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NONSTANDARD TOOLS FOR CONVEX ANALYSIS

S. S. Kutateladze

Abstract. Modern tools for local analysis of optimization problems are based on interplay
between convexity, order and nonstandard models of set theory. This survey exposes some of

the pertinent background ideas and principal results based on using vector-lattice theory and
Boolean-valued analysis.

Nonsmooth analysis of today lays theoretical grounds for optimization theory with its
numerous and versatile applications. It is innate in mathematics to adjust the shape of its
own esoteric core so as to assimilate new problems and ideas. During the last two decades
this feature transpires in regard to optimization theory, giving an impetus to rapid progress
in nonlinear functional analysis.

In the present article an attempt is made at exposing some instances of the interplay
between optimization, ordered vector spaces and nonstandard methods of analysis. The
emphasis is placed primarily on those aspects of convex analysis which are principally
developed at the Sobolev Institute of Mathematics in Novosibirsk under the influence of
the late L. V. Kantorovich, a renowned analyst and a Nobel-prize winner in economics.
The vast territory of optimization theory and nonsmooth analysis is left uncharted which
is abundant with epsilons and infinitesimals. This challenge deserves another attempt.

1. Order and Convexity. Prolog

1.1. Enter the Reals.
To choose, we use preferences. To optimize, we use infima and suprema (for bounded

subsets) which is practically the least upper bound property. So optimization needs ordered
sets and primarily (boundedly) complete lattices.

To operate with preferences, we use group structure. To aggregate and scale, we use
linear structure.

All these are happily provided by the reals R, a one-dimensional (boundedly) order
complete vector lattice. An order complete vector lattice is a Kantorovich space or a K-space
for short.

1.2. Enter Convexity and Order.
Consider an abstract minimization problem formulated as follows:

x ∈ X, f(x) → inf .

Key words and phrases. Optimization problem, Hahn-Banach theorem, Krĕın-Milman theorem, subdif-
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Here X is a vector space and f : X → R is a numeric function taking possibly infinite
values. In these circumstances, we are usually interested in the quantity inf f(x), the value
of the problem, and in a solution of the problem (i.e., such an x̄ that f(x̄) = inf f(X)),
if the latter exists. It is a rare occurrence to solve an arbitrary problem explicitly. The
sociological trick characteristic of functional analysis prompts us to include the problem
into a parametric family by introducing the Young-Fenchel transform of the function f as
follows

f∗(l) := sup
x∈X

(l(x)− f(x)),

with l a linear functional over X, i.e. a member of the algebraic dual X#. Observe that
the quantity −f∗(0) presents the value of the initial extremal problem and f∗ is a convex
function in its argument.

A convex function is locally a positively homogeneous convex function, a sublinear func-
tional. A sublinear functional is a function p : X → R whose epigraph

epi p := {(x, t) ∈ X × R : p(x) ≤ t}

is a (convex) cone. Recall that a numeric function is uniquely determined from its epigraph.
By analogy, to every set C ⊂ X we can assign a special correspondence H(C) from X

to R, called the Hörmander transform of C, namely,

H(C) := {(x, t) ∈ X × R+ : x ∈ tC}.

A set is convex if and only if its Hörmander transform is a cone.
A space with a cone is a (pre)ordered vector space.

1.3. Enter Hahn-Banach.
Introducing

∂f(x̄) := {l ∈ X# : (∀x ∈ X) l(x)− l(x̄) ≤ f(x)− f(x̄)},

the subdifferential of f at x̄, we derive

1.3.1. Fermat Criterion. A point x̄ is a solution to the minimization problem of 1.2 if
and only if

0 ∈ ∂f(x̄).

The Fermat criterion is clearly of little avail if we lack effective tools for calculating
the subdifferential ∂f(x̄). Recalling that the only general law of differential calculus is the
“chain rule,” we arrive at the question of deriving rules for calculation of the subdifferential
of a composite mapping ∂(f ◦ G)(ȳ). In optimization, an adequate understanding of G as
a convex mapping requires that some structure of an ordered vector space be present in X.

Miraculously, the celebrated Hahn-Banach Dominated Extension Theorem in the above
notation reads:

∂(p ◦ ι)(0) = (∂p)(0) ◦ ι,

with p a sublinear functional over X and ι the identical embedding of a subspace of X
into X.

In fact, the situation is even more spectacular:
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1.3.2. Theorem. A preordered vector space admits dominated extension of linear operators
if and only if it has the least upper bound property.

Historically this theorem was established in two steps.

1.3.3. Hahn-Banach-Kantorovich Theorem. Each Kantorovich space admits domi-
nated extension of linear operators.

This theorem proven by L. V. Kantorovich is the first theorem of the theory of K-spaces.

1.3.4. Bonnice-Silvermann-To Theorem. Every ordered vector space admitting domi-
nated extension of linear operators is a K-space.

2. K-Spaces in Action

The prolog drives us to considering convex operators (in particular, sublinear operators)
acting into a K-space as inevitable generalization of convex functions inherent in optimiza-
tion theory. Convex sets result from intersecting half-spaces, the idea underlying linear
programming and the like. In this section we expose the idea in analytical disguise.

2.1. Canonical Operator Requisites.
In the class of sublinear operators we distinguish canonical operators with comparatively

simple structure so that only one canonical operator is assigned to each K-space and each
cardinality. An arbitrary total sublinear operator is obtained as composition of a canonical
operator and a linear operator. Thus there arises a possibility of reducing general questions
of the theory of sublinear operators to the analysis of a canonical operator and a linear
change of variables in it. This constitutes generally the main idea of the canonical operator
method. Proceed to exact formulations.

Consider a K-space E and an arbitrary nonempty set A. Denote by l∞(A, E) the set of
all (order) bounded mappings from A into E; i.e., f ∈ l∞(A, E) if and only if f : A → E and
the set {f(α) : α ∈ A} is order bounded in E. It is easy to verify that l∞(A, E), endowed
with the coordinatewise algebraic operations and order, is a K-space. The operator εA,E

acting from l∞(A, E) into E by the rule

εA,E : f 7→ sup{f(α) : α ∈ A} (f ∈ l∞(A, E))

is called the canonical sublinear operator given A and E. We often write εA instead of εA,E

when it is clear from the context what K-space is meant. The notation εn is used when the
cardinality of the set A equals n and the operator εn is called finitely-generated.

Let X and E be ordered vector spaces. An operator p : X → E is called increasing or
isotonic if for all x1, x2 ∈ X from x1 ≤ x2 it follows that p(x1) ≤ p(x2). An increasing linear
operator is also called positive. As usual, the collection of all positive linear operators in the
space L(X, E) of all linear operators is denoted by L+(X, E). Obviously, the positivity of
a linear operator T amounts to the inclusion T (X+) ⊂ E+, where X+ := {x ∈ X : x ≥ 0}
and E+ := {e ∈ E : e ≥ 0} are the positive cones in X and E respectively.

