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Институт математики им.С.Л.Соболева СОРАН Препринт №157, июль 2005

BOOLEAN VALUED ANALYSIS AND POSITIVITY

In memory of Saunders Mac Lane (1909–2005)

Introduction

Boolean valued analysis is a general mathematical method that rests on a special model-
theoretic technique. This technique consists generally in comparison between the repre-
sentations of arbitrary mathematical objects and theorems in two different set-theoretic
models whose constructions start with principally distinct Boolean algebras. We usu-
ally take as these models the cosiest Cantorian paradise, the von Neumann universe of
Zermelo–Fraenkel set theory, and a special universe of Boolean valued “variable” sets
trimmed and chosen so that the traditional concepts and facts of mathematics acquire
completely unexpected and bizarre interpretations. The use of two models, one of which
is formally nonstandard, is a family feature of nonstandard analysis. For this reason,
Boolean valued analysis means an instance of nonstandard analysis in common parlance.
By the way, the term Boolean valued analysis was minted by G. Takeuti.

Proliferation of Boolean valued models is due to P. Cohen’s final breakthrough in
Hilbert’s Problem Number One. His method of forcing was rather intricate and the in-
evitable attempts at simplification gave rise to the Boolean valued models by D. Scott,
R. Solovay, and P. Vopěnka.

Professor M. Weber had invited us to this Positivity Conference at the end of 2004
when we were completing our book “Introduction to Boolean Valued Analysis.” The book
was recently published and so this talk is a kind of presentation.

Another recent event of relevance to this talk is grievous. Saunders Mac Lane, a co-
father of category theory, passed away in San Francisco on April 14, 2005. The power
of mathematics rests heavily on the trick of socializing the objects and problems under
consideration. The understanding of the social medium of set-theoretic models belongs to
category theory.

A category is called an elementary topos provided that it is cartesian closed and has
a subobject classifier. A. Grothendieck and F. W. Lawvere, the followers of Saunders
Mac Lane, created topos theory in the course of “point elimination” and in the dream
of invariance of the objects we operate in mathematics. It is on this road that we met

This talk is prepared for the International Conference “Positivity IV: Theory and Applications” to be
held by Technische Universität Dresden on July 25–29, 2005.
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4 BOOLEAN VALUED ANALYSIS AND POSITIVITY

the conception of variable sets, underlying the notion of topos and bringing about the
understanding of the social medium of set-theoretic models. The Boolean valued models
belong happily in the family of Boolean toposes enjoying the classical Aristotle logic.

Category theory, alongside set theory, serves as a universal language of modern math-
ematics. Categories, functors, and natural transformations are widely used in all areas
of mathematics, allowing us to look uniformly and consistently on various constructions
and formulate the general properties of diverse structures. The impact of category theory
is irreducible to the narrow frameworks of its outstanding expressive conveniences. This
theory has drastically changed our general outlook on the foundations of mathematics
and widened the room of free thinking in mathematics.

Set theory, a great and ingenious creation of Georg Cantor, occupies in the common
opinion of the 20th century the place of the sole solid base of modern mathematics.
Mathematics becomes sinking into a section of the Cantorian set theory. Most active
mathematicians, teachers, and philosophers view as obvious and undisputable the thesis
that mathematics cannot be grounded on anything but set theory.

The set-theoretic stance transforms paradoxically into an ironclad dogma, a clear-cut
forbiddance of thinking. This indoctrinated view of the foundations of mathematics is
false and contradicts conspicuously to the leitmotif, nature, and pathos of the essence of
all creative contribution of G. Cantor who wrote as far back as in 1883 that “denn das
Wesen der Mathematik liegt gerade in ihrer Freiheit.”

Topos theory provides a profusion of categories of which classical set theory is an
ordinary member. Mathematics has thus acquired infinitely many new degrees of freedom.
All these achievements rest on category theory.

There remains to us, then, the pursuit of truth, by way of proof, the concatenation of
those ideas which fit, and the beauty which results when they do fit.

So wrote Saunders Mac Lane, a great master and servant of mathematics, whose memory
we reverently dedicate this talk to.

1. Boolean Requisites

We start with recalling some auxiliary facts about the construction and treatment of
Boolean valued models.
1.1. Let B be a complete Boolean algebra. Given an ordinal α, put

V
(B)
α := {x : x is a function ∧ (∃β)(β < α ∧ dom(x) ⊂ V(B)

β ∧ im(x) ⊂ B)}.

After this recursive definition the Boolean valued universe V(B) or, in other words, the
class of B-sets is introduced by

V
(B) :=

⋃
α∈On

V
(B)
α ,

with On standing for the class of all ordinals.
In case of the two element Boolean algebra 2 := {0, 1} this procedure yields a version

of the classical von Neumann universe V (see 2.1 (2)).
Let ϕ be an arbitrary formula of ZFC, Zermelo–Fraenkel set theory with choice. The

Boolean truth value [[ϕ]] ∈ B is introduced by induction on the length of a formula ϕ
by naturally interpreting the propositional connectives and quantifiers in the Boolean
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algebra B and taking into consideration the way in which this formula is built up from
atomic formulas. The Boolean truth values of the atomic formulas x ∈ y and x = y, with
x, y ∈ V(B), are defined by means of the following recursion schema:

[[x ∈ y]] =
∨

t∈dom(y)

y(t) ∧ [[t = x]],

[[x = y]] =
∨

t∈dom(x)

x(t)⇒ [[t ∈ y]] ∧
∨

t∈dom(y)

y(t)⇒ [[t ∈ x]].

The sign ⇒ symbolizes the implication in B; i.e., a⇒ b := a∗ ∨ b where a∗ is as usual the
complement of a.

The universe V(B) with the Boolean truth value of a formula is a model of set theory
in the sense that the following statement is fulfilled.
1.2. Transfer Principle. For every theorem ϕ of ZFC, we have [[ϕ]] = 1; i.e., ϕ is true

inside V(B).
Enter into the next agreement: If x is an element of V(B) and ϕ(·) is a formula of ZFC,

then the phrase “x satisfies ϕ inside V(B)” or, briefly, “ϕ(x) is true inside V(B)” means
that [[ϕ(x)]] = 1. This is sometimes written as V(B) |= ϕ(x).

Given x ∈ V(B) and b ∈ B, define the function bx : z 7→ bx(z) (z ∈ dom(x)). Here we
presume that b∅ := ∅ for all b ∈ B.

There is a natural equivalence relation x ∼ y ↔ [[x = y]] = 1 in the class V(B). Choosing
a representative of the smallest rank in each equivalence class or, more exactly, using the
so-called “Frege–Russell–Scott trick,” we obtain a separated Boolean valued universe V (B)

in which x = y ↔ [[x = y]] = 1.
The Boolean truth value of a formula ϕ remains unaltered if we replace in ϕ each element

of V(B) by one of its equivalents. In this connection from now on we take V(B) := V
(B)

without further specification.
Observe that in V (B) the element bx is defined correctly for x ∈ V (B) and b ∈ B since

[[x1 = x2]] = 1 → [[bx1 = bx2]] = b ⇒ [[x1 = x2]] = 1. For a similar reason, we often write
0 := ∅, and in particular 0∅ = ∅ = 0x for x ∈ V(B).
1.3. Mixing Principle. Let (bξ)ξ∈Ξ be a partition of unity in B, i.e. supξ∈Ξ bξ =

supB = 1 and ξ 6= η → bξ ∧ bη = 0. To each family (xξ)ξ∈Ξ in V(B) there exists a unique
element x in the separated universe such that [[x = xξ]] ≥ bξ (ξ ∈ Ξ).

This element is called the mixing of (xξ)ξ∈Ξ by (bξ)ξ∈Ξ and is denoted by
∑

ξ∈Ξ bξxξ.
1.4. Maximum Principle. If ϕ is a formula of ZFC then there is a B-valued set x0

satisfying [[(∃x)ϕ(x)]] = [[ϕ(x0)]].

2. The Escher Rules

Boolean valued analysis consists primarily in comparison of the instances of a mathe-
matical object or idea in two Boolean valued models. This is impossible to achieve without
some dialog between the universes V and V(B).

In other words, we need a smooth mathematical toolkit for revealing interplay between
the interpretations of one and the same fact in the two models V and V(B). The relevant
ascending-and-descending technique rests on the functors of canonical embedding, descent,
and ascent.
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2.1. We start with the canonical embedding of the von Neumann universe V.
Given x ∈ V, we denote by x∧ the standard name of x in V(B); i.e., the element defined

by the following recursion schema:

∅∧ := ∅, dom(x∧) := {y∧ : y ∈ x}, im(x∧) := {1}.

Observe some properties of the mapping x 7→ x∧ we need in the sequel.
(1) For an arbitrary x ∈ V and a formula ϕ of ZFC we have

[[(∃y ∈ x∧)ϕ(y)]] =
∨
z∈x

[[ϕ(z∧)]], [[(∀y ∈ x∧)ϕ(y)]] =
∧
z∈x

[[ϕ(z∧)]].

(2) If x and y are elements of V then, by transfinite induction, we establish x ∈ y ↔
V

(B) |= x∧ ∈ y∧, x = y ↔ V
(B) |= x∧ = y∧. In other words, the standard name can

be considered as an embedding of V into V(B). Moreover, it is beyond a doubt that the
standard name sends V onto V(2), which fact is demonstrated by the next proposition:
(3) The following holds: (∀u ∈ V(2)) (∃!x ∈ V) V(B) |= u = x∧.
A formula is called bounded or restricted if each bound variable in it is restricted by

a bounded quantifier; i.e., a quantifier ranging over a particular set. The latter means that
each bound variable x is restricted by a quantifier of the form (∀x ∈ y) or (∃x ∈ y) for
some y.
2.2. Restricted Transfer Principle. For each bounded formula ϕ of ZFC and every

collection x1, . . . , xn ∈ V the following holds: ϕ(x1, . . . , xn) ↔ V
(B) |= ϕ(x∧1 , . . . , x

∧
n).

Henceforth, working in the separated universe V(B), we agree to preserve the symbol x∧
for the distinguished element of the class corresponding to x.

Observe for example that the restricted transfer principle yields:

“Φ is a correspondence from x to y”

↔ V
(B) |= “Φ∧ is a correspondence from x∧ to y∧”;

“f is a function from x to y” ↔ V
(B) |= “f∧ is a function from x∧ to y∧”

(moreover, f(a)∧ = f∧(a∧) for all a ∈ x). Thus, the standard name can be considered as
a covariant functor of the category of sets (or correspondences) in V to an appropriate
subcategory of V(2) in the separated universe V(B).
2.3. A set X is finite if X coincides with the image of a function on a finite ordinal. In

symbols, this is expressed as fin(X); hence,

fin(X) := (∃n)(∃ f)(n ∈ ω ∧ f is a function ∧ dom(f) = n ∧ im(f) = X)

(as usual ω := {0, 1, 2, . . . }). Obviously, the above formula is not bounded. Nevertheless
there is a simple transformation rule for the class of finite sets under the canonical embed-
ding. Denote by Pfin(X) the class of all finite subsets of X; i.e., Pfin(X) := {Y ∈P(X) :
fin(Y )}. For an arbitrary set X the following holds: V(B) |= Pfin(X)∧ = Pfin(X∧).

