problem 14. Suggest a nonlinear potential theory by using the concept of
Loeb measure.

Problem 15. Suggest a version of nonstandard capacity theory.

Problem 16. Define and study the spaces of differential forms by using Loeb
measure (cf. [131, 132]).

8.2. Hyperapproximation and Spectral Theory

8.2.1. In Chapter 7 we saw that each locally compact abelian group admits
hyperapproximation; moreover, this approximation agrees with the Pontryagin–van
Kampen duality and the Fourier transform for the original group is approximated
the discrete Fourier transform on an approximant. This explains interest in studying
the case of noncommutative groups. We come to a new class of “approximable”
locally compact groups. This class seemingly includes amenable groups; however,
no precise description is known for this class of groups.

Problem 17. Given a locally compact (not necessarily abelian) group G, con-
struct hyperapproximants to bounded endomorphisms of the L2(G) space.
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8.2.2. Approximations for locally compact abelian groups allow us to con-
struct hyperapproximants to pseudodifferential operators in the Hilbert space of
square integrable functions on a locally compact abelian group. This was done for
the Schrödinger-type operators and Hilbert–Schmidt operators in the case of a spe-
cial class of groups with compact and open subgroups in [503]. Another approach
was pursued in [405, 406, 527].

The latter is more general since it is confined to the spaces of functions on a lo-
cally compact group. However, the former leads to more refined results. Therefore,
interplay between these two approaches seems promising. The intriguing prob-
lem arises of abstracting available results to other pseudodifferential operators on
a locally compact group and constructing analogous approximants to operators in
function spaces over other approximable groups.

Another bunch of problems consists in studying the limit behavior of spectra
and eigenvalues of hyperapproximants to a pseudodifferential operator on a locally
compact abelian group.

Problem 18. Study the limit behavior of the spectrum and eigenvalues of
a hyperapproximant to a Schrödinger-type operator with positive potential growing
at infinity. The same problem for a Hilbert–Schmidt operator.

Problem 19. The same problem as in Problem 18 for a Schrödinger operator
with periodic potential.

Problem 20. Study interplay between hyperapproximants to a locally com-
pact abelian group and its Bohr compactification.

Problem 21. Construct approximants to a Schrödinger-type operator with
almost periodic potential on using Problem 20 and study their convergence.

Problem 22. Study the limit behavior of the spectra of approximants in
a boundary value problem for the Schrödinger operator in a rectangular domain
of a finite-dimensional space.

8.2.3. We now list a bunch of problems relating to approximants to operators
in function spaces over a noncommutative locally compact group and convergence
of these approximants.

Problem 23. Approximate various irreducible representations of the Heisen-
berg group by using representations of approximating finite groups.

Problem 24. Given a Hilbert function space on the Heisenberg group, find
approximants to the operators in the algebra spanned over multiplications by the
matrix elements of irreducible representations and shifts.

Problem 25. The same as in Problem 24 for other approximable nilpotent
groups and suitable matrix groups over local fields.
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Problem 26. Study the approximation problem for simple Lie groups.

Problem 27. Study methods for summation of divergent series over an ap-
proximable discrete group, basing on hyperapproximation of this group.

Problem 28. Study interplay between nonstandard summation methods of
divergent series with nonstandard extensions of a densely defined operator.

8.2.4. Hyperapproximation of operators is not always determined from hyper-
approximation of a locally compact group. Moreover, if the domain of the operator
under study is a function space over a domain other than a group the above-
presented scheme of hyperapproximation is not applicable in general. However, we
may try to construct hyperapproximants on using the specifics of the domain of an
operator. We list a few relevant problems. Observe that Problems 30 and 31 are
formulated jointly with Pliev.

Problem 29. Suggest a theory of Fredholm determinants that rests on ap-
propriate hyperapproximation.

Problem 30. Prove the Lidskĭı Theorem of coincidence of the matrix and
spectral traces of a trace-class operators by hyperapproximation.

Problem 31. Use nonstandard discretization methods for studying the spec-
tral properties of operator pencils. In particular, find an analog of the Keldysh
Theorem on completeness of the derived chains of operator pencils (cf. [236]).

Problem 32. Construct a hyperfinite-rank analog of the Radon transform
[161] in the spirit of [140, 142, 144, 146] (see Chapter 7).

Problem 33. Apply hyperapproximation of the Radon transform to analyzing
the discrete scanning schemes of computer tomography [375].

8.3. Combining Nonstandard Methods

8.3.1. We have mentioned elsewhere that there are various ways of combin-
ing nonstandard methods: we may proceed with infinitesimal construction inside
a Boolean valued universe or we may seek for Boolean valued interpretation in the
framework of some theory of internal or external sets; cf. [271] and 4.8–4.11. How-
ever, serious difficulties arise and it is not always clear how to obviate them. At the
same time, successive application of nonstandard methods leads often to a success
as in [277, 280, 282, 294].

Problem 34. Develop a combined “scalarization-discretization” technique of
unifying various combinations of nonstandard methods.
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Problem 35. Suggest a Boolean valued version of the concept of Loeb mea-
sure and the relevant integration theory. Study the respective classes of operators.
In particular, invent some Kantorovich-space-valued Loeb measure.

Problem 36. Give Boolean valued interpretations of available nonstandard
hulls. Study the corresponding “descended” nonstandard hulls.