Recall that the set ∂p := ∂p(0) = {T ∈ L(X, E) : (∀x ∈ X) Tx ≤ p(x)} is the
subdifferential (at zero) or the support set of a sublinear operator p.

2.1.1. A sublinear operator p from an ordered vector space X into a K-space E is increasing
if and only if its support set ∂p consists of positive operators, i.e. ∂p ⊂ L+(X, E).
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2.1.2. A canonical operator is increasing and sublinear. A finitely-generated canonical
operator is order continuous.

Consider a set A of linear operators acting from a vector space X into a K-space E.
The set A is weakly (order) bounded if the set {αx : α ∈ A} is order bounded for every
x ∈ X. We denote by 〈A〉x the mapping that assigns the element αx ∈ E to each α ∈ A,
i.e. 〈A〉x : α 7→ αx. If A is weakly order bounded, then 〈A〉x ∈ l∞(A, E) for every fixed
x ∈ X. Consequently, we obtain the linear operator 〈A〉 : X → l∞(A, E) that acts as
〈A〉 : x 7→ 〈A〉x. Associate with A one more operator

pA : x 7→ sup{αx : α ∈ A} (x ∈ X).

The operator pA is sublinear. The support set ∂pA is denoted by cop(A) and is called the
support hull of A. These definitions entail the following statement:

2.1.3. If p is a sublinear operator with ∂p = cop(A), then the representation holds

p = εA ◦ 〈A〉.

Clearly, ∂p = cop(∂p). Consequently, every sublinear operator p : X → E admits the
above representation with A := ∂p. Due to this fact the canonical sublinear operator is
very useful in various problems connected with sublinear operators and, particularly, in
calculating support sets and support hulls.

Let ∆A := ∆A,E be the embedding of E into l∞(A, E) which assigns the constant
mapping α 7→ e (α ∈ A) to every element e ∈ E so that (∆Ae)(α) = e for all α ∈ A.

2.1.4. The following relations are true:

εA,E ◦∆A,E = IE , ∆A,E ◦ εA,E(f) ≥ f (f ∈ l∞(A, E)),

where IE is the identity mapping in E.

2.1.5. Let F be another K-space and p : E → F be an increasing sublinear operator. Then

∂ (p ◦ εA,E) =
{
T ∈ L+(l∞(A, E), F ) : T ◦∆A ∈ ∂p

}
.

2.1.6. For the support set of a canonical sublinear operator the following representation
holds:

∂εA,E =
{
α ∈ L+ (l∞(A, E), E) : α ◦∆A,E = IE

}
.

2.1.7. For each weakly order bounded set A of linear operators the equality holds:

cop(A) = ∂εA ◦ 〈A〉.

The time has come to demonstrate how the canonical operator technique applies to
subdifferential calculus. For instance, we calculate the support set of a composite sublinear
operator.
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2.1.8. Theorem. Let p1 : X → E be a sublinear operator and let p2 : E → F be an
increasing sublinear operator. Then

∂(p2 ◦ p1) =
{
T ◦ 〈∂p1〉 : T ∈ L+(l∞(∂p1, E), F ) & T ◦∆∂p1 ∈ ∂p2

}
.

Furthermore, if ∂p1 = cop(A1) and ∂p2 = cop(A2), then

∂(p2 ◦ p1) =
{
T ◦ 〈A1〉 : T ∈ L+(l∞(A1, E), F ) &

(
∃α ∈ ∂εA2

)
T ◦∆A1 = α ◦ 〈A2〉

}
.

C By 2.1.3, the representation p2 ◦ p1 = p2 ◦ εA1 ◦ 〈A1〉 holds. Applying 2.1.7 and 1.3.3,
we successively deduce:

∂(p2 ◦ p1) = ∂ (p2 ◦ εA1 ◦ 〈A1〉)
= ∂(p2 ◦ εA1) ◦ 〈A1〉
=

{
T ∈ L+(l∞(A1, E), F ) : T ◦∆A1 ∈ ∂p2

}
◦ 〈A1〉

= {T ◦ 〈A1〉 : T ≥ 0 & (∃α ∈ ∂εA2)T ◦∆A1 = α ◦ 〈A2〉} ,

whence the claim follows. B

2.1.9. Theorem. For each band projection π in a K-space E (i.e. for an idempotent π in
L(E) satisfying 0 ≤ π ≤ IE) we have

∂(p2 ◦ p1) =
⋃

T∈∂p2

(∂(T ◦ π ◦ p1) + ∂(T ◦ π⊥ ◦ p1)),

with π⊥ := IE − π the complement of π.

2.1.10. If p1 : X → E is a sublinear operator and p2 : E → F is an increasing sublinear
operator, then

∂(p2 ◦ p1) =
⋃

T∈∂p2

∂(T ◦ p1).

2.2. Enter Orthomorphisms.
Several facts about specific operators in vector lattices are needed in the sequel.
Consider a K-space E. A linear operator α : E → E with 0 ≤ αe ≤ e for all e ∈ E+,

i.e. 0 ≤ α ≤ IE , is called a multiplicator in E. The collection of all multiplicators in E
is denoted by M(E), so that M(E) = [0, IE ] is an order interval in the space of regular
operators Lr(E) := L+(E) − L+(E). Multiplicators in particular possess the following
useful properties.

2.2.1. Every multiplicator preserves suprema and infima of arbitrary nonempty order bound-
ed sets.

2.2.2. Every two multiplicators commute.

2.2.3. If a multiplicator α is a monomorphism, then α(E) is an order dense ideal in E;
moreover, α is an order isomorphism between E and α(E).
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2.2.4. For every multiplicator α and every number ε > 0 there exist finite-valued elements
πε and ρε such that

0 ≤ α− πε ≤ εIE , 0 ≤ ρε − α ≤ εIE .

Recall that an operator π ∈ L(E) is said to be a finite-valued element if there exist band
projections π1, . . . , πn and reals t1, . . . , tn such that π = t1π1 + · · ·+ tnπn.

Let E be a K-space, and let IE as usual be the identity operator in E. The band
generated by IE in the K-space Lr(E) is denoted by Orth(E). A member of Orth(E) is
called orthomorphism. It is proved in K-space theory that an orthomorphism π can be
characterized as a regular operator commuting with band projections (the elements of the
base of E) or with multiplicators (the elements of M(E)). Another characteristic property
of an orthomorphism π, reflected in its title, is the following: if e1∧e2 = 0 then πe1∧e2 = 0.
Let Z(E) denote the order ideal in Lr(E) which is generated by IE . This subspace is called
the ideal center of E. It is obvious that Orth(E) and Z(E) are lattice-ordered algebras with
respect to the natural ring structure and order relation induced from Lr(E). In addition,
Z(E) serves as an order dense ideal of Orth(E), i.e. in Orth(E) \ {0} there are no elements
disjoint from Z(E). In turn, as it was already noted, Orth(E) is the centralizer of Z(E) in
the algebra Lr(E). Observe also that in the algebra Orth(E) the product π1 ◦ π2 is often
denoted simply by π1π2.

