Boolean Models
and Nonstandard Analysis

by DANA SCOTT!

It is certainly debatable whether the crisis over the set-theoretical
paradoxes was really a crisis or not. For a long time there was really
no impact on the working (or should one say proving) mathematician.
Only in the last few years have the people in abstract category theory
found anything to complain about. It seems to the author that the
situation with the continuum hypothesis is much worse. The Russell
paradox can be easily dismissed by saying that such all inclusive sets
were not intended, but not so with the question of the cardinality of the
continuum. Everyone who does modern abstract mathematics uses the
continuum as a well-determined set. Only the strict constructivist ques-
tions this “obvious” fact. But as Godel and Cohen have shown us, the
cardinality of this continuum is not at all well determined by the current
axioms. What to do? Maybe we have to face the fact that there are
many distinet theories of the continuum. It is hard to swallow the idea,
but, as will be shown below, it is easy to cook up those exotic models
out of everyday ingredients.

The Construction of Models for Analysis

We shall employ the Boolean algebraic method presented in my exposi-
tory paper [4]. As is done there, we shall construct models for analysis
(a portion of the higher-order theory of real numbers). For details of
checking the logical properties of the models we shall refer to [4] and be
content here with descriptive remarks. A thorough exposition of the
models for full set theory will be found in the joint paper with Solo-
vay [5].

The idea of constructing Boolean-valued models could have been
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(but was not) discovered as a generalization of the ultraproduct method
used now so often to obtain nonstandard models for ordinary analysis.
Roughly, we can say that ultraproducts use the standard Boolean algebras
(the power-set algebras) to obtain models elementarily equivalent to the -
standard model, whereas the Boolean method allows the nonstandard
complete algebras (such as the Lebesgue algebra of measurable sets modulo
sets of measure zero or the Baire algebra of Borel sets modulo sets of the
first category). Thus the Boolean method leads to nonstandard nonstand-
ard models that are not only not isomorphic to the standard model but
are not even equivalent. Nevertheless, they do satisfy all the usual
axioms and deserve to be called models of analysis.
To make this comparison clear, let us consider the ultraproduct con-
struction in general. So as not to complicate notation, let us use structures —

@ = (4, R),

where R C A X A is a binary relation. Suppose that for 7 in an index
set I we have corresponding structures

@i = <Ai, R,)
We then form the product
Xa: = (X4, 8) = (B, 8), ' —

1€l 1€l

where S is not a binary relation in the ordinary sense. Instead we make
S a Boolean-valued relation. We define

S:B X B— PI
(where P is the power-set operator), so that for a, b & B we have

S(a, b) = {1, E I: aiR,-bi}.

Extension of the Definition of Boolean Values

In regard to PI as a complete Boolean algebra, the mapping S defined
above allows us to extend the definition of Boolean values from atomic
formulas to all logical formulas by means of the following obvious rules
(for more detail see [3] and [4]):

[aSb]] = S(a, b) = {1 € I: a,Rb.},
fea =b]l = {tEI:a = b},
[®] = I — [@]],
[ Vv ¥] =[]V [¥]],
[F3z2(2)] = a\EJB [®(a) ]
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Thus every formula ®(a, b, - - -) with constants a, b, -+ & B (and
without free variables) has a uniquely determined Boolean value

[®(a, b, - )] € PI.
We call such a formula valid (Boolean valid) iff

[®(a, b,-- )] = I
We note that
[®(a, b,- - )] = {t € I: Qi }-®(a;, by, -~ ) };

hence it is valid iff it is frue in all the Q..
The basic lemma about ultraproducts shows (see [1], Theorem 2.2):
Given Jz®(x, b, - - ), there exists an element a & B such that

[3z®(z, b, - )] = [2(a, b, - - )]

That is, even though the value of the existentially quantified formula
was defined as a union (supremum), it is actually a maximum. That
is interesting. There are very few homomorphisms of PI (into {0, 1},
say) that preserve all sups; but it is obvious that any homomorphism of
one Boolean algebra into another preserves a max. Therefore, if we regard
an ultrafilter D as really being a homomorphism,

D: PI— {0,1},
then we can form in the obvious way the quotient structure

X @i/D.
i€l
This structure in view of the above maximum principle is such that any
sentence valid in X@; is true in X@;/D. (Of course, this can be sharpened, o
but the point is to see the conclusion as a consequence of general facts
about quotients of Boolean-valued models.) In short, we have divided
the ultraproduct construction into two stages: product followed by ulira.
It is the generalization of the product part we wish to emphasize.
Let ® be an arbitrary complete Boolean algebra. Since ® is in par-
ticular a Boolean s-algebra, we know that ® can be represented

® = @/N

where @ is a o-algebra of subsets of a set I and 91 is a o-ideal of @. (In [4]
the set I was called @ because it was a measure space. We also change
another convention of [4] by using the notation +, -, Z, II for the Boolean
operations of ®, saving \U, M, U, N for use with their ordinary set-
theoretical meanings.)

