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Under study is the new class of geometrical extremal problems in which it is required
to achieve the best result in the presence of conflicting goals; e.g., given the surface area
of a convex body x, we try to maximize the volume of x and minimize the width of x
simultaneously. These problems are addressed along the lines of multiple criteria decision
making. We describe the Pareto-optimal solutions of isoperimetric-type vector optimiza-
tion problems on using the techniques of the space of convex sets, linear majorization,
and mixed volumes.
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DIDO’S PROBLEM AND PARETO OPTIMALITY

The birth of the theory of extremal problems is usually tied with the mythical
Phoenician Princess Dido. Virgil told about the escape of Dido from her treacherous
brother in the first chapter of The Aeneid. Dido had to decide about the choice of
a tract of land near the future city of Carthage, while satisfying the famous con-
straint of selecting “a space of ground, which (Byrsa call’d, from the bull’s hide)
they first inclos’d.” By the legend, Phoenicians cut the oxhide into thin strips and
enclosed a large expanse. Now it is customary to think that the decision by Dido
was reduced to the isoperimetric problem of finding a figure of greatest area among
those surrounded by a curve whose length is given. It is not excluded that Dido and
her subjects solved the practical versions of the problem when the tower was to be
located at the sea coast and part of the boundary coastline of the tract was somehow
prescribed in advance.

The foundation of Carthage is usually dated to the ninth century bce when there
was no hint of the Euclidean geometry, the cadastral surveying was the job of harpe-
donaptae, and measuring the tracts of land was used in decision making. Rope-
stretching around stakes leads to convex figures. The Dido problem has a unique
solution in the class of convex figures provided that the fixed nonempty part of the
boundary is a convex polygonal line.

Decision making has become a science in the twentieth century. The presence
of many contradictory conditions and conflicting interests is the main particularity
of the social situations under control of today. Management by objectives is an
exceptional instance of the stock of rather complicated humanitarian problems of
goal agreement which has no candidates for a unique solution.

The extremal problems of optimizing several parameters simultaneously are col-
lected nowadays under the auspices of vector or multiobjective optimization. Search
for control in these circumstances is multiple criteria decision making. The math-
ematical apparatus of these areas of research is not rather sophisticated at present
(see [1, 2] and the references therein).

The today’s research deals mostly with the concept of Pareto optimality (e.g., [3–
6]). Let us explain this approach by the example of a bunch of economic agents each
of which intends to maximize his own income. The Pareto principle asserts that as an
effective agreement of the conflicting goals it is reasonable to take any state in which
nobody can increase his income in any way other than diminishing the income of at
least one of the other fellow members. Formally speaking, this implies the search
of the maximal elements of the set comprising the tuples of incomes of the agents
at every state; i.e., some vectors of a finite-dimensional arithmetic space endowed
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with the coordinatewise order. Clearly, the concept of Pareto optimality was already
abstracted to arbitrary ordered vector spaces (for more details see [7–10]).

The variational principles of mechanics, precursors of variational calculus, served
at least partly to justifying the Christian belief in the unicity and beauty of the act
of creation. The extremal problems, generously populating all branches of mathe-
matics, use only scalar targets. Problems with many objectives have become the
topic of research rather recently and noticeably beyond mathematics, which explains
the substantial gap between the levels of complexity and power of the mathematical
tools available for single objective and multiple objective problems. This challenges
the task of enriching the stock of vector optimization problems within the theoretical
core of mathematics.

For the sake of simplicity, it stands to reason to start with the problems using the
concept of Pareto optimality. The point is that such a problem is in fact equivalent
to a parametric family of single objective problems which can be inspected by the
classical methods. For instance, there is a curve joining the Legendre and Chebyshev
polynomials which consists of the polynomials “Pareto-optimal” with respect to the
uniform and mean square metrics. Clearly, some physical processes admit description
in terms of vector optimization. For instance, we may treat the Leidenfrost effect
of evaporation of a liquid drop in the spheroidal state (see [11, pp. 300–303]) as the
problem of simultaneous minimization of the surface area and the width of a drop of
a given volume.