2.4. Given an arbitrary element x of the (separated) Boolean valued universe V(B),
we define the descent x↓ of x as x↓ := {y ∈ V(B) : [[y ∈ x]] = 1}. We list the simplest
properties of descending:
(1) The class x↓ is a set, i.e., x↓ ∈ V for all x ∈ V(B). If [[x 6= ∅]] = 1 then x↓ is

a nonempty set.
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(2) Let z ∈ V(B) and [[z 6= ∅]] = 1. Then for every formula ϕ of ZFC we have

[[(∀x ∈ z)ϕ(x)]] =
∧
x∈z↓

[[ϕ(x)]], [[(∃x ∈ z)ϕ(x)]] =
∨
x∈z↓

[[ϕ(x)]].

Moreover, there exists x0 ∈ z↓ such that [[ϕ(x0)]] = [[(∃x ∈ z)ϕ(x)]].
(3) Let Φ be a correspondence from X to Y in V(B). Thus, Φ, X, and Y are elements

of V(B) and, moreover, [[Φ ⊂ X × Y ]] = 1. There is a unique correspondence Φ↓ from X↓
to Y ↓ such that Φ↓(A↓) = Φ(A)↓ for every nonempty subset A of X inside V(B). The
correspondence Φ↓ from X↓ to Y ↓ of the above proposition is called the descent of the
correspondence Φ from X to Y inside V(B).
(4) The descent of the composite of correspondences inside V(B) is the composite of

their descents: (Ψ ◦ Φ)↓ = Ψ↓ ◦ Φ↓.
(5) If Φ is a correspondence inside V(B) then (Φ−1)↓ = (Φ↓)−1.
(6) Let IdX be the identity mapping insideV(B) of a setX ∈ V(B). Then (IdX)↓ = IdX↓.
(7) Suppose that X, Y, f ∈ V(B) are such that [[f : X → Y ]] = 1, i.e., f is a mapping

from X to Y inside V(B). Then f↓ is a unique mapping from X↓ to Y ↓ satisfying [[f↓(x) =
f(x)]] = 1 for all x ∈ X↓.

By virtue of (1)–(7), we can consider the descent operation as a functor from the
category of B-valued sets and mappings (correspondences) to the category of the usual
sets and mappings (correspondences) (i.e., in the sense of V).
(8) Given x1, . . . , xn ∈ V(B), denote by (x1, . . . , xn)B the corresponding ordered n-tuple

inside V(B). Assume that P is an n-ary relation on X inside V(B); i.e., X,P ∈ V(B) and
[[P ⊂ Xn∧ ]] = 1, where n ∈ ω. Then there exists an n-ary relation P ′ on X↓ such that
(x1, . . . , xn) ∈ P ′ ↔ [[(x1, . . . , xn)B ∈ P ]] = 1. Slightly abusing notation, we denote the
relation P ′ by the same symbol P↓ and call it the descent of P .
2.5. Let x ∈ V and x ⊂ V(B); i.e., let x be some set composed of B-valued sets or, in

other words, x ∈ P(V(B)). Put ∅↑ := ∅ and dom(x↑) := x, im(x↑) := {1} if x 6= ∅.
The element x↑ (of the separated universe V(B), i.e., the distinguished representative of
the class {y ∈ V(B) : [[y = x↑]] = 1}) is called the ascent of x.
(1) For all x ∈P(V(B)) and every formula ϕ we have the following:

[[(∀z ∈ x↑)ϕ(z)]] =
∧
y∈x

[[ϕ(y)]], [[(∃z ∈ x↑)ϕ(z)]] =
∨
y∈x

[[ϕ(y)]].

Introducing the ascent of a correspondence Φ ⊂ X × Y , we have to bear in mind
a possible distinction between the domain of departure X and the domain dom(Φ) :=
{x ∈ X : Φ(x) 6= ∅}. This circumstance is immaterial for the sequel; therefore, speaking
of ascents, we always imply total correspondences; i.e., dom(Φ) = X.
(2) Let X, Y,Φ ∈ V(B), and let Φ be a correspondence from X to Y . There exists

a unique correspondence Φ↑ from X↑ to Y ↑ inside V(B) such that Φ↑(A↑) = Φ(A)↑
is valid for every subset A of dom(Φ) if and only if Φ is extensional; i.e., satisfies the
condition y1 ∈ Φ(x1) → [[x1 = x2]] ≤

∨
y2∈Φ(x2)[[y1 = y2]] for x1, x2 ∈ dom(Φ). In this

event, Φ↑ = Φ′↑, where Φ′ := {(x, y)B : (x, y) ∈ Φ}. The element Φ↑ is called the ascent
of the initial correspondence Φ.
(3) The composite of extensional correspondences is extensional. Moreover, the ascent

of a composite is equal to the composite of the ascents inside V(B): On assuming that
dom(Ψ) ⊃ im(Φ) we have V(B) � (Ψ ◦ Φ)↑ = Ψ↑ ◦ Φ↑.
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Note that if Φ and Φ−1 are extensional then (Φ↑)−1 = (Φ−1)↑. However, in general, the
extensionality of Φ in no way guarantees the extensionality of Φ−1.
(4) It is worth mentioning that if an extensional correspondence f is a function from X

to Y then the ascent f↑ of f is a function from X↑ to Y ↑. Moreover, the extensionality
property can be stated as follows: [[x1 = x2]] ≤ [[f(x1) = f(x2)]] for all x1, x2 ∈ X.

2.6. Given a setX ⊂ V(B), we denote by the symbol mix(X) the set of all mixings of the
form mix(bξxξ), where (xξ) ⊂ X and (bξ) is an arbitrary partition of unity. The following
propositions are referred to as the arrow cancellation rules or ascending-and-descending
rules. There are many good reasons to call them simply the Escher rules [17].
(1) Let X and X ′ be subsets of V(B) and let f : X → X ′ be an extensional mapping.

Suppose that Y, Y ′, g ∈ V(B) are such that [[Y 6= ∅]] = [[ g : Y → Y ′]] = 1. Then
X↑↓ = mix(X), Y ↓↑ = Y, f↑↓ = f, and g↓↑ = g.
(2) From 2.3 (8) we easily infer the useful relation: Pfin(X↑) = {θ↑ : θ ∈Pfin(X)}↑.
Suppose that X ∈ V, X 6= ∅; i.e., X is a nonempty set. Let the letter ι denote the

standard name embedding x 7→ x∧ (x ∈ X). Then ι(X)↑ = X∧ and X = ι−1(X∧↓). Using
the above relations, we may extend the descent and ascent operations to the case in which
Φ is a correspondence from X to Y ↓ and [[Ψ is a correspondence from X∧ to Y ]] = 1,
where Y ∈ V(B). Namely, we put Φ↑ := (Φ ◦ ι)↑ and Ψ↓ := Ψ↓ ◦ ι. In this case, Φ↑ is
called the modified ascent of Φ and Ψ↓ is called the modified descent of Ψ. (If the context
excludes ambiguity then we briefly speak of ascents and descents using simple arrows.)
It is easy to see that Ψ↑ is a unique correspondence inside V(B) satisfying the relation
[[Φ↑(x∧) = Φ(x)↑]] = 1 (x ∈ X). Similarly, Ψ↓ is a unique correspondence from X to Y ↓
satisfying the equality Ψ↓(x) = Ψ(x∧)↓ (x ∈ X). If Φ := f and Ψ := g are functions
then these relations take the form [[f↑(x∧) = f(x)]] = 1 and g↓(x) = g(x∧) for all x ∈ X.

2.7. Various function spaces reside in functional analysis, and so the problem is natural
of replacing an abstract Boolean valued system by some function-space analog, a model
whose elements are functions and in which the basic logical operations are calculated
“pointwise.” An example of such a model is given by the class VQ of all functions defined
on a fixed nonempty set Q and acting into V. The truth values on VQ are various subsets
of Q: The truth value [[ϕ(u1, . . . , un)]] of ϕ(t1, . . . , tn) at functions u1, . . . , un ∈ VQ is
calculated as follows: [[ϕ(u1, . . . , un)]] =

{
q ∈ Q : ϕ

(
u1(q), . . . , un(q)

)}
.

A. G. Gutman and G. A. Losenkov solved the above problem by the concept of con-
tinuous polyverse which is a continuous bundle of models of set theory. It is shown that
the class of continuous sections of a continuous polyverse is a Boolean valued system
satisfying all basic principles of Boolean valued analysis and, conversely, each Boolean
valued algebraic system can be represented as the class of sections of a suitable continu-
ous polyverse. More details are collected in [35, Chapter 6].

2.8. Every Boolean valued universe has the collection of mathematical objects in full
supply: available in plenty are all sets with extra structure: groups, rings, algebras, normed
spaces, etc. Applying the descent functor to such internal algebraic systems of a Boolean
valued model, we distinguish some bizarre entities or recognize old acquaintances, which
leads to revealing the new facts of their life and structure.

This technique of research, known as direct Boolean valued interpretation, allows us to
produce new theorems or, to be more exact, to extend the semantical content of the avail-
able theorems by means of slavish translation. The information we so acquire might fail
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to be vital, valuable, or intriguing, in which case the direct Boolean valued interpretation
turns out into a leisurely game.

It thus stands to reason to raise the following questions: What structures significant for
mathematical practice are obtainable by the Boolean valued interpretation of the most
typical algebraic systems? What transfer principles hold true in this process? Clearly, the
answers should imply specific objects whose particular features enable us to deal with
their Boolean valued representation which, if understood duly, is impossible to implement
for arbitrary algebraic systems.

An abstract Boolean set or set with B-structure is a pair (X, d), where X ∈ V, X 6= ∅,
and d is a mapping from X ×X to B such that d(x, y) = 0 ↔ x = y; d(x, y) = d(y, x);
d(x, y) ≤ d(x, z) ∨ d(z, y) all x, y, z ∈ X.

To obtain an easy example of an abstract B-set, given ∅ 6= X ⊂ V(B) put

d(x, y) := [[x 6= y]] = ¬[[x = y]]

for x, y ∈ X.
Another easy example is a nonempty X with the discrete B-metric d; i.e., d(x, y) = 1

if x 6= y and d(x, y) = 0 if x = y.
Let (X, d) be some abstract B-set. There exist an element X ∈ V(B) and an injection ι :

X → X ′ := X ↓ such that d(x, y) = [[ιx 6= ιy]] for all x, y ∈ X and every element x′ ∈ X ′
admits the representation x′ = mixξ∈Ξ(bξιxξ), where (xξ)ξ∈Ξ ⊂ X and (bξ)ξ∈Ξ is a partition
of unity in B. The element X ∈ V(B) is referred to as the Boolean valued realization of X.

If X is a discrete abstract B-set then X = X∧ and ιx = x∧ for all x ∈ X. If X ⊂ V(B)

then ι↑ is an injection from X↑ to X (inside V(B)). A mapping f from a B-set (X, d) to
a B-set (X ′, d′) is said to be contractive if d(x, y) ≥ d′(f(x), f(y)) for all x, y ∈ X.

We see that an abstract B-set X embeds in the Boolean valued universe V(B) so that
the Boolean distance between the members of X becomes the Boolean truth value of the
negation of their equality. The corresponding element ofV(B) is, by definition, the Boolean
valued representation of X.

