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Agenda

The Farkas Lemma, also known as the Farkas–Minkowski Lemma,
plays a key role in linear programming and the relevant areas of
optimization.

The aim of this talk is to demonstrate how Boolean valued analysis
may be applied to simultaneous linear inequalities with operators.

This particular theme is another illustration of the deep and powerful
technique of “stratified validity” which is characteristic of Boolean
valued analysis.
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Environment

Assume that X is a real vector space, Y is a Kantorovich space also
known as a complete vector lattice or a complete Riesz space. Let
B := B(Y ) be the base of Y , i.e., the complete Boolean algebras of
positive projections in Y ; and let m(Y ) be the universal completion
of Y . Denote by L(X ,Y ) the space of linear operators from X to Y .

In case X is furnished with some Y -seminorm on X , by L(m)(X ,Y )
we mean the space of dominated operators from X to Y . As usual,
{T ≤ y} := {T (·) ≤ y} := {x ∈ X | Tx ≤ y} and ker(T ) = T−1(0)
for T : X → Y .

Orth(Y ) is the commutant of B in L(r)(Y ).
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Inequalities: Explicit Dominance

Find X satisfying

X

B   A
AA

AA
AA

A
A //W

X
��

Y

(∃X) XA = B ↔ ker(A) ⊂ ker(B).

If W is ordered by W+ and A(X )−W+ = W+ − A(X ) = W , then1

(∃X ≥ 0) XA = B ↔ {A ≤ 0} ⊂ {B ≤ 0}.

1The Kantorovich Theorem.
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Farkas: Hidden Dominance

Lemma 1. Let X be a vector space over some subfield R of the reals R.
Assume that f and g are R-linear functionals on X ; in symbols,
f , g ∈ X# := L(X ,R).
For the inclusion

{g ≤ 0} ⊃ {f ≤ 0}

to hold it is necessary and sufficient that there be α ∈ R+ satisfying
g = αf .
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Proof.

Sufficiency is obvious.

Necessity: The case of f = 0 is trivial. If f 6= 0 then there is some
x ∈ X such that f (x) ∈ R and f (x) > 0. Denote the image f (X )

of X under f by R0. Put h := g ◦ f −1, i .e. h ∈ R#
0 is the only

solution for h ◦ f = g . By hypothesis, h is a positive R-linear
functional on R0. By the Bigard Theoremh can be extended to a
positive homomorphism h̄ : R→ R, since R0 −R+ = R+ − R0 = R.
Each positive automorphism of R is multiplication by a positive real.
As the sought α we may take h̄(1).

The proof of the lemma is complete.
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Reals: Explicit Dominance

Lemma 2. Let X be an R-seminormed vector space over some
subfield R of R. Assume that f1, . . . , fN and g are bounded R-linear
functionals on X ; in symbols, f1, . . . , fN , g ∈ X ∗ := L(m)(X ,R).

For the inclusion

{g ≤ 0} ⊃
N⋂

k=1

{fk ≤ 0}

to hold it is necessary and sufficient that there be α1, . . . , αN ∈ R+

satisfying

g =
N∑

k=1

αk fk .
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Farkas: Explicit Dominance

Theorem 1. Assume that A1, . . . ,AN and B belong to L(m)(X ,Y ).
The following are equivalent:
(1) Given b ∈ B, the operator inequality bBx ≤ 0 is a consequence of
the simultaneous linear operator inequalities
bA1x ≤ 0, . . . , bANx ≤ 0, i.e.,

{bB ≤ 0} ⊃ {bA1 ≤ 0} ∩ · · · ∩ {bAN ≤ 0}.

(2) There are positive orthomorphisms α1, . . . , αN ∈ Orth(m(Y ))
such that

B =
N∑

k=1

αkAk ;

i.e., B lies in the operator convex conic hull of A1, . . . ,AN .
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Origins

Cohen’s final solution of the problem of the cardinality of the
continuum within ZFC gave rise to Boolean models.

Scott forecasted in 1969:

We must ask whether there is any interest in these nonstandard
models aside from the independence proof; that is, do they have any
mathematical interest? The answer must be yes, but we cannot yet
give a really good argument.

Takeuti coined the term “Boolean valued analysis” for applications of
the models to analysis.
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Boolean Valued Universe

Let B be a complete Boolean algebra. Given an ordinal α, put

V (B)
α := {x | (∃β ∈ α) x : dom(x)→ B & dom(x) ⊂ V

(B)
β }.

The Boolean valued universe V(B) is

V(B) :=
⋃
α∈On

V (B)
α ,

with On the class of all ordinals.

The truth value [[ϕ]] ∈ B is assigned to each formula ϕ of ZFC
relativized to V(B).
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Descending and Ascending

Given ϕ, a formula of ZFC, and y , a member of VB; put
Aϕ := Aϕ(·, y) := {x | ϕ(x , y)}.
The descent Aϕ↓ of a class Aϕ is

Aϕ↓ := {t | t ∈ V(B) & [[ϕ(t, y)]] = 1}.

