The Growth Points of Boolean Valued Analysis: Cantor's Continuum Problem and Kantorovich Spaces

A. E. Gutman

A. G. Kusraev

S. S. Kutateladze

Geometry Days in Novosibirsk—2014 Sobolev Institute of Mathematics (Novosibirsk, September 26, 2014)

- ▶ 1878: G. Cantor (Continuum Hypothesis, CH).
- ▶ 1935: L. V. Kantorovich (Dedekind complete vector lattices)
- ▶ 1963: P. J. Cohen (Forcing, Independence of CH).
- Contents:
 - √ some historical remarks
 - √ the interplay;
 - √ the results.

- ▶ 1878: G. Cantor (Continuum Hypothesis, CH).
- ▶ 1935: L. V. Kantorovich (Dedekind complete vector lattices).
- ▶ 1963: P. J. Cohen (Forcing, Independence of CH).
- Contents:
 - √ some historical remarks
 - √ the interplay;
 - √ the results.

- ▶ 1878: G. Cantor (Continuum Hypothesis, CH).
- ▶ 1935: L. V. Kantorovich (Dedekind complete vector lattices).
- ▶ 1963: P. J. Cohen (Forcing, Independence of CH).
- Contents:
 - √ some historical remarks
 - √ the interplay;
 - √ the results.

- ▶ 1878: G. Cantor (Continuum Hypothesis, CH).
- ▶ 1935: L. V. Kantorovich (Dedekind complete vector lattices).
- ▶ 1963: P. J. Cohen (Forcing, Independence of CH).
- Contents:
 - √ some historical remarks;
 - √ the interplay;
 - ✓ the results.

Georg Ferdinand Ludwig Philipp Cantor

German mathematician, the inventor of set theory (March 3, 1845, Saint Petersburg, Russian Empire—January 6, 1918, Halle, German Empire)

- Cantor's first ten papers were on number theory (PhD, 1867).
- Heirich Eduard Heine (1869) proposed the problem of uniqueness of representation of a function by a trigonometric series.
- ► Uniqueness Problem (Heine, Dirichlet, Lipschitz, and Riemann):

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = 0 \quad (x \in \mathbb{R} \setminus F)$$

$$\implies a_n = b_n = 0 \quad (n \in \mathbb{N})$$
?

- ▶ Definition. If YES then *F* is called a set of uniqueness.
- ▶ Cantor solved the problem if $F = \emptyset$ (1870) and F is finite (1871).

- Cantor's first ten papers were on number theory (PhD, 1867).
- ► Heirich Eduard Heine (1869) proposed the problem of uniqueness of representation of a function by a trigonometric series.
- Uniqueness Problem (Heine, Dirichlet, Lipschitz, and Riemann):

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = 0 \quad (x \in \mathbb{R} \setminus F)$$

$$\implies a_n = b_n = 0 \quad (n \in \mathbb{N})$$
?

- ▶ Definition. If YES then *F* is called a set of uniqueness.
- Cantor solved the problem if $F = \emptyset$ (1870) and F is finite (1871).

- Cantor's first ten papers were on number theory (PhD, 1867).
- ► Heirich Eduard Heine (1869) proposed the problem of uniqueness of representation of a function by a trigonometric series.
- Uniqueness Problem (Heine, Dirichlet, Lipschitz, and Riemann):

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = 0 \quad (x \in \mathbb{R} \setminus F)$$

$$\implies a_n = b_n = 0 \quad (n \in \mathbb{N})?$$

- ▶ Definition. If YES then *F* is called a set of uniqueness.
- Cantor solved the problem if $F = \emptyset$ (1870) and F is finite (1871).

- Cantor's first ten papers were on number theory (PhD, 1867).
- ► Heirich Eduard Heine (1869) proposed the problem of uniqueness of representation of a function by a trigonometric series.
- Uniqueness Problem (Heine, Dirichlet, Lipschitz, and Riemann):

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = 0 \quad (x \in \mathbb{R} \setminus F)$$

$$\implies a_n = b_n = 0 \quad (n \in \mathbb{N})?$$

- ▶ Definition. If YES then F is called a set of uniqueness.
- Cantor solved the problem if $F = \emptyset$ (1870) and F is finite (1871).

- Cantor's first ten papers were on number theory (PhD, 1867).
- ► Heirich Eduard Heine (1869) proposed the problem of uniqueness of representation of a function by a trigonometric series.
- Uniqueness Problem (Heine, Dirichlet, Lipschitz, and Riemann):

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = 0 \quad (x \in \mathbb{R} \setminus F)$$

$$\implies a_n = b_n = 0 \quad (n \in \mathbb{N})?$$

- ▶ Definition. If YES then F is called a set of uniqueness.
- ▶ Cantor solved the problem if $F = \emptyset$ (1870) and F is finite (1871).

- ▶ Definition. $F^{(0)} := F$, $F^{(1)} := F'$, ... $F^{(n+1)} := (F^{(n)})'$. Cantor–Bendixson derivative $F' = \{x \in F : x = \lim_n x_n, (x_n) \subset F\}$.
 - ▶ G. Cantor (1872). Let $F \subset \mathbb{R}$ be closed. If $F^{(n)} = \emptyset$ for some $n \in \mathbb{N} \implies F$ is a set of uniqueness.
 - ▶ G. Cantor. Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Math. Ann. 5, 123 (1872).
 - It is a natural intension to continue $\omega, \omega+1,\ldots,\omega^2,\ldots,\omega^\omega\ldots$, since the Cantor–Bendixson process does not terminate in finitely many steps. This led Cantor to the development of the theory of ordinals.
 - ▶ Theorem (Lebesgue, 1903) Each countable closed set $F \subset \mathbb{R}$ is a set of uniqueness

- ▶ Definition. $F^{(0)} := F, F^{(1)} := F', \dots F^{(n+1)} := (F^{(n)})'.$
- Cantor–Bendixson derivative $F' = \{x \in F : x = \lim_n x_n, (x_n) \subset F\}.$
 - ▶ G. Cantor (1872). Let $F \subset \mathbb{R}$ be closed.
 - If $F^{(n)} = \emptyset$ for some $n \in \mathbb{N} \implies F$ is a set of uniqueness.
 - ▶ G. Cantor. Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Math. Ann. 5, 123 (1872).
 - It is a natural intension to continue $\omega, \omega+1,\ldots,\omega^2,\ldots,\omega^\omega\ldots$, since the Cantor–Bendixson process does not terminate in finitely many steps. This lecture Cantor to the development of the theory of ordinals.
 - Theorem (Lebesgue, 1903) Each countable closed set $F \subset \mathbb{R}$ is a set of uniqueness