In case a B-set X has some a priori structure we may try to furnish the Boolean
valued representation of X with an analogous structure, so as to apply the technique of
ascending and descending to the study of the original structure of X. Consequently, the
above questions may be treated as instances of the unique problem of searching a well-
qualified Boolean valued representation of a B-set with some additional structure.

We call these objects algebraic B-systems . Located at the epicenter of exposition, the
notion of an algebraicB-system refers to a nonemptyB-set endowed with a few contractive
operations and B-predicates, the latter meaning B-valued contractive mappings.

The Boolean valued representation of an algebraic B-system appears to be a conven-
tional two valued algebraic system of the same type. This means that an appropriate
completion of each algebraic B-system coincides with the descent of some two valued
algebraic system inside V(B).

On the other hand, each two valued algebraic system may be transformed into an
algebraic B-system on distinguishing a complete Boolean algebra of congruences of the
original system. In this event, the task is in order of finding the formulas holding true in
direct or reverse transition from a B-system to a two valued system. In other words, we
have to seek here for some versions of the transfer or identity preservation principle of
long standing in some branches of mathematics.
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3. Boolean Valued Numbers

Boolean valued analysis stems from the fact that each internal field of reals of a Boolean
valued model descends into a universally complete Kantorovich space. Thus, a remarkable
opportunity opens up to expand and enrich the treasure-trove of mathematical knowledge
by translating information about the reals to the language of other noble families of
functional analysis. We will elaborate upon the matter in this section.

3.1. Recall a few definitions. Two elements x and y of a vector lattice E are called
disjoint (in symbols x ⊥ y) if |x| ∧ |y| = 0. A band of E is defined as the disjoint
complement M⊥ := {x ∈ E : (∀y ∈M)x ⊥ y} of a nonempty set M ⊂ E.

The inclusion-ordered set B(E) of all bands in E is a complete Boolean algebra with
the Boolean operations:

L∧K = L∩K, L∨K = (L∪K)⊥⊥, L∗ = L⊥ (L,K ∈ B(E)).

The Boolean algebra B(E) is often referred as to the base of E.
A band projection in E is a linear idempotent operator in π : E → E satisfying the

inequalities 0 ≤ πx ≤ x for all 0 ≤ x ∈ E. The set P(E) of all band projections ordered
by π ≤ ρ⇐⇒ π ◦ ρ = π is a Boolean algebra with the Boolean operations:

π∧ρ = π◦ρ, π∨ρ = π+ρ−π◦ρ, π∗ = IE−π (π, ρ ∈ (E)).

Let u ∈ E+ and e∧ (u− e) = 0 for some 0 ≤ e ∈ E. Then e is a fragment or component
of u. The set E(u) of all fragments of u with the order induced by E is a Boolean algebra
where the lattice operations are taken from E and the Boolean complement has the form
e∗ := u− e.
3.2. A Dedekind complete vector lattice is also called a Kantorovich space or K-space,

for short. A K-space E is universally complete if every family of pairwise disjoint elements
of E is order bounded.
(1) Theorem. Let E be an arbitrary K-space. Then the correspondence π 7→ π(E)

determines an isomorphism of the Boolean algebras P(E) and B(E). If there is an order
unity 1 in E then the mappings π 7→ π1 from P(E) into E(E) and e 7→ {e}⊥⊥ from E(E)
into B(E) are isomorphisms of Boolean algebras too.
(2) Theorem. Each universally completeK-space E with order unity 1 can be uniquely

endowed by multiplication so as to make E into a faithful f -algebra and 1 into a ring
unity. In this f -algebra each band projection π ∈ P(E) is the operator of multiplication
by π(1).

3.3. By a field of reals we mean every algebraic system that satisfies the axioms of
an Archimedean ordered field (with distinct zero and unity) and enjoys the axiom of
completeness. The same object can be defined as a one-dimensional K-space.

Recall the well-known assertion of ZFC: There exists a field of reals R that is unique
up to isomorphism.

Successively applying the transfer and maximum principles, we find an element R ∈
V

(B) for which [[ R is a field of reals ]] = 1. Moreover, if an arbitrary R ′ ∈ V(B) satisfies
the condition [[R ′ is a field of reals ]] = 1 then [[ the ordered fields R and R ′ are isomor-
phic ]] = 1. In other words, there exists an internal field of reals R ∈ V(B) which is unique
up to isomorphism.
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By the same reasons there exists an internal field of complex numbers C ∈ V(B) which
is unique up to isomorphism. Moreover, V(B) |= C = R ⊕ iR. We call R and C the
internal reals and internal complexes in V(B).
3.4. Consider another well-known assertion of ZFC: IfP is an Archimedean ordered field

then there is an isomorphic embedding h of the field P into R such that the image h(P)
is a subfield of R containing the subfield of rational numbers. In particular, h(P) is dense
in R.

Note also that ϕ(x), formally presenting the expressions of the axioms of an Archimedean
ordered field x, is bounded; therefore, [[ϕ(R∧) ]] = 1, i.e., [[R∧ is an Archimedean ordered
field ]] = 1. “Pulling” 3.2 (2) through the transfer principle, we conclude that [[R∧ is iso-
morphic to a dense subfield of R ]] = 1. We further assume that R∧ is a dense subfield of
R and C∧ is a dense subfield of C . It is easy to note that the elements 0∧ and 1∧ are the
zero and unity of R.

Observe that the equalities R = R∧ and C = C∧ are not valid in general. Indeed, the
axiom of completeness for R is not a bounded formula and so it may thus fail for R∧
inside V(B).
3.5. Look now at the descent R↓ of the algebraic system R. In other words, consider

the descent of the underlying set of the system R together with descended operations
and order. For simplicity, we denote the operations and order in R and R↓ by the same
symbols +, · , and ≤. In more detail, we introduce addition, multiplication, and order
in R↓ by the formulas

z = x+ y ↔ [[ z = x+ y ]] = 1, z = x · y ↔ [[ z = x · y ]] = 1,

x ≤ y ↔ [[ x ≤ y ]] = 1 (x, y, z ∈ R↓).

Also, we may introduce multiplication by the usual reals in R↓ by the rule

y = λx↔ [[λ∧x = y ]] = 1 (λ ∈ R, x, y ∈ R↓).

The fundamental result of Boolean valued analysis is Gordon’s Theorem which reads
as follows: Each universally complete Kantorovich space is an interpretation of the reals
in an appropriate Boolean valued model. Formally, we have the following
3.6. Gordon Theorem. Let R be the reals inside V(B). Then R↓, with the descended

operations and order, is a universally complete K-space with order unity 1. Moreover,
there exists an isomorphism χ of B onto P(R↓) such that

χ(b)x = χ(b)y ↔ b ≤ [[ x = y ]], χ(b)x ≤ χ(b)y ↔ b ≤ [[ x ≤ y ]]

for all x, y ∈ R↓ and b ∈ B.
The converse is also true: Each Archimedean vector lattice embeds in a Boolean valued

model, becoming a vector sublattice of the reals (viewed as such over some dense subfield
of the reals).
3.7. Theorem. Let E be an Archimedean vector lattice, let R be the reals inside V(B),

and let  be an isomorphism of B onto B(E). Then there is E ∈ V(B) such that
(1) E is a vector sublattice of R over R∧ inside V(B);
(2) E ′ := E ↓ is a vector sublattice of R↓ invariant under every band projection χ(b)

(b ∈ B) and such that each set of positive pairwise disjoint sets in it has a supremum;
(3) there is an o-continuous lattice isomorphism ι : E → E ′ such that ι(E) is a coinitial

sublattice of R↓;
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(4) for every b ∈ B the band projection in R↓ onto {ι((b))}⊥⊥ coincides with χ(b).
Note also that E and R coincide if and only if E is Dedekind complete. Thus, each

theorem about the reals within Zermelo–Fraenkel set theory has an analog in an arbitrary
Kantorovich space. Translation of theorems is carried out by appropriate general functors
of Boolean valued analysis. In particular, the most important structural properties of
vector lattices such as the functional representation, spectral theorem, etc. are the ghosts
of some properties of the reals in an appropriate Boolean valued model. More details and
references are collected in [35].
3.8. The theory of vector lattices with a vast field of applications is thoroughly covered

in many monographs (see [5, 7, 24, 25, 42, 53, 54, 64, 66]). The credit for finding the most
important instance among ordered vector spaces, an order complete vector lattice or K-
space, is due to L. V. Kantorovich. This notion appeared in Kantorovich’s first article
on this topic [23] where he wrote: “In this note, I define a new type of space that I call
a semiordered linear space. The introduction of such a space allows us to study linear
operations of one abstract class (those with values in such a space) as linear functionals.”

Thus the heuristic transfer principle was stated for K-spaces which becomes the Ari-
adna thread of many subsequent studies. The depth and universality of Kantorovich’s
principle are explained within Boolean valued analysis.
3.9. Applications of Boolean valued models to functional analysis stem from the works

by E. I. Gordon [11, 12] and G. Takeuti [58]. If B in 3.6 is the algebra of µ-measurable sets
modulo µ-negligible sets then R↓ is isomorphic to the universally complete K-space L0(µ)
of measurable functions. This fact (for the Lebesgue measure on an interval) was already
known to D. Scott and R. Solovay (see [35]). If B is a complete Boolean algebra of projec-
tions in a Hilbert space then R↓ is isomorphic to the space of selfadjoint operators A(B).
These two particular cases of Gordon’s Theorem were intensively and fruitfully exploited
by G. Takeuti (see [58] and the bibliography in [35]). The object R↓ for general Boolean
algebras was also studied by T. Jech [18]–[20] who in fact rediscovered Gordon’s Theo-
rem. The difference is that in [21] a (complex) universally complete K-space with unity
is defined by another system of axioms and is referred to as a complete Stone algebra.
Theorem 3.7 was obtained by A. G. Kusraev [30]. A close result (in other terms) is pre-
sented in T. Jech’s article [20] where some Boolean valued interpretation is revealed of
the theory of linearly ordered sets. More details can be found in [35].

4. Band Preserving Operators

This section deals with the class of band preserving operators. Simplicity of these op-
erators notwithstanding, the question about their order boundedness is far from trivial.
4.1. Recall that a complex K-space is the complexification GC := G ⊕ iG of a real

K-space G (see [53]). A linear operator T : GC → GC is band preserving or contractive
or a stabilizer if, for all f, g ∈ GC, from f ⊥ g it follows that Tf ⊥ g. Disjointness in GC
is defined just as in G (see 3.1), whereas |z| := sup{Re(eiθz) : 0 ≤ θ ≤ π} for z ∈ GC.
(1) Let EndN(GC) stand for the set of all band preserving linear operators in GC, with

G := R↓. Clearly, EndN(GC) is a complex vector space. Moreover, EndN(GC) becomes
a faithful unitary module over the ring GC if we define gT as gT : x 7→ g ·Tx for all x ∈ G.
This follows from the fact that multiplication by a member of GC is a band preserving
operator and the composite of band preserving operators is band preserving too.
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(2) Denote by EndC∧(C ) the element of V(B) representing the space of all C∧-linear
mappings from C to C . Then EndC∧(C ) is a vector space over C∧ inside V(B), and
EndC∧(C )↓ is a faithful unitary module over GC.
4.2. Following [31] it is easy to prove that a linear operator T in the K-space GC is

band preserving if and only if T is extensional. Since each extensional mapping has an
ascent, T ∈ EndN(GC) has the ascent τ := T↑ which is a unique internal functional from
C to C such that [[τ(x) = Tx]] = 1 (x ∈ GC). We thus arrive at the following assertion:

The modules EndN(GC) and EndC∧(C )↓ are isomorphic by sending each band preserv-
ing operator to its ascent.

