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▶ 1963: P. J. Cohen (Forcing, Independence of CH).
▶ Contents:
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Georg Ferdinand Ludwig Philipp Cantor

German mathematician, the inventor of set theory
(March 3, 1845, Saint Petersburg, Russian Empire—

January 6, 1918, Halle, German Empire)



G. Cantor: The Problem of Uniqueness (1869–1972)

▶ Cantor’s first ten papers were on number theory (PhD, 1867).
▶ Heirich Eduard Heine (1869) proposed the problem of

uniqueness of representation of a function by a trigonometric
series.

▶ Uniqueness Problem (Heine, Dirichlet, Lipschitz, and
Riemann):

a0
2
+
∞∑

n=1

(an cos nx + bn sin nx) = 0 (x ∈ R \ F )

=⇒ an = bn = 0 (n ∈ N)?

▶ Definition. If YES then F is called a set of uniqueness.
▶ Cantor solved the problem if F = ∅ (1870) and F is finite

(1871).
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Cantor–Lebesgue Theorem (1872–1903)

▶ Definition. F (0) := F , F (1) := F ′, . . . F (n+1) := (F (n))′.
Cantor–Bendixson derivative F ′= {x ∈ F : x = limn xn, (xn) ⊂ F}.
▶ G. Cantor (1872). Let F ⊂ R be closed.

If F (n) = ∅ for some n ∈ N =⇒ F is a set of uniqueness.
▶ G. Cantor. Über die Ausdehnung eines Satzes aus der Theorie

der trigonometrischen Reihen. Math. Ann. 5, 123 (1872).
▶ It is a natural intension to continue
ω, ω + 1, . . . , ω2, . . . , ωω . . . , since the Cantor–Bendixson
process does not terminate in finitely many steps. This led
Cantor to the development of the theory of ordinals.

▶ Theorem (Lebesgue, 1903)
Each countable closed set F ⊂ R is a set of uniqueness.
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Cantor’s Set Theory: The Beginning (1874)

▶ Remark. An arbitrary countable set: S. Bernstein (1908),
W. H. Young (1909); the union of countable many sets of
uniqueness: N. Bari (1923).

▶ After 1872 Cantor never returned to the uniqueness problem.
▶ His search for the extensions allowing exceptional points led

him to the creation of set theory including the concepts of
ordinal and cardinal and the method of transfinite induction.

▶ Cantor (1874): Uber eine Eigenschaft des Inbegriffes aller
reellen algebraischen Zahlen. J. Reine und Angew. Math,
Bd. 77, S. 258–262.

▶ The beginning of set theory as a branch of mathematics.
▶ Explanation of the size of a set in terms of equipollency of two

sets.
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Cantor’s Set Theory: Cardinals

▶ Card(A) = the cardinal number of A.
▶ Card(A) = Card(B) ⇐⇒ A ∼ B

A and B can be put into a one-to-one correspondence.
▶ Card(A) < Card(B) ⇐⇒ A ∼ B0 ⊂ B but not B ∼ A0 ⊂ A.
▶ Card(A) ⩽ Card(B) ⇐⇒

either Card(A) < Card(B) or Card(A) = Card(B).
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What Is the Continuum?

▶ The physical continuum (time).
▶ The geometrical continuum (straight line).
▶ The arithmetical continuum (reals R).
▶ The set-theoretical continuum (powerset P(N) of naturals N).
▶ N := {0, 1, . . . , n, . . .}, 2N :=

{
f : N→ {0, 1}

}
.

▶ Theorem. 2N ∼ P(N) ∼ R.
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Cantor’s Continuum Hypothesis (1878)

▶ Definitions. Card({0, 1 . . . , n − 1}) := n.

✓ A is finite ⇐⇒ Card(A) = Card(n) for some n ∈ N.

✓ A is countable ⇐⇒ Card(A) = Card(N).

✓ A is continual ⇐⇒ Card(A) = Card(R).

▶ Continuum Hypothesis (CH).

Every A ⊂ [0, 1] is either finite, or countable, or continual.

▶ Cantor (1878): Ein Beitrag zur Mannigfaltigketslehre. J. Reine
und Angew. Math, Bd. 84, S. 242–258.
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The Least Uncountable Cardinal

▶ Notation. ω0 := Card(N), 2ω0 = Card(P(N)) = Card(2N).
▶ Theorem (Cantor, 1874). The continuum is uncountable:

ω0 < 2ω0 (Card(N) < Card(R)).

▶ Proof: By the Diagonal Argument.
▶ Cardinals are well ordered =⇒

∃ the least uncountable cardinal ω1:

Card(N) = ω0 < ω1 ≤ 2ω0 = Card(R).



