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NONSTANDARD MODELS AND OPTIMIZATION

1. Agenda
This is an overview of a few possibilities that are open by model theory in optimiza-

tion. Most attention is paid to the present state and frontiers of the Cauchy method
of majorants, approximation of operator equations with finite-dimensional analogs, and
the Lagrange multiplier principle in multiobjective decision making. The union of func-
tional analysis and applied mathematics celebrates its sixtieth anniversary this year.1 The
present talk focuses on the trends of interaction between model theory and the methods
of domination, discretization, and scalarization.

2. The Art of Calculus
Provable counting is the art of calculus which is mathematics in modern parlance. Math-

ematics exists as a science more than two and a half millennia, and we can never mixed it
with history or chemistry. In this respect our views of what is mathematics are indepen-
dent of time. The objects of mathematics are the quantitative forms of human reasoning.
Mathematics functions as the science of convincing calculations. Once-demonstrated, the
facts of mathematics will never vanish. Of course, mathematics renews itself constantly,
while the stock increases of mathematical notions and construction and the understanding
changes of the rigor and technologies of proof and demonstration. The frontier we draw
between pure and applied mathematics is also time-dependent.

3. Francis Bacon
The Mathematics are either pure or mixed. To the Pure Mathematics are those sciences

belonging which handle quantity determinate, merely severed from any axioms of natu-
ral philosophy; and these are two, Geometry and Arithmetic; the one handling quantity
continued, and the other dissevered. Mixed hath for subject some axioms or parts of nat-
ural philosophy, and considereth quantity determined, as it is auxiliary and incident unto
them. . . . In the Mathematics. . . that use which is collateral and intervenient is no less
worthy than that which is principal and intended. . . . And as for the Mixed Mathematics, I
may only make this prediction, that there cannot fail to be more kinds of them, as nature
grows further disclosed.

The Advancement of Learning, 16052

1Cp. [1, 2].
2The complete title was as follows: “The tvvoo bookes of Francis Bacon, of the proficience and adu-

ancement of learning, diuine and humane. To the King. At London: Printed for Henrie Tomes, 1605.”
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4. Mixed Turns into Applied
After the lapse of 150 years Leonhard Euler used the words “pure mathematics” in the

title of one of his papers Specimen de usu observationum in mathesi pura in 1761. It was
practically at the same time that the term “pure mathematics” had appeared in the eldest
Encyclopaedia Britannica. In the nineteenth century “mixed” mathematics became to be
referred to as “applied.”

The famous Journal de Mathématiques Pures et Appliquées was founded by Joseph
Liouville in 1836 and The Quarterly Journal of Pure and Applied Mathematics started
publication in 1857.

5. Pure and Applied Mathematics
The intellectual challenge, beauty, and intrinsic logic of the topics under study are

the impetus of many comprehensive and deep studies in mathematics which are custom-
arily qualified as pure. Any application of mathematics is impossible without creating
some metaphors, models of the phenomena and processes under examination. Modeling
is a special independent sphere of intellectual activities which is out of mathematics.

Application of mathematics resides beyond mathematics in much the same way as
maladies exist in nature rather than inside medicine. Applied mathematics acts as an
apothecary mixing drugs for battling illnesses.

The art and craft of mathematical techniques for the problems of other sciences are the
content of applied mathematics.

6. New Challenges
Classical mechanics in the broadest sense of the words was the traditional sphere of

applications of mathematics in the nineteenth century. The beginning of the twentieth
century was marked with a sharp enlargement of the sphere of applications of mathemat-
ics. Quantum mechanics appeared, requesting for new mathematical tools. The theory of
operators in Hilbert spaces and distribution theory were oriented to adapting the heuristic
methods of the new physics. At the same time the social phenomena became the object
of the nonverbal research requiring the invention of especial mathematical methods. The
demand for the statistical treatment of various data grew rapidly. Founding new indus-
tries as well as introducing of promising technologies and new materials, brought about
the necessity of elaboration of the technique of calculations. The rapid progress of ap-
plied mathematics was facilitated by the automation and mechanization of accounting
and standard calculations.