- Definition. $F^{(0)} := F, F^{(1)} := F', \dots F^{(n+1)} := (F^{(n)})'.$
- Cantor–Bendixson derivative $F' = \{x \in F : x = \lim_n x_n, (x_n) \subset F\}.$
 - ▶ G. Cantor (1872). Let $F \subset \mathbb{R}$ be closed. If $F^{(n)} = \emptyset$ for some $n \in \mathbb{N} \implies F$ is a set of uniqueness.
 - ▶ G. Cantor. Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Math. Ann. 5, 123 (1872).
 - It is a natural intension to continue $\omega, \omega+1,\ldots,\omega^2,\ldots,\omega^\omega\ldots$, since the Cantor–Bendixson process does not terminate in finitely many steps. This led Cantor to the development of the theory of ordinals.
 - Theorem (Lebesgue, 1903) Each countable closed set $F \subset \mathbb{R}$ is a set of uniqueness

- ▶ Definition. $F^{(0)} := F$, $F^{(1)} := F'$, ... $F^{(n+1)} := (F^{(n)})'$. Cantor–Bendixson derivative $F' = \{x \in F : x = \lim_n x_n, (x_n) \subset F\}$.
 - ▶ G. Cantor (1872). Let $F \subset \mathbb{R}$ be closed. If $F^{(n)} = \emptyset$ for some $n \in \mathbb{N} \implies F$ is a set of uniqueness.
 - ▶ G. Cantor. Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Math. Ann. 5, 123 (1872).
 - It is a natural intension to continue $\omega, \omega+1,\ldots,\omega^2,\ldots,\omega^\omega\ldots$, since the Cantor–Bendixson process does not terminate in finitely many steps. This led Cantor to the development of the theory of ordinals.
 - ▶ Theorem (Lebesgue, 1903) Each countable closed set $F \subset \mathbb{R}$ is a set of uniqueness

- ▶ Definition. $F^{(0)} := F$, $F^{(1)} := F'$, ... $F^{(n+1)} := (F^{(n)})'$. Cantor–Bendixson derivative $F' = \{x \in F : x = \lim_n x_n, (x_n) \subset F\}$.
 - ▶ G. Cantor (1872). Let $F \subset \mathbb{R}$ be closed. If $F^{(n)} = \emptyset$ for some $n \in \mathbb{N} \implies F$ is a set of uniqueness.
 - ▶ G. Cantor. Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Math. Ann. 5, 123 (1872).
 - It is a natural intension to continue $\omega, \omega+1,\ldots,\omega^2,\ldots,\omega^\omega\ldots$, since the Cantor–Bendixson process does not terminate in finitely many steps. This led Cantor to the development of the theory of ordinals.
 - Theorem (Lebesgue, 1903) Each countable closed set $F \subset \mathbb{R}$ is a set of uniqueness.

- Remark. An arbitrary countable set: S. Bernstein (1908), W. H. Young (1909); the union of countable many sets of uniqueness: N. Bari (1923).
- ▶ After 1872 Cantor never returned to the uniqueness problem.
- His search for the extensions allowing exceptional points led him to the creation of set theory including the concepts of ordinal and cardinal and the method of transfinite induction.
- Cantor (1874): Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine und Angew. Math, Bd. 77, S. 258–262.
- ▶ The beginning of set theory as a branch of mathematics.
- Explanation of the size of a set in terms of equipollency of two sets.

- Remark. An arbitrary countable set: S. Bernstein (1908), W. H. Young (1909); the union of countable many sets of uniqueness: N. Bari (1923).
- ▶ After 1872 Cantor never returned to the uniqueness problem.
- His search for the extensions allowing exceptional points led him to the creation of set theory including the concepts of ordinal and cardinal and the method of transfinite induction.
- Cantor (1874): Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine und Angew. Math, Bd. 77, S. 258–262.
- ► The beginning of set theory as a branch of mathematics.
- Explanation of the size of a set in terms of equipollency of two sets.

- Remark. An arbitrary countable set: S. Bernstein (1908), W. H. Young (1909); the union of countable many sets of uniqueness: N. Bari (1923).
- ► After 1872 Cantor never returned to the uniqueness problem.
- His search for the extensions allowing exceptional points led him to the creation of set theory including the concepts of ordinal and cardinal and the method of transfinite induction.
- Cantor (1874): Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine und Angew. Math, Bd. 77, S. 258–262.
- ▶ The beginning of set theory as a branch of mathematics.
- Explanation of the size of a set in terms of equipollency of two sets.

- Remark. An arbitrary countable set: S. Bernstein (1908), W. H. Young (1909); the union of countable many sets of uniqueness: N. Bari (1923).
- ▶ After 1872 Cantor never returned to the uniqueness problem.
- His search for the extensions allowing exceptional points led him to the creation of set theory including the concepts of ordinal and cardinal and the method of transfinite induction.
- Cantor (1874): Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine und Angew. Math, Bd. 77, S. 258–262.
- ▶ The beginning of set theory as a branch of mathematics.
- Explanation of the size of a set in terms of equipollency of two sets.

- Remark. An arbitrary countable set: S. Bernstein (1908), W. H. Young (1909); the union of countable many sets of uniqueness: N. Bari (1923).
- ▶ After 1872 Cantor never returned to the uniqueness problem.
- His search for the extensions allowing exceptional points led him to the creation of set theory including the concepts of ordinal and cardinal and the method of transfinite induction.
- Cantor (1874): Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine und Angew. Math, Bd. 77, S. 258–262.
- ▶ The beginning of set theory as a branch of mathematics.
- Explanation of the size of a set in terms of equipollency of two sets.

- Remark. An arbitrary countable set: S. Bernstein (1908), W. H. Young (1909); the union of countable many sets of uniqueness: N. Bari (1923).
- ▶ After 1872 Cantor never returned to the uniqueness problem.
- His search for the extensions allowing exceptional points led him to the creation of set theory including the concepts of ordinal and cardinal and the method of transfinite induction.
- Cantor (1874): Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine und Angew. Math, Bd. 77, S. 258–262.
- ▶ The beginning of set theory as a branch of mathematics.
- Explanation of the size of a set in terms of equipollency of two sets.