Cantor’s Continuum Problem (1978)

▶ The Continuum Problem: Is there any cardinal number
between Card(N) and Card(P(N))?

Card(N) = ω0 < ω1 < 2ω0 = Card(R) ?

▶ The Continuum Hypothesis, CH ≡ ω1 = 2ω0 , says that there
is no such cardinal number:

Card(N) = ω0 < ω1 = 2ω0 = Card(R).
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Cantor: Naive Set Theory

▶ Cantor: “I see it, but I don’t believe it!” [0, 1] ∼ [0, 1]n .

▶ Hadamard, Hurwitz: Zürich, ICM-1897, Applications.
▶ Hilbert: “No one shall expel us from the Paradise that Cantor

has created.”
▶ Hilbert: 23 Mathematical Problems, Paris, ICM-1900.
▶ Problem 1: Cantor’s Continuum Hypothesis (CH).

“The investigations of Cantor...suggest a very plausible
theorem [namely, CH], which in spite of the most strenuous of
efforts, no one has succeeded in proving.”
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Zermelo–Fraenkel Axiomatic Set Theory

▶ ZF = Zermelo–Fraenkel axiomatic set theory (Zermelo, 1907;
Fraenkel and Skolem, 1922: von Neumann, 1925).
AC = Axiom of Choice (Zermelo, 1904).
ZFC = ZF+AC is the common foundation of mathematics.

▶ V is the universe of sets, the von Neumann universe.
▶ L is the universe of constructible sets.
▶ V

(B) is the universe of Boolean valued sets.
▶ L ⊂ V ⊂ V(B)

(
V⇄ V

({0,1}) ⊂ V(B)
)
.

▶ Theorem. V |= ZFC.
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ZFC = ZF+AC is the common foundation of mathematics.

▶ V is the universe of sets, the von Neumann universe.
▶ L is the universe of constructible sets.
▶ V
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Kurt Friedrich Gödel

American mathematician,
Gödel incompleteness theorems, consistency of CH with ZFC

(April 28, 1906, Brünn, Austria-Hungary —
January 14, 1978, Princeton, New Jersey, United States )



K. Gödel: The Relative Consistency of CH (1939)

▶ Theorem (Gödel, 1938–1940):
ZF is consistent =⇒ ZFC+ CH is consistent.

▶ Proof:

(1) ZF ⊢ (L |= ZFC).

(2) ZF ⊢ (L |= CH).

The universe of constructible sets L forms an “inner” model of
ZFC+ CH within ZF.

▶ Corollary. CH cannot be disproved from the standard ZFC
axioms of set theory.



K. Gödel: The Relative Consistency of CH (1939)
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Paul Joseph Cohen

American mathematician,
Cohen forcing and independence of the Continuum hypothesis

(April 2, 1934,Long Branch, New Jersey —
March 23, 2007, Stanford, California)



P.J.Cohen: The Relative Consistency of ¬CH (1963)

▶ Theorem (Cohen, 1963).
ZF is consistent =⇒ ZFC+ ¬CH is consistent.

▶ Proof:
(1) The universe of Boolean valued sets V(B) forms an “inner”
model of ZFC within ZFC, i.e.,

ZFC ⊢
(
V
(B) |= ZFC

)
.

(2) There exists a complete Boolean algebra B with

ZFC ⊢
(
V
(B) |= 2ω0 ̸= ω1

)
.

▶ Corollary. CH cannot be proved within ZFC.
▶ Theorem. CH is logically independent of ZFC.
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Boolean Valued Models (1967)

▶ D. Scott, R. Solovay, and P. Vopěnka (1967).
✓ A comprehensive presentation of the Cohen forcing method.
✓ This gave rise to the Boolean valued models of set theory.

▶ D. Scott (1977): “It was in 1963 that we were hit by a real
bomb, however, when Paul J. Cohen discovered his method of
‘forcing’, which started a long chain reaction of independence
results ... Set theory could never be the same after Cohen.”
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Leonid Vitaliyevich Kantorovich

Russian mathematician, Nobel Laureate in Economics,
linear programming, Kantorovich spaces

(January 19, 1912, Saint Petersburg, Russian Empire —
April 7, 1986, Moscow, USSR)



Kantorovich Spaces (1935)

▶ Definition. A vector lattice is a real vector space X with some
partial order ≤ such that there exist
✓ x ∨ y := sup{x , y}, the join of x and y anf
✓ x ∧ y := inf{x , y}, the meet of x and y for all x , y ∈ X ,
while the positive cone
✓ X+ := {x ∈ X : x ≥ 0} of X has the properties
✓ X+ + X+ ⊂ X+, R+ · X+ ⊂ X+.