Problem 37. Using various nonstandard methods, derive a combined transfer
principle from finite-dimensional normed algebras to relevant classes of Banach
algebras.

Problem 38. Using a combined technique of “scalarization-discretization,”
construct some hyperapproximants to representations of locally compact groups.

8.3.2. Substituting the laws of intuitionistic logic for the logical part of ZF
(cf. [121, 150, 479]), we come to intuitionistic set theory ZFI. We may construct
models for ZFI by using a similar scheme. Namely, considering a complete Heyting
lattice, study numeric systems inside Heyting valued models and the corresponding
algebraic structures; cf. [120, 133, 201].

Problem 40. Study classical Banach spaces inside Heyting valued models;
cf. [50].

Problem 41. Does some interpretation of Hilbert space theory inside Heyting
valued models lead to a meaningful theory of Hilbert modules?

8.3.3. Consider the following claim.

Let X and Y be normed spaces. Assume given X0 a subspace of X and T0

a bounded linear operator from X0 to Y . Then, to each 0 < ε ∈ R, there is a
bounded linear extension T of T0 to the whole of X such that ‖T‖ ≤ (1 + ε)‖T0‖.

The Hahn–Banach Theorem fails in constructive mathematics. However (cf.
[37]), it is well known that the above claim holds for functionals; i.e., in the case
of Y = R. Consequently, this claim is valid for functionals inside every Heyting
valued model.

The same claim holds in the classical sense, i.e., in the von Neumann uni-
verse for compact operators ranging in the space C(Q) of continuous functions on
a compact space Q (see [318]).

Problem 42. Does the affinity of the two extension theorems for a functional
and a compact operator ensue from some transfer principle for Heyting valued
models?

Problem 43. For which objects and problems of functional analysis and oper-
ator theory is there an effective transfer principle resting on the technique of Heyting
valued models? Topoi? Sheaves? (Cf. [122] and the entire collection [180].)



Exercises and Unsolved Problems 373

8.3.4. Let B be a quantum logic (cf. [281]). If we define the functions [[ · ∈ · ]]
and [[ · = · ]] by the formulas of [154, 2.1.4] and introduce the same truth values as in
[154, 2.1.7] then all Axioms ZF2–ZF6 and AC become valid inside the universe V(B).
Therefore, we may practice set theory inside V(B). In particular, the reals inside
V(B) correspond to observables in a mathematical model of a quantum mechanical
system (cf. [476]).

In [476] there is shown that if B is a quantum logic [281] then V(B) serves
for a certain quantum set theory. Studying quantum theories as logical systems is
a challenging topic as well as constructing quantum set theory and developing the
corresponding quantum mathematics. However, this area of research still leaves
much to be discovered. Adequate mathematical tools and signposts reveal them-
selves most likely in the theory of von Neumann algebras and various “noncom-
mutative” branches stemming from it such as noncommutative probability theory,
noncommutative integration, etc.

Problem 44. Is there any reasonable version of the transfer principle from
measure (integral) theory to noncommutative measure (integral) theory resting on
the model V(B) of quantum set theory?

Problem 45. Suggest a noncommutative theory for Loeb measure; i.e., apply
the construction of Loeb measure to a measure on a quantum logic.

Problem 46. Suggest a theory of noncommutative vector (center-valued) in-
tegration on a von Neumann algebra (AW ∗-algebra) and study the relevant spaces
of measurable and integrable elements by Boolean valued realization.

Problem 47. What properties of the quantum complex numbers (i.e., the
complex numbers inside V(B) for a quantum logic B) correspond to meaningful
properties of a von Neumann algebra (AW ∗-algebra)?

8.3.5. Let E be a vector lattice.
An operator T fromE to an arbitrary vector space F is called disjointly additive

if T (x1+x2) = T (x1)+T (x2) for all x1, x2 ∈ E such that x1 ⊥ x2 (i. e., x1∧x2 = 0).
We denote by U (E, F ) the set of all disjointly additive order bounded operators
from E to F . The members of U (E, F ) are abstract Urysohn operators (cf. [355]).

Assume that F is a Kantorovich space. As demonstrated in [355], we make
U (E, F ) into a Kantorovich space by furnishing U (E, F ) with the following order:
S ≥ 0 if and only if S(x) ≥ 0 for all x ∈ E, with S1 ≥ S2 implying that S1 −S2 ≥ 0.

A disjointly additive operator in a Kantorovich space which commutes with
each band projection we call an abstract Nemytskĭı operator.

Problem 48. Apply the “scalarization-discretization” method to nonlinear
integral Urysohn operators as well as to their abstract analogs, i.e., bounded dis-
jointly additive operators.
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Problem 49. Give a Boolean valued interpretation of disjointly additive func-
tional and study the corresponding class of nonlinear operators.

Problem 50. Leaning on Problem 49, describe the band that is generated by
a positive disjointly additive operator.

Problem 51. Suggest some Boolean valued realization for an abstract Ne-
mytskĭı operator and find its functional representation.

8.3.6. The next problem resembles a species of convex analysis. However, it
reflects the principal difficulty that stems from nonuniqueness of the standard part
operation and related infinitesimal constructions inside a Boolean valued universe.

Problem 52. Considering a standard Kantorovich space, describe the subd-
ifferential ∂p of the operator p(e) := inf ∗{f ∈ E : f ≥ e}.