Now since we are interested in the theory of the real numbers (the set
of which is denoted by R) we will form a special product structure. We
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do not use the full Cartesian power R? but only the subset ® C RY,
consisting of the @-measurable functions a: I — R. This makes it possible
to define the ®-values of formulas:

fa=b]={iETI:a; = b}/N,
[a >b] ={iEI:a; <b}/N,

lat+b=c]l=1{iETI: a+b =c}/N

Indeed, if R C R" is any n-ary relation with a Borel graph, then we can
be sure that
{fteI: R(a;, by, - - )} €@,

so that we can define
[R(a, b,-- ) =1{¢ &€ I:R(aib; ")}/

Thus any ordinary Borel relation on R becomes a ®-valued relation on ®.
This makes ® into quite an interesting structure. (Quantified formulas
get values just as above. So far @ is only a first-order structure having to
do with Borel relations. By the same token we extend Borel functions
¢: R?2— R to functions ¢: ®@" — ®, as we already indicated with +:
R?2— R))

Well, just how interesting a structure is ®? First, it is fairly easy to
see that @} is a (®-valued) real-closed field. For example, it is clear that

a<bVa=bVa>bd

is ®-valid, and similarly for all the other axioms for ordered fields. Using
the extensions of Borel functions to ® we get the roots needed for the
axioms of real-closure (see [4] for more details). By quite a different
method (see [2]) it can be shown that if R C R3 is a Borel relation such that

Jz Vy Iz R(z, y, 2)

is true in R, then this formula is valid in ®. [We can replace z, y, z here each
by a string of variables and R(z, y, z) by any quantifier-free combination
of Borel relations.] This goes quite a way. Many facts about analytic
sets can be expressed in this elementary form. Note, however, that we
have only claimed an ¢mplication: from truth to validity. The converse is
not correct. There are choices of (nonstandard) algebras & where the
converse fails. (This has to do with Godel’s axiom of constructibility;
see [5].)

Of course, analysis wants to have results about arbitrary real functions,
and our theory of ® so far has only to do with formulas involving real
variables. To bring in the functions we define the set ®%® of allowed
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functions to be those mappings

fi®R— QR

such that fa =] < [f(a) =f0)]

for all a,b € ®. (Here < is Boolean inclusion in ®.) All formulas involv-
ing function values f(z) and real variables can now be given ®-values
for any f € ®. We can also evaluate equations between functions using
the definition
If = g1 = Il [f(@) = g1
acR

The next step is to give ®-values to formulas involving quantifiers
over functions. And then we can go on to the higher orders. As is shown
in [4] (and more fully in [5]) all axioms of higher-order real number theory
are ®-valid. But for a suitable choice of & the continuum hypothesis fails
to be valid. The form of this sentence is very simple:

VAh[3f Vylh(y) = 0> 3z[N(z) A y = f()]] V 3g Yy Az[h(z) =0 A y( .
= g(x)]].

Why is it that this fails when the axiom of choice holds?

We remark that this B-valued model for analysis satisfies the maximum
principle. Hence quotients can be taken by ultrafilters forming really
nonstandard models for analysis in the usual sense of model (see [5] for
the proof of the maximum principle and remarks on the Lowenheim-—
Skolem theorem). We must ask whether there is any interest in these
nonstandard models aside from the independence proof; that is, do they
have any mathematical interest?

The answer must be yes, but we cannot yet give a really good argument.
Certainly there is ¢ntrinsic interest in certain of the models. Take the case
where ® is a measure algebra, I is a measure space, @ is the o-field of
measurable sets, and 9 is the o-ideal of sets of measure 0. Then ® is the
space of random variables, a very well-known space. That it forms a
model for real number theory in a precise (although ®-valued) sense must
mean something.

Here is one remark that may be useful. In general, one wants to know
how various notions familiar from ordinary analysis look in the model.
Take the concept of a Borel function; there is a certain formula,

Borel (f),

that expresses this in higher-order logic. What can be shown is that if
Borel (f) is valid for some f € &%, then there exists an ordinary Borel
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function ¢: R? — R and a particular a & ® such that

f@) = ¢(a, 2)

for all + & ®. In words, we can say that all the nonstandard Borel
functions are quasi-standard in the sense that they result from standard
Borel functions by specializing certain parameters to nonstandard reals.
(The details of this theorem were worked out in [2].) There must be other
such results. .

Of course, the Boolean-valued models have been remarkably successful
in solving problems about the existence of certain kinds of unpleasant,
complete Boolean algebras (see [5]). But this is a different kind of appli-
cation from what we usually want nonstandard analysis to do. But
maybe there is some hope. Note that in the usual nonstandard models
certain standard sets are made subsets of finite sets (finite in the model,
that is). Then, some fact about finite sets gives us the desired conclusion.
The unpleasant Boolean algebras mentioned above can be chosen to make
a given standard set countable in the Boolean model (see [5]).

In many ways these Boolean models are more like the standard model
than the usual nonstandard models (witness the remark about Borel
functions). In fact, countability behaves very well in the Boolean sense,
so that perhaps an argument that uses some formal property of countable
sets may reveal something.
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