▶ Definition. A vector lattice X is a Kantorovich space if each
nonempty order bounded set in X has the supremum and
infinmum:

U ⊂ [a, b] := {x ∈ X : a ≤ x ≤ b} =⇒ ∃ sup(U), inf(U) ∈ X .
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Kantorovich Spaces: Examples

▶ Examples. Lp(Ω,Σ, µ), lp (1 ≤ p ≤ ∞), c , and c0.
▶ Theorem (Stone, 1937, 1948; Ogasawara, 1944). C (Q) is a

Kantorovich space ⇐⇒ Q is extremally disconnected.
▶ Definition. Let H be a Hilbert space and Bsa(H) the space of

all selfadjoint bounded linear operators in H. The order on
Bsa(H):

S ≤ T ⇐⇒ (∀h ∈ H) (Sh, h) ≤ (Th, h)
(
S ,T ∈ Bsa(H)

)
.

▶ Example. (Bsa(H),≤) is an ordered vector space.
Each strongly closed subalgebra A ⊂ Bsa(H) is a Kantorovich
space.

▶ Example. Let A is a set of all densely defined selfadjoint linear
operators in H whose spectral functions are in A.
Then A is a Kantorovich space.
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L. V. Kantorovich: The Heuristics (1935)

▶ A Kantorovich space is also called a Dedekind complete vector
lattice. The concept (under the name of a “complete
semiordered vector space”) appeared in Kantorovich’s first
fundamental article on this topic:

▶ L. V. Kantorovich. Dokl. Akad. Nauk SSSR. 4(1–2) (1935),
11–14, where he wrote:

▶ “In this note, I define a new type of space that I call a
semiordered linear space. The introduction of such a space
allows us to study linear operations of one abstract class
(those with values in such a space) as linear functionals.”

▶ Here Kantorovich stated the definitive
heuristic transfer principle for Dedekind complete vector
lattices.
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Boolean Valued Analysis: The Beginning (1977)

▶ D. Scott (1969): We must ask whether there is any interest in
these nonstandard models aside from the independence proof;
that is do they have any mathematical interest? The answer
must be yes, but we cannot yet give a really good arguments.

▶ E. I. Gordon, Dokl. Akad. Nauk SSSR, 237(4) (1977), 773-775.
▶ Theorem. The interpretation of the reals in an appropriate

Boolean valued model of set theory is a Kantorovich space.
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Boolean Valued Analysis: The Beginning (1978)

▶ G. Takeuti, Two Applications of Logic to Mathematics,
Princeton Univ. Press, Princeton, (1978).

✓ The vector lattice of (cosets of) measurable functions can
be considered as Boolean valued reals.

✓ The commutative algebra of unbounded selfadjoint
operators is another sample of Boolean valued reals.

✓ Coined the term “Boolean valued analysis” (1979).



Gordon’s Theorem (1977)

▶ The depth and universality of Kantorovich’s principle were
demonstrated within Boolean valued analysis.

▶ Gordon’s Theorem (1977).
Let R be the field of reals in V(B). The algebraic structure
R := R↓ ∈ V (with the descended operations and order) is
a (universally complete) Kantorovich space with B ≃ P(R).

▶ The converse is also true: Each Kantorovich space X is
isomorphic to an order ideal in R↓ with R ∈ V(B) and
B ≃ P(X ).
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Interaction of Universes

Von Neumann Universe Boolean Valued Universe



What Is Boolean Valued Analysis?

▶ Boolean valued analysis is a branch of functional analysis
which uses a special model-theoretic technique and consists in
studying the properties of a mathematical object by means of
comparison between its representations in two different
set-theoretic models whose construction utilizes distinct
Boolean algebras.

▶ The von Neumann universe (Cantorian paradise) V and a
specially-trimmed Boolean valued universe V(B) are taken as
these models.

▶ The comparative analysis requires some ascending–descending
machinery to carry out the interplay between V and V(B).
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A Boolean Valued Telescope



What Is the Boolean Valued Transfer Principle?

▶ Let X ⊂ V and X ⊂ V(B) be two classes of mathematical
objects.
Suppose we are able to prove the result:

▶ Boolean Valued Representation. Every X ∈ X embeds into an
Boolean valued model, becoming an object X ∈ X within
V
(B).

▶ Boolean Valued Transfer Principle. Every theorem about X
within ZFC has its counterpart for the original object X
interpreted as a Boolean valued object X .

▶ Boolean Valued Machinery. Translation of theorems from
X ∈ V(B) to X ∈ V is carried out by the appropriate general
operations (ascending–descending) and the principles of
Boolean valued analysis.