- $ightharpoonup \operatorname{Card}(A) = \operatorname{the cardinal number of } A.$
- $ightharpoonup \operatorname{Card}(A) = \operatorname{Card}(B) \iff A \sim B$ A and B can be put into a one-to-one correspondence
- ▶ $Card(A) < Card(B) \iff A \sim B_0 \subset B \text{ but not } B \sim A_0 \subset A.$
- ho Card(A) \leqslant Card(B) \iff either Card(A) < Card(B) or Card(A) = Card(B)

- $ightharpoonup \operatorname{Card}(A) = \operatorname{the cardinal number of } A.$
- ► $Card(A) = Card(B) \iff A \sim B$ A and B can be put into a one-to-one correspondence.
- ▶ $Card(A) < Card(B) \iff A \sim B_0 \subset B \text{ but not } B \sim A_0 \subset A.$
- ▶ $\operatorname{Card}(A) \leqslant \operatorname{Card}(B) \iff$ either $\operatorname{Card}(A) < \operatorname{Card}(B)$ or $\operatorname{Card}(A) = \operatorname{Card}(B)$

- $ightharpoonup \operatorname{Card}(A) = \operatorname{the cardinal number of } A.$
- ► $Card(A) = Card(B) \iff A \sim B$ A and B can be put into a one-to-one correspondence.
- ▶ $Card(A) < Card(B) \iff A \sim B_0 \subset B \text{ but not } B \sim A_0 \subset A.$
- ► $Card(A) \le Card(B) \iff$ either Card(A) < Card(B) or Card(A) = Card(B)

- $ightharpoonup \operatorname{Card}(A) = \operatorname{the cardinal number of } A.$
- ► $Card(A) = Card(B) \iff A \sim B$ A and B can be put into a one-to-one correspondence.
- ▶ $Card(A) < Card(B) \iff A \sim B_0 \subset B \text{ but not } B \sim A_0 \subset A.$
- ▶ $Card(A) \leq Card(B) \iff$ either Card(A) < Card(B) or Card(A) = Card(B).

- ► The physical continuum (time).
- ► The geometrical continuum (straight line).
- ▶ The arithmetical continuum (reals \mathbb{R}).
- ▶ The set-theoretical continuum (powerset $\mathcal{P}(\mathbb{N})$ of naturals \mathbb{N}).
- $\mathbb{N} := \{0, 1, \dots, n, \dots\}, \ 2^{\mathbb{N}} := \{f : \mathbb{N} \to \{0, 1\}\}.$
- ▶ Theorem. $2^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

- ► The physical continuum (time).
- ► The geometrical continuum (straight line).
- ▶ The arithmetical continuum (reals \mathbb{R}).
- ▶ The set-theoretical continuum (powerset $\mathcal{P}(\mathbb{N})$ of naturals \mathbb{N}).
- $\mathbb{N} := \{0, 1, \dots, n, \dots\}, \ 2^{\mathbb{N}} := \{f : \mathbb{N} \to \{0, 1\}\}.$
- ▶ Theorem. $2^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

- ► The physical continuum (time).
- ► The geometrical continuum (straight line).
- ▶ The arithmetical continuum (reals \mathbb{R}).
- ▶ The set-theoretical continuum (powerset $\mathcal{P}(\mathbb{N})$ of naturals \mathbb{N}).
- $\mathbb{N} := \{0, 1, \dots, n, \dots\}, \ 2^{\mathbb{N}} := \{f : \mathbb{N} \to \{0, 1\}\}.$
- ▶ Theorem. $2^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

- ► The physical continuum (time).
- ► The geometrical continuum (straight line).
- ▶ The arithmetical continuum (reals \mathbb{R}).
- ▶ The set-theoretical continuum (powerset $\mathcal{P}(\mathbb{N})$ of naturals \mathbb{N}).
- $\mathbb{N} := \{0, 1, \dots, n, \dots\}, \quad 2^{\mathbb{N}} := \{f : \mathbb{N} \to \{0, 1\}\}.$
- ▶ Theorem. $2^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

- ► The physical continuum (time).
- ► The geometrical continuum (straight line).
- ▶ The arithmetical continuum (reals \mathbb{R}).
- ▶ The set-theoretical continuum (powerset $\mathcal{P}(\mathbb{N})$ of naturals \mathbb{N}).
- $\mathbb{N} := \{0, 1, \dots, n, \dots\}, \quad 2^{\mathbb{N}} := \{f : \mathbb{N} \to \{0, 1\} \}.$
- ▶ Theorem. $2^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

- ► The physical continuum (time).
- ► The geometrical continuum (straight line).
- ightharpoonup The arithmetical continuum (reals \mathbb{R}).
- ▶ The set-theoretical continuum (powerset $\mathcal{P}(\mathbb{N})$ of naturals \mathbb{N}).
- $\mathbb{N} := \{0, 1, \dots, n, \dots\}, \quad 2^{\mathbb{N}} := \{f : \mathbb{N} \to \{0, 1\} \}.$
- ▶ Theorem. $2^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N}) \sim \mathbb{R}$.

Cantor's Continuum Hypothesis (1878)

- ▶ Definitions. Card($\{0,1\ldots,n-1\}$):= n.
 - ✓ A is finite \iff Card(A) = Card(n) for some $n \in \mathbb{N}$.
 - ✓ A is countable \iff Card(A) = Card(N).
 - ✓ A is continual \iff Card(A) = Card(R).
- Continuum Hypothesis (CH).
 Every A ⊂ [0, 1] is either finite, or countable, or continua
- ► Cantor (1878): Ein Beitrag zur Mannigfaltigketslehre. J. Reine und Angew. Math, Bd. 84, S. 242–258.

Cantor's Continuum Hypothesis (1878)

- ▶ Definitions. Card($\{0,1\ldots,n-1\}$):= n.
 - ✓ A is finite \iff Card(A) = Card(n) for some $n \in \mathbb{N}$.
 - ✓ A is countable \iff Card(A) = Card(N).
 - ✓ A is continual \iff Card(A) = Card(R).
- Continuum Hypothesis (CH).
 Every A ⊂ [0, 1] is either finite, or countable, or continual.
- ► Cantor (1878): Ein Beitrag zur Mannigfaltigketslehre. J. Reine und Angew. Math, Bd. 84, S. 242–258.

Cantor's Continuum Hypothesis (1878)

- ▶ Definitions. Card($\{0,1\ldots,n-1\}$):= n.
 - ✓ A is finite \iff Card(A) = Card(n) for some $n \in \mathbb{N}$.
 - ✓ A is countable \iff Card(A) = Card(N).
 - ✓ A is continual \iff Card(A) = Card(\mathbb{R}).
- ► Continuum Hypothesis (CH).
 - Every $A \subset [0, 1]$ is either finite, or countable, or continual.
- Cantor (1878): Ein Beitrag zur Mannigfaltigketslehre. J. Reine und Angew. Math, Bd. 84, S. 242–258.