By Gordon’s Theorem this assertion means that the problem of finding a band pre-
serving operator in G amounts to solving (for τ : C → C ) inside V(B) the Cauchy
functional equation: τ(x + y) = τ(x) + τ(y) (x, y ∈ C ) under the subsidiary condition
τ(λx) = λτ(x) (x ∈ C , λ ∈ C∧).

As another subsidiary condition we may consider the Leibniz rule τ(xy) = τ(x)y +
xτ(y)(in which case τ is called a C∧-derivation) or multiplicativity τ(xy) = τ(x)τ(y).
These situations are addressed in 4.5.
4.3. An element g ∈ G+ is locally constant with respect to f ∈ G+ if g =

∨
ξ∈Ξ λξπξf

for some numeric family (λξ)ξ∈Ξ and a family (πξ)ξ∈Ξ of pairwise disjoint band projections.
A universally complete K-space GC is called locally one-dimensional if all elements of G+

are locally constant with respect to some order unity of G (and hence each of them).
Clearly, a K-space GC is locally one-dimensional if each g ∈ GC may be presented as
g = o-

∑
ξ∈Ξ λξπξ1f with some family (λξ)ξ∈Ξ ⊂ C and partition of unity (πξ)ξ∈Ξ ⊂ P(G).

4.4. A σ-complete Boolean algebra B is called σ-distributive if∨
n∈N

∧
m∈N

bn,m =
∧

ϕ∈NN

∨
n∈N

bn,ϕ(n).

for every double sequence (bn,m)n,m∈N in B. Other equivalent definitions are collected
in [56]. As an example of a σ-distributive Boolean algebra we may take a complete atomic
Boolean algebra, i.e., the boolean of a nonempty set. It is worth observing that there are
nonatomic σ-distributive complete Boolean algebras (see [32, 5.1.8]).

We now address the problem which is often referred to in the literature as Wickstead’s
problem: Characterize the universally complete vector lattices spaces in which every band
preserving linear operator is order bounded.

According to 4.2, Boolean valued analysis reduces Wickstead’s problem to that of order
boundedness of the endomorphisms of the field C viewed as a vector space and algebra
over the field C∧.
4.5. Theorem. Let P be an algebraically closed and topologically dense subfield of the

field of complexes C. The following are equivalent:
(1) P = C;
(2) every P-linear function on C is order bounded;
(3) there are no nontrivial P-derivations on C;
(4) each P-linear endomorphism on C is the zero or identity function;
(5) there is no P-linear automorphism on C other than the identity.
The equivalence (1) ↔ (2) is checked by using a Hamel basis of the vector space C

over P. The remaining equivalences rest on replacing a Hamel basis with a transcendence
basis (for details see [33]).
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Recall that a linear operator D : GC → GC is a C-derivation if D(fg) = D(f)g+fD(g)
for all f, g ∈ GC. It can be easily checked that every C-derivation is band preserving.

Interpreting Theorem 4.5 in V(B), we arrive at
4.6. Theorem. If B is a complete Boolean algebra then the following are equivalent:
(1) C = C∧ inside V(B);
(2) every band preserving linear operator is order bounded in the complex vector

lattice C ↓;
(3) there is no nontrivial C-derivation in the complex f -algebra C ↓;
(4) each band preserving endomorphism is a band projection in C ↓;
(5) there is no band preserving automorphism other than the identity in C ↓.
(6) the K-space R↓ is locally one-dimensional;
(7) B is σ-distributive.
4.7. The question was raised by A. W. Wickstead in [65] whether every band preserving

linear operator in a universally complete vector lattice is automatically order bounded.
The first example of an unbounded band preserving linear operator was suggested by
Yu. A. Abramovich, A. I. Veksler, and A. V. Koldunov in [1, 2]. The equivalence (1)↔ (6)
is trivial, whereas (2) ↔ (6) combines a result of Yu. A. Abramovich, A. I. Veksler, and
A. V. Koldunov [1, Theorem 2.1] and that of P. T. N. McPolin and A. W. Wickstead
[44, Theorem 3.2]. The equivalence (6)↔ (7) was obtained by A. E. Gutman [15]; he also
found an example of a purely nonatomic locally one-dimensional Dedekind complete vector
lattice (see [14]). The equivalences (1) ↔ (3) ↔ (4) ↔ (5) belong to A. G. Kusraev [33].

5. Boolean Valued Positive Functionals

A linear functional on a vector space is determined up to a scalar from its zero hyper-
plane. In contrast, a linear operator is recovered from its kernel up to a simple multiplier
on a rather special occasion. Fortunately, Boolean valued analysis prompts us that some
operator analog of the functional case is valid for each operator with target a Kantorovich
space, a Dedekind complete vector lattice. We now proceed along the lines of this rather
promising approach.
5.1. Let E be a vector lattice, and let F be a K-space with base a complete Boolean

algebra B. By 3.2, we may assume that F is a nonzero space embedded as an order dense
ideal in the universally complete Kantorovich space R↓ which is the descent of the reals R
inside the separated Boolean valued universe V(B) over B.

An operator T is F -discrete if [0, T ] = [0, IF ] ◦ T ; i.e., for all 0 ≤ S ≤ T there is
some 0 ≤ α ≤ IF satisfying S = α ◦ T . Let L∼a (E,F ) be the band in L∼(E,F ) spanned
by F -discrete operators and L∼d (E,F ) := L∼a (E,F )⊥. By analogy we define (E∧∼)a and
(E∧∼)d. The members of L∼d (E,F ) are usually called F -diffuse.
5.2. As usual, we let E∧ stand for the standard name of E in V(B). Undoubtedly, E∧ is

a vector lattice over R∧ inside V(B). Denote by τ := T↑ the ascent of T to V(B). Clearly,
τ acts from E∧ to the ascent F↑ = R of F inside the Boolean valued universe V(B).
Therefore, τ(x∧) = Tx inside V(B) for all x ∈ E, which means in terms of truth values
that [[τ : E∧ → R]] = 1 and (∀x ∈ E) [[τ(x∧) = Tx]] = 1.

Let E∧∼ stand for the space of all order bounded R∧-linear functionals from E∧ to R.
Clearly, E∧∼ := L∼(E∧,R) is a K-space inside V(B). The descent E∧∼↓ of E∧∼ is a K-
space. Given S, T ∈ L∼(E,F ), put τ := T↑ and σ := S↑.
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5.3. Theorem. For each T ∈ L∼(E,F ) the ascent T↑ of T is an order bounded R∧-
linear functional on E∧ inside V(B); i.e., [[T↑ ∈ E∧∼]] = 1. The mapping T 7→ T↑ is
a lattice isomorphism of L∼(E,F ) and E∧∼↓. Moreover, the following hold:
(1) T ≥ 0 ↔ [[ τ ≥ 0 ]] = 1;
(2) S is a fragment of T ↔ [[ σ is a fragment of τ ]] = 1;
(3) T is a lattice homomorphism ↔ [[ τ is a lattice homomorphism ]] = 1;
(4) T is F -diffuse ↔ [[ τ is diffuse ]] = 1;
(5) T ∈ L∼a (E,F ) ↔ [[ τ ∈ (E∧∼)a ]] = 1;
(6) T ∈ L∼d (E,F ) ↔ [[ τ ∈ (E∧∼)d ]] = 1.

Since τ , the ascent of an order bounded operator T , is defined up to a scalar from ker(τ),
we infer the following analog of the Sard Theorem.
5.4. Theorem. Let S and T be linear operators from E to F . Then ker(bS) ⊃ ker(bT )

for all b ∈ B if and only if there is an orthomorphism α of F such that S = αT .
We see that a linear operator T is, in a sense, determined up to an orthomorphism from

the family of the kernels of the strata bT of T . This remark opens a possibility of studying
some properties of T in terms of the kernels of the strata of T .
5.5. Theorem. An order bounded operator T from E to F may be presented as the

difference of some lattice homomorphisms if and only if the kernel of each stratum bT
of T is a vector sublattice of E for all b ∈ B.

Straightforward calculations of truth values show that T+↑ = τ+ and T−↑ = τ− inside
V

(B). Moreover, [[ker(τ) is a vector sublattice of X∧]] = 1 whenever so are ker(bT ) for all
b ∈ B. Since the ascent of a sum is the sum of the ascents of the summands, we reduce
the proof of Theorem 5.5 to the case of the functionals on using 5.3 (3).
5.6. Recall that a subspaceH of a vector lattice E is a G-space or Grothendieck subspace

(cp. [13, 40]) provided that H enjoys the following property:

(∀x, y ∈ H) (x ∨ y ∨ 0 + x ∧ y ∧ 0 ∈ H).

By simple calculations of truth values we infer that [[ker(τ) is a Grothendieck subspace
of E∧]] = 1 if and only if the kernel of each stratum bT is a Grothendieck subspace of E.
We may now assert that the following appears as a result of “descending” its scalar analog.
5.7. Theorem. The modulus of an order bounded operator T : E → F is the sum of

some pair of lattice homomorphisms if and only if the kernel of each stratum bT of T with
b ∈ B is a Grothendieck subspace of the ambient vector lattice E.

To prove the relevant scalar versions of Theorems 5.5 and 5.7, we use one of the formulas
of subdifferential calculus (cp. [34]):
5.8. Decomposition Theorem. Assume that H1, . . . , HN are cones in a vector lat-

tice E. Assume further that f and g are positive functionals on E. The inequality
f(h1 ∨ · · · ∨ hN) ≥ g(h1 ∨ · · · ∨ hN) holds for all hk ∈ Hk (k := 1, . . . , N) if and only
if to each decomposition of g into a sum of N positive terms g = g1 + · · · + gN there
is a decomposition of f into a sum of N positive terms f = f1 + · · · + fN such that
fk(hk) ≥ gk(hk) (hk ∈ Hk; k := 1, . . . , N).
5.9. Theorems 5.5 and 5.7 were obtained by S. S. Kutateladze in [38, 39]. Theorem 5.8

appeared in this form in [36].
Note that the sums of lattice homomorphisms were first described by S. J. Bernau,

C. B. Huijsmans, and B. de Pagter in terms of n-disjoint operators in [9]. A survey of
some conceptually close results on n-disjoint operators is given in [32].
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6. Boolean Valued Banach Spaces

In this section we discuss the transfer principle of Boolean valued analysis in regard
to lattice-normed spaces. It turns out that the interpretation of a Banach space inside
an arbitrary Boolean valued model is a Banach–Kantorovich space. Conversely, the uni-
versal completion of each lattice-normed space becomes a Banach space on ascending in
a suitable Boolean valued model. This open up an opportunity to transfer the available
theorems on Banach spaces to analogous results on lattice-normed spaces by the technique
of Boolean valued analysis.
6.1. Consider a vector space X and a real vector lattice E. Note that all vector lattices

under consideration are assumed Archimedean. An E-valued norm is a mapping · : X →
E+ such that
(1) x = 0⇐⇒ x = 0 (x ∈ X);
(2) λx = |λ| x (λ ∈ R, x ∈ X);
(3) x+ y ≤ x + y (x, y ∈ X).
A vector norm is decomposable if
(4) for all e1, e2 ∈ E+ and x ∈ X, from x = e1+e2 it follows that there exist x1, x2 ∈ X

such that x = x1 + x2 and xk = ek (k := 1, 2).
If (4) is valid only for disjoint e1, e2 ∈ E+ then the norm is d-decomposable. A triple(
X, · , E

)
as well as briefer versions is a lattice-normed space over E whenever · is

an E-valued norm on X.
6.2. By a Boolean algebra of projections in a vector space X we mean a set B of

commuting idempotent linear operators in X. Moreover, the Boolean operations have
the following form:

π∧ρ := π◦ρ = ρ◦π, π∨ρ = π+ρ−π◦ρ, π∗ = Ix−π (π, ρ ∈ B),

and the zero and identity operators in X serve as the zero and unity of the Boolean
algebra B.