2.2.5. For a positive operator T ∈ Lr(E) the following statements are equivalent:
(1) T ∈ Orth(E);
(2) T + IE is a lattice homomorphism;
(3) T + IE possesses the Maharam property, i.e. it preserves order intervals.

Given a vector space X, a set U ⊂ L(X, E) is called operator-convex or Orth(E)-convex
provided that for all elements S, T ∈ U and orthomorphisms α, β ∈ A+ such that α+β = IE ,
the relation α ◦ S + β ◦ T ∈ U holds.

2.2.6. Each support set is operator-convex.

Observe that for every family (Sξ)ξ∈Ξ of elements of ∂p and every family of multiplicators
(αξ)ξ∈Ξ such that

∑
ξ∈Ξ αξ = IE we have

∑
ξ∈Ξ αξ◦Sξ ∈ ∂p. Here the operators are summed

with respect to pointwise o-convergence. In other words,

S =
∑
ξ∈Ξ

αξ ◦ Sξ ↔ (∀x ∈ X) Sx = o-
∑
ξ∈Ξ

αξ ◦ Sξx,

where in turn
y = o-

∑
ξ∈Ξ

xξ ↔ y = o-lim
θ∈Θ

sθ, sθ :=
∑
ξ∈θ

xξ,

with Θ standing for the set of all finite subsets of Ξ. Finally, note that y = o-lim xξ means
that there are an increasing family (aξ) and a decreasing family (bξ) such that aξ ≤ xξ ≤ bξ

and sup(aξ) = inf(bξ) = y.
The stated property of ∂p is referred to as strong operator convexity.
Consider now a mapping f : X → E. As the Young-Fenchel transform of f or the

conjugate operator to f we refer to the operator f∗ : L(X, E) → E· defined by the relation

f∗(T ) := sup {Tx− f(x) : x ∈ X} (T ∈ L(X, E)),

with E· := E ∪ {+∞} and +∞ a greatest element adjoint properly to E.
Clearly, this operator meets the version of the definition of convex function with or-

thomorphisms substituted for reals. Recalling that the space L(X, E) is a module over
Orth(E), we see that
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2.2.7. The Young-Fenchel transform f∗ of an operator f with range in E is a module-
convex operator over Orth(E).

2.3. Enter Krĕın-Milman.
Of profound import is the intrinsic structure of subdifferentials as is clear from considering

their counterparts in finite dimensions, convex compact sets.
Let p : X → E be a sublinear operator. Denote by the symbol ext(p) the collection of

all extreme points of the support set ∂p. Take another K-space F and let T ∈ L+(E, F ).
We call an operator S ∈ ∂p a T -extreme point of ∂p (or a T -extreme point of p) and write
S ∈ E(T, p) if T ◦ S ∈ ext(T ◦ p). If L is a family of positive operators, then we put

E(L, p) :=
⋂

T∈L

E(T, p).

Recall that an operator T is said to be order-continuous or o-continuous if T (inf U) =
inf T (U) for every bounded below and downward-filtered set U in E. Let L0 be the class
of all o-continuous operators defined on a K-space E and taking their values in arbitrary
K-spaces. The set E(L0, p) is denoted by the symbol E0(p) and its elements are called
o-extreme points of ∂p (or p).

2.3.1. Krĕın-Milman Theorem for o-Extreme Points. Every support set is the sup-
port hull of the set of its o-extreme points. Symbolically,

∂p = ∂(εE0(p)) ◦ 〈E0(p)〉.

2.3.2. Theorem. The following statements are equivalent:
(1) an operator S belongs to ext(p);
(2) for all operators S1, S2 ∈ ∂p and for multiplicators α1, α2 ∈ [0, IE ], with α1+α2 = IE

and α1 ◦ S1 + α2 ◦ S2 = S there is a band projection π in E for which π ◦ S = π ◦ S1 and
π⊥ ◦ S = π⊥ ◦ S2;

(3) if for some operators S1, . . . , Sn ∈ ∂p and multiplicators α1, . . . , αn ∈ [0, IE ] the
equalities

n∑
k=1

αk = IE ,

n∑
k=1

αk ◦ Sk = S1

hold then αk ◦ S = αk ◦ Sk for every k := 1, . . . , n.

These facts allow us to reveal one of the most important peculiarities of the set of extreme
points of a subdifferential, namely, the possibility of their mixing, i.e., the cyclicity of ext(p).

2.3.3. Let S1, S2 ∈ ext(p) and let π be an arbitrary band projection in E. Then

π ◦ S1 + π⊥ ◦ S2 ∈ ext(p).

The following statement relates to strong operator convexity.

2.3.4. Let (Sξ)ξ∈Ξ be a family of elements of ext(p) and let (πξ)ξ∈Ξ be a family of band
projections forming a partition of unity, i.e., such that

ξ1 6= ξ2 → πξ1 ◦ πξ2 = 0;
∑
ξ∈Ξ

πξ = IE .

Then the operator
∑

ξ∈Ξ πξ ◦ Sξ also belongs to ext(p).

The last fact allows us to call a (weakly order bounded) set A in L(X, E) strongly cyclic
if for every family (Sξ)ξ∈Ξ of elements of A and for an arbitrary partition of unity (πξ)ξ∈Ξ

we have
∑

ξ∈Ξ πξ ◦ Sξ ∈ A. The smallest strongly cyclic set containing the given set A is
said to be the strong cyclic hull of A and is denoted by scyc(A) or A↑↓ (cf. 4.2.1).
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2.3.5. scyc(E0(p)) ⊂ ext(p).

Now we study the connection between o-extreme and extreme points in more detail.

2.3.6. Theorem. The set of extreme points of the support set of a canonical operator εA

coincides with the set of lattice homomorphisms from l∞(A, E) into E which are contained
in ∂εA. Moreover, ext(εA) = E0(εA).

2.3.7. Milman Theorem. Let p : Y → E be a sublinear operator acting from a vector
space Y into a K-space E. Further, let T ∈ L(X, Y ). Then the following inclusion holds:

ext(p ◦ T ) ⊂ ext(p) ◦ T.

Some important corollaries of Milman’s Theorem are now at hand.

2.3.8. If a subdifferential ∂p is the support hull of a set A, then

ext(p) ⊂ ext(εA) ◦ 〈A〉.