8.4. Convex Analysis and Extremal Problems

8.4.1. We start with problems on extreme points.

Problem 53. Study the points infinitely close to extreme points of a subdif-
ferential.

Problem 54. Find the Boolean valued status of the o-extreme points of a sub-
differential [279].

Problem 55. Describe the external equivalences that are kept invariant under
the Young–Fenchel transform (cf. [279]).

8.4.2. Assume that (Q,Σ, μ) is a measure space, X is a Banach space, and
E is a Banach lattice. Let Y stand for some space of measurable vector functions
u : Q → X , with identification of equivalent functions. Suppose that f : Q ×X →
E• is a convex mapping in the second variable x ∈ X for almost all t ∈ Q, with
the composite t �→ f

(
t, u(t)

)
measurable for all u ∈ Y . We may then define some

integral operator If over Y by the formula

If (u) :=
∫

Q

f
(
t, u(t)

)
dμ(t) (u ∈ Y ).

We agree that If (u) := +∞ if the vector function f
(·, u(·)) fails to be integrable.

Clearly, If : Y → E• is a convex operator. Convex analysis pays much attention
to operators of this sort.

In particular, the problems are topical of describing the subdifferential ∂If(u0)
and the Young–Fenchel transform (If )∗ also called the conjugate of (If )∗. As
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regards the general properties of convex operators, see [279, 315]; see [55, 100, 315]
about integral convex functionals (in the case of E = R).

Using the results of 6.3 and 6.4, we present the integral functional If as follows

If (u) =
◦(

Δ
N∑

k=1

f
(
tk, u(tk)

)
)

(u ∈ Y ).

Problem 56. Study the convex integral functional If by means of the above
representation. In particular, derive some formulas for calculating the subdifferen-
tial ∂If (u0).

Problem 57. Study convex and nonconvex integrands and corresponding in-
tegral functionals by infinitesimal discretization,

8.4.3. Various selection theorems are listed among powerful tools for studying
functionals like If . We now state two available results precisely (cf. [55, 100, 315]).

Assume that Q is a topological (measurable) space, and X is a Banach space.
A correspondence Γ ⊂ Q×X is called lower semicontinuous (measurable) provided
that Γ−1(G) is open (measurable) for all open G ⊂ X . A mapping γ : dom(f) → X
is a selection from Γ provided that γ(q) ∈ Γ(q) for all q ∈ dom(Γ).

Michael Continuous Selection Theorem. Suppose that Q is a paracom-
pact space, Γ is lower semicontinuous correspondence, and Γ(q) is a nonempty
closed convex set for all q ∈ Q. Then there is a continuous selection from Γ.

Rokhlin–Kuratowski–Ryll-Nardzewski Theorem. Suppose that Q is a
measurable space, X is a Polish space, i.e. a complete separable metric space, and
Γ ⊂ Q × X is a measurable correspondence, with Γ(q) closed for all q ∈ Q. Then
there is a measurable selection from Γ.

Problem 58. Carry out hyperapproximation of a paracompact space and sug-
gest a nonstandard proof of the Michael Continuous Selection Theorem.

Problem 59. Find a nonstandard approach to the measurable selection prob-
lem and, in particular, suggest a nonstandard proof for the Rokhlin–Kuratowski–
Ryll-Nardzewski Theorem.

8.4.4. The following problems rest on the concept of infinitesimal optimum.
As regards the prerequisites to convex analysis, see [100, 279, 422, 487].

Problem 60. Suggest a concept of infinitesimal solution to problems of opti-
mal control and variational calculus.

Problem 61. Find an infinitesimal extension of an abstract nonlinear ex-
tremal problem with operator constraints and study the behavior of infinitesimal
optima.
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Problem 62. Pursue an infinitesimal approach to relaxation of nonconvex
variational problems.

Problem 63. Suggest some subdifferential calculus for functions over Boolean
algebras and study the extremal problems of optimal choice of some member of
a Boolean algebra.

8.5. Miscellany

In the subsection we collect a few groups of problems related to various areas
of mathematics.

8.5.1. Relative Standardness.

Problem 64. Using the Euler broken lines with higher infinitesimal meshsize
as compared with an infinitesimal ε in the van der Pol equation, find a direct proof of
existence of “canards”—duck-shaped solutions—avoiding change-of-variable (pas-
sage to the Lenard plane) (cf. [542]).

Consider another definition of relative standardness:

x : st : y ⇐⇒ (∃stf)(x = f(y)).

This definition implies that there is a natural n : st : y succeeding some naturals
nonstandard relative to y. This leads to a model of infinitesimal analysis with the
“perforated” set of naturals which satisfies the transfer principle and the implication
to the right in the idealization principle.

Problem 65. Suggest a reasonable axiomatics for such a version of infinitesi-
mal analysis.

Assume that y is an admissible set and (X,Σ, μ) is a y-standard space with
σ-additive measure μ. An element x in X is called y-random provided that x /∈ A
for every y-standard set A ∈ Σ satisfying μ(A) = 0.

From 6.4.2 (1) we infer the following

Theorem. If (X1,Σ1, μ1) and (X2,Σ2, μ2) are standard finite measure spaces,
ξ1 is a random element in X1, and ξ2 is a ξ1-random element in X2; then (ξ1, ξ2) is
a random element in the product X1 ×X2.

Problem 66. Is the converse of the above theorem true?

Problem 67. Study properties of “dimensional” (“inhomogeneous”) real axis.