The Least Uncountable Cardinal

- ▶ Notation. $\omega_0 := \operatorname{Card}(\mathbb{N}), \ 2^{\omega_0} = \operatorname{Card}(\mathcal{P}(\mathbb{N})) = \operatorname{Card}(2^{\mathbb{N}}).$
- ▶ Theorem (Cantor, 1874). The continuum is uncountable:

$$\boxed{\omega_0 < 2^{\omega_0}}$$
 (Card(N) < Card(R)).

- Proof: By the Diagonal Argument.
- ▶ Cardinals are well ordered ⇒

 \exists the least uncountable cardinal ω_1 :

$$\operatorname{Card}(\mathbb{N}) = \omega_0 < \omega_1 \leq 2^{\omega_0} = \operatorname{Card}(\mathbb{R}).$$

Cantor's Continuum Problem (1978)

▶ The Continuum Problem: Is there any cardinal number between $Card(\mathbb{N})$ and $Card(\mathcal{P}(\mathbb{N}))$?

$$\operatorname{Card}(\mathbb{N}) = \omega_0 < \boxed{\omega_1 < 2^{\omega_0}} = \operatorname{Card}(\mathbb{R})$$
?

► The Continuum Hypothesis, CH $\equiv \omega_1 = 2^{\omega_0}$, says that there is no such cardinal number:

$$\operatorname{Card}(\mathbb{N}) = \omega_0 < \left| \omega_1 = 2^{\omega_0} \right| = \operatorname{Card}(\mathbb{R}).$$

Cantor's Continuum Problem (1978)

▶ The Continuum Problem: Is there any cardinal number between $Card(\mathbb{N})$ and $Card(\mathcal{P}(\mathbb{N}))$?

$$\operatorname{Card}(\mathbb{N}) = \omega_0 < \boxed{\omega_1 < 2^{\omega_0}} = \operatorname{Card}(\mathbb{R})$$
?

► The Continuum Hypothesis, $CH \equiv \omega_1 = 2^{\omega_0}$, says that there is no such cardinal number:

$$\operatorname{Card}(\mathbb{N}) = \omega_0 < \left| \omega_1 = 2^{\omega_0} \right| = \operatorname{Card}(\mathbb{R}).$$

- ► Cantor: "I see it, but I don't believe it!" $[0,1] \sim [0,1]^n$.
- ► Hadamard, Hurwitz: Zürich, ICM-1897, Applications.
- ► Hilbert: "No one shall expel us from the Paradise that Cantor has created."
- ► Hilbert: 23 Mathematical Problems, Paris, ICM-1900.
- ▶ Problem 1: Cantor's Continuum Hypothesis (CH).

- ► Cantor: "I see it, but I don't believe it!" $[0,1] \sim [0,1]^n$.
- ► Hadamard, Hurwitz: Zürich, ICM-1897, Applications.
- Hilbert: "No one shall expel us from the Paradise that Cantor has created."
- ► Hilbert: 23 Mathematical Problems, Paris, ICM-1900.
- ▶ Problem 1: Cantor's Continuum Hypothesis (CH).

- ► Cantor: "I see it, but I don't believe it!" $[0,1] \sim [0,1]^n$.
- Hadamard, Hurwitz: Zürich, ICM-1897, Applications.
- ► Hilbert: "No one shall expel us from the Paradise that Cantor has created."
- ► Hilbert: 23 Mathematical Problems, Paris, ICM-1900.
- ▶ Problem 1: Cantor's Continuum Hypothesis (CH).

- ► Cantor: "I see it, but I don't believe it!" $[0,1] \sim [0,1]^n$.
- Hadamard, Hurwitz: Zürich, ICM-1897, Applications.
- ► Hilbert: "No one shall expel us from the Paradise that Cantor has created."
- ▶ Hilbert: 23 Mathematical Problems, Paris, ICM-1900.
- ▶ Problem 1: Cantor's Continuum Hypothesis (CH).

- ► Cantor: "I see it, but I don't believe it!" $[0,1] \sim [0,1]^n$.
- Hadamard, Hurwitz: Zürich, ICM-1897, Applications.
- ► Hilbert: "No one shall expel us from the Paradise that Cantor has created."
- ▶ Hilbert: 23 Mathematical Problems, Paris, ICM-1900.
- ▶ Problem 1: Cantor's Continuum Hypothesis (CH).

► ZF = Zermelo-Fraenkel axiomatic set theory (Zermelo, 1907; Fraenkel and Skolem, 1922: von Neumann, 1925).

AC = Axiom of Choice (Zermelo, 1904).

- ▶ **W** is the universe of sets, the von Neumann universe.
- ightharpoonup is the universe of constructible sets.
- $ightharpoonup \mathbb{V}^{(\mathbb{B})}$ is the universe of Boolean valued sets.
- $\blacktriangleright \ \mathbb{L} \subset \mathbb{V} \subset \mathbb{V}^{(\mathbb{B})} \qquad (\mathbb{V} \rightleftarrows \mathbb{V}^{(\{0,1\})} \subset \mathbb{V}^{(\mathbb{B})}).$
- ▶ Theorem. $V \models ZFC$.

➤ ZF = Zermelo–Fraenkel axiomatic set theory (Zermelo, 1907; Fraenkel and Skolem, 1922: von Neumann, 1925).

AC = Axiom of Choice (Zermelo, 1904).

- ▶ **V** is the universe of sets, the von Neumann universe.
- ▶ **L** is the universe of constructible sets.
- $ightharpoonup \mathbb{V}^{(\mathbb{B})}$ is the universe of Boolean valued sets.
- $\blacktriangleright \ \mathbb{L} \subset \mathbb{V} \subset \mathbb{V}^{(\mathbb{B})} \qquad (\mathbb{V} \rightleftarrows \mathbb{V}^{(\{0,1\})} \subset \mathbb{V}^{(\mathbb{B})}).$
- ▶ Theorem. $V \models ZFC$.

➤ ZF = Zermelo–Fraenkel axiomatic set theory (Zermelo, 1907; Fraenkel and Skolem, 1922: von Neumann, 1925).

AC = Axiom of Choice (Zermelo, 1904).

- ▶ **V** is the universe of sets, the von Neumann universe.
- ▶ **L** is the universe of constructible sets.
- $ightharpoonup \mathbb{V}^{(\mathbb{B})}$ is the universe of Boolean valued sets.
- $\blacktriangleright \ \mathbb{L} \subset \mathbb{V} \subset \mathbb{V}^{(\mathbb{B})} \qquad (\mathbb{V} \rightleftarrows \mathbb{V}^{(\{0,1\})} \subset \mathbb{V}^{(\mathbb{B})}).$
- ▶ Theorem. $\mathbb{V} \models \mathbb{ZFC}$.