Suppose that E is a vector lattice with the projection property and E = X
⊥⊥

:=
{ x : x ∈ X}⊥⊥. If (X,E) is a d-decomposable lattice-normed space then there exists
a complete Boolean algebra B of band projections in X and an isomorphism h from P(E)
onto B such that

b x = h(b)x
(
b ∈ P(E), x ∈ X

)
.

We identify the Boolean algebras P(E) and B and write π x = πx for all x ∈ X and
π ∈ P(E).
6.3. A net (xα)α∈A in X is bo-convergent to x ∈ X (in symbols: x = bo-limxα) if

( x− xα )α∈A is o-convergent to zero. A lattice-normed space X is bo-complete if each net
(xα)α∈A is bo-convergent to some element of X provided that ( xα − xβ )(α,β)∈A×A is o-
convergent to zero. A decomposable bo-complete lattice-normed space (X, · , E) is called
a Banach–Kantorovich space. If E is a universally complete Kantorovich space then X
is also referred to as universally complete. By a universal completion of a lattice-normed
space (X,E) we mean a universally complete Banach–Kantorovich space (Y,m(E)) to-
gether with a linear isometry ı : X → Y such that each universally complete bo-complete
subspace of (Y,m(E)) containing ı(X) coincides with Y . Here m(E) is a universal com-
pletion of E.
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6.4. Theorem. Let (X , ‖ · ‖) be a Banach space inside V(B). Put X := X ↓ and
· := ‖ · ‖↓(·). Then

(
X, · ,R↓

)
is a universally complete Banach–Kantorovich space.

Moreover, X can be endowed with the structure of a faithful unitary module over the ring
Λ := C ↓ so that ax = |a| x and b ≤ [[ x = 0 ]] ↔ χ(b)x = 0 for all a ∈ C ↓, x ∈ X, and
b ∈ B, where χ is an isomorphism of B onto P(X).
6.5. Theorem. To each lattice-normed space (X, · ), there exists a unique Banach

space (up to a linear isometry) X insideV(B), with B ' B
(
X
⊥⊥), such that the descent

X ↓ of X is a universal completion of X.
As in 3.1, we call x ∈ X and y ∈ Y disjoint and write x ⊥ y whenever x ∧ y = 0. Let

X and Y be Banach–Kantorovich spaces over some K-space G. An operator T is band
preserving if x ⊥ y implies Tx ⊥ y for all x ∈ X and y ∈ Y . Denote by LG(X, Y ) the
space of all band preserving operators T : X → Y that send all norm-o-bounded sets into
norm-o-bounded sets.
6.6. Theorem. Let X and Y be Boolean valued representations for Banach–Kantoro-

vich spaces X and Y normed by some universally complete K-space G := R↓. Let
L B(X ,Y ) be the space of bounded linear operators from X into Y inside V(B), where
B := B(G). The descent and ascent mappings (for operators) implement linear isometries
between the lattice-normed spaces LG(X, Y ) and L B(X ,Y )↓.
6.7. The concept of lattice-normed space was suggested by L. V. Kantorovich in 1936

[23]. It is worth stressing that [23] is the fist article with the unusual decomposability
axiom for an abstract norm. Paradoxically, this axiom was often omitted as inessential in
the further papers by other authors. The profound importance of 6.1 (4) was revealed by
Boolean valued analysis. The connection between the decomposability and existence of
a Boolean algebra of projections in a lattice-normed space was discovered in [28, 29]. The
theory of lattice-normed spaces and dominated operators is set forth in [32]. As regards
the Boolean valued approach, see [35].

7. Boolean Valued Order Continuous Functionals

We now address the class of o-continuous order bounded operators that turn into o-
continuous functionals on ascending to a suitable Boolean valued model.
7.1. Assume that a lattice-normed space X is simultaneously a vector lattice. The norm
· : X → E+ of X is monotone if from |x| ≤ |y| it follows that x ≤ y (x, y ∈ X). In
this event, X is a lattice-normed vector lattice. Moreover, if X is a Banach–Kantorovich
space then X is called a Banach–Kantorovich lattice.

We say that the norm · in X is additive if x+y = x + y for all x, y ∈ X+; it is order
semicontinuous or o-semicontinuous for short if sup xα = supxα for each increasing net
(xα) ⊂ X with the least upper bound x ∈ X; and it is order continuous or o-continuous
if inf xα = 0 for every decreasing net (xα) ⊂ X with infα xα = 0.

The Boolean valued interpretation of Banach–Kantorovich lattices proceeds along the
lines of the previous section.
7.2. Theorem. Let (X, · ) be a Banach–Kantorovich space and let (X , ‖ · ‖) ∈ V(B)

stand for its Boolean valued realization. Then
(1) X is a Banach–Kantorovich lattice if and only if X is a Banach lattice inside V(B);
(2) X is an order complete Banach–Kantorovich lattice if and only if X is an order

complete Banach lattice inside V(B);
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(3) the norm · is o-continuous (order semicontinuous, monotone complete, or additive)
if and only if the norm ‖ · ‖ is o-continuous (order semicontinuous, monotone complete,
or additive) inside V(B).

7.3. Let E be a vector lattice, let F be some K-space, and let T be a positive operator
from E to F . Say that T possesses the Maharam property if, for all x ∈ E+ and 0 ≤ f ≤
Tx ∈ F+, there is some 0 ≤ e ≤ x satisfying f = Te. An o-continuous positive operator
with the Maharam property is a Maharam operator. Observe that T ∈ L(E,F )+ possesses
the Maharam property if only if the equality T ( [0, x] ) = [0, Tx] holds for all x ∈ E+.
Thus, a Maharam operator is exactly an o-continuous order-interval preserving positive
operator.

Let T be an essentially positive operator from E to F enjoying the Maharam property.
Put e := T (|x|) (e ∈ E). Then (E, · ) is a disjointly decomposable lattice-normed space
over F .

Put FT := {T (|x|) : x ∈ E}⊥⊥, and let Dm (T ) stand for the greatest order dense
ideal of the universal completion m(E) of E among those to which T can be extended
by o-continuity. In other words, z ∈ Dm (T ) if and only if z ∈ m(E) and the set {T (x) :
x ∈ E, 0 ≤ x ≤ |z|} is bounded in F . In this event there exists a minimal extension of T
to Dm(T ) presenting an o-continuous positive operator.

Let E and F be some K-spaces, and let T : E → F be a Maharam operator. Put
X := Dm(T ) and x := Φ(|x|) (x ∈ X), where Φ is an o-continuous extension of T to X.
Then (X, · ) is a Banach–Kantorovich lattice whose norm is o-continuous and additive.

7.4. Theorem. Let X be an arbitrary K-space and let E be a universally complete K-
space R↓. Assume that Φ : X → E is a Maharam operator such that X = XΦ = Dm (Φ)
and E = EΦ. Then there are elements X and ϕ in V(B) satisfying
(1) [[X is a K-space, ϕ : X → R is a positive o-continuous functional, and X =

Xϕ = Dm (ϕ)]] = 1;
(2) if X ′ := X ↓ and Φ′ = ϕ↓ then X ′ is a K-space and Φ′ : X ′ → E is a Maharam

operator;
(3) there is a linear and lattice isomorphism h from X onto X ′ such that Φ = Φ′ ◦ h;
(4) for a linear operator Ψ, the containment Ψ ∈ {Φ}⊥⊥ is true if and only if there is

ψ ∈ V(B) such that ψ ∈ {ϕ}⊥⊥ inside V(B) and Ψ = (ψ↓) ◦ h.
Theorem 7.4 enables us to claim that each fact about o-continuous positive linear func-

tionals in K-spaces has a parallel version for Maharam operators which can be revealed
by using 7.4. For instance, we state the abstract

7.5. Radon–Nikodým Theorem. Let E and F be K-spaces. Assume further that S
and T are o-continuous positive operators from E to F , with T enjoying the Maharam
property. Then the following are equivalent:
(1) S ∈ {T}⊥⊥;
(2) Sx ∈ {Tx}⊥⊥ for all x ∈ E+;
(3) there is an extended orthomorphism 0 ≤ ρ ∈ Orth∞(E) satisfying Sx = T (ρx) for

all x ∈ E such that ρx ∈ E;
(4) there is a sequence of orthomorphisms (ρn) ⊂ Orth(E) such that Sx = supn T (ρnx)

for all x ∈ E.

7.6. A brief description for Maharam’s approach to studying positive operators in
the spaces of measurable functions and the main results in this area are collected in [43].
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W. A. J. Luxemburg and A. R. Schep [41] extended a portion of Maharam’s theory on
the Radon–Nikodým Theorem to the case of positive operators in vector lattices.

Theorems 7.2 and 7.4 were obtained by A. G. Kusraev [27] and Theorem 7.5, by W. A. J.
Luxemburg and A. R. Schep [41]. About various applications of the above results on
Maharam operators and some extension of this theory to sublinear and convex operators
see [29, 32, 34, 35].

8. Spaces with Mixed Norm

The definitions of various objects of functional analysis rest often on some blending of
the norm and order properties. Among these are listed the spaces with mixed norm and
the classes of linear operators between them.
8.1. If (X,E) is a lattice-normed space whose norm lattice E is a Banach lattice. Since,

by definition, x ∈ E for x ∈ X, we may introduce the mixed norm on X by the formula

|||x||| :=
∥∥ x ∥∥ (x ∈ X).

In this situation, the normed space (X, ||| · |||) is called a space with mixed norm. A Banach
space with mixed norm is a pair (X,E) with E a Banach lattice and X a br-complete
lattice-normed space with E-valued norm. The following proposition justifies this defini-
tion.

Let E be a Banach lattice. Then (X, ||| · |||) is a Banach space if and only if the lattice-
normed space (X,E) is relatively uniformly complete.
8.2. Let Λ be the bounded part of the universally complete K-space R↓, i.e. Λ is

the order-dense ideal in R↓ generated by the order unity 1 := 1∧ ∈ R↓. Take a Banach
space X inside V(B). Put

X ⇓ := {x ∈X ↓ : x ∈ Λ}, |||x||| := ‖ x ‖∞ := inf{0 < λ ∈ R : x ≤ λ1}.
Then X ⇓ is a Banach–Kantorovich space called the bounded descent of X . Since Λ is
an order complete AM -space with unity, X ⇓ is a Banach space with mixed norm over Λ.