Problem 68. Is it possible to justify the physicists’ manipulations with frac-
tional dimensions?
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8.5.2. Topology and Radon Measures. Assume that X is an internal
hyperfinite set and R ⊂ X2 is an equivalence on X which is the intersection of some
family of k internal sets, with k a cardinal. Assume further that the nonstandard
universe is k+-saturated (as usual, κ+ is the least cardinal greater than κ). Furnish
X# := X/R with the topology possessing {F# : F ⊂ X ; F is internal} a base for
the collection of closed sets. Then X# is compact if and only if to each internal
A ⊃ R there is a standardly-finite subset K of X of standardly finite size such that
X = A(K) where A(K) := {y ∈ X : (x, y) ∈ A for some x ∈ K}. Moreover, every
compact set may be presented is this manner.

Problem 69. Using these terms, describe connected, simply connected, dis-
connected, and extremally disconnected compact spaces.

Problem 70. Is each Radon measure on X# induced by some Loeb measure
on X? In other words, is it true that to each Radon measure μ on X# there is
a Loeb measure νL on X such that A ⊂ X# is μ-measurable if and only if π−1(A) is
νL-measurable, with μ(A) = νL(π−1(A)) (here π : X → X# stands for the quotient
mapping).

It is well known that to each compact space X there are an internal hyperfinite
set X and an internal mapping Φ : X → ∗X satisfying

(∀stξ ∈ ∗X )(∃x ∈ X )(Φ(x) ≈ ξ);

moreover, if R := {(x, y) : Φ(x) ≈ Φ(y)} then X/R is homeomorphic with ∗X .

Problem 71. Is it true that to each Radon measure μ onX there are some Φ
satisfying the above conditions (or for all these Φ) and some Loeb measure νL on X
(induced by an internal function ν : X → ∗

R “measuring the atoms”) such that

∫

X

f dμ =
◦(∑

x∈X

∗f
(
Φ(x)

)
ν(x)

)

for all bounded almost continuous functions f?

Problem 72. Describe other topological properties of X# (regularity, local
compactness, etc.) in terms of the properties of R. What other types of space may
be obtained in the same manner?

Problem 73. Study the monads that serve as external preorders (i.e., quasi-
uniform spaces).

8.5.3. Theory of Entire Functions. The next bunch of problems was
suggested by Gordon.
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Problem 74. Describe the class of nonstandard polynomials whose shadows
are entire functions or entire functions of finite degree σ.

Recall that if f is an internal function from ∗X to ∗C such that |f(∗x)| is
limited for all x ∈ X then the shadow or standard part of f is the function ◦f from
X to C such that (◦f)(x) = ◦f(x).

Problem 75. Interpret the Paley–Wiener Theorem [428] in terms of Prob-
lem 74.

Problem 76. Find infinitesimal proofs for the Kotel ′nikov Theorem and other
interpolation theorems for entire functions [237, 314].

Problem 77. Using expansion of polynomials, derive the theorems on product
expansion of entire functions (similar to the Eulerian expansion of sinx) [217, 328].

8.5.4. Ergodic Theory. The bunch of Problems 78–83 is suggested by Ka-
churovskĭı [275].

Let N be an unlimited natural. A numeric sequence {xn}Nn=0 is called mi-
croconvergent if there is some real x∗ such that xn ≈ x∗ for all unlimited n ≤ N .
Assume that a sequence {xn}∞n=0 converges in the conventional sense. The following
three cases determine three types of convergence:

(1) White convergence: the sequence {xn}Nn=0 microconverges for all
unlimited N ;

(2) Color convergence: there are two unlimited naturals N and M such
that the sequence {xn}Nn=0 is microconvergent whereas the sequence
{xn}Mn=0 is not;

(3) Black convergence: the sequence {xn}Nn=0 is not microconvergent
for every unlimited N .

Von Neumann Ergodic Theorem. Let U be an isometry of a complex
Hilbert space H and let HU be the fixed point subspace of U , i.e., HU = {f ∈ H :
Uf = f}. Denote the orthoprojection to HU by PU . Then

lim
n→∞

∥
∥
∥
∥

1
n+ 1

n∑

k=0

Ukf − PUf

∥
∥
∥
∥
H

= 0

for all f ∈ H.

Corollary. Assume that (Ω, λ) is a finite measure space, T is an automorphism
of this space, and f ∈ L2(Ω). Then the sequence

{
1

n+1

∑n
k=0 f(T kx)

}∞
n=0
converges

in the norm of L2(Ω).
Let L̂1(Ω) stand for the external set of the elements f ∈ L1(Ω) such that

‖f‖1 � ∞ and λ(E) ≈ 0 implies
∫
E
f dλ ≈ 0 for all E ⊂ Ω. We also put L̂2(Ω) =

{f ∈ L2(Ω) : f2 ∈ L̂1(Ω)}. The next result is established in [205]; see [191, 192] for
related topics.
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Theorem of Bounded Fluctuation. If fbelongs to L̂2(Ω) then the sequence
of averages of f has bounded fluctuation (and consequently, its convergence is white
or color, that is, nonblack).

Problem 78. Find other (possibly weaker) sufficient conditions that imply
bounded fluctuation and nonblack convergence for the sequence of averages in the
above corollary.

Problem 79. Find necessary conditions implying bounded fluctuation and
nonblack convergence for the sequence in the above corollary which are as close as
possible to the sufficient conditions of Problem 78.