7. Cofathers of New Mentality
In the 1930s applied mathematics rapidly approached functional analysis.
Of profound importance in this trend was the research of John von Neumann in the

mathematical foundations of quantum mechanics and game theory as a tool for economic
studies.

Leonid Kantorovich was a pioneer and generator of new synthetic ideas in Russia.
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8. Enigmas of Economics
The main particularity of the extremal problems of economics consists in the presence of

numerous conflicting ends and interests to be harmonized. We encounter the instances of
multicriteria optimization. Seeking for an optimal solution in these circumstances, we must
take into account various contradictory preferences which combine into a sole compound
aim. It is impossible as a rule to distinguish some particular scalar target and ignore the
rest of the targets. This circumstance involves the specific difficulties that are untypical in
the scalar case: we must specify what we should call a solution of a vector program and we
must agree upon the method of conforming versatile ends provided that some agreement
is possible in principle. Therefore, it is actual to seek for the reasonable concepts of
optimality in multiobjective decision making. Among these we distinguish the concepts
of ideal and generalized optimum alongside Pareto-optimum as well as approximate and
infinitesimal optimum.

9. Enter the Reals
Optimization is the science of choosing the best. To choose, we use preferences. To

optimize, we use infima and suprema (for bounded subsets) which is practically the least
upper bound property. So optimization needs ordered sets and primarily (boundedly)
complete lattices.

To operate with preferences, we use group structure. To aggregate and scale, we use
linear structure.

All these are happily provided by the reals R, a one-dimensional Dedekind complete
vector lattice. A Dedekind complete vector lattice is a K-space or Kantorovich space in
the literature of the Russian provenance.

10. Scalarization
Scalarization in the most general sense means reduction to numbers. Since each number

is a measure of quantity, the idea of scalarization is clearly of a universal importance to
mathematics. The deep roots of scalarization are revealed by the Boolean valued validation
of the Kantorovich heuristic principle. We will dwell upon the aspects of scalarization most
important in applications and connected with the problems of multicriteria optimization.

11. Legendre in Disguise
Assume that X is a vector space, E is an ordered vector space, f : X → E• := E ∪+∞

is a convex operator, and C := dom(f) ⊂ X is a convex set. A vector program (C, f) is
written as follows:

x ∈ C, f(x)→ inf.

The standard sociological trick includes (C, f) into a parametric family yielding the
Legendre trasform or Young–Fenchel transform of f :

f ∗(l) := sup
x∈X
(l(x) − f(x)),

with l ∈ X# a linear functional over X. The epigraph of f ∗ is a convex subset of X# and
so f ∗ is convex. Observe that −f ∗(0) is the value of (C, f).
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12. Order Omnipresent
A convex function is locally a positively homogeneous convex function, a sublinear

functional. Recall that p : X → R is sublinear whenever

epi p := {(x, t) ∈ X × R : p(x) ≤ t}

is a cone. Recall that a numeric function is uniquely determined from its epigraph.
Given C ⊂ X, put

H(C) := {(x, t) ∈ X × R+ : x ∈ tC},

the Hörmander transform of C. Now, C is convex if and only if H(C) is a cone. A space
with a cone is a (pre)ordered vector space.

Leibniz remarked wittily: The order, the symmetry, the harmony enchant us. . . .

13. Fermat’s Criterion
∂f(x̄), the subdifferential of f at x̄, is

{l ∈ X# : (∀x ∈ X) l(x) − l(x̄) ≤ f(x)− f(x̄)}.

A point x̄ is a solution to the minimization problem (X, f) if and only if

0 ∈ ∂f(x̄).

This Fermat criterion turns into the Rolle Theorem in a smooth case and is of little
avail without effective tools for calculating ∂f(x̄). A convex analog of the “chain rule” is
in order.

14. Enter Hahn–Banach
The Dominated Extension takes the form

∂(p ◦ ι)(0) = (∂p)(0) ◦ ι,

with p a sublinear functional over X and ι the identical embedding of some subspace of X
into X.

If the target R may be replaced with an ordered vector space E, then E admits domi-
nated extension.