Under study in this article is the class of geometrically meaningful vector opti-
mization problems whose solutions can be found explicitly to some extend in terms
of conditions on surface area measures. As model examples we give explicit solutions
of the Urysohn-type problems aggravated by the flattening condition or the require-
ment to optimize the convex hull of a few figures. Technically speaking, everything
reduces to the parametric programming of isoperimetric-type problems with many
subsidiary constraints along the lines of the approach developed in [12, 13]. At the
same time, the functional-analytical technique of settling the extremal problems of
convex geometry is still insufficiently popular, and so its somewhat uncommon appli-
cations could be of use in bridging the gaps between the research within mathematics
and the application of mathematics in the art and science of multiple criteria decision
making.

1. The Space of Convex Figures

1.1. The classical Minkowski duality is well known to consist in identifying a con-
vex figure, i.e. a compact convex subset x of the space ℝN , and the support function
of x that is defined as x(z) := sup{(x, z) ∣ x ∈ x} for all z ∈ ℝN . Considering the
members of ℝN as singletons, we assume that ℝN lies in the set of all convex fig-
ures VN of ℝN . The Minkowski duality makes VN into a cone in the space C(SN−1)
of continuous functions on the unit Euclidean sphere SN−1, the boundary of the
ball zN . This parametrization is called the Minkowski structure on VN . The addition
of the support functions of x and y corresponds to the algebraic sum x + y called the
Minkowski sum of x and y. Note that the linear span [VN ] of VN is dense in C(SN−1).
All these circumstances were mentioned in the classical papers on the theory of mixed
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volumes by Alexandrov who constantly used the ideas and tools of functional anal-
ysis in his geometrical writings (see [14]). Later the embedding of the set of convex
figures into function spaces became the topic of research of many authors.1

1.2. A convex body is a solid convex figure, i.e. a compact convex set with an
interior point. The boundary of a convex body is a (complete) convex surface. The
coset {z + x ∣ z ∈ ℝN} of all translates of a convex body x is identified with the
corresponding measure �(x) on the sphere SN−1 which is called the surface area
measure of each member of the class. To the complete polyhedral convex surface x
given by the unit outer normals z1, . . . , zm of the facets (i.e., (N − 1)-dimensional
faces) of area s1, . . . , sm there corresponds the weighed sum of the Dirac deltas at

z1, . . . , zm. In other words, �(x) =
∑M

k=1 sk"zk . The surface area measure of an
arbitrary convex body x may be defined as the weak limit of the inclusion-ordered
net of inscribed convex polyhedra in x. Each surface area measure is an Alexandrov
measure. So we call a positive measure on SN−1 which is not supported by any great
hypersphere (the intersection of SN−1 with a hypersubspace) and which annihilates
points (i.e. vanishes at the restrictions to SN−1 of linear functionals on ℝN ). The
soundness of this identification bases on the celebrated Alexandrov theorem on the
reconstruction of a convex surface from its surface area measure (see [14, p. 108]).
This theorem was published in 1938.

Each Alexandrov measure annihilates the restrictions of the support functions of
singletons to the unit Euclidean sphere. In convex geometry this property of a linear
functional is called translation invariance. The cone of translation-invariant positive
linear functionals in the dual space C ′(SN−1) is denoted by AN . We now specify
some of the concepts to be of use in the sequel.

1.3. Let VN be the set of convex figures in ℝN . Given x, y ∈ VN , we write x = ℝN y
in case x and y are translates of one another. We may say that = ℝN is the equivalence
induced by the preorder ≥ ℝN on VN that expresses the possibility of inserting one
convex figure into the other by parallel translation. Consider the factor-set VN/ℝN

comprising the cosets of translates of the members of VN . Clearly, VN/ℝN is a cone
in the factor-space [VN ]/ℝN of [VN ] by ℝN .

1.4. There is a natural bijection between VN/ℝN and AN . The coset of singletons
is identified with the zero measure. To the coset of the straight line segment with
endpoints x and y there corresponds the measure ∣x− y∣("(x−y)/∣x−y∣+ "(y−x)/∣x−y∣),

where ∣ ⋅ ∣ is the Euclidean length of a vector in ℝN . If the dimension of the affine
hull aff(x) of a member x of some coset in VN/ℝN is greater than 1 then we view
aff(x) as a subspace of ℝN and identify the coset of x with the surface area measure
x in aff(x) which is now some measure on SN−1 ∩ aff(x). Extending this measure
trivially to the measure on SN−1, we come to the member of AN corresponding to
the coset of x. The bijective property of this correspondence is an easy consequence
of the Alexandrov theorem.