Problem 80. The same as Problem 78 for the von Neumann Statistical Er-
godic Theorem.

Problem 81. The same as Problem 79 for the von Neumann Statistical Er-
godic Theorem and Problem 80.

Problem 82. The same as Problem 79 for the Birkhoff–Khinchin Ergodic
Theorem.

Problem 83. The same as Problem 79 for the Birkhoff–Khinchin Ergodic
Theorem and Problem 82.

8.5.5. We now list a few problems belonging to none of the above bunches.

Problem 84. Find criteria for nearstandardness and prenearstandardness for
the elements of concrete classical normed spaces.

Problem 85. Develop the theory of bornological spaces resting on the monad
of a bornology [182].

Problem 86. Find comparison tests for finite sums with infinitely many terms.

Problem 87. Construct approximation schemata for general algebraic (Bool-
ean valued) systems.

Let X be a Banach space and let B be a complete Boolean algebra. Denote by
B[X ] a completion inside V(B) of the metric space X∧, the standard name of X .

Problem 88. Find Banach spaces X and Boolean algebras B satisfying the
equality B[X ′] = B[X ]′ inside V(B).
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Here we sketch the theory of Boolean valued models of set theory in brief.
More complete introductions are available in [29, 263, 276, 281].

A.1. Let B stand for a distinguished complete Boolean algebra. By a Boolean
valued interpretation of an n-ary predicate P on a class X we mean any mapping
R : Xn → B.

Suppose that L is a first-order language with some predicates P0, P1, . . . , Pn,
and let R0, R1, . . . , Rn stand for some Boolean valued interpretations of these pred-
icates on a class X .

Given a formula ϕ(u1, . . . , um) of the language L and elements x1, . . . , xm ∈
X , we define the truth value [[ϕ(x1, . . . , xm) ]] ∈ B by usual induction on the length
of ϕ.

Dealing with atomic formulas, we put

[[Pk(x1, . . . , xm) ]] := Rk(x1, . . . , xm).

The steps of induction use the following rules:

[[ϕ ∨ ψ ]] := [[ϕ ]] ∨ [[ψ ]],

[[ϕ ∧ ψ ]] := [[ϕ ]] ∧ [[ψ ]],

[[ϕ → ψ ]] := [[ϕ ]] ⇒ [[ψ ]],

[[ ¬ϕ ]] := [[ϕ ]]∗,

[[ (∀x)ϕ ]] :=
∧

x∈X
[[ϕ(x) ]],

[[ (∃x)ϕ ]] :=
∨

x∈X
[[ϕ(x) ]],

with the symbols ∨, ∧, ⇒, ( · )∗,
∧

,
∨

on the right sides of the equalities designating
the conventional Boolean operations on B and a ⇒ b := a∗ ∨ b.
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A.2. A proposition ϕ(x1, . . . , xm), with x1, . . . , xm ∈ X and ϕ(u1, . . . , um)
a formula, is valid (true, veritable, etc.) in an algebraic system X := (X,R0, . . . , Rn)
if [[ϕ(x1, . . . , xm) ]] = 1, where 1 is the greatest element of B. In this event we write
X |= ϕ(x1, . . . , xm).

All logically true statements are valid in X. If the predicate P0 symbolizes
equality then we require that the B-system X := (X,=, R1, . . . , Rn) satisfies the
axioms of equality. If this requirement is fulfilled then all logically true statements of
the first-order logic with equality, expressible in the language L := {=, P1, . . . , Pn},
are valid in the B-system X.

A.3. We now consider a Boolean valued interpretation on a class X of the
language L := {=,∈} of ZFC, i.e., the first-order language L with the two binary
predicates: = and ∈. We denote the interpretations of these predicates by [[ · = · ]]
and [[ · ∈ · ]], respectively. Thus, [[ · = · ]], [[ · ∈ · ]] : X ×X → B, and

[[ = (x, y) ]] = [[ x = y ]], [[ ∈ (x, y) ]] = [[ x ∈ y ]] (x, y ∈ X).

Our nearest aim is to characterize the B-systems X := (X, [[ · = · ]], [[ · ∈ · ]])
that model ZFC so that X |= ZFC. The last condition amounts to the fact that all
axioms of ZFC are valid in X. So, for instance, by the rules of 1.2.1 , the validity
of the axiom of extensionality 1.1.4 (1) means that, for all x, y ∈ X ,

[[ x = y ]] =
∧

z∈X
([[ z ∈ x ]] ⇔ [[ z ∈ y ]]),

where a ⇔ b := (a ⇒ b) ∧ (b ⇒ a) for all a, b ∈ B.

A.4. A B-system X is called separated whenever for all x, y ∈ X the statement
[[ x = y ]] = 1 implies x = y. An arbitrary B-system X becomes separated after tak-
ing the quotient modulo the equivalence relation ∼ := {(x, y) ∈ X2 : [[ x = y ]] = 1}.
(This is done with the help of the well-known Frege–Russell–Scott trick; see [276].)

A B-system X is said to be isomorphic to a B-system X
′ := (X ′, [[ · = · ]]′,

[[ · ∈ · ]]′), if there is a bijection β : X → X ′ such that [[x = y ]] = [[ βx = βy ]]′ and
[[ x ∈ y ]] = [[ βx ∈ βy ]]′ for all x, y ∈ X .