C ext(p) = ext(cop(A)) = ext (εA ◦ 〈A〉) ⊂ ext (εA) ◦ 〈A〉 B

2.3.9. For each sublinear operator p the next inclusion is true:

ext(p) ⊂ ext
(
εE0(p)

)
◦ 〈E0(p)〉.

Milman’s Theorem and its corollaries give a complete characterization of the intrinsic
structure of each support set “modulo” that of the subdifferential of a canonical operator
and its extreme points.

3. The Scene of Hahn-Banach

The above consideration makes it incumbent upon us to consider abstract convexity so
as to find the scope of possible applications of the Hanh-Banach technique.

3.1. Module Requisites.
We thus let A be an arbitrary lattice-ordered ring with positive unity 1A. This implies

that A is a unital ring and there is an order relation ≤ in A with respect to which A is
a lattice. Moreover, addition and multiplication are compatible with the order relation in
the conventional (and quite natural) fashion. In particular, all positive elements of the ring
A constitute the semigroup A+ with respect to addition in A. Now consider a module X
over the ring A, or in short an A-module X. This module (as well as all the following) are
always considered unitary, i.e. 1Ax = x for all x ∈ X. Consider an operator p : X → E·,
where E· := E ∪ {+∞} as above and E is an ordered A-module (a little thought about
this notion prompts its natural definition). An operator is called A-sublinear or module-
sublinear when the ring A is understood from the context, if for all x, y ∈ X and π, ρ ∈ A+

the inequality holds
p(πx + ρy) ≤ πp(x) + ρp(y).

As a rule, in the sequel we restrict ourselves to the study of total A-sublinear operators
p : X → E. It should be observed that p(0) = 0. Indeed, p(0) ≤ 0p(0) = 0 and in
addition p(0) = p(0 + 0) ≤ 2p(0). At the same time it is easy to see that not for all
x ∈ X and π ∈ A+ with π 6= 0 the equality p(πx) = πp(x) is true (this makes an essential
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difference with R-sublinear operators, i.e. the usual sublinear operators studied above). If
p(πx) = πp(x) for all x ∈ X and π ∈ A+, then p is called an A+-homogeneous operator.
Now consider the set HomA(X, E) which is also denoted by LA(X, E) or even L(X, E) in
case it causes no confusion. This set consists of all A-linear operators acting from X into
E or, as they are also called, of A-homomorphisms. Thus

T ∈ HomA(X, E)

↔ (∀x, y ∈ X) (∀π, ρ ∈ A) T (πx + ρy) = πTx + ρTy.

For an A-sublinear operator p : X → E the subdifferential at zero or the support set of p
and the subdifferential at a point x in X are defined by the relations

∂Ap := {T ∈ HomA(X, E) : (∀x ∈ X) Tx ≤ p(x)};
∂Ap(x) := {T ∈ ∂Ap : Tx = p(x)}.

Consequently the representation holds

∂Ap(x) = {T ∈ HomA(X, E) : (∀y ∈ X) T (y − x) ≤ p(y)− p(x)}.

If Z is the group of integers then since X and E are Z-modules (= abelian groups), the
subdifferentials ∂Zp and ∂Zp(x) are defined which are denoted simply by ∂p and ∂p(x).
Experience shows that this agreement leads to no collision of notations.

An A-module E is said to possess the A-extension property if for all A-modules X and
Y , given an A-sublinear operator p : Y → E, and a homomorphism T ∈ HomA(X, Y ), the
Hahn-Banach formula

∂A(p ◦ T ) = ∂Ap ◦ T

is valid. If in addition the subdifferential ∂p(y) is nonempty for every y in Y , then E is said
to admit convex analysis.

3.1.1. Let an A-module E possess the A-extension property and let p : X → E be an A-sub-
linear operator. The following statements are true:

(1) there exists T ∈ ∂Ap such that Tx = y if and only if πy ≤ p(πx) for all π ∈ A;
(2) an operator p is A+-homogeneous if and only if its subdifferential at every point is

nonempty, i.e. ∂Ap(x) 6= ∅ for all x ∈ X.

3.2. Enter an Erased K-Space.
Let E be an ordered abelian group (i.e. an ordered Z-module). Put Eb := E+−E+ and

assume that Eb is an erased K-space. Recall that by an erased K-space we mean each group
that results from a K-space on ignoring multiplication by reals, i.e. by partly forgetting
information about the space.

3.2.1. Bigard Theorem. An ordered Z-module E possesses the Z-extension property if
and only if Eb is an erased K-space.

We also need some properties of Z-sublinear operators which follow from the Bigard
Theorem.

3.2.2. Let p : X → E be a Z-sublinear operator. For every n ∈ N we have ∂(np) = n∂p.
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3.2.3. For every n ∈ N the equality holds

n∑
k=1

∂p = n∂p.

3.2.4. Let T1, T2 ∈ ∂p and nT1 = nT2 for some n ∈ N. Then T1 = T2.

3.2.5. Let p : X → E be a Z-sublinear Z+-homogeneous operator and let x ∈ X. Then for
every h ∈ X there exists an o-limit

p′(x)(h) := o- lim
n∈N

(p(nx + h)− p(nx))

= inf{p(nx + h)− p(nx) : n ∈ N}.

Moreover, ∂(p′(x)) = ∂p(x).

3.2.6. For every n ∈ N we have (np)′(x) = np′(x).

3.2.7. Given a Z-sublinear p : X → E, put hp(x) := sup{Tx : T ∈ ∂p}. Then hp is the
greatest Z-sublinear Z+-homogeneous operator dominated by p. Moreover, ∂hp = ∂p.

3.3. Reenter Krĕın-Milman.
Now we turn to the Krĕın-Milman Theorem in groups. To begin with, agree that an

operator T ∈ ∂p is called extreme if the conditions T1, T2 ∈ ∂p and T1 +T2 = 2T imply that
T = T1 = T2. The set of extreme operators in the subdifferential ∂p is denoted by ext(p).
It is seen that this notation agrees with the conventional one.

We also extend the notion of canonical operator and the corresponding formalism to the
case of groups. Namely, for a nonempty set A we denote by l∞(A, E) the Z-module of
order bounded E-valued functions on A. This set is endowed with the natural structure of
an ordered Z-module (a submodule of the usual product EA). Let the symbol εA denote
the canonical Z-sublinear operator

εA : l∞(A, E) → E,

εA(f) := sup f(A) (f ∈ l∞(A, E)).

In addition, if A is a weakly order bounded set of the homomorphisms from X into E,
then we define the homomorphism 〈A〉 : X → l∞(A, E) as in 2.1: 〈A〉 : x 7→ (Tx)T∈A, i.e.
〈A〉x : A 3 T 7→ Tx ∈ E.

Following the classical pattern, we can prove

3.3.1. Krĕın-Milman Theorem for Groups. For every Z-sublinear operator p the rep-
resentation holds

∂p = ∂εext(p) ◦ 〈ext(p)〉.