The structure of a vector space in the set of regular Borel measures on SN−1

induces in AN (hence, in VN/ℝN ) the structure of a cone or, in more detail, the
structure of an ℝ+-operator commutative semigroup with cancellation. This is the

1By default n ≥ 2 in geometrical studies. The case of n = 1 yields the interval arithmetic.
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Blaschke structure on VN/ℝN . Observe that the sum of the surface area measures
of convex bodies x and y generates the unique class x#y which is called the Blaschke
sum of x and y. In details this construction was described by W. Firey in [15]. About
the procedures of constructing Blaschke sums see [16].

1.5. Let C(SN−1)/ℝN be the factor space of C(SN−1) by the subspace of the
restrictions of linear functionals on ℝN to SN−1. Denote by [AN ] the space AN−AN

of translation-invariant signed measures. Clearly, [AN ] is the linear span of the set
of all Alexandrov measures. The spaces C(SN−1)/ℝN and [AN ] are paired by the
canonical bilinear form

⟨f, �⟩ =
1

N

∫
SN−1

f d� (f ∈ C(SN−1)/ℝN , � ∈ [AN ]).

Given x ∈ VN/ℝN and y ∈ AN , we see that ⟨x, y⟩ coincides with the mixed volume
V1(y, x). In particular, if zN is the unit Euclidean ball in ℝN then V1(x, zN ) is pro-
portional to the surface area of x and V1(zN , x), to the integral breadth of x. Recall
that the breadth bz(x) of a convex figure x in the direction z ∈ ℝN is defined as
bz(x) := 1

2 (x(z) + x(−z)). Note also that V1(x, x) is the volume of x. The space [AN ]
is usually endowed with the weak topology with respect to the above-defined duality
between [AN ] and C(SN−1)/ℝN .

The importance of the above constructions spreads far beyond the definition of
a new sum of convex surfaces. The presence of the dual pair of nonreflexive Banach
spaces is curiously combined with the Alexandrov theorem establishing an uncom-
mon and powerful isomorphism between the ordering cones in these spaces. These
phenomena are exceptional in functional analysis, opening up extra opportunities to
apply abstract methods. Considering the convex surfaces x with the same support
supp(x) of the surface area measure �(x), we see that they comprise a (punctured)
cone in the Blaschke structure. If the support consists of finitely many points then we
deal with the collection of all polyhedra with the prescribed outer normals of facets.
Geometry knows the Lindelöf problem which leads to the extremal property of the
polyhedron circumscribed about the ball.

1.6. We do not distinguish between a convex figure, the corresponding coset of
translates in VN/ℝN and the respective measure in AN whenever this leads to no
confusion. In this event it is customary to use the same symbol for each of the
hypostases of a geometrical object.

Note that the volume V (x) := ⟨x, x⟩ of x is an N -degree homogeneous polynomial
with respect to the Minkowski addition. Therefore, it is an easy matter to calculate
the subdifferential of its relevant power. However, the volume loses this property with
respect to the Blaschke addition in the space of dimension at least 3. In what follows
we will use the mappings p : x 7→ V 1/N (x) for x ∈ VN/ℝN and p̂ : x 7→ V (N−1)/N (x)
for x ∈ AN . Hence, the Minkowski inequality may be rephrased as ⟨x, y⟩ ≥ p(x)p̂(y).
By the Brunn–Minkowski theorem p is a superlinear functional on VN with respect
to the Minkowski addition. This implies that p̂ is superlinear on AN with respect to
the Blaschke addition. Since the surface area of x is written as S(x) = N⟨zN , x⟩, the
isoperimetric problem2 turns into a convex program in the Blaschke structure.

2It seems somewhat pedantic to use the more exact attribute “isovolume” or “isepiphanic.”
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1.7. Isoperimetric Problem:

x ∈ AN ; ⟨zN , x⟩ = ⟨zN , x̄⟩; p̂(x)→ sup.

The simplest convex program in the Minkowski structure is the Urysohn problem
of maximizing the volume of x given the integral breadth of x (see [17]).

1.8. Urysohn Problem:

x ∈ VN ; ⟨x, zN ⟩ = ⟨x̄, zN ⟩; p(x)→ sup.

Recall that to a convex subset U of a real vector space X and a point x̄ of U there
corresponds the set

Kx̄ := Fd(U, x̄) := {ℎ ∈ X ∣ (∃� ≥ 0) x+ �ℎ ∈ U},

called the cone of feasible directions of U at x̄. Clearly, the search for optimal
solutions of the above problems requires the calculations of the derivatives of the
volume of a convex figure in the feasible directions of VN and AN . Let px̄ stand for
the derivative of y ∈ VN 7→ p̂(x̄)p(y) at x̄. Similarly, we let p̂x̄ stand for the derivative
of y ∈ AN 7→ p̂(y)p(x) at x̄.