➤ ZF = Zermelo–Fraenkel axiomatic set theory (Zermelo, 1907; Fraenkel and Skolem, 1922: von Neumann, 1925).

AC = Axiom of Choice (Zermelo, 1904).

- ▶ **V** is the universe of sets, the von Neumann universe.
- ▶ L is the universe of constructible sets.
- $ightharpoonup \mathbb{V}^{(\mathbb{B})}$ is the universe of Boolean valued sets.
- $\blacktriangleright \ \mathbb{L} \subset \mathbb{V} \subset \mathbb{V}^{(\mathbb{B})} \qquad (\mathbb{V} \rightleftarrows \mathbb{V}^{(\{0,1\})} \subset \mathbb{V}^{(\mathbb{B})}).$
- ▶ Theorem. $\mathbb{V} \models \mathbb{ZFC}$.

➤ ZF = Zermelo–Fraenkel axiomatic set theory (Zermelo, 1907; Fraenkel and Skolem, 1922: von Neumann, 1925).

AC = Axiom of Choice (Zermelo, 1904).

- ▶ **V** is the universe of sets, the von Neumann universe.
- ▶ L is the universe of constructible sets.
- $ightharpoonup \mathbb{V}^{(\mathbb{B})}$ is the universe of Boolean valued sets.
- $\blacktriangleright \ \mathbb{L} \subset \mathbb{V} \subset \mathbb{V}^{(\mathbb{B})} \qquad (\mathbb{V} \rightleftarrows \mathbb{V}^{(\{0,1\})} \subset \mathbb{V}^{(\mathbb{B})}).$
- ▶ Theorem. $\mathbb{V} \models \mathbb{Z}F\mathbb{C}$.

- ► ZF = Zermelo-Fraenkel axiomatic set theory (Zermelo, 1907; Fraenkel and Skolem, 1922: von Neumann, 1925).
 - AC = Axiom of Choice (Zermelo, 1904).

- ▶ **V** is the universe of sets, the von Neumann universe.
- ▶ L is the universe of constructible sets.
- $ightharpoonup \mathbb{V}^{(\mathbb{B})}$ is the universe of Boolean valued sets.
- $\blacktriangleright \ \mathbb{L} \subset \mathbb{V} \subset \mathbb{V}^{(\mathbb{B})} \qquad (\mathbb{V} \rightleftarrows \mathbb{V}^{(\{0,1\})} \subset \mathbb{V}^{(\mathbb{B})}).$
- ▶ Theorem. $\mathbb{V} \models \mathrm{ZFC}$.

Kurt Friedrich Gödel

American mathematician,
Gödel incompleteness theorems, consistency of CH with ZFC
(April 28, 1906, Brünn, Austria-Hungary —
January 14, 1978, Princeton, New Jersey, United States)

K. Gödel: The Relative Consistency of CH (1939)

- ► Theorem (Gödel, 1938–1940): ZF is consistent ⇒ ZFC + CH is consistent.
- ▶ Proof:
 - (1) $ZF \vdash (\mathbb{L} \models ZFC)$.
 - (2) $ZF \vdash (\mathbb{L} \models CH)$.

The universe of constructible sets \mathbb{L} forms an "inner" model of ZFC + CH within ZF.

► Corollary. CH cannot be disproved from the standard ZFC axioms of set theory.

K. Gödel: The Relative Consistency of CH (1939)

- ► Theorem (Gödel, 1938–1940): ZF is consistent ⇒ ZFC + CH is consistent.
- ► Proof:
 - (1) $ZF \vdash (\mathbb{L} \models ZFC)$.
 - (2) $ZF \vdash (\mathbb{L} \models CH)$.

The universe of constructible sets \mathbb{L} forms an "inner" model of ZFC+CH within ZF.

► Corollary. CH cannot be disproved from the standard ZFC axioms of set theory.

K. Gödel: The Relative Consistency of CH (1939)

- ► Theorem (Gödel, 1938–1940):
 ZF is consistent ⇒ ZFC + CH is consistent.
- ► Proof:
 - (1) $ZF \vdash (\mathbb{L} \models ZFC)$.
 - (2) $ZF \vdash (\mathbb{L} \models CH)$.

The universe of constructible sets $\mathbb L$ forms an "inner" model of ZFC+CH within ZF.

Corollary. CH cannot be disproved from the standard ZFC axioms of set theory.

Paul Joseph Cohen

American mathematician,
Cohen forcing and independence of the Continuum hypothesis
(April 2, 1934,Long Branch, New Jersey —
March 23, 2007, Stanford, California)

- ► Theorem (Cohen, 1963).
 ZF is consistent ⇒ ZFC + ¬CH is consistent.
- ▶ Proof:
 - (1) The universe of Boolean valued sets $\mathbb{V}^{(B)}$ forms an "inner" model of ZFC within ZFC, i.e.,

$$ZFC \vdash (V^{(B)} \models ZFC).$$

(2) There exists a complete Boolean algebra $\mathbb B$ with

$$ZFC \vdash (\mathbb{V}^{(\mathbb{B})} \models 2^{\omega_0} \neq \omega_1).$$

- ► Corollary. CH cannot be proved within ZFC.
- ► Theorem. CH is logically independent of ZFC.

- ► Theorem (Cohen, 1963).
 ZF is consistent ⇒ ZFC + ¬CH is consistent.
- ► Proof:
 - (1) The universe of Boolean valued sets $\mathbb{V}^{(\mathbb{B})}$ forms an "inner" model of ZFC within ZFC, i.e.,

$$ZFC \vdash (\mathbb{V}^{(\mathbb{B})} \models ZFC).$$

(2) There exists a complete Boolean algebra $\ensuremath{\mathbb{B}}$ with

$$ZFC \vdash (\mathbb{V}^{(\mathbb{B})} \models 2^{\omega_0} \neq \omega_1).$$

- ► Corollary. CH cannot be proved within ZFC.
- ► Theorem. CH is logically independent of ZFC.

- ► Theorem (Cohen, 1963).
 ZF is consistent ⇒ ZFC + ¬CH is consistent.
- ► Proof:
 - (1) The universe of Boolean valued sets $\mathbb{V}^{(\mathbb{B})}$ forms an "inner" model of ZFC within ZFC, i.e.,

$$ZFC \vdash (\mathbb{V}^{(\mathbb{B})} \models ZFC).$$

(2) There exists a complete Boolean algebra $\ensuremath{\mathbb{B}}$ with

$$ZFC \vdash (\mathbb{V}^{(\mathbb{B})} \models 2^{\omega_0} \neq \omega_1).$$

- ► Corollary. CH cannot be proved within ZFC.
- ► Theorem. CH is logically independent of ZFC.