15. Enter Kantorovich
The matching of convexity and order was established in two steps.
Hahn–Banach–Kantorovich Theorem. Every Kantorovich space admits dominated

extension of linear operators.
This theorem proven by Kantorovich in 1935 was a first attractive result of the theory

of ordered vector spaces.
Bonnice–Silvermann–To Theorem. Each ordered vector space admitting domi-

nated extension of linear operators is a Kantorovich space.
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16. New Heuristics
Kantorovich demonstrated the role of K-spaces by the example of the Hahn–Banach

theorem. He proved that this central principle of functional analysis admits the replace-
ment of reals with elements of an arbitraryK-space while substituting linear and sublinear
operators with range in this space for linear and sublinear functionals. These observations
laid grounds for the universal heuristics based on his intuitive belief that the members of
an abstract Kantorovich space are a sort of generalized numbers.

17. Canonical Operator
Consider a Kantorovich space E and an arbitrary nonempty set A. Denote by l∞(A, E)

the set of all order bounded mappings from A into E; i.e., f ∈ l∞(A, E) if and only if
f : A → E and {f(α) : α ∈ A} is order bounded in E. It is easy to verify that l∞(A, E)
becomes a Kantorovich space if endowed with the coordinatewise algebraic operations
and order. The operator εA,E acting from l∞(A, E) into E by the rule

εA,E : f 7→ sup{f(α) : α ∈ A} (f ∈ l∞(A, E))

is called the canonical sublinear operator given A and E. We often write εA instead of
εA,E when it is clear from the context what Kantorovich space is meant. The notation εn
is used when the cardinality of A equals n and we call the operator εn finitely-generated.

18. Support Hull
Consider a set A of linear operators acting from a vector space X into a Kantorovich

space E. The set A is weakly order bounded if {αx : α ∈ A} is order bounded for every
x ∈ X. We denote by 〈A〉x the mapping that assigns the element αx ∈ E to each α ∈ A,
i.e. 〈A〉x : α 7→ αx. If A is weakly order bounded then 〈A〉x ∈ l∞(A, E) for every fixed
x ∈ X. Consequently, we obtain the linear operator 〈A〉 : X → l∞(A, E) that acts as
〈A〉 : x 7→ 〈A〉x. Associate with A one more operator

pA : x 7→ sup{αx : α ∈ A} (x ∈ X).

The operator pA is sublinear. The support set ∂pA is denoted by cop(A) and referred to
as the support hull of A.

19. Hahn–Banach in Disguise
Theorem. If p is a sublinear operator with ∂p = cop(A) then P = εA ◦ 〈A〉. Assume

further that p1 : X → E is a sublinear operator and p2 : E → F is an increasing sublinear
operator. Then

∂(p2◦p1) = {T◦〈∂p1〉 : T ∈ L+(l∞(∂p1, E), F )& T◦∆∂p1 ∈ ∂p2}.

Moreover, if ∂p1 = cop(A1) and ∂p2 = cop(A2) then

∂(p2◦p1) =
{
T◦〈A1〉 : T ∈ L+(l∞(A1, E), F )

(
∃α ∈ ∂εA2

)
T ◦∆A1 = α ◦ 〈A2〉

}
.
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20. Enter Boole
Cohen’s final solution of the problem of the cardinality of the continuum within ZFC

gave rise to the Boolean valued models by Vopěnka, Scott, and Solovay. Takeuti coined the
term “Boolean valued analysis” for applications of the new models to functional analysis.

Let B be a complete Boolean algebra. Given an ordinal α, put

V (B)α := {x : (∃β ∈ α) x : dom(x)→ B & dom(x) ⊂ V (B)β }.

The Boolean valued universe V(B) is

V(B) :=
⋃

α∈On

V (B)α ,

with On the class of all ordinals. The truth value [[ϕ]] ∈ B is assigned to each formula ϕ
of ZFC relativized to V(B).

21. Enter Descent
Given ϕ, a formula of ZFC, and y, a subset VB; put Aϕ := Aϕ(·, y) := {x : ϕ(x, y)}.

The descent Aϕ↓ of a class Aϕ is

Aϕ↓ := {t : t ∈ V(B) & [[ϕ(t, y)]] = 1}.