A.5. Theorem. There is a unique B-system X up to isomorphism such that

(1) X is separated;
(2) The axioms of equality are valid in X;
(3) The axiom of extensionality and the axiom of regularity hold in X;
(4) If a function f : dom(f) → B satisfies dom(f)∈V and dom(f) ⊂ X,

then
[[ y ∈ x ]] =

∨

z∈dom(f)

(z) ∧ [[ z = y ]] (y ∈ X)
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for some x ∈ X;
(5) For each x ∈ X, there is a function f : dom(f) → B with dom(f) ∈

V, dom(f) ⊂ X, such that equality holds in (4) for all y ∈ X.

A.6. A B-system enjoying A.5 (1–5) is called a Boolean valued model of set
theory and is denoted by the symbol V(B) := (V(B), [[ · = · ]], [[ · ∈ · ]]). The class V(B)

is also called the Boolean valued universe over B. The basic properties of V(B) are
formulated as follows:

(1) Transfer Principle. Every axiom, and hence every theorem, of
ZFC is valid in V(B); in symbols, V(B) |= ZFC.

(2) Mixing Principle. If (bξ)ξ∈Ξ is a partition of unity in B, and
(xξ)ξ∈Ξ is a family of elements of V(B), then there is a unique
element x ∈ V(B) satisfying bξ ≤ [[ x = xξ ]] for all ξ ∈ Ξ.

The element x is called the mixing of (xξ)ξ∈Ξ by (bξ)ξ∈Ξ and is denoted by
mixξ∈Ξ bξxξ.

(3) Maximum Principle. For every formula ϕ(u) of ZFC, possibly
with constants from V(B), there is an element x0 ∈ V(B) satisfying

[[ (∃u)ϕ(u) ]] = [[ϕ(x0) ]].

It follows in particular that if [[ (∃!x)ϕ(x) ]] = 1, then there is a unique x0 in
V(B) satisfying [[ϕ(x0)]] = 1.

A.7. There is a unique mapping x �→ x∧ from V to V(B) obeying the following
conditions:

(1) x = y ↔ [[ x∧ = y∧]] = 1; x ∈ y ↔ [[ x∧ ∈ y∧]] = 1 (x, y ∈ V),
(2) [[ z ∈ y∧]] =

∨
x∈y[[ x∧ = z ]] (z ∈ V(B), y ∈ V).

This mapping is called the canonical embedding of V into V(B) and x∧ is referred
to as the standard name of x.

(3) Restricted Transfer Principle. Let ϕ(u1, . . . , un) be some re-
stricted formula, i.e., the quantifiers of ϕ(u1, . . . , un) have the form
(∀u)(u ∈ v → . . . ) or (∃u)(u ∈ v∧ . . . ) abbreviated to (∀u ∈ v) and
(∃u ∈ v). Then

ϕ(x1, . . . , xn) ↔ V(B) |= ϕ(x∧
1 , . . . , x

∧
n)

for all x1, . . . , xn ∈ V.

A.8. Given an element X ∈ V(B), we define its descent X↓ as X↓ := {x ∈
V(B) : [[ x ∈ X ]] = 1}. The descent of X is a cyclic set; i.e., X↓ is closed under
mixing. More precisely, if (bξ)ξ∈Ξ is a partition of unity in B and (xξ)ξ∈Ξ is a family
of elements of X↓, then the mixing mixξ∈Ξ bξxξ lies in X↓.
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A.9. Let F be a correspondence from X to Y inside V(B), i.e., X, Y, F ∈ V(B)

and [[F ⊂ X × Y ]] = [[F �= ∅ ]] = 1. There is a unique correspondence F↓ from X↓
to Y ↓ satisfying F (A)↓ = F↓(A↓) for every set A ⊂ X↓ inside V(B). Furthermore,
[[F is a mapping from X to Y ]] = 1 if and only if F↓ is a mapping from X↓ to Y ↓.

In particular, a function f : Z∧ → Y inside V(B), where Z ∈ V, defines its
descent f↓ : Z → Y ↓ by f↓(z) = f(z∧) for all z ∈ Z.

A.10. We suppose that X ∈ P(V(B)) and define a function f : dom(f) → B
by putting dom(f) = X and im(f) = {1}. By A.5 (4) there is an element X↑ ∈ V(B)

satisfying
[[ y ∈ X↑ ]] =

∨

x∈X
[[ x = y ]] (y ∈ V(B)).

The element X↑, unique by the axiom of extensionality, is called the ascent
of X . Moreover, the following are true:

(1) Y ↓↑ = Y (Y ∈ V(B)),
(2) X↑↓ = mix(X) (X ∈ P(V(B))),

where mix(X) consists of all mixings of the form mix bξxξ, with (xξ) ⊂ X and (bξ)
a partition of unity in B.

A.11. Assume that X, Y ∈ P(V(B)) and let F be a correspondence from X
to Y . The following are equivalent:

(1) There is a unique correspondence F↑ from X↑ to Y ↑ inside V(B)

such that dom(F↑) = dom(F )↑ and

F↑(A↑) = F (A)↑

for every subset A of dom(F );
(2) The correspondence F is extensional, i.e.,

y1 ∈ F (x1) → [[ x1 = x2 ]] ≤
∨

y2∈F (x2)

[[ y1 = y2 ]].