One more property of extreme points is beneficial below.

3.3.2. For every Z-sublinear operator p : X → E and n ∈ N the equality holds

ext(np) = n ext(p).
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3.3.3. Let A be a semiring and sublattice in Orth(E). Given elements π, γ ∈ A+ with
π ≥ IE, put

[π−1](γ) := inf{δ ∈ A+ : δπ ≥ γ}.

Then [π−1] : A → Orth(E)· is an increasing A-sublinear operator and γ = [π−1](πγ) for all
γ ∈ A+.

Now we are ready to present the main result of the current subsection which states
that the additive minorants of a A-sublinear operator are automatically homomorphisms
provided that we deal with a subring and sublattice A of the orthomorphism ring Orth(Eb)
which acts naturally in Eb. Before launching into formalities, we sketch out the proof whose
idea is rather conspicuous.

In fact, it is almost obvious that extreme points of subdifferentials must commute with
multiplicators. Moreover, according to the Krĕın-Milman Theorem for Groups, each element
of a subdifferential, called also a subgradient, is obtained by “integrating” extreme points.
It remains to observe that the corresponding “dispersed” integrals, i.e. the elements of the
subdifferential of a canonical operator, commute with orthomorphisms. Now some formal
details follow.

3.3.4. Let E = Eb and let A be an arbitrary set. If the group l∞(A, E) is endowed with
the natural structure of a Z(E)-module, then the inclusion holds

∂εA ⊂ HomZ(E)(l∞(A, E), E).

3.3.5. If p is an A-sublinear operator then

∂A∩Z(Eb)p ⊂ ∂Ap.

3.3.6. Theorem. An additive subgradient of a module-sublinear operator is a module ho-
momorphism.

C Thus for an A-sublinear operator p : X → E we need to prove the equality

∂p = ∂Ap.

First of all, we establish that T ∈ ∂A∩Z(Eb)p for every T ∈ ext(p). Take π ∈ A+∩Z(Eb).
Observe that π ≤ n1A for some n ∈ N, since 1A = IEb

. Since multiplication by 1A acts as
identity in X and in E, we obtain

nT = n1A ◦ T = π ◦ T + (n1A − π) ◦ T ;

nT = T ◦ π + T ◦ (n1A − π);

2nT = π ◦ T + T ◦ (n1A − π) + (T ◦ π − (n1A − π) ◦ T ).

Taking into consideration the obvious inclusions

π ◦ T + T ◦ (n1A − π) ∈ ∂(np),

T ◦ π + (n1A − π) ◦ T ∈ ∂(np)
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and 3.2.3 by which nT ∈ ∂(np), we infer

nT = π ◦ T + T ◦ (n1A − π).

Thus T ◦ π = π ◦ T .
Next, consider an operator p1 := p − T , where T ∈ ext(p). Clearly, im(p1 − T ) ⊂ Eb.

According to this, we can write

ext(p1) ⊂ ∂A∩Z(Eb)p1.

Moreover, by the Krĕın-Milman Theorem for Groups and 3.3.4, the following relations hold:

∂p1 = ∂εext(p1) ◦ 〈ext(p1)〉;
∂εext(p1) ⊂ HomA∩Z(Eb)(l∞(ext(p1), Eb), Eb).

From this it is immediate that
∂p1 = ∂A∩Z(Eb)p1.

Now if S ∈ ∂p then S − T ∈ ∂p1. Consequently the operator S − T is in fact an
A ∩ Z(Eb)-homomorphism. The same is true for the operator T . Finally S ∈ ∂A∩Z(Eb)p.
The application of 3.3.5 completes the proof. B

3.3.7. An ordered A-module E possesses the A-extension property.

C It suffices to refer to the Bigard Theorem and 3.3.6. B

3.4. Conversion.
Now we attempt at conversing the previous statement. Namely, we wish to demonstrate

that, under common stipulations, convex analysis comes into effect if and only if one deals
with a Kantorovich space considered as module over the algebra of its orthomorphisms.
According to Theorem 3.3.6, which automatically guarantee the commutation conditions,
we thus arrive at a rather paradoxical conclusion that there is no special “module” convex
analysis at all.

With this in mind, we start with an analog of the celebrated Ioffe Fan Theorem.

3.4.1. Theorem. If an ordered A-module E possesses the A-extension property then Eb is
an erased K-space.

3.4.2. Theorem. Let A be a d-ring, i.e. (π1π2)+ = π+
1 π2 and (π2π1)+ = π2π

+
1 for all

π1 ∈ A and π2 ∈ A+. An ordered A-module E possesses the A-extension property if and
only if Eb is an erased K-space and the natural linear representation of A in Eb is a ring and
lattice homomorphism onto a subring and sublattice of the orthomorphism ring Orth(Eb).
Moreover, ∂Ap = ∂p for every A-sublinear operator p acting into E.

The condition imposed on the ring A in Theorem 3.4.2 can be altered, although it is im-
possible to eliminate such an assumption in principle if we want to preserve A+-homogeneity
of a Z+-homogeneous A-sublinear operator. Observe here that by Theorem 3.3.6 the exten-
sion property holds in a stronger form, i.e. a group homomorphism defined on the subgroup
and dominated by a module-sublinear operator admits an extension up to a module homo-
morphism preserving the domination.

To describe modules that admit convex analysis we need one more notion. A subring A of
the orthomorphism ring is called almost rational if for every n ∈ N there exists a decreasing
net of multiplicators (πξ)ξ∈Ξ in A such that for every y ∈ E+ we have

1
n

y = o-lim
ξ∈Ξ

πξy = inf
ξ∈Ξ

πξy.
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3.4.3. A ring A is almost rational if and only if each A-sublinear operator is A+-homogen-
eous.

3.4.4. Theorem. An ordered A-module E admits convex analysis if and only if Eb is an
erased K-space and the natural representation of A in Eb is a ring and lattice homomorphism
onto an almost rational ring of orthomorphisms in Eb.

C The operators π 7→ π+y and z 7→ z+, with π ∈ A, y ∈ E+ and z ∈ Eb, are obviously
A-sublinear. Therefore, if the A-module E admits convex analysis, then by 3.1.1 (2) these
operators are A+-homogeneous. According to 2.2.5, this means that the natural linear
representation of A in Eb is a ring and lattice homomorphism onto a ring and sublattice
of Orth(Eb). By 3.4.3, the image is almost rational. To complete the proof it suffices to
implement the necessary factorization and to refer to Theorem 3.4.2 and 3.4.3. B

4. Omnipresent Reals

Our previous discussion demonstrates that the thorough and high-principled analysis of
subdifferential calculus is impossible without some esoteric technique of Kantorovich spaces.
It is easy to succumb to temptation and to become proud of finding new formulas in fuller
generality. Paradoxically, the scope of the new results is the same as that of those obtained
in the scalar case.