- ► Theorem (Cohen, 1963).
 ZF is consistent ⇒ ZFC + ¬CH is consistent.
- ► Proof:
 - (1) The universe of Boolean valued sets $\mathbb{V}^{(\mathbb{B})}$ forms an "inner" model of ZFC within ZFC, i.e.,

$$ZFC \vdash (\mathbb{V}^{(\mathbb{B})} \models ZFC).$$

(2) There exists a complete Boolean algebra $\ensuremath{\mathbb{B}}$ with

$$ZFC \vdash (\mathbb{V}^{(\mathbb{B})} \models 2^{\omega_0} \neq \omega_1).$$

- ► Corollary. CH cannot be proved within ZFC.
- ▶ Theorem. CH is logically independent of ZFC.

Boolean Valued Models (1967)

- D. Scott, R. Solovay, and P. Vopěnka (1967).
 - ✓ A comprehensive presentation of the Cohen forcing method.
 - \checkmark This gave rise to the Boolean valued models of set theory.
- ▶ D. Scott (1977): "It was in 1963 that we were hit by a real bomb, however, when Paul J. Cohen discovered his method of 'forcing', which started a long chain reaction of independence results ... Set theory could never be the same after Cohen."

Boolean Valued Models (1967)

- D. Scott, R. Solovay, and P. Vopěnka (1967).
 - ✓ A comprehensive presentation of the Cohen forcing method.
 - ✓ This gave rise to the Boolean valued models of set theory.
- ▶ D. Scott (1977): "It was in 1963 that we were hit by a real bomb, however, when Paul J. Cohen discovered his method of 'forcing', which started a long chain reaction of independence results ... Set theory could never be the same after Cohen."

Leonid Vitaliyevich Kantorovich

Russian mathematician, Nobel Laureate in Economics, linear programming, Kantorovich spaces (January 19, 1912, Saint Petersburg, Russian Empire — April 7, 1986, Moscow, USSR)

Kantorovich Spaces (1935)

- Definition. A vector lattice is a real vector space X with some partial order ≤ such that there exist
 - $\checkmark x \lor y := \sup\{x, y\}, \text{ the } join \text{ of } x \text{ and } y \text{ anf } y \text{ and }$
 - \checkmark x ∧ y:= inf{x,y}, the *meet* of x and y for all x, y ∈ X, while the *positive cone*
 - $\checkmark X_+ := \{x \in X : x \ge 0\}$ of X has the properties
 - $\checkmark X_+ + X_+ \subset X_+, \quad \mathbb{R}_+ \cdot X_+ \subset X_+.$
- ▶ Definition. A vector lattice X is a Kantorovich space if each nonempty order bounded set in X has the supremum and infinmum:
 - $U \subset [a,b] := \{x \in X : a \le x \le b\} \implies \exists \sup(U), \inf(U) \in X$

Kantorovich Spaces (1935)

- Definition. A vector lattice is a real vector space X with some partial order ≤ such that there exist
 - ✓ $x \lor y := \sup\{x, y\}$, the *join* of x and y anf ✓ $x \land y := \inf\{x, y\}$, the *meet* of x and y for all $x, y \in X$,
 - while the *positive cone*
 - \checkmark X_+ := {x ∈ X : x ≥ 0} of X has the properties
 - $\checkmark X_+ + X_+ \subset X_+, \quad \mathbb{R}_+ \cdot X_+ \subset X_+.$
- ▶ Definition. A vector lattice X is a Kantorovich space if each nonempty order bounded set in X has the supremum and infinmum:
 - $U \subset [a,b] := \{x \in X : a \le x \le b\} \implies \exists \sup(U), \inf(U) \in X.$

- **Examples**. $L^p(\Omega, \Sigma, \mu)$, I^p $(1 \le p \le \infty)$, c, and c_0 .
- ▶ Theorem (Stone, 1937, 1948; Ogasawara, 1944). C(Q) is a Kantorovich space $\iff Q$ is extremally disconnected.
- ▶ Definition. Let H be a Hilbert space and $B_{sa}(H)$ the space of all selfadjoint bounded linear operators in H. The order on $B_{sa}(H)$:

$$S \leq T \iff (\forall h \in H) (Sh, h) \leq (Th, h) (S, T \in B_{sa}(H)).$$

- ▶ Example. $(B_{sa}(H), \leq)$ is an ordered vector space. Each strongly closed subalgebra $A \subset B_{sa}(H)$ is a Kantorovich space.
- ► Example. Let \(\overline{A} \) is a set of all densely defined selfadjoint linear operators in \(H \) whose spectral functions are in \(A \). Then \(\overline{A} \) is a Kantorovich space.

- **Examples.** $L^p(\Omega, \Sigma, \mu)$, I^p $(1 \le p \le \infty)$, c, and c_0 .
- ▶ Theorem (Stone, 1937, 1948; Ogasawara, 1944). C(Q) is a Kantorovich space $\iff Q$ is extremally disconnected.
- ▶ Definition. Let H be a Hilbert space and $B_{sa}(H)$ the space of all selfadjoint bounded linear operators in H. The order on $B_{sa}(H)$:

$$S \leq T \iff (\forall h \in H) (Sh, h) \leq (Th, h) (S, T \in B_{sa}(H)).$$

- ▶ Example. $(B_{sa}(H), \leq)$ is an ordered vector space. Each strongly closed subalgebra $A \subset B_{sa}(H)$ is a Kantorovich space.
- ► Example. Let \(\overline{A}\) is a set of all densely defined selfadjoint linear operators in \(H\) whose spectral functions are in \(A.\) Then \(\overline{A}\) is a Kantorovich space.

- **Examples.** $L^p(\Omega, \Sigma, \mu)$, I^p $(1 \le p \le \infty)$, c, and c_0 .
- ▶ Theorem (Stone, 1937, 1948; Ogasawara, 1944). C(Q) is a Kantorovich space $\iff Q$ is extremally disconnected.
- ▶ Definition. Let H be a Hilbert space and $B_{sa}(H)$ the space of all selfadjoint bounded linear operators in H. The order on $B_{sa}(H)$:

$$S \leq T \iff (\forall h \in H) (Sh, h) \leq (Th, h) (S, T \in B_{sa}(H)).$$

- ▶ Example. $(B_{sa}(H), \leq)$ is an ordered vector space. Each strongly closed subalgebra $A \subset B_{sa}(H)$ is a Kantorovich space.
- Example. Let A is a set of all densely defined selfadjoint linear operators in H whose spectral functions are in A. Then A is a Kantorovich space.