If t ∈ Aϕ↓, then it is said that t satisfies ϕ(·, y) inside V(B).
The descent x↓ of an element x ∈ V(B) is defined by the rule

x↓ := {t : t ∈ V(B) & [[t ∈ x]] = 1},

i.e. x↓= A·∈x↓. The class x↓ is a set. Moreover, x↓⊂ mix(dom(x)), where mix is the
symbol of the taking of the strong cyclic hull. If x is a nonempty set inside V(B) then

(∃z ∈ x↓)[[(∃z ∈ x) ϕ(z)]] = [[ϕ(z)]].

22. The Reals in Disguise
There is an object R inside V(B) modeling R, i.e.,

[[R is the reals ]] = 1.

Let R↓ be the descent of the carrier |R| of the algebraic system R := (|R|,+, · , 0, 1,≤)
inside V(B). Implement the descent of the structures on |R| to R↓ as follows:

x + y = z ↔ [[x + y = z]] = 1; xy = z ↔ [[xy = z]] = 1;

x ≤ y ↔ [[x ≤ y]] = 1; λx = y ↔ [[λ∧x = y]] = 1

(x, y, z ∈ R↓, λ ∈ R).

Gordon Theorem. R↓ with the descended structures is a universally complete Kan-
torovich space with base B(R↓) isomorphic to B.
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23. Norming Sequences

(ξ1, ξ2, . . . ) = (|ξ1|, |ξ2|, . . . , |ξN−1|, sup
k≥N
|ξk|) ∈ RN .

x(t)

ξ1

ξ3

ξ2

x = (|ξ1|,|ξ2|,|ξ3|)

I believe that the use of members of semiordered linear spaces instead of reals in various
estimations can lead to essential improvement of the latter.

Kantorovich (1948)3

24. Domination
Let X and Y be real vector spaces lattice-normed with K-spaces E and F . In other

words, given are some lattice-norms · X and · Y . Assume further that T is a linear
operator from X to Y and S is a positive operator from X into Y satisfying

E F
S

//

X

E

· X

��

X Y
T // Y

F

· Y

��

Moreover, in case Tx Y ≤ S x X (x ∈ X), we call S the dominant or majorant of T .

25. Enter Abstract Norm
If the set of all dominants of T has the least element, then the latter is called the

abstract norm or least dominant of T and denoted by T . Hence, the least dominant
T is the least positive operator from E to F such that Tx ≤ T ( x ) (x ∈ X).

26. Domination and Model Theory
These days the development of domination proceeds within the frameworks of Boolean

valued analysis. All principal properties of lattice normed spaces represent the Boolean
valued interpretations of the relevant properties of classical normed spaces. The most
important interrelations here are as follows: Each Banach space inside a Boolean valued
model becomes a universally complete Banach–Kantorovich space in result of the exter-
nal deciphering of constituents. Moreover, each lattice normed space may be realized as

3Cp. [1].
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a dense subspace of some Banach space in an appropriate Boolean valued model. Finally,
a Banach space X results from some Banach space inside a Boolean valued model by
a special machinery of bounded descent if and only if X admits a complete Boolean al-
gebra of norm-one projections which enjoys the cyclicity property. The latter amounts to
the fact that X is a Banach–Kantorovich space and X is furnished with a mixed norm.

27. Approximation
Convexity is an abstraction of finitely many stakes encircled with a surrounding rope,

and so no variation of stakes can ever spoil the convexity of the tract to be surveyed.
Study of stability in optimization is accomplished sometimes by introducing various

epsilons in appropriate places. One of the earliest excursions in this direction is connected
with the classical Hyers–Ulam stability theorem for ε-convex functions. Exact calculations
with epsilons and sharp estimates are sometimes bulky and slightly mysterious. Some
alternatives are suggested by actual infinities, which is illustrated with the conception of
infinitesimal optimality.