Thus, we came to the following natural question: Which Banach spaces are linearly
isometric to the bounded descents of internal Banach spaces? The answer is given in
terms of B-cyclic Banach spaces.
8.3. Let X be a normed space. Suppose that L (X) has a complete Boolean algebra

of norm one projections B which is isomorphic to B. In this event we will identify the
Boolean algebras B and B, writing B ⊂ L (X). Say that X is a normed B-space if
B ⊂ L (X) and for every partition of unity (bξ)ξ∈Ξ in B the two conditions hold:
(1) If bξx = 0 (ξ ∈ Ξ) for some x ∈ X then x = 0;
(2) If bξx = bξxξ (ξ ∈ Ξ) for x ∈ X and a family (xξ)ξ∈Ξ in X then ‖x‖ ≤ sup{‖bξxξ‖ :

ξ ∈ Ξ}.
Given a partition of unity (bξ), we refer to x ∈ X satisfying the condition (∀ ξ ∈ Ξ) bξx =

bξxξ as a mixing of (xξ) by (bξ). If (1) holds then there is a unique mixing x of (xξ) by
(bξ). In these circumstances we naturally call x the mixing of (xξ) by (bξ). Condition (2)
maybe paraphrased as follows: The unit ball UX of X is closed under mixing.

A normed B-space X is B-cyclic if we may find in X a mixing of each norm-bounded
family by each partition of unity in B. It is easy to verify that X is a B-cyclic normed
space if and only if, given a partition of unity (bξ) ⊂ B and a family (xξ) ⊂ UX , we may
find a unique element x ∈ UX such that bξx = bξxξ for all ξ.
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A linear operator (linear isometry) S between normedB-spaces isB-linear (B-isometry)
if S commutes with the projections in B; i.e., π ◦ S = S ◦ π for all π ∈ B. De-
note by LB(X, Y ) the set of all bounded B-linear operators from X to Y . We call
X# := LB(X,B(R)) the B-dual of X. If X# and Y are B-isometric to each other then
we say that Y is a B-dual space and X is a B-predual of Y .
8.4. Theorem. A Banach space X is linearly isometric to the bounded descent of some

Banach space X inside V(B) (called a Boolean valued representation of X) if and only
if X is B-cyclic. If X and Y are B-cyclic Banach spaces and X and Y stand for some
Boolean valued representations of X and Y , then the space LB(X, Y ) is B-isometric to
the bounded descent of the internal space L (X ,Y ) of all bounded linear operators from
X to Y .
8.5. Let Λ be a Stone algebra with unity 1 (= an order complete complex AM -space

with strong order unity 1 and uniquely defined multiplicative structure) and consider
a unitary Λ-module X. The mapping 〈· | ·〉 : X × X → Λ is a Λ-valued inner product, if
for all x, y, z ∈ X and a ∈ Λ the following are satisfied:

(1) 〈x |x〉 ≥ 0; 〈x |x〉 = 0↔ x = 0;

(2) 〈x | y〉 = 〈y |x〉∗;
(3) 〈ax | y〉 = a〈x | y〉;
(4) 〈x+ y | z〉 = 〈x | z〉+ 〈y | z〉.

Using a Λ-valued inner product, we may introduce the norm in X by |||x||| :=
√
‖〈x|x〉‖

and the decomposable vector norm x :=
√
〈x|x〉 (x ∈ X). Obviously, |||x||| =

∥∥ x ∥∥ for all
x ∈ X, and so X is a space with mixed norm.
8.6. Let X be a Λ-module with an inner product 〈· | ·〉 : X ×X → Λ. If X is complete

with respect to the mixed norm ||| · ||| then X is called a C∗-module over Λ. It can be proved
(see [32]) that for a C∗-module X the pair (X, ||| · |||) is a B-cyclic Banach space if and only
if (X, · ) is a Banach–Kantorovich space over Λ. If a unitary C∗-module satisfies one of
these equivalent conditions then it is called a Kaplansky–Hilbert module.
8.7. Theorem. The bounded descent of an arbitrary Hilbert space in V(B) is a Kaplan-

sky–Hilbert module over the Stone algebra C⇓. Conversely, if X is a Kaplansky–Hilbert
module over C⇓, then there is a Hilbert space X in V(B) whose bounded descent is
unitarily equivalent with X. This space is unique up to unitary equivalence inside V(B).
8.8. Theorem. Suppose that X and Y are Hilbert spaces inside V(B). Let X and Y

stand for the bounded descents of X and Y . Then the space LB(X, Y ) of all B-linear
bounded operators is a B-cyclic Banach space B-isometric to the bounded descent of the
internal Banach space L B(X ,Y ) of bounded linear operators from X to Y .
8.9. Boolean valued analysis approach gives rise to an interesting concept of cyclically

compact operator in a Banach B-space [32, 8.5.5]. Without plunging into details we for-
mulate a result on the general form of cyclically compact operators in Kaplansky–Hilbert
modules.
Theorem. Let X and Y be Kaplansky–Hilbert modules over a Stone algebra Λ and let

T be a cyclically compact operator from X to Y . There are orthonormal families (ek)k∈N
in X, (fk)k∈N in Y , and a family (µk)k∈N in Λ such that the following hold:
(1) µk+1 ≤ µk (k ∈ N) and o-limk→∞ µk = 0;
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(2) there exists a projection π∞ in Λ such that π∞µk is a weak order unity in π∞Λ for
all k ∈ N;
(3) there exists a partition (πk)

∞
k=0 of the projection π⊥∞ such that π0µ1 = 0, πk ≤ µk,

and πkµk+1 = 0 for all k ∈ N;
(4) the representation is valid

T = π∞ bo-
∞∑
k=1

µke
#

k ⊗ fk + bo-
∞∑
n=1

πn

n∑
k=1

µke
#

k ⊗ fk.

8.10. The bounded descent of 8.2 appeared in the research by G. Takeuti into von Neu-
mann algebras and C∗-algebras within Boolean valued models [60, 61] and in the research
by M. Ozawa into Boolean valued interpretation of the theory of Hilbert spaces [45]. The-
orems 8.4 and 8.9 were obtained by A. G. Kusraev in [28, 29, 32]. Theorems 8.7 and 8.8
were proved by M. Ozawa [45].

9. Banach Algebras

The possibility of applying Boolean valued analysis to operator algebras rests on the
following observation: If the center of an algebra is properly qualified and perfectly located
then it becomes a one-dimensional subalgebra after ascending in a suitable Boolean valued
universe. This might lead to a simpler algebra. On the other hand, the transfer principle
implies that the scope of the formal theory of the initial algebra is the same as that of its
Boolean valued representation.
9.1. An AW ∗-algebra is a C∗-algebra presenting a Baer ∗-algebra. More explicitly,

an AW ∗-algebra is a C∗-algebra A whose every right annihilator M⊥ := {y ∈ A :
(∀x ∈M) xy = 0} has the form pA, with p a projection. A projection p is a hermit-
ian (p∗ = p) idempotent (p2 = e) element. An element z ∈ A is said to be central if it
commutes with every member of A. The center of an AW ∗-algebra A is the set Z (A) of all
central elements. Clearly, Z (A) is a commutative AW ∗-subalgebra of A, with λ1 ∈ Z (A)
for all λ ∈ C. If Z (A) = {λ1 : λ ∈ C} then the AW ∗-algebra A is called an AW ∗-factor.

The symbol P(A) stands for the set of all projections of an involutive algebra A. Denote
the set of all central projections by Pc(A).
9.2. Theorem. Assume that A is an AW ∗-algebra inside V(B) and A is the bounded

descent of A . Then A is also an AW ∗-algebra and, moreover, Pc(A) has an order-closed
subalgebra isomorphic with B. Conversely, let A be an AW ∗-algebra such that B is an
order-closed subalgebra of the Boolean algebra Pc(A). Then there is an AW ∗-algebra A
in V(B) whose bounded descent is ∗-B-isomorphic with A. This algebra A is unique up
to isomorphism inside V(B).

Observe that if A is an AW ∗-factor inside V(B) then the bounded descent A of A
is an AW ∗-algebra whose Boolean algebra of central projections is isomorphic with B.
Conversely, if A is an AW ∗-algebra and B := Pc(A) then there is an AW ∗-factor A
inside V(B) whose bounded descent is isomorphic with A.
9.3. Take an AW ∗-algebra A. Clearly, the formula

q ≤ p↔ q = qp = pq (q, p ∈ P(X))

(sometimes reads as “p contains q”) specifies some order ≤ on the set of projections P(A).
Moreover, P(A) is a complete lattice and Pc(A) is a complete Boolean algebra.
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The classification of AW ∗-algebras into types is determined from the structure of its
lattice of projections [32, 52]. It is important to emphasize that Boolean valued represen-
tation preserves this classification. We recall only the definition of type I AW ∗-algebra.
A projection π ∈ A is called abelian if the algebra πAπ is commutative. An algebra A has
type I, if each nonzero projection in A contains a nonzero abelian projection.

We call an AW ∗-algebra embeddable if it is ∗-isomorphic with the double commutant
of some type I AW ∗-algebra. Each embeddable AW ∗-algebra admits a Boolean valued
representation, becoming a von Neumann algebra or factor. A C∗-algebra A is called
B-embeddable if there is a type I AW ∗-algebra N and a ∗-monomorphism ı : A → N
such that B = Pc(N) and ı(A) = ı(A)′′, where ı(A)′′ is the bicommutant of ı(A) in N .
Note that in this event A is an AW ∗-algebra and B is a regular subalgebra of Pc(A). In
particular, A is a B-cyclic algebra (see 8.3).

Say that a C∗-algebra A is embeddable if A is B-embeddable for some regular subalgebra
B ⊂ Pc(A). If B = Pc(A) and A is B-embeddable then A is called a centrally embeddable
algebra.
9.4. Theorem. Let A be a C∗-algebra inside V(B) and let A be the bounded descent

of A . Then A is a B-embeddable AW ∗-algebra if and only if A is a von Neumann algebra
inside V(B). The algebra A is centrally embeddable if and only if A is a von Neumann
factor inside V(B).

Using this representation, we can obtain characterizations of embeddableAW ∗-algebras.
In particular, an AW ∗-algebra A is embeddable if and only if the center-valued normal
states of A separate A.
9.5. Theorem. For an AW ∗-algebra A the following are equivalent:
(1) A is embeddable;
(2) A is centrally embeddable;
(3) A has a separating set of center-valued normal states;
(4) A is a Pc(A)-predual space.
9.6. Combining the results about the Boolean valued representations of AW ∗-algebras

with the analytical representations for dominated operators (see [32]), we come to some
functional representations of AW ∗-algebras.

Suppose that Q is an extremally disconnected compact space, H is a Hilbert space, and
B(H) is the space of bounded linear endomorphisms of H. Denote by C(Q,B(H)) the
set of all operator-functions u : dom(u) → B(H) on the comeager sets dom(u) ⊂ Q and
continuous in the strong operator topology. Introduce some equivalence on C(Q,B(H))
by putting u ∼ v if and only if u and v agree on dom(u) ∩ dom(v).