▶ A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean
Valued Analysis, Moscow, Nauka (2005).
Boolean Valued Analysis, Dordrecht, Kluwer (1999).



What Is the Boolean Valued Transfer Principle?

▶ Let X ⊂ V and X ⊂ V(B) be two classes of mathematical
objects.
Suppose we are able to prove the result:

▶ Boolean Valued Representation. Every X ∈ X embeds into an
Boolean valued model, becoming an object X ∈ X within
V
(B).

▶ Boolean Valued Transfer Principle. Every theorem about X
within ZFC has its counterpart for the original object X
interpreted as a Boolean valued object X .

▶ Boolean Valued Machinery. Translation of theorems from
X ∈ V(B) to X ∈ V is carried out by the appropriate general
operations (ascending–descending) and the principles of
Boolean valued analysis.

▶ A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean
Valued Analysis, Moscow, Nauka (2005).
Boolean Valued Analysis, Dordrecht, Kluwer (1999).



What Is the Boolean Valued Transfer Principle?

▶ Let X ⊂ V and X ⊂ V(B) be two classes of mathematical
objects.
Suppose we are able to prove the result:

▶ Boolean Valued Representation. Every X ∈ X embeds into an
Boolean valued model, becoming an object X ∈ X within
V
(B).

▶ Boolean Valued Transfer Principle. Every theorem about X
within ZFC has its counterpart for the original object X
interpreted as a Boolean valued object X .

▶ Boolean Valued Machinery. Translation of theorems from
X ∈ V(B) to X ∈ V is carried out by the appropriate general
operations (ascending–descending) and the principles of
Boolean valued analysis.

▶ A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean
Valued Analysis, Moscow, Nauka (2005).
Boolean Valued Analysis, Dordrecht, Kluwer (1999).



What Is the Boolean Valued Transfer Principle?

▶ Let X ⊂ V and X ⊂ V(B) be two classes of mathematical
objects.
Suppose we are able to prove the result:

▶ Boolean Valued Representation. Every X ∈ X embeds into an
Boolean valued model, becoming an object X ∈ X within
V
(B).

▶ Boolean Valued Transfer Principle. Every theorem about X
within ZFC has its counterpart for the original object X
interpreted as a Boolean valued object X .

▶ Boolean Valued Machinery. Translation of theorems from
X ∈ V(B) to X ∈ V is carried out by the appropriate general
operations (ascending–descending) and the principles of
Boolean valued analysis.

▶ A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean
Valued Analysis, Moscow, Nauka (2005).
Boolean Valued Analysis, Dordrecht, Kluwer (1999).



What Is the Boolean Valued Transfer Principle?

▶ Let X ⊂ V and X ⊂ V(B) be two classes of mathematical
objects.
Suppose we are able to prove the result:

▶ Boolean Valued Representation. Every X ∈ X embeds into an
Boolean valued model, becoming an object X ∈ X within
V
(B).

▶ Boolean Valued Transfer Principle. Every theorem about X
within ZFC has its counterpart for the original object X
interpreted as a Boolean valued object X .

▶ Boolean Valued Machinery. Translation of theorems from
X ∈ V(B) to X ∈ V is carried out by the appropriate general
operations (ascending–descending) and the principles of
Boolean valued analysis.

▶ A. G. Kusraev and S. S. Kutateladze, Introduction to Boolean
Valued Analysis, Moscow, Nauka (2005).
Boolean Valued Analysis, Dordrecht, Kluwer (1999).



Some Long Standing Problems

The problem Raised
by

Reduced to (by
means of BA):

Solved
by

Intrinsic
characterization
of subdifferentials

Kutateladze
1976

Weakly compact
convex sets
of functionals

Kusraev
Kutateladze
1982

General
desintegration in
Kantorovich spaces

Ioffe, Levin
Neumann
1972/1977

Hahn–Banach and
Radon–Nikodým
theorems

Kusraev
1984

Kaplansky Problem:
Homogeneity of a
type I AW ∗-algebra

Kaplansky
1953

Homogeneity of
B(H) with H
Hilbert space

Ozawa
1984



Some Long Standing Problems

The problem Raised
by

Reduced to (by
means of BA):

Solved
by

Order boundedness
of BP operators

Wickstead
1983

Cauchy type
functional
equations

Gutman
Kusraev
1995, 2006

Maharam extension
of a positive
operator

Luxemburg
Schep
1978

Daniel extension
of an elementary
integral

Akilov
Kolesnikov
Kusraev
1988

Classification of
injective Banach
lattices

Lotz
Cartright
1975

Classification of
AL-space
(L1 spaces)

Kusraev
2012
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