1.9. We have
(1) p̂x̄(g) = ⟨x̄, g⟩ for all g ∈ AN,x̄;
(2) px̄(g) = ⟨g, x̄⟩ for all g ∈ VN,x̄ (see [18]).

1.10. The details and references on convex geometry are collected in [19]. The
Brunn–Minkowski theory is thoroughly presented in [20–22].

2. Linear Majorization and Dual Cones

2.1. By the dual cone or polar K∗ of a given cone K in some vector space X
that is in duality with a vector space Y we understand the set of all positive linear
functionals on K; i.e., K∗ := {y ∈ Y ∣ ⟨x, y⟩ ≥ 0}.

In the situation under study the description of the dual cones we need is readily
available.

2.2. The dual cone A∗N is the positive cone of C(SN−1)/ℝN .

2.3. If x̄ ∈ AN then the dual cone A∗n,x̄ of the cone of feasible directions of AN

at x may be written as A∗n,x̄ = {f ∈ A∗N ∣ ⟨x̄, f⟩ = 0}.

2.4. In the long passed year of 1954 Reshetnyak suggested in his unpublished
thesis [23] to compare positive measures on the Euclidean sphere SN−1 as follows:

A measure � linearly majorizes a measure � provided that to each partition
of SN−1 into finitely many disjoint Borel subsets U1, . . . , Um there are measures
�1, . . . , �m with sum � such that every difference �k − �∣Uk

annihilates the restric-
tions to SN−1 of all linear functionals on ℝN . In this event we write �≫ ℝN �.



8 S. S. KUTATELADZE

2.5. Reshetnyak proved that ∫
SN−1

pd� ≥
∫

SN−1

pd�

for every sublinear functional p on ℝN in case �≫ ℝN �. Thus, he discovered an im-
portant tool for generating positive Minkowski-linear functionals over various classes
of convex surfaces and functions.

2.6. Loomis suggested an analogous construction in Choquet theory in 1962
(see [24]).

A measure � affinely majorizes a measure � (both given on a compact convex
subset Q of an arbitrary locally convex space X) provided that to each decomposi-
tion of � into finitely many addends �1, . . . , �m there are measures �1, . . . , �m with
sum � such that every difference �k− �k annihilates all restrictions to Q of the affine
functions on X. In this event we write � ≫ Aff(Q)�. Many applications of affine
majorization are collected in [25].

Cartier, Fell, and Meyer demonstrated in [26] that∫
Q

fd� ≥
∫
Q

fd�

for every continuous convex function f on Q if and only if �≫ Aff(Q)�. An analogous
necessity claim for linear majorization was established in [27].

By linear majorization it is easy to give some descriptions for the dual cones needed
in the analysis of the extremal problems of convex geometry.

2.7. Let x and y be convex bodies.
(1) �(x)− �(y) ∈ V∗N ↔ �(x)≫ ℝN�(y).
(2) If x ≥ ℝN y then �(x)≫ ℝN�(y).
(3) x ≥ ℝ2y↔ �(x)≫ ℝ2�(y).
(4) If y− x̄ ∈ A∗N,x̄ then y =ℝN x̄.

(5) If �(y)− �(x̄) ∈ V∗N,x̄ then y =ℝN x̄.

(6) If x̄ is a regular convex surface then V∗N,x̄ = 0.

2.8. The geometrical meaning of the relation �(x)≫ ℝN�(y) remains vague in case
N ≥ 3. It is worth observing that the converse of 2.7 (2) fails in general. Indeed, no
translates of x := zN and y := zN +�zN−2 are comparable by inclusion, provided that
� = �1/(N−2) and � satisfies 2N−1/(2N−1 − 1) > � > 1. However, �(x)≫ ℝN�(y).