A correspondence F is a mapping from X to Y if and only if [[F↑ : X↑ →
Y ↑ ]] = 1. In particular, a mapping f : Z → Y ↓ generates a function f↑ : Z∧ → Y
such that [[ f↑(x∧) = f(x) ]] = 1 for all x ∈ Z.

A.12. We assume that a nonempty set X carries some B-structure; i.e., we
assume given a mapping d : X ×X → B satisfying the “metric axioms”:

(1) d(x, y) = 0 ↔ x = y;
(2) d(x, y) = d(y, x);
(3) d(x, y) ≤ d(x, z) ∨ d(z, y).



384 Appendix

Then there are an element X ∈ V(B) and an injection ι : X → X ′ := X ↓
such that d(x, y) = [[ ι(x) �= ι(y) ]] and every element x′ ∈ X ′ may be represented
as x′ = mix bξιxξ, with (xξ) ⊂ X and (bξ) a partition of unity in B. This fact
enables us to consider sets with B-structure as subsets of V(B) and to handle them
according to the rules described above.

A.13. Comments.

Boolean valued analysis (the term was coined by Takeuti) is a branch of func-
tional analysis which uses Boolean valued models of set theory [473, 475]. Since
recently this term has been treated in a broader sense implying the tools that rest
on simultaneous use of two distinct Boolean valued models.

It was the Cohen method of forcing whose comprehension led to the invention
of Boolean valued models of set theory which is attributed to the efforts by Scott,
Solovay, and Vopěnka (see [29, 195, 276, 426, 511]).

A more detailed information on the topic of this Appendix can be found in [29,
148, 276, 281]. The machinery of Boolean valued models is framed as the technique
of ascending and descending which suits the problems of analysis [263, 276, 281].
The embedding of the sets with Boolean structure into a Boolean valued universe
leans on the Solovay–Tennenbaum method for complete Boolean algebras [453]
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181. Hofstedter D. R., Gödel, Escher, Bach: an Eternal Golden Braid, Vintage
Books, New York (1980).

182. Hogbe-Nlend H., Theorie des Bornologie et Applications, Springer-Verlag,
Berlin etc. (1971).



References 395

183. Horiguchi H., “A definition of the category of Boolean-valued models,” Com-
ment. Math. Univ. St. Paul., 30, No. 2, 135–147 (1981).

184. Horiguchi H., “The category of Boolean-valued models and its applications,”
Comment. Math. Univ. St. Paul., 34, No. 1, 71–89 (1985).
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torovich spaces,” Optimization (Novosibirsk), No. 51 (68), 5–18 (1992).

275. Kusraev A. G. and Kutateladze S. S., 55 Unsolved Problems of Nonstandard
Analysis [in Russian], Novosibirsk University Press, Novosibirsk (1993).

276. Kusraev A. G. and Kutateladze S. S., Nonstandard Methods of Analysis,
Kluwer Academic Publishers, Dordrecht etc. (1994).

277. Kusraev A. G. and Kutateladze S. S., “Boolean-valued introduction to the
theory of vector lattices,” Amer. Math. Soc. Transl. Ser. 2, 163, 103–126
(1995).

278. Kusraev A. G. and Kutateladze S. S., “Nonstandard methods in functional
analysis,” in: Interaction Between Functional Analysis, Harmonic Analysis,
and Probability Theory, Marcel Dekker Inc., New York, 1995, pp. 301–306.

279. Kusraev A. G. and Kutateladze S. S., Subdifferentials: Theory and Applica-
tions, Kluwer Academic Publishers, Dordrecht etc. (1995).

280. Kusraev A. G. and Kutateladze S. S., “On combined nonstandard methods
in the theory of positive operators,” Mat. Stud., 7, No. 1, 33–40 (1997).



400 References

281. Kusraev A. G. and Kutateladze S. S., Boolean Valued Analysis, Kluwer Aca-
demic Publishers, Dordrecht etc. (1999).

282. Kusraev A. G. and Kutateladze S. S., “On combined nonstandard methods in
functional analysis,” Vladikavkaz. Mat. Zh., 2, No. 1 (2000). (http://alania-
net.ru/omj/journal.htm)

283. Kutateladze S. S., “Infinitesimal tangent cones,” Sibirsk. Mat. Zh., 27, No. 6,
67–76 (1985).

284. Kutateladze S. S., “Microlimits, microsums, and Toeplitz matrices,” Opti-
mization (Novosibirsk), No. 35, 16–23 (1985).

285. Kutateladze S. S., “Nonstandard analysis of tangential cones,” Dokl. Akad.
Nauk SSSR, 284, No. 3, 525–527 (1985).

286. Kutateladze S. S., “A variant of nonstandard convex programming,” Sibirsk.
Mat. Zh., 27, No. 4, 84–92 (1986).

287. Kutateladze S. S., “Cyclic monads and their applications,” Sibirsk. Mat. Zh.,
27, No. 1, 100–110 (1986).

288. Kutateladze S. S., Fundamentals of Nonstandard Mathematical Analysis.
Vol. 1: Naive Foudations of Infinitesimal Methods; Vol. 2: Set-Theoretic
Foundations of Nonstandard Analysis; Vol. 3: Monads in General Topology
[in Russian] (1986).

289. Kutateladze S. S., “On nonstandard methods in subdifferential calculus,”
in: Partial Differential Equations [in Russian], Nauka, Novosibirsk, 1986,
pp. 116–120.