If u ∈ C(Q,B(H)) and h ∈ H then the vector-function uh : q 7→ u(q)h (q ∈ dom(u)) is
continuous thus determining a unique element ũh ∈ C∞(Q,H) from the condition uh ∈
ũh. If ũ is the coset of the operator-function u : dom(u)→ B(H) then ũh := ũh (h ∈ H)
by definition. Denote by SC∞(Q,B(H)) the set of all cosets ũ such that u ∈ C(Q,B(H))
and the set { ũh : ‖h‖ ≤ 1} is bounded in C∞(Q). Put ũ := sup{ ũh : ‖h‖ ≤ 1},
where the supremum is taken in C∞(Q). We naturally furnish SC∞(Q,B(H)) with the
structure of a ∗-algebra and unitary C∞(Q)-module. We now introduce the following
normed ∗-algebra

SC#(Q,B(H)) := {v ∈ SC∞(Q,B(H)) : v ∈ C(Q)},
‖v‖ = ‖ v ‖∞ (v ∈ SC#(Q,B(H))).
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9.7. Theorem. To each type I AW ∗-algebra A there exists a family of nonempty
extremally disconnected compact spaces (Qγ)γ∈Γ such that
(1) Γ is a set of cardinals and Qγ is γ-stable for every γ ∈ Γ;
(2) there is a ∗-B-isomorphism:

A '
∑
γ∈Γ

⊕
SC#(Qγ, B(l2(γ))).

This family is unique up to congruence.
A cardinal number γ is Q-stable if γ∧ is a cardinal number inside V(B) and Q is the

Stone space of B.
9.8. The study of C∗-algebras and von Neumann algebras by Boolean valued models

was started by G. Takeuti with [60, 61]. Theorems 9.2, 9.4, and 9.5 were obtained by
M. Ozawa [47, 48, 50]. Theorem 9.7 was established by A. G. Kusraev.

Boolean valued analysis of AW ∗-algebras yields a negative solution to the I. Kaplan-
sky problem of unique decomposition of a type I AW ∗-algebra into the direct sum of
homogeneous bands. M. Ozawa gave this solution in [48, 49]. The lack of uniqueness is
tied with the effect of the cardinal shift that may happens on ascending into a Boolean
valued model V(B). The cardinal shift is impossible in the case when the Boolean algebra
of central idempotents B under study satisfies the countable chain condition, and so the
decomposition in question is unique. I. Kaplansky established uniqueness of the decom-
position on assuming that B satisfies the countable chain condition and conjectured that
uniqueness fails in general [26].

10. JB-Algebras

We also consider similar problems for the so-called JB-algebras presenting some real
nonassociative analogs of C∗-algebras.
10.1. Recall that a JB-algebra is a real Banach space A which is a unital Jordan

algebra satisfying the conditions:
(1) ‖xy‖ ≤ ‖x‖ · ‖y‖ (x, y ∈ A);
(2) ‖x2‖ = ‖x‖2 (x ∈ A);
(3) ‖x2‖ ≤ ‖x2 + y2‖ (x, y ∈ A).
The intersection of all maximal associative subalgebras of A is called the center of A and

denoted by Z (A). Evidently Z (A) is an associative JB-algebra and every such algebra
is isometrically isomorphic to the real Banach algebra C(K) of continuous functions on
a compact space K. If Z (A) = R · 1 then A is said to be a JB-factor.

The idempotents of JB-algebras are also called projections . The set P(A) of projections
naturally underlies a complete lattice. The set Pc(A) of all projections belonging to the
center makes a Boolean algebra. Assume that B is a subalgebra of Pc(A). Then we say
that A is a B-JB-algebra if to each partition of unity (eξ)ξ∈Ξ in B and each family (xξ)ξ∈Ξ

in A there exists a unique B-mixing x := mixξ∈Ξ (eξxξ); i.e., a unique x ∈ A such that
eξxξ = eξx for all ξ ∈ Ξ. If B (R) := R ↓= Z (A) then a B-JB-algebra is also called
a centrally extended JB-algebra.

Clearly, the unit ball of a B-JB-algebra A is closed under B-mixing and so A is a B-
cyclic Banach space. Therefore, from 7.4 we can arrive to
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10.2. Theorem. The bounded descent of a JB-algebra inside V(B) is a B-JB-algebra.
Conversely, to each B-JB-algebra A there exists a unique JB-algebra A (up to iso-
morphism) whose bounded descent is isometrically B-isomorphic to A. Moreover, [[A is
a JB-factor ]] = 1 if and only if B (R) = Z (A).

10.3. Let A be a B-JB-algebra and Λ := B (R). An operator Φ ∈ A# is called a Λ-
valued state if Φ ≥ 0 and Φ(1) = 1. A state Φ is normal if Φ(x) = o-lim Φ(xα) for every
increasing net (xα) in A with x := supxα. If A is a Boolean valued representation of A
then the ascent φ := Φ↑ of Φ is a normal state on A . Conversely, if [[φ is a normal state
on A ]] = 1 then the restriction to A of φ↓ is a Λ-valued normal state. We now give
a characterization of the B-JB-algebras that are B-dual spaces.

10.4. Theorem. For a B-JB-algebra A the following are equivalent:
(1) A is a B-dual space;
(2) A is monotone complete and admits a separating set of Λ-valued normal states.
If one of these conditions holds then the part of A# consisting of o-continuous operators

serves as a B-predual of A.
This is just a Boolean valued interpretation of the following theorem by F. W. Shultz

[55]: a JB-algebra A is a dual Banach space if and only if A is monotone complete and
has a separating family of normal states.

10.5. An algebra A satisfying one of the equivalent conditions 10.4 (1,2), is called a B-
JBW -algebra. If, moreover, B coincides with the set of all central projections then A is
a B-JBW -factor. It follows from Theorem 10.4 that A is a B-JBW -algebra (B-JBW -
factor) if and only if its Boolean valued representation A ∈ V(B) is a JBW -algebra
(JBW -factor).

Consider one example. Let X be a Kaplansky–Hilbert module over the algebra Λ :=
B (C) := C ↓. Then X is a B-cyclic Banach space and LB(X) is a type I AW ∗-algebra.
Given x, y ∈ X, define the seminorm px,y(a) := ‖〈ax, y〉‖∞ (a ∈ LB(X)), where 〈·, ·〉 is
the inner product on X with values in Λ. Denote by σ∞ the topology on LB(X) that is
generated by the system of seminorms px,y. Then a σ∞-closed B-JB-algebra of selfadjoint
operators presents an example of a B-JBW -algebra.

10.6. Let A be an associative algebra over a field of characteristic 6= 2. Define the new
multiplication a ◦ b := 1/2(ab+ ba) on the vector space of A. Denote the resulting algebra
by AJ . This AJ is a Jordan algebra. If the subspace A◦ of A is closed under a ◦ b then A◦
is a subalgebra of AJ and so A◦ is Jordan. Such a Jordan algebra A◦ is called special. The
nonspecial Jordan algebras are referred to as exceptional.

Let O be the Cayley or octonian algebra. Let Mn(O) be the algebra of n× n-matrices
with entries in O. The involution ∗ on Mn(O) is as usual the transposition of a matrix
followed by conjugation of every entry. The set Mn(O)sa := {x ∈ Mn(O) : x∗ = x} of
hermitian matrices is closed in Mn(O) under the Jordan multiplication x ◦ y = 1/2(xy +
yx). The real vector space Mn(O)sa is a Jordan algebra under ◦ only for n ≤ 3. In case
n = 1, 2 we arrive at special Jordan algebras. The Jordan algebra M3(O)sa is special and
denoted by M8

3 .

10.7. Theorem. A special B-JB-algebra A is a B-JBW -algebra if and only if A
is isomorphic to a σ∞-closed B-JB-subalgebra of LB(X)sa for some Kaplansky–Hilbert
module X.
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10.8. Theorem. Each B-JBW -factor A admits a unique decomposition A = eA⊕e∗A
with a central projection e ∈ B, e∗ := 1− e, such that the algebra eA is special and the
algebra e∗A is purely exceptional. Moreover, eA is B-isomorphic to a σ∞-closed subalgebra
of selfadjoint endomorphisms of some AW ∗-module and e∗A is isomorphic to C(Q,M8

3 ),
where Q is the Stone compact space of the Boolean algebra e∗B := [0, e∗].
10.9. The JB-algebras are nonassociative real analogs of C∗-algebras and von Neumann

operator algebras. The theory of these algebras stems from the article of P. Jordan, J. von
Neumann, and E. Wigner [22] and exists as a branch of functional analysis since the
mid 1960s, when D. M. Topping [63] and E. Størmer [57] have started the study of the
nonassociative real analogs of von Neumann algebras, the JW -algebras presenting weakly
closed Jordan algebras of bounded selfadjoint operators in a Hilbert space. The steps of
development are reflected in [4, 6, 16]. The Boolean valued approach to JB-algebras is
outlined by A. G. Kusraev. More details and references are collected in [35].
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APPENDIX1

SAUNDERS MAC LANE,

THE KNIGHT OF MATHEMATICS

Abstract. This is a short obituary of Saunders Mac Lane (1909–2005)2.

San Francisco and April 14, 2005 form the terminal place and date of the marvellous almost centennial
life of the prominent American mathematician Saunders Mac Lane who shared with Samuel Eilenberg
(1913–1998) the honor of creation of category theory which ranks among the most brilliant, controversial,
ambitious, and heroic mathematical achievements of the 20th century.

Category theory, alongside set theory, serves as a universal language of modern mathematics. Cate-
gories, functors, and natural transformations are widely used in all areas of mathematics, allowing us to
look uniformly and consistently on various constructions and formulate the general properties of diverse
structures. The impact of category theory is irreducible to the narrow frameworks of its great expressive
conveniences. This theory has drastically changed our general outlook on the foundations of mathematics
and widened the room of free thinking in mathematics.

Set theory, a great and ingenious creation of Georg Cantor, occupies in the common opinion of the
20th century the place of the sole solid base of modern mathematics. Mathematics becomes sinking
into a section of the Cantorian set theory. Most active mathematicians, teachers, and philosophers
consider as obvious and undisputable the thesis that mathematics cannot be grounded on anything but set
theory. The set-theoretic stance transforms paradoxically into an ironclad dogma, a clear-cut forbiddance
of thinking (as L. Feuerbach once put it wittily). Such an indoctrinated view of the foundations of
mathematics is false and conspicuously contradicts the leitmotif, nature, and pathos of the essence of all
creative contribution of Cantor who wrote as far back as in 1883 that “denn das Wesen der Mathematik
liegt gerade in ihrerFreiheit.”

It is category theory that one of the most ambitious projects of the 20th century mathematics was
realized within in the 1960s, the project of socializing set theory. This led to topos theory providing a
profusion of categories of which classical set theory is an ordinary member. Mathematics has acquired
infinitely many new degrees of freedom. All these rest on category theory originated with the article by
Mac Lane and Eilenberg “General Theory of Natural Equivalences,” which was presented to the American
Mathematical Society on September 8, 1942 and published in 1945 in the Transactions of the AMS.

Mac Lane authored or coauthored more than 100 research papers and 6 books: A Survey of Modern
Algebra (1941, 1997; with Garrett Birkhoff); Homology (1963); Algebra (1967; with Garrett Birkhoff); Cat-
egories for the Working Mathematician (1971, 1998); Mathematics, Form and Function (1985); Sheaves
in Geometry and Logic: A First Introduction to Topos Theory (1992; with Ieke Moerdijk).