- **Examples.** $L^p(\Omega, \Sigma, \mu)$, I^p $(1 \le p \le \infty)$, c, and c_0 .
- ▶ Theorem (Stone, 1937, 1948; Ogasawara, 1944). C(Q) is a Kantorovich space $\iff Q$ is extremally disconnected.
- ▶ Definition. Let H be a Hilbert space and $B_{sa}(H)$ the space of all selfadjoint bounded linear operators in H. The order on $B_{sa}(H)$:

$$S \leq T \iff (\forall h \in H) (Sh, h) \leq (Th, h) (S, T \in B_{sa}(H)).$$

- ▶ Example. $(B_{sa}(H), \leq)$ is an ordered vector space. Each strongly closed subalgebra $A \subset B_{sa}(H)$ is a Kantorovich space.
- ► Example. Let \(\overline{A}\) is a set of all densely defined selfadjoint linear operators in \(H\) whose spectral functions are in \(A.\) Then \(\overline{A}\) is a Kantorovich space.

- **Examples.** $L^p(\Omega, \Sigma, \mu)$, I^p $(1 \le p \le \infty)$, c, and c_0 .
- ▶ Theorem (Stone, 1937, 1948; Ogasawara, 1944). C(Q) is a Kantorovich space $\iff Q$ is extremally disconnected.
- ▶ Definition. Let H be a Hilbert space and $B_{sa}(H)$ the space of all selfadjoint bounded linear operators in H. The order on $B_{sa}(H)$:

$$S \leq T \iff (\forall h \in H) (Sh, h) \leq (Th, h) (S, T \in B_{sa}(H)).$$

- **Example.** $(B_{sa}(H), \leq)$ is an ordered vector space. Each strongly closed subalgebra $A \subset B_{sa}(H)$ is a Kantorovich space.
- ► Example. Let \(\overline{A} \) is a set of all densely defined selfadjoint linear operators in \(H \) whose spectral functions are in \(A \). Then \(\overline{A} \) is a Kantorovich space.

- ▶ A Kantorovich space is also called a Dedekind complete vector lattice. The concept (under the name of a "complete semiordered vector space") appeared in Kantorovich's first fundamental article on this topic:
- L. V. Kantorovich. *Dokl. Akad. Nauk SSSR.* 4(1–2) (1935), 11–14, where he wrote:
- "In this note, I define a new type of space that I call a semiordered linear space. The introduction of such a space allows us to study linear operations of one abstract class (those with values in such a space) as linear functionals."
- Here Kantorovich stated the definitive heuristic transfer principle for Dedekind complete vector lattices.

- ▶ A Kantorovich space is also called a Dedekind complete vector lattice. The concept (under the name of a "complete semiordered vector space") appeared in Kantorovich's first fundamental article on this topic:
- ► L. V. Kantorovich. *Dokl. Akad. Nauk SSSR.* 4(1–2) (1935), 11–14, where he wrote:
- "In this note, I define a new type of space that I call a semiordered linear space. The introduction of such a space allows us to study linear operations of one abstract class (those with values in such a space) as linear functionals."
- Here Kantorovich stated the definitive heuristic transfer principle for Dedekind complete vector lattices.

- ▶ A Kantorovich space is also called a Dedekind complete vector lattice. The concept (under the name of a "complete semiordered vector space") appeared in Kantorovich's first fundamental article on this topic:
- ► L. V. Kantorovich. *Dokl. Akad. Nauk SSSR.* 4(1–2) (1935), 11–14, where he wrote:
- "In this note, I define a new type of space that I call a semiordered linear space. The introduction of such a space allows us to study linear operations of one abstract class (those with values in such a space) as linear functionals."
- Here Kantorovich stated the definitive heuristic transfer principle for Dedekind complete vector lattices.

- ▶ A Kantorovich space is also called a Dedekind complete vector lattice. The concept (under the name of a "complete semiordered vector space") appeared in Kantorovich's first fundamental article on this topic:
- ► L. V. Kantorovich. *Dokl. Akad. Nauk SSSR.* 4(1–2) (1935), 11–14, where he wrote:
- "In this note, I define a new type of space that I call a semiordered linear space. The introduction of such a space allows us to study linear operations of one abstract class (those with values in such a space) as linear functionals."
- Here Kantorovich stated the definitive heuristic transfer principle for Dedekind complete vector lattices.

Boolean Valued Analysis: The Beginning (1977)

- ▶ D. Scott (1969): We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good arguments.
- ► E. I. Gordon, *Dokl. Akad. Nauk SSSR*, **237**(4) (1977), 773-775.
- ► Theorem. The interpretation of the reals in an appropriate Boolean valued model of set theory is a Kantorovich space.

Boolean Valued Analysis: The Beginning (1977)

- ▶ D. Scott (1969): We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good arguments.
- ► E. I. Gordon, Dokl. Akad. Nauk SSSR, 237(4) (1977), 773-775.
- ► Theorem. The interpretation of the reals in an appropriate Boolean valued model of set theory is a Kantorovich space.

Boolean Valued Analysis: The Beginning (1977)

- ▶ D. Scott (1969): We must ask whether there is any interest in these nonstandard models aside from the independence proof; that is do they have any mathematical interest? The answer must be yes, but we cannot yet give a really good arguments.
- ► E. I. Gordon, *Dokl. Akad. Nauk SSSR*, **237**(4) (1977), 773-775.
- ► Theorem. The interpretation of the reals in an appropriate Boolean valued model of set theory is a Kantorovich space.

Boolean Valued Analysis: The Beginning (1978)

- ► G. Takeuti, Two Applications of Logic to Mathematics, Princeton Univ. Press, Princeton, (1978).
 - ✓ The vector lattice of (cosets of) measurable functions can be considered as Boolean valued reals.
 - ✓ The commutative algebra of unbounded selfadjoint operators is another sample of Boolean valued reals.
 - ✓ Coined the term "Boolean valued analysis" (1979).

Gordon's Theorem (1977)

- ► The depth and universality of Kantorovich's principle were demonstrated within Boolean valued analysis.
- ▶ Gordon's Theorem (1977). Let \mathcal{R} be the field of reals in $\mathbb{V}^{(\mathbb{B})}$. The algebraic structure $R := \mathcal{R} \downarrow \in \mathbb{V}$ (with the descended operations and order) is a (universally complete) Kantorovich space with $\mathbb{B} \simeq \mathbb{P}(R)$
- ▶ The converse is also true: Each Kantorovich space X is isomorphic to an order ideal in $\mathcal{R} \downarrow$ with $\mathcal{R} \in \mathbb{V}^{(\mathbb{B})}$ and $\mathbb{B} \simeq \mathbb{P}(X)$.