If t ∈ Aϕ↓, then it is said that t satisfies ϕ(·, y) inside V(B).

The descent x↓ of x ∈ V(B) is defined as

x↓ := {t | t ∈ V(B) & [[t ∈ x ]] = 1},

i.e. x↓ = A·∈x↓. The class x↓ is a set.

If x is a nonempty set inside V(B) then

(∃z ∈ x↓)[[(∃t ∈ x) ϕ(t)]] = [[ϕ(z)]].

The ascent functor acts in the opposite direction.
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The Reals Within

There is an object R inside V(B) modeling R, i.e.,

[[R is the reals ]] = 1.

Let R↓ be the descent of the carrier |R| of the algebraic system
R := (|R|,+, · , 0, 1,≤) inside V(B).

Implement the descent of the structures on |R| to R↓ as follows:

x + y = z ↔ [[x + y = z ]] = 1;

xy = z ↔ [[xy = z ]] = 1;

x ≤ y ↔ [[x ≤ y ]] = 1;

λx = y ↔ [[λ∧x = y ]] = 1 (x , y , z ∈ R↓, λ ∈ R).

Gordon Theorem. R↓ with the descended structures is a universally
complete vector lattice with base B(R↓) isomorphic to B.
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Proof of Theorem 1.

(2)→ (1): If B =
∑N

k=1 αkAk for some positive α1, . . . , αN

in Orth(m(Y )) while bAkx ≤ 0 for b ∈ B and x ∈ X , then

bBx = b
N∑

k=1

αkAkx =
N∑

k=1

αkbAkx ≤ 0

since orthomorphisms commute and projections are orthomorphisms
of m(Y ).
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Proof of Theorem 1.

(1)→ (2):

Consider the separated Boolean valued universe V(B) over the base B
of Y . By the Gordon Theorem the ascent Y ↑ of Y is R, the reals
inside V(B).

Using the canonical embedding, we see that X ∧ is an R-seminormed
vector space over the standard name R∧ of the reals R.

Moreover, R∧ is a subfield and sublattice of R = Y ↑ inside V(B).
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Proof of Theorem 1.

(1)→ (2):

Put fk := Ak↑ for all k := 1, . . . ,N and g := B↑. Clearly, all
f1, . . . , fN , g belong to (X ∧)∗ inside VB.

Define the finite sequence

f : {1, . . . ,N}∧ → (X ∧)∗

as the ascent of (f1, . . . , fN). In other words, the truth values are as
follows:

[[fk∧(x∧) = Akx ]] = 1, [[g(x∧) = Bx ]] = 1

for all x ∈ X and k := 1, . . . ,N.
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Proof of Theorem 1.

(1)→ (2):

Put
b := [[A1x ≤ 0∧]] ∧ · · · ∧ [[ANx ≤ 0∧]].

Then bAkx ≤ 0 for all k := 1, . . . ,N and bBx ≤ 0 by (1).

Therefore,

[[A1x ≤ 0∧]] ∧ · · · ∧ [[ANx ≤ 0∧]] ≤ [[Bx ≤ 0∧]].

In other words,

[[(∀k := 1∧, . . . ,N∧)fk(x∧) ≤ 0∧]]

=
∧

k:=1,...,N

[[fk∧(x∧) ≤ 0∧]] ≤ [[g(x∧) ≤ 0∧]].
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Proof of Theorem 1.

(1)→ (2):

By Lemma 2 inside V(B) and the maximum principle of Boolean
valued analysis, there is a finite sequence α : {1∧, . . . ,N∧} → R+

inside V(B) satisfying

[[(∀x ∈ X ∧)g(x) =
N∧∑

k=1∧

α(k)fk(x)]] = 1.

Put αk := α(k∧) ∈ R+↓ for k := 1, . . . ,N.

Multiplication by an element in R↓ is an orthomorphism of m(Y ).
Moreover,

B =
N∑

k=1

αkAk ,

which completes the proof.
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Counterexample: No Dominance

Lemma 1, describing the consequences of a single inequality, does not
restrict the class of functionals under consideration.

The analogous version of the Farkas Lemma simply fails for two
simultaneous inequalities in general.

The inclusion {f = 0} ⊂ {g ≤ 0} equivalent to the inclusion
{f = 0} ⊂ {g = 0} does not imply that f and g are proportional in
the case of an arbitrary subfield of R. It suffices to look at R over
the rationals Q, take some discontinuous Q-linear functional on Q
and the identity automorphism of Q.

S. S. Kutateladze (Sobolev Institute) Boolean Models and Simultaneous Inequalities
August 27, 2009 / Maltsev-100 Meeting 18

/ 28



Reconstruction: No Dominance

Theorem 2.
Take A and B in L(X ,Y ). The following are equivalent:
(1) (∃α ∈ Orth(m(Y ))) B = αA;
(2) There is a projection κ ∈ B such that

{κbB ≤ 0} ⊃ {κbA ≤ 0}; {¬κbB ≤ 0} ⊃ {¬κbA ≥ 0}

for all b ∈ B.