4.1. Enter Boolean-Valued Analysis.
Boolean-valued analysis is a branch of functional analysis which uses a special model-

theoretic technique, the Boolean-valued models of set theory. It is interesting to observe
that the invention of the Boolean-valued models was connected neither with the theory of
ordered vector spaces nor with optimization. The necessary language and technical tools
have been available within mathematical logic since the early 1960s. However, there was no
general idea to breathe life into the already-created mathematical apparatus and promote
rapid progress in model theory. Such an idea appeared along with P. J. Cohen’s discovery;
in 1963 he established that the classical continuum hypothesis is undecidable (in a rigorous
mathematical sense). It was the Cohen forcing method whose comprehension gave rise to
the Boolean-valued models of set theory. Their appearance is commonly associated with
the names of P. Vopěnka, D. Scott, and R. Solovay. It is a pleasure to emphasize the role
of G. Takeuti who stood at the cradle of Boolean-valued analysis.

4.2. Boolean Requisites.
We start with auxiliary facts about the construction and rules of treating Boolean-valued

models.
Let B be a complete Boolean algebra. Given an ordinal α, put

V (B)
α := {x : (∃β ∈ α) x : dom(x) → B & dom(x) ⊂ V

(B)
β }.

After this recursive definition the Boolean-valued universe V (B) or, in other words, the
class of B-sets is introduced by

V (B) :=
⋃

α∈On

V (B)
α ,

with On standing for the class of all ordinals.
Let ϕ be an arbitrary formula of ZFC (= Zermelo-Fraenkel set theory with the axiom of

choice).
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The Boolean truth-value [[ϕ]] ∈ B is introduced by induction on the length of a formula ϕ
by naturally interpreting the propositional connectives and quantifiers in the Boolean al-
gebra B and taking into consideration the way in which this formula is built up from
atomic formulas. The Boolean truth-values of the atomic formulas x ∈ y and x = y, with
x, y ∈ V (B), are defined by means of the following recursion schema:

[[x ∈ y]] :=
∨

z∈dom(y)

y(z) ∧ [[z = x]];

[[x = y]] :=
∧

z∈dom(x)

x(z) ⇒ [[z ∈ y]] ∧
∧

z∈dom(y)

y(z) ⇒ [[z ∈ x]].

(The sign ⇒ symbolizes the implication in B: a ⇒ b := a⊥ ∨ b where a⊥ is as usual the
complement of a.)

The universe V (B) with the Boolean truth-value of a formula is a model of set theory in
the sense that the following statement is fulfilled.

4.2.1. Transfer Principle. For every theorem ϕ of ZFC, we have [[ϕ]] = 1, i.e. ϕ is true
inside V (B).

Enter into the next agreement: If x is an element of V (B) and ϕ(·) is a formula of ZFC,
then the phrase “x satisfies ϕ inside V (B)” or, briefly, “ϕ(x) is true inside V (B)” means that
[[ϕ(x)]] = 1.

For an element x ∈ V (B) and for an arbitrary b ∈ B the function

bx : z 7→ bx(z) (z ∈ dom(x))

is defined. (Here we presume that b∅ := ∅ (b ∈ B).)
There is a natural equivalence relation x ∼ y ↔ [[x = y]] = 1 in the class V (B). Choosing

a representative of smallest rank in every equivalence class, or more exactly with the help
of the so-called “Frege-Russel-Scott trick,” we obtain the separated Boolean-valued universe
V

(B)
in which x = y ↔ [[x = y]] = 1. It is easily seen that the Boolean truth-value of

a formula remains unaltered if we replace in it each element of V (B) by one of its equivalents.
In this connection from now on we take V (B) := V

(B)
without further specification. Observe

that in V
(B)

the element bx is defined correctly for x ∈ V
(B)

and b ∈ B since by (4) we
have [[x1 = x2]] = 1 → [[bx1 = bx2]] = b ⇒ [[x1 = x2]] = 1. For a similar reason, we often
write 0 := ∅, and in particular 0∅ = ∅ = 0x for x ∈ V (B).

4.2.2. Mixing Principle. Let (bξ)ξ∈Ξ be a partition of unity in B, i.e. ξ 6= η → bξ∧bη = 0
and supξ∈Ξ bξ = supB = 1. For every family (xξ)ξ∈Ξ in the universe V (B) there exists
a unique element x in the separated universe such that

[[x = xξ]] ≥ bξ (ξ ∈ Ξ).

This element is called the mixing of (xξ)ξ∈Ξ with probabilities (bξ)ξ∈Ξ and is denoted by∑
ξ∈Ξ bξxξ.
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4.2.3. Maximum Principle. For every formula ϕ of ZFC there exists a B-valued set x0

such that
[[(∃x)ϕ(x)]] = [[ϕ(x0)]].

Recall that the von Neumann universe V is defined by the recursion schema

Vα := {x : (∃β ∈ α) x ∈ P(Vβ)};

V :=
⋃

α∈On

Vα.

In other words V is the class of all sets. For each member x of V , i.e. for every set x, we
define x∧ ∈ V (B) by the recursion schema

∅∧ := ∅; dom(x∧) := {y∧ : y ∈ x}, im(x∧) := {1}.

(More precisely, we define a distinguished representative of the equivalence class x∧.) The
element x∧ is called the standard name of x. Thus, we obtain the canonical embedding of
V into V (B). In addition, for x ∈ V and y ∈ V (B) we have

[[y ∈ x∧]] =
∨
z∈x

[[y = z∧]].

A formula is said to be restricted or bounded if every quantifier in it has the form ∀x ∈ y
or ∃x ∈ y; i.e., if all its quantifiers range over specific sets.

4.2.4. Restricted Transfer Principle. For all x, x1, . . . , xn ∈ V the following equivalence

ϕ(x1, . . . , xn) ↔ [[ϕ(x∧1 , . . . , x∧n)]] = 1

holds for each restricted formula ϕ of ZFC.

4.3. Enter Descents and Ascents.
Now we list the main facts about representations of simplest objects (sets, correspon-

dences, etc.) in Boolean-valued models.
Let ϕ be a formula of ZFC and let y be a fixed collection of elements of a Boolean-valued

universe. Further, let Aϕ := Aϕ(·, y) := {x : ϕ(x, y)} be the class of sets definable by y.
The descent Aϕ↓ of a class Aϕ is defined by the relation

Aϕ↓:= {t : t ∈ V (B) & [[ϕ(t, y)]] = 1}.

If t ∈ Aϕ↓, then it is said that t satisfies ϕ(·, y) inside V (B).
The descent of each class is strongly cyclic, i.e. it contains all mixings of its elements.

Moreover, two classes inside V (B) coincide if and only if they consist of the same elements
inside V (B).