In fact, applications require the following more detailed version of majorization
(see [28]):

2.9. Decomposition Theorem. Let H1, . . . ,Hm be cones in a vector lattice X.
Assume that f and g are positive functionals on X. The inequality

f(ℎ1 ∨ ⋅ ⋅ ⋅ ∨ ℎm) ≥ g(ℎ1 ∨ ⋅ ⋅ ⋅ ∨ ℎm)
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holds for all ℎk ∈ Hk and k := 1, . . . ,m if and only if to each decomposition of g into
the sum of m positive addends g = g1 + ⋅ ⋅ ⋅ + gN there corresponds a decomposition
of f into the sum of m positive addends f = f1 + ⋅ ⋅ ⋅+ fm such that

fk(ℎk) ≥ gk(ℎk) (ℎk ∈ Hk; k := 1, . . . ,m).

We may use this theorem for calculating the subdifferential and directional deriv-
ative of the integral breadth of the convex hull of a few convex figures and similar
aggregates with other mixed volumes.

2.10. Let �1, . . . , �m be positive Borel measures on SN−1. The inequality

m∑
k=1

∫
SN−1

xkd�k ≤
∫

SN−1

co{x1, . . . , xm}d�(zN )

holds for all xk ∈ VN (k := 1, . . . ,m) if and only if there are positive Borel measures
�1, . . . , �m on SN−1 such that

�1 + ⋅ ⋅ ⋅+ �m = �(zN ); �k ≫ ℝN �k (k := 1, . . . ,m).

Proof. The right-hand side of the inequality in question is a sublinear functional with
respect to the variables x1, . . . , xm which is similar to that in 2.9, while the left-hand
side is a member of the subdifferential of the sublinear functional over the mth power
of VN . It suffices to refer to 2.7 (1) and 2.9.

3. Pareto Optimality

Here we will formally discuss some modern concepts of optimality in the problems
of multiple criteria decision making.

3.1. Assume that X is a vector space, E is an ordered vector space, f : X → E
is a convex operator, and C ⊂ X is a convex subset of X. A convex vector program
we call a pair (C, f), writing it symbolically as

x ∈ C; f(x)→ inf.

A vector program is also referred to as a multiobjective extremal problem. The op-
erator f is the target, goal, or objective of (C, f); and C is the constraint of (C, f).
Each x ∈ C is called a feasible solution. The above record of a vector program reflects
the fact that under study is the following extremal problem: Find the greatest lower
bound of the values of f on C. In case C = X it is customary to speak about a free
or unconstrained problem.

The constraints of an extremal program are usually given as some equalities and
inequalities. Assume that g : X → F is a convex operator; and Λ is a linear operator,
a member of the space L(X,Y ); while y ∈ Y . Here Y is a vector space and F is
an ordered vector space. If some constraints C1 and C2 are of the form

C1 := {x ∈ C ∣ g(x) ≤ 0};
C2 := {x ∈ X ∣ g(x) ≤ 0, Λx = y};
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then we replace (C1, f) and (C2, f) with (C, g, f) and (Λ, g, f) or use the more ex-
pressive record

x ∈ C; g(x) ≤ 0; f(x)→ inf;

Λx = y; g(x) ≤ 0; f(x)→ inf.

3.2. An element e := infx∈C f(x) (if existent) is the value of (C, f). A feasible
element x0 is an ideal optimum or ideal solution of (C, f) provided that e = f(x0).
Therefore, x0 is an ideal optimum if and only if x0 is feasible and f(x0) is the bottom
of the image f(C); i.e., f(C) ⊂ f(x0) +E+. As usual, E+ is the positive cone of E.

It might seem that we observe ideal optima only in the case of scalar problems.
Indeed, it is rather improbable that a few real functions attain a minimum at the
same point. Notwithstanding this commonsense argument, it is easy to suggest an
abstract formalism that treats the various minimum points of different functions as
a unique element. Such an abstraction must be viewed as generalization by dilution.3

From a rational point of view, the ideal is practically unattainable and one of the
minimal feasible elements should be considered as a reasonable approximation to the
ideal.

3.3. Let us state the corresponding conception of optimality preciser. It is conve-
nient to assume that E is a preordered vector space; i.e., the positive cone E+ may
fail to be salient. In other words, the apex subspace E0 := E+ ∩ (−E+) may differ
from zero. Given u ∈ E, put [u] := {v ∈ E : u ≤ v, v ≤ u}. We write u ∼ v when-
ever [u] = [v]. A feasible point x0 is "-Pareto-optimal for (C, f), where " is a positive
element in the target space E, provided that f(x0) is a minimal element of the set
f(C) + "; i.e., (f(x0) − E+) ∩ (f(C) + ") = [f(x0)]. In more detail, x0 is "-Pareto-
optimal provided that x0 ∈ C and for all x ∈ C the inequality f(x0) ≥ f(x)+" implies
that f(x0) ∼ f(x) + ". If " = 0 then we speak about Pareto-optimal points. Study of
Pareto optimality often bases on scalarization, reduction of the vector problem under
consideration to a scalar extremal problem with a single goal. Scalarization can be
implemented in various fashions. Let us consider one of the available approaches.