290. Kutateladze S. S., “Epiderivatives determined by a set of infinitesimals,”
Sibirsk. Mat. Zh., 28, No. 4, 140–144 (1987).

291. Kutateladze S. S., “Infinitesimals and a calculus of tangents,” in: Studies
in Geometry in the Large and Mathematical Analysis [in Russian], Nauka,
Novosibirsk, 1987, pp. 123–135.

292. Kutateladze S. S., “On topological notions pertaining to continuity,” Sibirsk.
Mat. Zh., 28, No. 1, 143–147 (1987).

293. Kutateladze S. S., “Monads of proultrafilters and extensional filters,” Sibirsk.
Mat. Zh., 30, No. 1, 129–133 (1989).

294. Kutateladze S. S., “On fragments of positive operators,” Sibirsk. Mat. Zh.,
30, No. 5, 111–119 (1989).

295. Kutateladze S. S., “The stances of nonstandard analysis,” in: Contemporary
Problems of Analysis and Geometry [in Russian], Nauka, Novosibirsk, 1989,
pp. 153–182. (Trudy Inst. Mat., 14.)

296. Kutateladze S. S., “Credenda of nonstandard analysis,” Siberian Adv. Math.,
1, No. 1, 109–137 (1991).

297. Kutateladze S. S., “Nonstandard tools for convex analysis,” Math. Japon.,
43, No. 2, 391–410 (1996).



References 401

298. Kutateladze S. S. (ed.), Vector Lattices and Integral Operators, Kluwer Aca-
demic Publishers, Dordrecht (1996).

299. Kutateladze S. S., Formalisms of Nonstandard Analysis [in Russian], Novosi-
birsk University Press, Novosibirsk (1999).

300. Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic
Publishers, Dordrecht (1996).

301. Kuz′mina I. S., “Lusitania and its creator,” in: Nauka v SSSR, No. 1, 107–110
(1985).

302. Lacey H. E., The Isometric Theory of Classical Banach Spaces, Springer-
Verlag, Berlin etc. (1974).

303. Lambek J., Lectures on Rings and Modules, Blaisdell, Waltham (1966).
304. Landers D. and Rogge L., Nonstandard Analysis [in German], Springer-

Verlag, Berlin etc. (1994).
305. Lang S., Algebra, Addison-Wesley, Reading (1965).
306. Langwitz D., “Nicht-standard-mathematik, begründel durch eine Verallge-

meinerung der Körpererweiterung,” Exposit. Math., 1, 307–333 (1983).
307. Larsen R., Banach Algebras, an Introduction, Dekker, New York (1973).
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382. Neubrunn I., Riećan B., and Riecanou Z., “An elementary approach to some

applications of nonstandard analysis,” Rend. Circl. Math. Palermo, No. 3,
197–200 (1984).

383. Neumann J., von, Collected Works. Vol. 1 and 2, Pergamon Press, New York,
Oxford, London, and Paris (1961).

384. Newton I., The Mathematical Papers of Isaac Newton [in Russian], ONTI,
Moscow and Leningrad (1937).

385. Ng Siu-Ah, Hypermodels in Mathematical Finance. Modelling via Infinitesi-
mal Analysis, World Scientific, Singapore etc. (2001).

386. Nishimura H., “Boolean valued and Stone algebra valued measure theories,”
Math. Logic Quart., 40, No. 1, 69–75 (1994).

387. Novikov P. S., Constructive Mathematical Logic from the Point of View of
Classical Logic [in Russian], Nauka, Moscow (1977).

388. Ozawa M., “Boolean valued analysis approach to the trace problem of AW ∗-
algebras,” J. London Math. Soc. (2), 33, No. 2, 347–354 (1986).

389. Ozawa M., “Embeddable AW ∗-algebras and regular completions,” J. London
Math. Soc., 34, No. 3, 511–523 (1986).

390. Ozawa M., “Boolean-valued interpretation of Banach space theory and mod-
ule structures of von Neumann algebras,” Nagoya Math. J., 117, 1–36 (1990).

391. Pedersen G. K., Analysis Now, Springer-Verlag, Berlin etc. (1995).
392. Penot J.-P., “Compact nets, filters and relations,” J. Math. Anal. Appl., 93,

No. 2, 400–417 (1983).
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416. Riesz F. and Szökefalvi-Nagy B., Lectures on Functional Analysis [in French],
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511. Vopěnka P., “General theory of .-models,” Comment. Math. Univ. Carolin.,
7, No. 1, 147–170 (1967).
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Kawai, viii, 73
Kawai Theorem, 79
Keldysh Theorem, 371
killing of quantifiers, 166
Kolmogorov, 170
Krivine, 232
Kuratowski, 37, 180, 185, 186, 196, 199
Kuratowski limit, 185
Kuratowski lower limit, 184
Kuratowski upper limit, 184
Kuratowski–Zorn lemma, 49

Landau, 20
language of set theory, 40
Leibniz, 2, 4, 5, 20, 31, 36
Leibniz principle, 80, 83
length of a formula, 91
lifting, 245, 249
limit inferior, 184, 188
limit ordinal, 50
limit superior, 184, 188
limited element in a normed space, 224
limited part of a space, 169
limited point, 169
limited set, 72
limitedness principle, 44, 184

linear order, 45
Lipschitz, 170, 171, 195
Loeb measure, 245
Loeb measure space, 245
Loeb-measurability, 245
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