28. Enter Epsilon and Monad
Assume given a convex operator f : X → E∪+∞ and a point x in the effective domain

dom(f) := {x ∈ X : f(x) < +∞} of f . Given ε ≥ 0 in the positive cone E+ of E, by the
ε-subdifferential of f at x we mean the set

∂ εf(x) :=
{
T ∈ L(X,E) : (∀x ∈ X)(Tx−Fx ≤ Tx−fx+ε)

}
,

with L(X,E) standing as usual for the space of linear operators from X to E.
Distinguish some downward-filtered subset E of E that is composed of positive elements.

Assuming E and E standard, define the monad µ(E ) of E as µ(E ) :=
⋂
{[0, ε] : ε ∈ ◦E }.

The members of µ(E ) are positive infinitesimals with respect to E . As usual, ◦E denotes
the external set of all standard members of E, the standard part of E .

29. Pareto Optimality
Fix a positive element ε ∈ E. A feasible point x0 is a ε-solution or ε-optimum of

a program (C, f) provided that f(x0) ≤ e + ε with e the value of (C, f). In other words,
x0 is an ε-solution of (C, f) if and only if x0 ∈ C and f(x0) − ε is the greatest lower
bound of f(C) or, equivalently, f(C) + ε ⊂ f(x0) +E+. Clearly, x0 is an ε-solution of an
unconditional problem f(x)→ inf if and only if the zero belongs to ∂εf(x0); i.e.,

f(x0) ≤ inf
x∈X
f(x) + ε ↔ 0 ∈ ∂εf(x0).

30. Approximate Efficiency
A feasible point x0 is ε-Pareto optimal for (C, f) whenever f(x0) is a minimal element

of U + ε, with U := f(C); i.e., (f(x0)− E+) ∩ (f(C) + ε) = [f(x0)]. In more detail, x0 is
ε-Pareto-optimal means that x0 ∈ C and, for all x ∈ C, from f(x0) ≥ f(x) + ε it follows
that f(x0) ∼ f(x) + ε.
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x1

x2

U

U+ε→

ε→

xε

31. Subdifferential Halo
Assume that the monad µ(E ) is an external cone over ◦R and, moreover, µ(E )∩ ◦E = 0.

In application, E is usually the filter of order-units of E. The relation of infinite proximity
or infinite closeness between the members of E is introduced as follows:

e1 ≈ e2 ↔ e1 − e2 ∈ µ(E ) & e2 − e1 ∈ µ(E ).
Now

Df(x) :=
⋂

ε∈◦E

∂εf(x) =
⋃

ε∈µ(E )

∂εf(x);

the infinitesimal subdifferential of f at x. The elements of Df(x) are infinitesimal subgra-
dients of f at x.

32. Exeunt Epsilon
Theorem. Let f1 : X ×Y → E ∪+∞ and f2 : Y ×Z → E ∪+∞ be convex operators.

Suppose that the convolution f2 M f1 is infinitesimally exact at some point (x, y, z); i.e.,
(f2 M f1)(x, y) ≈ f1(x, y)+f2(y, z). If, moreover, the convex sets epi(f1, Z) and epi(X, f2)
are in general position then

D(f2 M f1)(x, y) = Df2(y, z) ◦Df1(x, y).

33. Discretization
It seems to me that the main idea of this theory is of a general character and reflects

the general gnoseological principle for studying complex systems. It was, of course, used
earlier, and it is also used in systems analysis, but it does not have a rigorous mathematical
apparatus.

The principle consists simply in the fact that to a given large complex system in some
space a simpler, smaller dimensional model in this or a simpler space is associated by
means of one-to-one or one-to-many correspondence. The study of this simplified model
turns out, naturally, to be simpler and more practicable. This method, of course, presents
definite requirements on the quality of the approximating system.

Kantorovich (1948)4

4Cp. [1].
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34. Hypodiscretization
The analysis of the equation Tx = y, with T : X → Y a bounded linear operator

between some Banach spaces X and Y , consists in choosing finite-dimensional vector
spaces XN and YN and the corresponding embeddings ıN and N :

XN YN
TN

//

X

XN

OO

ıN

X Y
T // Y

YN

OO

N

In this event, the equation TNxN = yN is viewed as a finite-dimensional approximation
to the original problem.