3.4. Assume that the preorder ≤ on E is given by the formula

u ≤ v ↔ (∀l ∈ ∂q) lu ≤ lv,

where q : E → ℝ is a sublinear functional, and ∂q is the subdifferential of q. In other
words, the cone E+ has the form E+ := {u ∈ E ∣ (∀l ∈ ∂q) lu ≥ 0}.

A feasible solution x0 is "-Pareto-optimal for (C, f) if and only if for each x ∈ C
either f(x0) ∼ f(x)+" or there is l ∈ ∂q satisfying lf(x0) < l(f(x)+"). In particular,
for a "-Pareto-optimal point x0 ∈ C we have infx∈C q(f(x) − f(x0) + ") ≥ 0. The
converse is false, since the last inequality amounts to the following weaker concept of
optimality.

3.5. Call x0 ∈ C weakly "-Pareto-optimal provided that to each x ∈ C there
is l ∈ ∂q satisfying l(f(x) − f(x0) + ") ≥ 0; i.e., the simultaneous strict inequalities
lf(x0) < l(f(x) + "), with l ∈ ∂q, are incompatible for any x ∈ C. Clearly, the weak
"-Pareto optimality of x0 is equivalent to the fact that q(f(x) − f(x0) + ") ≥ 0 for

3This term belongs to Polya as mentioned by Weyl.
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all x ∈ C, and the concept is nontrivial only if 0 /∈ ∂q. It is possible to proceed along
these lines in the wake of Robinsonian nonstandard analysis on using infinitesimal
parameters " (particularities and details are collected in [10, Ch. 5]).

3.6. Subdifferential calculus shows that the Pareto-optimal points are solutions
of some problem of parametric programming in the simplest case of an optimization
problem with finitely many scalar goals. For instance, in the case of two goals each
Pareto-optimal point minimizes a weighted sum of the goals.

4. Multiobjective Model Problems

The above facts enable us to address the multiple criteria extremal problems of
geometry which involve the goals and constraints with the available directional deriva-
tives and the duals of the cones of feasible directions. Transition to Pareto-optimality
actually involves the scalar problems with bulkier objectives. The manner of combin-
ing the geometrical and functional-analytical tools remains practically the same as in
the case of a single goal typical of an isoperimetric-type problem. Therefore, we will
proceed by way of example and present here a few model multiobjective problems
that are connected with the Blaschke and Minkowski structures.

4.1. Isoperimetric-Type Vector Problem: Given are convex bodies y1, . . . , ym.
Find a convex body x encompassing a given volume and minimizing each of the mixed
volumes V1(x, y1), . . . , V1(x, ym). In symbols,

x ∈ AN ; p̂(x) ≥ p̂(x̄); (⟨y1, x⟩, . . . , ⟨ym, x⟩)→ inf.

Clearly, this is a Slater regular convex program in the Blaschke structure. Hence,
the following holds.

4.2. Theorem. Each Pareto-optimal solution x̄ of the isoperimetric-type vector
problem has the form

x̄ = �1y1 + ⋅ ⋅ ⋅+ �mym,

where �1, . . . , �m are positive reals.

Let us illustrate 4.2 for the Leidenfrost effect, the spheroidal state of a liquid drop
on a heated horizontal plate.

4.3. Leidenfrost Problem. Given the volume of a three-dimensional convex
figure, minimize its surface area and vertical breadth.

By symmetry everything reduces to an analogous two-objective planar problem,
whose every Pareto-optimal solution is by 4.2 a stadium, a weighted Minkowski sum
of a disk and a horizontal straight line segment.

4.4. Theorem. A flattened spheroid, a Pareto-optimal solution of the Leidenfrost
problem, is the result of rotation of a stadium around the vertical axis through the
center of the stadium.