The descent x↓ of an element x ∈ V (B) is defined by the rule

x↓:= {t : t ∈ V (B) & [[t ∈ x]] = 1},

i.e. x↓= A·∈x↓. The class x↓ is a set. Moreover, x↓⊂ scyc(dom(x)), where scyc is the
symbol of the taking of the strong cyclic hull. It is noteworthy that for a nonempty set x
inside V (B) we have

(∃z ∈ x↓)[[(∃z ∈ x) ϕ(z)]] = [[ϕ(z)]].
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4.3.1. Let F be a correspondence from X into Y inside V (B). There exists a unique corre-
spondence F↓ from X↓ into Y ↓ such that for each (nonempty) subset A of the set X inside
V (B) we have

F↓ (A↓) = F (A)↓ .

It is easily seen that F↓ is defined by the rule
(x, y) ∈ F↓↔ [[(x, y) ∈ F ]] = 1.

Let x ∈ P(V (B)), i.e. x is a set composed of B-valued sets. Put ∅↑:= ∅ and
dom(x↑) := x, im(x↑) := {1}

for x 6= ∅. The element x↑ (of the separated universe V B , i.e. the distinguished represen-
tative of the corresponding class) is called the ascent of x.

Clearly, x↑↓= scyc(x) with x a subset of V (B), whereas x↓↑= x with x a nonempty set
inside V (B). Observe also that if x ∈ V and x̂ is its standard domain, i.e.

x̂ := {z∧ : z ∈ V & z ∈ x},
then x̂↑= x̂∧.

4.3.2. Let X, Y ∈ P(V (B)) and let F be a correspondence from X into Y with dom F = X.
There exists a unique correspondence F↑ from X↑ into Y ↑ inside V (B) such that the equality

F↑ (A↑) = F (A)↑
holds for every subset A of X if and only if F is extensional. The last means that

y1 ∈ F (x1) → [[x1 = x2]] ≤
∨

y2∈F (x2)

[[y1 = y2]].

Let x be a set and f : x → Y ↓, where Y ∈ V (B). Taking note of the equality Y = Y ↓↑,
we can consider f as a mapping from x̂ into dom(Y ). Obviously f is extensional; therefore,
it is reasonable to speak about the element f ↑ in V (B). Observe that, according to the
above, [[f↑: x∧ → Y ]] = 1 and in addition, for every g ∈ V (B) such that [[g : x∧ → Y ]] = 1
there is a unique mapping f : x → Y ↓ for which g = f↑. Obviously, the descent g↓ of the
mapping g (translated from x̂ onto x) is a mapping of such kind.

4.4. Exeunt K-Spaces.
Now we consider several facts connected with translation of the notions arising in repre-

senting a canonical sublinear operator in an appropriate Boolean-valued model. We start
with revealing the reals in a Boolean-valued universe.

According to the maximum principle there is an object R inside V (B) for which the
statement

[[R is the reals ]] = 1

is true.
Here we mean that R is the carrier set of the field of the reals inside V (B). Note also

that R∧ (= the standard name of the field R of reals), being an Archimedean ordered field
inside V (B), is a dense subfield in R inside V (B) (up to isomorphism).

Implement the descent of structures from R to R↓ according to the general rules:
x + y = z ↔ [[x + y = z]] = 1;

xy = z ↔ [[xy = z]] = 1;

x ≤ y ↔ [[x ≤ y]] = 1;

λx = y ↔ [[λ∧x = y]] = 1 (x, y, z ∈ R↓, λ ∈ R).
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4.4.1. Gordon Theorem. The set R↓ with descended structures is a universally complete
K-space with base B(R↓) (= the Boolean algebra of band projections in R↓) isomorphic to
B. Such isomorphism is implemented by identifying B with the descent of the field {0∧, 1∧},
i.e. with the mapping ι : B → B(R↓) acting by the rule

[[ι(b) = 1∧]] = b, [[ι(b) = 0∧]] = b⊥ (0, 1 ∈ R).

Moreover, for every x, y ∈ R we have

[[ι(b)x = ι(b)y]] = b ⇒ [[x = y]];

bι(b)x = bx, b⊥ι(b)x = 0.

In particular, the following equivalences are valid:

ι(b)x = ι(b)y ↔ [[x = y]] ≥ b;

ι(b)x ≥ ι(b)y ↔ [[x ≥ y]] ≥ b.

Recall that a K-space E is universally complete provided that every subset of E composed
of pairwise disjoint elements is bounded above.

4.5. Exeunt Operators.
Our next aim is to demonstrate how to get rid of convex operators and their subdifferen-

tials, reducing everything to functionals. It suffice to settle the case of canonical operators.
Let A be a nonempty set. By the maximum principle, there is an object l∞(A∧, R) in

V (B) such that [[l∞(A∧, R) is the K-space of bounded functions defined on A∧ and taking
values in R]] = 1.

Consider the descent

l∞(A∧, R)↓:= {t ∈ V (B) : [[t ∈ l∞(A∧, R)]] = 1}.

Translate algebraic operations and order relations from l∞(A∧, R) to (A∧, R)↓ by descent.
Obviously, l∞(A∧, R)↓ is a K-space and, moreover, a module over R↓.

4.5.1. The mapping “ascent” assigning to each bounded R↓-valued function on A its ascent,
i.e. a bounded R-valued function on A∧ inside V (B), implements an algebraic and order
isomorphism between l∞(A, R↓) and l∞(A∧, R)↓.

Consider the object l∞(A∧, R)# in V (B) for which the statement

[[l∞(A∧, R)# is the dual space of l∞(A∧, R)]] = 1

is true. The descent l∞(A∧, R)#↓ is endowed with the descended structures. In particular,
there is no doubt that l∞(A∧, R)#↓ is an R↓-module.

Let µ ∈ l∞(A∧, R)#↓, i.e.

[[µ is an R-homomorphism from l∞(A∧, R) to R]] = 1.

Further, let µ↓: l∞(A∧, R)↓→ R↓ be the descent of µ. Given f ∈ l∞(A, R↓), put

µ↓(f) := µ↓ (f↑).
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4.5.2. The mapping “descent” µ 7→ µ↓ implements an isomorphism between the R↓-mod-
ules l∞(A∧, R)#↓ and HomR↓(l∞(A, R↓), R↓), the space of R↓-homomorphisms acting
from l∞(A, R↓) to R↓.

We denote the mapping inverse to the mapping “descent” µ 7→ µ↓ by t 7→ t↑, with
t ∈ HomR↓(l∞(A, R↓), R↓). Of course, it means that

t↑(f) := t(f↓) (f ∈ l∞(A∧, R)↓).

Let εA∧ be some canonical sublinear operator inside V (B), i.e. an object in V (B) for
which

[[εA∧ : l∞(A∧, R) → R]] = 1,

[[(∀f ∈ l∞(A∧, R)) εA∧(f) = sup f(A∧)]] = 1.