Proof. Boolean valued analysis reduces the claim to the scalar case.
Applying Lemma 1 twice and writing down the truth values, complete
the proof.
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Interval Operators

Let X be a vector lattice. An interval operator T from X to Y is
an order interval [T ,T ] in L(r)(X ,Y ), with T ≤ T .

The interval equation B = XA has a weak interval solution provided
that (∃X)(∃A ∈ A)(∃B ∈ B) B = XA.

Given an interval operator T and x ∈ X , put

PT(x) = T x+ − T x−.

Call T adapted in case T − T is the sum of finitely many disjoint
addends.

Put ∼ (x) := −x for all x ∈ X .
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Interval Equations

Theorem 3. Let X be a vector lattice, and let Y be a Kantorovich
space. Assume that A1, . . . ,AN are adapted interval operators and B
is an arbitrary interval operator in the space of order bounded
operators L(r)(X ,Y ).
The following are equivalent:

(1) The interval equation

B =
N∑

k=1

αkAk

has a weak interval solution α1, . . . , αN ∈ Orth(Y )+.
(2) For all b ∈ B we have

{bB ≥ 0} ⊃ {bA∼1 ≤ 0} ∩ · · · ∩ {bA∼N ≤ 0},

where A∼k := PAk
◦ ∼ for k := 1, . . . ,N and B := PB.
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Inhomogeneous Inequalities

Theorem 4. Let X be a Y -seminormed reaL vector space, with Y
a Kantorovich space. Take A1, . . . ,AN ,B ∈ L(m)(X ,Y ) and
u1, . . . , uN , v ∈ Y . Assume that the system A1x ≤ u1, . . . ,ANx ≤ uN

is consistent.
The following are equivalent:

(1) {bB ≤ bv} ⊃ {bA1 ≤ bu1} ∩ · · · ∩ {bAN ≤ buN}
for all b ∈ B.
(2) There are α1, . . . , αN ∈ Orth(m(Y ))+ satisfying

B =
N∑

k=1

αkAk ; v ≥
N∑

k=1

αkuk .
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Inhomogeneous Matrix Inequalities

In applications we encounter inhomogeneous matrix inequalities over
various finite-dimensional spaces.

Theorem 5. Let X be a Y -seminormed real vector space, with Y
a Kantorovich space. Assume that A ∈ L(m)(X ,Y s),
B ∈ L(m)(X ,Y t), u ∈ Y s and v ∈ Y t , where s and t are some
naturals.
The following are equivalent:

(1) For all b ∈ B the inhomogeneous operator inequality bBx ≤ bv is
a consequence of the consistent inhomogeneous inequality bAx ≤ bu,
i.e., {bB ≤ bv} ⊃ {bA ≤ bu}.
(2) There is some s × t matrix with entries positive orthomorphisms
of m(Y ) such that B = XA and Xu ≤ v for the corresponding linear
operator X ∈ L+(Y s ,Y t).
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Complex Scalars

Theorem 6. Let X be a Y -seminormed complex vector space, with
Y a Kantorovich space. Assume given some u1, . . . , uN , v ∈ Y and
dominated operators A1, . . . ,AN ,B ∈ L(m)(X ,YC) from X into the
complexification YC := Y ⊗ iY of Y .2 Assume further that the
simultaneous inhomogeneous inequalities |A1x | ≤ u1, . . . , |ANx | ≤ uN

are consistent. Then the following are equivalent:
(1) {b|B(·)| ≤ bv} ⊃ {b|A1(·)| ≤ bu1} ∩ · · · ∩ {b|AN(·)| ≤ buN}
for all b ∈ B.
(2) There are complex orthomorphisms c1, . . . , cN ∈ Orth(m(Y )C)
satisfying

B =
N∑

k=1

ckAk ; v ≥
N∑

k=1

|ck |uk .

2Cp. [3, p. 338].
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Theorem of the Alternative

Theorem 7. Let X be a Y -seminormed real vector space, with Y
a Kantorovich space. Assume that A1, . . . ,AN and B belong
to L(m)(X ,Y ).
Then one and only one of the following holds:
(1) There are x ∈ X and b, b′ ∈ B such that b′ ≤ b and

b′Bx > 0, bA1x ≤ 0, . . . , bANx ≤ 0.

(2) There are α1, . . . , αN ∈ Orth(m(Y ))+ such that

B =
N∑

k=1

αkAk .
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All Is Number

The above curiosities are nothing more than simple illustrations of the
powerful technique of model theory shedding new light at the
Pythagorean Thesis.

The theory of the reals enriches mathematics, demonstrating the
liberating role of logic.
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Pursuit of Truth

We definitely feel truth, but we cannot define truth properly. That is
what Tarski explained to us in the 1930s.

We pursue truth by way of proof, as wittily phrased by Mac Lane.
Model theory evaluates and counts truth and proof.

The chase of truth not only leads us close to the truth we pursue but
also enables us to nearly catch up with many other instances of truth
which we were not aware nor even foresaw at the start of the rally
pursuit. That is what we have learned from the Boolean models
elaborated in the 1960s by Scott, Solovay, and Vopěnka.
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