4.5. Internal Urysohn Problem with Flattening. Given are some convex
body x0 ∈ VN and some flattening direction z̄ ∈ SN−1. Among the convex bodies
lying in x0 and having fixed integral breadth, find x maximizing the volume of x and
minimizing the breadth in the flattening direction:

x ∈ VN ; x ⊂ x0; ⟨x, zN ⟩ ≥ ⟨x̄, zN ⟩; (−p(x), bz̄(x))→ inf.
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4.6. Theorem. For a feasible convex body x̄ to be Pareto-optimal in the internal
Urysohn problem with the flattening direction z̄ it is necessary and sufficient that
there be positive reals �, � and a convex figure x satisfying

�(x̄) = �(x) + ��(zN ) + �("z̄ + "−z̄);

x̄(z) = x0(z) (z ∈ supp(�(x))).

Proof. By way of illustration we will derive the optimality criterion in somewhat
superfluous detail. In actuality, it would suffice to appeal for instance to [10, § 5.2]
or the other numerous sources treating Pareto optimality in slightly less generality.

Note firstly that the internal Urysohn problem with flattening may be rephrased
in C(SN−1) as the following two-objective program

x ∈ VN ;

max{x(z)− x0(z) ∣ z ∈ SN−1} ≤ 0;

⟨x, zN ⟩ ≥ ⟨x̄, zN ⟩;
(−p(x), bz̄(x))→ inf.

The problem of Pareto optimization reduces to the scalar program

x ∈ VN ;

max{max{x(z)− x0(z) ∣ z ∈ SN−1}, ⟨x̄, zN ⟩ − ⟨x, zN ⟩} ≤ 0;

max{−p(x), bz̄(x)} → inf.

The last program is Slater-regular and so we may apply the Lagrange principle. In
other words, the value of the program under consideration coincides with the value
of the unconstrained minimization problem for an appropriate Lagrangian:

x ∈ VN ;

max{−p(x), bz̄(x)}+ 
max{max{x(z)− x0(z) ∣ z ∈ SN−1}, ⟨x̄, zN ⟩ − ⟨x, zN ⟩} → inf.

Here 
 is a positive Lagrange multiplier.
We are left with differentiating the Lagrangian along the feasible directions and

appealing to 1.9 (2) and 2.7 (5). Note in particular that the relation

x̄(z) = x0(z) (z ∈ supp(�(x)))

is the complementary slackness condition standard in mathematical programming.
The proof of the optimality criterion for the Urysohn problem with flattening is
complete.

Assume that a plane convex figure x0 ∈ V2 has the symmetry axis Az̄ with gen-
erator z̄. Assume further that x00 is the result of rotating x0 around the symmetry
axis Az̄ in ℝ3. In this event we come to the following problem.
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4.7. The Case of Rotational Symmetry:

x ∈ V3; x is a convex body of rotation around Az̄;

x ⊃ x00; ⟨zN , x⟩ ≥ ⟨zN , x̄⟩;
(−p(x), bz̄(x))→ inf.

By rotational symmetry, the three-dimensional problem reduces to an analogous
two-dimensional problem. The integral breadth and perimeter are proportional on
the plane, and we come to the already settled problem 4.5. Thus, we have the
following.

4.8. Theorem. Each Pareto-optimal solution of 4.7 is the result of rotating
around the symmetry axis a Pareto-optimal solution of the internal Urysohn planar
problem with flattening in the direction of the axis.

Little is known about the analogous problems in arbitrary dimensions (for instance,
see [29–31] and the references therein). An especial place is occupied by the Porogelov
article [32]) where it is demonstrated that the “soap bubble” in a tetrahedron has
the form of the result of the rolling of a ball over a solution of the internal Urysohn
problem, i.e. the weighted Blaschke sum of a tetrahedron and a ball. As regards the
forms of “real” soap bubbles and films see [33, 34].

4.9. External Urysohn Problem with Flattening. Given are some convex
body x0 ∈ VN and some flattening direction z̄ ∈ SN−1. Among the convex bodies
encompassing x0 and having fixed integral breadth, find a convex body x maximizing
volume and minimizing breadth in the flattening direction:

x ∈ VN ; x ⊃ x0; ⟨x, zN ⟩ ≥ ⟨x̄, zN ⟩; (−p(x), bz̄(x))→ inf.

4.10. Theorem. For a feasible convex body x̄ to be a Pareto-optimal solution of
the external Urysohn problem with flattening it is necessary and sufficient that there
be positive reals �, � and a convex figure x satisfying

�(x̄) + �(x)≫ ℝN��(zN ) + �("z̄ + "−z̄);

V (x̄) + V1(x, x̄) = �V1(zN , x̄) + 2N�bz̄(x̄);

x̄(z) = x0(z) (z ∈ supp(�(x))).