Straightforward calculation shows that for every element f in l∞(A, R↑) the relation

[[εA∧(f↑) = εA(f)]] = 1

holds.

4.5.3. Let ∂εA∧ be the subdifferential of εA∧ inside V (B) and let ext(εA∧) be the set of
extreme points of ∂εA∧ inside V (B). Then for every element t in HomR↓(l∞(A, R↓), R↓)
and every µ in l∞(A∧, R)#↓ the following equivalences hold:

t↑ ∈ (∂εA∧)↓ ↔ t ∈ ∂εA;

t↑ ∈ ext(εA∧)↓ ↔ t ∈ ext(εA);

µ↓ ∈ ∂εA ↔ µ ∈ (∂εA∧)↓;
µ↓ ∈ ext(εA) ↔ µ ∈ ext(εA∧)↓ .

Clarify the terminology. Let B := B(E) be the base of a K-space E. Take a partition of
unity in B. If (Tξ)ξ∈Ξ is a family of operators in L(X, E) and the operator T ∈ L(X, E)
is such that Tx =

∑
ξ∈Ξ bξTξx for all x ∈ X, then T is called the mixing of (Tξ)ξ∈Ξ with

probabilities (bξ)ξ∈Ξ. By 4.3.2 and Gordon’s Theorem it is easy to see that in fact such use
of the word “mixing” is sound.

Obviously, for a given A in A, the δ-function εA : f 7→ f(A) (f ∈ l∞(A, E)) belongs to
ext(εA). A mixing of the family (εA)A∈A is called a pure state on A. It is easily seen that
every pure state is an o-extreme point of the canonical sublinear operator in question.

4.5.4. The mapping “descent” implements a bijection between the set of pure states on A
and the subset of V (B) composed of δ-functions on the standard name A∧ inside V (B).
In other words, t ∈ HomR↓(l∞(A, R↓), R↓) is a pure state on A if and only if

[[(∃A ∈ A∧) t↑ = εA]] = 1.

Now it is easy to describe the structure of extreme points and the elements of the subdif-
ferential of a canonical operator. To this end, it suffices to interpret externally in an appro-
priate Boolean-valued model the Krĕın-Milman Theorem and Milman Theorem in a scalar
setting.
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4.5.5. The subdifferential of a canonical sublinear operator coincides with the pointwise
relatively uniform closure of the strong operator-convex hull of the set of δ-functions.

Now by applying the Milman Theorem we may assert for instance that

4.5.6. Theorem. Every extreme point of each subdifferential ∂(p) serves as the pointwise
relatively uniform limit of a net in the strong cyclic hull of the set of o-extreme points
of ∂(p).

5. Epilog

In the history of functional analysis, the rise of the theory of ordered vector spaces
is commonly attributed to the efforts of G. Birkhoff, H. Freudenthal, L. V. Kantorovich,
M. G. Krĕın, H. Nakano, F. Riesz, et al. At present, the theory of ordered vector spaces
and its applications constitute a vast field of mathematics representing, in fact, one of the
main sections of contemporary functional analysis. The theory is well exposed in many
monographs (see [2, 3, 25, 26, 33, 36, 42, 43]). The credit for finding the most important
instance of ordered vector spaces, an order complete vector lattice or a K-space, is due
to L. V. Kantorovich. The notion appeared in Kantorovich’s first fundamental article on
this topic [23], where he wrote: “In this note, I define a new type of space which I call
a semiordered linear space. The introduction of such a space allows us to study linear
operations of one abstract class (those with values in the space) as linear functionals.”

Here L. V. Kantorovich stated an important methodological principle, the heuristic trans-
fer principle for K-spaces. An exemplar application of this principle is Theorem 3 of [23]
now referred to as the Hahn-Banach-Kantorovich Theorem. It claims that the Kantorovich
principle is valid in relation to the classical Dominated Extension Theorem; i.e., we can re-
place the reals in the standard Hahn-Banach Theorem by elements of an arbitrary K-space
and a linear functional by a linear operator with values in this K-space.

Consult [6, 29, 32, 37, 38, 41] about the generalities of Boolean-valued analysis. The
Boolean-valued status of the concept of K-space is established in Gordon’s Theorem ob-
tained in [18]. This fact can be regarded as follows: a universally complete K-space is the
interpretation of the reals in an appropriate Boolean-valued model. Moreover, it turns out
that every theorem on reals (in the framework of ZFC) has an analog for the correspond-
ing K-space. Theorems are transferred by means of precisely-defined procedures: ascent,
descent, and canonical embedding, that is, algorithmically as a matter of fact. Thereby
Kantorovich’s assertion that “the elements of a K-space are generalized numbers” acquires
a rigorous mathematical status. Consult [22, 28, 29] about the Boolean-valued approach to
K-spaces.

Convex sets became the object of independent study at the turn of the twentieth century.
At that time various interconnections were discovered between convex functions and convex
sets. The latter were well known long before the notion of convex function was introduced.
Preliminary study of these objects was connected mainly with finite-dimensional geometry.
In the 1930s the interest in convexity was tied with the development of functional analysis.
The formation of modern convex analysis began in the sixties under the strong influence of
the theory of extremal problems, the elaboration of optimization methods and research into
mathematical economics. The term “convex analysis” gains popularity after R. T. Rock-
afellar’s book [35] in which Professor A. W. Tucker at Princeton University is indicated as
the person who coined the term. The discipline itself is framed mainly by the contributions
of W. Fenchel, J. J. Moreau and R. T. Rockafellar. About this consult [4, 15, 17, 19, 21,
30, 34, 39].
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The Krĕın-Milman Theorem was established in 1940 and since then has been developed
in different directions as one of the most important general principles of geometric functional
analysis.

The problem of dominated extension of linear operators originates with the Hahn-Banach
Theorem (see [13] for its history). Theorem 1.3.3 as stated was discovered by L. V. Kan-
torovich in 1935 and was perceived as a generalization serving a bizarre purpose. Now it
became a truism that convex analysis and the theory of ordered vector spaces are boon
companions. The equivalence between the extension and least upper bound properties was
first established in W. Bonnice and R. Silvermann [9] and T.-O. To [40]; a decisive sim-
plification of its proof is due to A. D. Ioffe [20]. A nice but still incomplete survey of the
Hahn-Banach Theorem is the article [13] by G. Buskes.

The origin of the Hahn-Banach-Kantorovich Theorem in subdifferential form is reflected
in [2, 30, 31]. Consult [1, 10, 11, 16, 31] about subdifferential calculus and related vector
optimization problems. The articles [7, 8, 12] relate to module versions discussed in 3.1.

A more systematic exposition of the topics treated in the present article is given in [29,
30] which contain extensive lists of references and detailed comments.
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