35. Hyperdiscretization
Nonstandard models yield the method of hyperapproximation

E# F#
T#

//

E

E#

ϕE

��

E F
T // F

F#

ϕF

��

Here E and F are normed spaces over the same scalars, while T is a bounded linear
operator from E to F , and # symbolizes a nonstandard hull.

36. The Hull of a Space
Let ∗ be the symbol of the Robinsonian standardization. Let (E, ‖ · ‖) be an internal

normed space over ∗F, with F := R;C. As usual, x ∈ E is a limited element provided
that ‖x‖ is a limited real (whose modulus has a standard upper bound by definition).
If ‖x‖ is an infinitesimal then x is also referred to as an infinitesimal. Denote by ltd(E)
and µ(E) the external sets of limited elements and infinitesimals of E. The set µ(E) is
the monad of the origin in E. Clearly, ltd(E) is an external vector space over F, and
µ(E) is a subspace of ltd(E). Put E# = ltd(E)/µ(E) and endow E# with the natural
norm ‖ϕx‖ := ‖x#‖ := st(‖x‖) ∈ F for all x ∈ ltd(E) Here ϕ := ϕE := (·)# : ltd(E)→ E#
is the canonical homomorphism, and st takes the standard part of a limited real. This
(E#, ‖ · ‖) is an external normed space called the nonstandard hull of E.

37. The Hull of an Operator
Suppose now that E and F are internal normed spaces and T : E → F is an internal

bounded linear operator. The set of reals

c(T ) := {C ∈ ∗R : (∀x ∈ E)‖Tx‖ ≤ C‖x‖}

is internal and bounded.
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Recall that

‖T‖ := inf c(T ).

If the norm ‖T‖ of T is limited then the classical normative inequality ‖Tx‖ ≤ ‖T‖ ‖x‖
valid for all x ∈ E, implies that T (ltd(E)) ⊂ ltd(F ) and T (µ(E)) ⊂ µ(F ). Hence, we
may soundly define the descent of T to the factor space E# as the external operator
T# : E# → F#, acting by the rule

T#ϕEx := ϕFTx (x ∈ E).

The operator T# is linear (with respect to the members of F) and bounded; moreover,
‖T#‖ = st(‖T‖). The operator T# is called the nonstandard hull of T .

38. One Puzzling Definition
Approximation of arbitrary function spaces and operators by their finite-dimensional

analogs, which is discretization, matches the marvelous universal understanding of com-
putational mathematics as the science of finite approximations to general (not necessarily
metrizable) compacta. This revolutionary and challenging definition was given in the joint
talk submitted by S. L. Sobolev, L. A. Lyusternik, and L. V. Kantorovich at the Third
All-Union Mathematical Congress in 1956.

Infinitesimal methods suggest a background, providing new schemes for hyperapprox-
imation of general compact spaces. As an approximation to a compact space we may
take an arbitrary internal subset containing all standard elements of the space under
approximation.

39. State of the Art
Adaptation of the ideas of model theory to optimization projects among the most im-

portant directions of developing the synthetic methods of pure and applied mathematics.
This approach yields new models of numbers, spaces, and types of equations. The content
expands of all available theorems and algorithms. The whole methodology of mathemat-
ical research is enriched and renewed, opening up absolutely fantastic opportunities. We
can now use actual infinities and infinitesimals, transform matrices into numbers, spaces
into straight lines, and noncompact spaces into compact spaces, yet having still uncharted
vast territories of new knowledge.

40. Vistas of the Future
Quite a long time had passed until the classical functional analysis occupied its present

position of the language of continuous mathematics. Now the time has come of the new
powerful technologies of model theory in mathematical analysis. Not all theoretical and
applied mathematicians have already gained the importance of modern tools and learned
how to use them. However, there is no backward traffic in science, and the new methods
are doomed to reside in the realm of mathematics for ever and in a short time they will
become as elementary and omnipresent in calculuses and calculations as Banach spaces
and linear operators.
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