Mac Lane was the advisor of 39 Ph.D. theses. Alfred Putman, John Thompson, Irving Kaplansky,
Robert Solovay, and many other distinguished scientists are listed as his students. He was elected to
the National Academy of Sciences of the USA in 1949 and received the National Medal of Science, the
highest scientific award of the USA in 1989. Mac Lane served as vice-president of the National Academy
of Sciences and the American Philosophical Society. He was elected as president of the American Math-
ematical Society and Mathematical Association of America. He contributed greatly to modernization of
the teaching programs in mathematics. Mac Lane received many signs of honor from the leading univer-
sities of the world and possessed an impressive collection of mathematical awards and prizes. Mac Lane
became a living legend of the science of the USA.

Mac Lane was born on August 4, 1909 in Norwich near Taftville, Connecticut in the family of a Con-
gregationalist minister and was christened as Leslie Saunders MacLane. The name Leslie was suggested
by his nurse, but his mother disliked the name. A month later, his father put a hand on the head of the
son, looked up to the God, and said: “Leslie forget.” His father and uncles changed the spelling of their
surname and began to write MacLane instead of MacLean in order to avoid sounding Irish. The space
in Mac Lane was added by Saunders himself at request of his first wife Dorothy. That is how Mac Lane
narrated about his name in A Mathematical Biography which was published soon after his death.

Saunders’s father passed away when the boy was 15 and it was Uncle John who supported the boy
and paid for his education in Yale. Saunders was firstly fond of chemistry but everything changed

1To appear in Scientiae Mathematicae Japonicae, 62:1 (2005).
2A Russian version is online in Siberian Electronic Mathematical Reports 2 (2005), A5–A9.
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after acquaintance with differential and integral calculus by the textbook of Longley and Wilson (which
reminds of the later book by Granville, Smith, and Longley). The university years revealed Mac Lane’s
attraction to philosophy and foundations of mathematics. He was greatly impressed by the brand-new
three volumes by Whitehead and Russell, the celebrated Principia Mathematica. The mathematical
tastes of Mac Lane were strongly influenced by the lectures of a young assistant professor Oystein Ore,
a Norwegian mathematician from the Emmy Noether’s school. After graduation from Yale, Mac Lane
continued education in the University of Chicago. At that time he was very much influenced by the
personalities and research of Eliakim Moore, Leonard Dickson, Gilbert Bliss, Edmund Landau, Marston
Morse, and many others. Mac Lane was inclined to wrote a Ph.D. thesis in logic but this was impossible
in Chicago and so Saunders decided to continue education in Göttingen.

The stay in Germany in 1931–1933 was decisive for the maturity of Mac Lane’s gift and personality.
Although David Hilbert had retired, he still delivered weekly lectures on philosophy and relevant general
issues. The successor of Hilbert was Hermann Weyl who had recently arrived from Zürich and was in
the prime of his years and talents. Weyl advised Saunders to attend the lectures on linear associative
algebras by Emmy Noether whom Weyl called “the equal of each of us.” In the Mathematical Institute
Mac Lane met and boiled with Edmund Landau, Richard Courant, Gustav Herglotz, Otto Neugebauer,
Oswald Teichmüller, and many others. Paul Bernays became the advisor of Mac Lane’s Ph.D thesis
“Abbreviated Proofs in Logic Calculus.”

The Nazis gained power in Germany in February 1933. The feast of antisemitism started immediately
and one of the first and fiercest strokes fell upon the Mathematical Institute. The young persons are
welcome to read as an antidote Mac Lane’s masterpiece “Mathematics at Göttingen under the Nazis”
in the Notices of the AMS, 42:10, 1134–1138 (1995).

In the fall of 1933 Mac Lane returned to the States with Dorothy Jones Mac Lane whom he had
married recently in Germany. The further academic career of Mac Lane was mainly tied with Harvard
and since 1947 with Chicago.

To evaluate the contribution of Mac Lane to mathematics is an easy and pleasant task. It suffices
to cite the words A. G. Kurosh, a renowned Russian professor of Lomonosov State University. In the
translator’s preface to the Russian edition of the classical Homology book, Kurosh wrote:

The author of this book, a professor of Chicago University, is one of the most prominent American algebraists and

topologists. His role in homological algebra as well as category theory is the role of one of the founders of this area.

Homological algebra implements a marvelous project of algebraization of topological spaces by as-
signing to such a space X the sequence of (abelian) homology groups Hn(X). Moreover, each con-
tinuous map f : X → Y from X to Y induces a family of homomorphisms of the homology groups
fn : Hn(X) → Hn(Y ). The aim of homological algebra consists in calculation of homologies.

In his research into homological algebra and category theory Mac Lane cooperated with Eilenberg
whom he met in 1940. Eilenberg had arrived from Poland two years earlier. He saw the affinity of the
algebraic calculations of Mac Lane with those he encountered in algebraic topology. Eilenberg offered
cooperation to Mac Lane. The union of Eilenberg and Mac Lane lasted for 14 years and resulted in 15
joint papers which noticeably changed the mathematical appearance of the 20th century.

The pearl of this cooperation was category theory. Mac Lane always considered category theory “a nat-
ural and perhaps inevitable aspect of the 20th century mathematical emphasis on axiomatic and abstract
methods—especially as those methods when involved in abstract algebra and functional analysis.” He
stressed that even if Eilenberg and he did not propose this theory it will necessarily appear in the works of
other mathematicians. Among these potential inventors of the new conceptions Mac Lane listed Claude
Chevalley, Heinz Hopf, Norman Steenrod, Henri Cartan, Charles Ehresmann, and John von Neumann.

In Mac Lane’s opinion, the conceptions of category theory were close to the methodological principles
of the project of Nicholas Bourbaki. Mac Lane was sympathetic with the project and was very close to
joining in but this never happened (the main obstacles were in linguistic facilities). However, even the
later membership of Eilenberg in the Bourbaki group could not overcome a shade of slight disinclination
and repulsion. It turned out impossible to “categorize Bourbaki” with a theory of non-French origin as
Mac Lane had once phrased the matter shrewdly and elegantly. It is worth noting in this respect that the
term “category theory” had roots in the mutual interest of its authors in philosophy and, in particular,
in the works of Immanuel Kant.

Set theory rules in the present-day mathematics. The buffoon’s role of “abstract nonsense” is assigned
in mathematics to category theory. History and literature demonstrate to us that the relations between
the ruler and the jester may be totally intricate and unpredictable. Something very similar transpires in
the interrelations of set theory and category theory and the dependency of one of them on the other.

From a logic standpoint, set theory and category theory are instances of a first order theory. The
former deals with sets and the membership relation between them. The latter speaks of objects and
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morphisms (or arrows). Of course, there is no principle difference between the atomic formulas a ∈ b and
a → b. However, the precipice in meaning is abysmal between the two concepts that are formalized by
the two atomic formulas. The stationary universe of Zermelo-Fraenkel, cluttered up with uncountably
many copies of equipollent sets confronts the free world of categories, ensembles of arbitrary nature that
are determined by the dynamics of their transformations.

The individual dualities of set theory, dependent on the choice of particular realizations of the pairs of
objects under study, give up their places to the universal natural transformations of category theory. One
of the most brilliant achievements of category theory was the development of axiomatic homology theory.
Instead of the homological diversity for topological spaces (the simplicial homology for a polyhedron,
singular and Čech homology, Vietoris homology, etc.) Eilenberg and Steenrod suggested as far back as
in 1952 the new understanding of each homology or cohomology theory as a functor from the category of
spaces under consideration to the category of groups. The axiomatic approach to defining such a functor
radically changed the manner of further progress in homological algebra and algebraic topology. The
study of the homology of Eilenberg–Mac Lane spaces and the method of acyclic models demonstrated
the strength of the ideas of category theory and led to universal use of simplicial sets in K-theory and
sheaves.

In 1948 Mac Lane proposed the concept of abelian category abstracting the categories of abelian groups
and vector spaces which played key roles in the first papers on axiomatic homology theory. The abelian
categories were rediscovered in 1953 and became a major tool in research into homological algebra by
Cartan, Eilenberg, and their followers.

Outstanding advances in category theory are connected with the names of Alexander Grothendieck and
F. William Lawvere. Topos theory, their aesthetic creation, appeared in the course of “point elimination”
called upon by the challenge of invariance of the objects we study in mathematics. It is on this road that
we met the conception of variable sets which led to the notion of topos and the understanding of the
social medium of set-theoretic models.

A category is called an elementary topos provided that it is cartesian closed and has a suboject classifier.
The sources of toposes lie in the theory of sheaves and Grothendieck topology. Further progress of the
concept of topos is due to search for some category-theoretic axiomatization of set theory as well as study
into forcing and the nonstandard set-theoretic models of Dana Scott, Robert Solovay, and Petr Vopěnka.
The new frameworks provide a natural place for the Boolean valued models that are viewed now as the
toposes with Aristotle logic and which pave king’s ways to the solution of the problem of the continuum
by Kurt Gödel and Paul Cohen. These toposes are the main arena of Boolean valued analysis.

Bidding farewell to Mac Lane, reading his sincere and openhearted autobiography, enjoying his ve-
hement polemics with Freeman J. Dyson, and perusing his deep last articles on general mathematics,
anyone cannot help but share his juvenile devotion and love of mathematics and its creators. His brilliant
essays “Despite Physicists, Proof Is Essential in Mathematics” and “Proof, Truth, and Confusion” form
an anthem of mathematics which is only possible by proof.

Let me summarize where we have come. As with any branch of learning, the real substance of mathematics resides
in the ideas. The ideas of mathematics are those which can be formalized and which have been developed to fit issues
arising in science or in human activity. Truth in mathematics is approached by way of proof in formalized systems.
However, because of the paradoxical kinds of self-reference exhibited by the barn door and Kurt Gödel, there can be no
single formal system which subsumes all mathematical proof. To boot, the older dogmas that “everything is logic” or
“everything is a set” now have competition—“everything is a function.” However, such questions of foundation are
but a very small part of mathematical activity, which continues to try to combine the right ideas to attack substantive
problems. Of these I have touched on only a few examples: Finding all simple groups, putting groups together by
extension, and characterizing spheres by their connectivity. In such cases, subtle ideas, fitted by hand to the problem,
can lead to triumph.

Numerical and mathematical methods can be used for practical problems. However, because of political pressures,
the desire for compromise, or the simple desire for more publication, formal ideas may be applied in practical cases
where the ideas simply do not fit. Then confusion arises—whether from misleading formulation of questions in opinion
surveys, from nebulous calculations of airy benefits, by regression, by extrapolation, or otherwise. As the case of
fuzzy sets indicates, such confusion is not fundamentally a trouble caused by the organizations issuing reports, but is
occasioned by academicians making careless use of good ideas where they do not fit.

As Francis Bacon once said, “Truth ariseth more readily from error than from confusion.” There remains to us,
then, the pursuit of truth, by way of proof, the concatenation of those ideas which fit, and the beauty which results when
they do fit.

So wrote Saunders Mac Lane, a great genius, creator, master, and servant of mathematics. His
unswerving devotion to the ideals of truth and free thinking of our ancient science made him the eternal
and tragicomical mathematical Knight of the Sorrowful Figure...

S. S. Kutateladze

June 11, 2005
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