Proof. Demonstration proceeds by analogy to the internal Urysohn problem with
flattening. The extra equality for mixed volumes appears as deciphering of the com-
plementary slackness condition.

4.11. The above list may be continued with the multiobjective generalization of
many scalar problems such as problems with zone constraints and current hyper-
planes, problems over centrally symmetric convex figures, Lindelöf-type problems,
etc. (see [35–37]). These problems are usually convex with respect to Blaschke or
Minkowski structures. Of greater complexity are the nonconvex parametric problems



14 S. S. KUTATELADZE

stemming from the extremal properties of the Reuleaux triangle. These problems re-
quire extra tools and undergone only a fragmentary study (in particular, see [38–40]
and the references therein). In closing we dwell upon the problems of another type
where we seek for the form of several convex figures simultaneously.

4.12. Optimal Convex Hulls. Given are convex bodies y1, . . . , ym in ℝN .
Place a convex figure xk within yk, for k := 1, . . . ,m, so as to simultaneously maximize
the volume of each of the figures x1, . . . , xm and minimize the integral breadth of the
convex hull of the union of these figures:

xk ⊂ yk (k := 1, . . . ,m);

(−p(x1), . . . ,−p(xm), ⟨co{x1, . . . , xm}, zN ⟩)→ inf .

4.13. Theorem. For some feasible convex bodies x̄1, . . . , x̄m to have a Pareto-
optimal convex hull it is necessary and sufficient that there be positive reals �1, . . . , �m

not vanishing simultaneously and two collections of positive Borel measures �1, . . . , �m

and �1, . . . , �m on SN−1 such that

�1 + ⋅ ⋅ ⋅+ �m = �(zN );

x̄k(z) = yk(z) (z ∈ supp(�k)); �k�(x̄k) = �k + �k (k := 1, . . . ,m).

Proof. The criterion appears along the lines of 4.6 on considering 2.10.

Is Dido’s Problem Solved?

From a utilitarian standpoint, the answer is definitely in the affirmative. There
is no evidence that Dido experienced any difficulties, showed indecisiveness, and
procrastinated the choice of the tract of land. Dido had met a particular problem of
decision making and settled it successfully as witnessed by Virgil. The decision was
taken and Carthage was founded, which is beyond any doubt.

The study of the isoperimetric-type problems of geometry is commonly tracked
back to Dido, which we have mentioned at the very beginning. Isoperimetry led to
variational calculus and the modern conceptions of control and optimization. Man
indulges in exaggerating his capabilities and achievements. The firm belief is universal
that the Dido problem is a historical anecdote rather than a topic of the modern
science. In fact the matter is quite different. The hypothesis that mathematics has
a method of solving Dido’s problem is beneath all criticism.

Mathematics deals with abstract objects. Application of mathematics to practice
bases on choosing some adequate models of real situations. Solution of a particu-
lar problem differs from the presence of a general method of solution. Finding the
tangent of a parabola at the origin is rather far off the rules of differential calculus.
Comprehension of the essence of some phenomenon requires free mind that is not
confined with particularities, ignores random features, and seeks for general laws and
interrelationships whereas excluding neither stochasticity nor multiplicity of possibil-
ities. Each solution method basing on comprehension must apply to a rather broad
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class of similar problems, giving some algorithms or at least reasonable recommen-
dations for solution.

Returning to Dido, let us assume that she had known the isoperimetric property of
the circle and had been aware of the symmetrization processes that were elaborated
in the nineteenth century. Would this knowledge be sufficient for Dido to choose the
tract of land? Definitely, it would not. The real coastline may be rather ragged and
craggy. The photo snaps of coastlines are exhibited as the most visual examples of
fractality. From a theoretical standpoint, the free boundary in Dido’s planar problem
may be nonrectifiable, and so the concept of area as the quantity to be optimized
is itself rather ambiguous. Practically speaking, the situation in which Dido made
her decision was not as primitive as it seems at the first glance. Choosing the tract
of land, Dido had no right to trespass the territory under the control of the local
sovereign. She had to choose the tract so as to encompass the camps of her subjects
and satisfy some fortification requirements. Clearly, this generality is unavailable in
the mathematical model known as the classical isoperimetric problem.

Dido’s problem inspiring our ancestors remains the same intellectual challenge as
Kant’s starry heavens above and moral law within.
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