Gordon's Theorem (1977)

- ► The depth and universality of Kantorovich's principle were demonstrated within Boolean valued analysis.
- ▶ Gordon's Theorem (1977). Let \mathcal{R} be the field of reals in $\mathbb{V}^{(\mathbb{B})}$. The algebraic structure $\mathsf{R} := \mathcal{R} \downarrow \in \mathbb{V}$ (with the descended operations and order) is a (universally complete) Kantorovich space with $\mathbb{B} \simeq \mathbb{P}(\mathsf{R})$.
- ▶ The converse is also true: Each Kantorovich space X is isomorphic to an order ideal in $\mathcal{R} \downarrow$ with $\mathcal{R} \in \mathbb{V}^{(\mathbb{B})}$ and $\mathbb{B} \simeq \mathbb{P}(X)$.

Gordon's Theorem (1977)

- ► The depth and universality of Kantorovich's principle were demonstrated within Boolean valued analysis.
- ▶ Gordon's Theorem (1977). Let \mathcal{R} be the field of reals in $\mathbb{V}^{(\mathbb{B})}$. The algebraic structure $R := \mathcal{R} \downarrow \in \mathbb{V}$ (with the descended operations and order) is a (universally complete) Kantorovich space with $\mathbb{B} \simeq \mathbb{P}(R)$.
- ▶ The converse is also true: Each Kantorovich space X is isomorphic to an order ideal in $\mathcal{R} \downarrow$ with $\mathcal{R} \in \mathbb{V}^{(\mathbb{B})}$ and $\mathbb{B} \simeq \mathbb{P}(X)$.

Von Neumann Universe

Boolean Valued Universe

What Is Boolean Valued Analysis?

- ▶ Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially-trimmed Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires some ascending—descending machinery to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.

What Is Boolean Valued Analysis?

- ▶ Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- ▶ The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially-trimmed Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires some ascending—descending machinery to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.

What Is Boolean Valued Analysis?

- ▶ Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- ▶ The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially-trimmed Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires some ascending—descending machinery to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.

A Boolean Valued Telescope

Let $X\subset \mathbb{V}$ and $\mathbb{X}\subset \mathbb{V}^{(\mathbb{B})}$ be two classes of mathematical objects.

Suppose we are able to prove the result:

- ▶ Boolean Valued Representation. Every $X \in X$ embeds into an Boolean valued model, becoming an object $X \in X$ within $\mathbb{V}^{(\mathbb{B})}$.
- ▶ Boolean Valued Transfer Principle. Every theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X} .
- ▶ Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending–descending) and the principles of Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean Valued Analysis, Moscow, Nauka (2005).
 Boolean Valued Analysis, Dordrecht, Kluwer (1999).

- Let X ⊂ V and X ⊂ V(B) be two classes of mathematical objects.
 Suppose we are able to prove the result:
- ▶ Boolean Valued Representation. Every $X \in X$ embeds into an Boolean valued model, becoming an object $X \in X$ within $V^{(B)}$.
- ▶ Boolean Valued Transfer Principle. Every theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X} .
- ▶ Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending–descending) and the principles of Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean Valued Analysis, Moscow, Nauka (2005).
 Boolean Valued Analysis, Dordrecht, Kluwer (1999).

- Let X ⊂ V and X ⊂ V(B) be two classes of mathematical objects.
 Suppose we are able to prove the result:
- ▶ Boolean Valued Representation. Every $X \in X$ embeds into an Boolean valued model, becoming an object $X \in X$ within $V^{(B)}$.
- ▶ Boolean Valued Transfer Principle. Every theorem about X within ZFC has its counterpart for the original object X interpreted as a Boolean valued object X.
- ▶ Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending–descending) and the principles of Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze, *Introduction to Boolean Valued Analysis*, Moscow, Nauka (2005).

 Boolean Valued Analysis, Dordrecht, Kluwer (1999).

- Let X ⊂ V and X ⊂ V(B) be two classes of mathematical objects.
 Suppose we are able to prove the result:
- ▶ Boolean Valued Representation. Every $X \in X$ embeds into an Boolean valued model, becoming an object $X \in X$ within $V^{(B)}$.
- ▶ Boolean Valued Transfer Principle. Every theorem about X within ZFC has its counterpart for the original object X interpreted as a Boolean valued object X.
- ▶ Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending–descending) and the principles of Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze, *Introduction to Boolean Valued Analysis*, Moscow, Nauka (2005).

 Boolean Valued Analysis, Dordrecht, Kluwer (1999).

- Let X ⊂ V and X ⊂ V(B) be two classes of mathematical objects.
 Suppose we are able to prove the result:
- ▶ Boolean Valued Representation. Every $X \in X$ embeds into an Boolean valued model, becoming an object $X \in X$ within Y(B)
- ▶ Boolean Valued Transfer Principle. Every theorem about \mathcal{X} within ZFC has its counterpart for the original object X interpreted as a Boolean valued object \mathcal{X} .
- ▶ Boolean Valued Machinery. Translation of theorems from $\mathcal{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ is carried out by the appropriate general operations (ascending–descending) and the principles of Boolean valued analysis.
- A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean Valued Analysis, Moscow, Nauka (2005).
 Boolean Valued Analysis, Dordrecht, Kluwer (1999).

Some Long Standing Problems

THE PROBLEM	Raised	REDUCED TO (BY	SOLVED
	BY	MEANS OF BA):	BY
Intrinsic	Kutateladze	Weakly compact	Kusraev
characterization	1976	convex sets	Kutateladze
of subdifferentials		of functionals	1982
General	loffe, Levin	Hahn-Banach and	Kusraev
desintegration in	Neumann	Radon–Nikodým	1984
Kantorovich spaces	1972/1977	theorems	
Kaplansky Problem:	Kaplansky	Homogeneity of	Ozawa
Homogeneity of a	1953	B(H) with H	1984
type I <i>AW*</i> -algebra		Hilbert space	

Some Long Standing Problems

THE PROBLEM	Raised	REDUCED TO (BY	SOLVED
	BY	MEANS OF BA):	BY
Order boundedness	Wickstead	Cauchy type	Gutman
of BP operators	1983	functional	Kusraev
		equations	1995, 2006
Maharam extension	Luxemburg	Daniel extension	Akilov
of a positive	Schep	of an elementary	Kolesnikov
operator	1978	integral	Kusraev
			1988
Classification of	Lotz	Classification of	Kusraev
injective Banach	Cartright	AL-space	2012
lattices	1975	$(L_1 \text{ spaces})$	

