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-
Agenda

@ Optimization is the choice of what is most preferable. Geometry and
local analysis of nonsmooth objects are needed for variational analysis
which embraces optimization. These involved admissible directions and
tangents as the limiting positions of the former. The calculus of
tangents is one of the main techniques of optimization (cp. [1, 2]).

@ Calculus reduces forecast to numbers, which is scalarization in modern
parlance. Spontaneous solutions are often labile and rarely optimal.
Thus, optimization as well as calculus of tangents deals with
inequality, scalarization, and stability. Some aspects of the latter are
revealed by the tools of nonstandard models to be touched slightly in
this talk (cp. [3]-[6])-
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N
The Best Is Divine

@ Leibniz wrote to Samuel Clarke:!

@ God can produce everything that is possible or whatever does not
imply a contradiction, but he wills only to produce what is the best
among things possible.

1See [7, p. 54]; cp. [8].
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N
Enter the Reals

@ Choosing the best, we use preferences. To optimize, we use infima and
suprema for bounded sets which is practically the least upper bound
property. So optimization needs ordered sets and primarily boundedly
complete lattices.

@ To operate with preferences, we use group structure. To aggregate
and scale, we use linear structure.

@ All these are happily provided by the reals R, a one-dimensional
Dedekind complete vector lattice. A Dedekind complete vector lattice
is a Kantorovich space.

@ Since each number is a measure of quantity, the idea of reduction to
numbers is of a universal importance to mathematics. Model theory
provides justification of the Kantorovich heuristic principle that the
members of his spaces are numbers as well (cp. [9] and [10]).
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Enter Inequality and Convexity

o Life is inconceivable without numerous conflicting ends and interests
to be harmonized. Thus the instances appear of multiple criteria
decision making. It is impossible as a rule to distinguish some
particular scalar target and ignore the rest of them. This leads to
vector optimization problems, involving order compatible with linearity.

@ Linear inequality implies linearity and order. When combined, the two
produce an ordered vector space. Each linear inequality in the simplest
environment of the sort is some half-space. Simultaneity implies many
instances and so leads to the intersections of half-spaces. These yield
polyhedra as well as arbitrary convex sets, identifying the theory of
linear inequalities with convexity.

@ Convexity, stemmimg from harpedonapters, reigns in optimization,
feeding generation, separation, calculus, and approximation.
Generation appears as duality; separation, as optimality; calculus, as
representation; and approximation, as stability (cp. [11]-[13]).
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Legendre in Disguise

@ Assume that X is a vector space, E is an ordered vector space, E® is
E with an adjoined top, f : X — E*® is some operator, and
C :=dom(f) C X is a convex set. A vector program (C, f) is written
as follows:
x € C, f(x)— inf.

@ The standard sociological trick includes (C, f) into a parametric family
yielding the Legendre transform or Young—Fenchel transform of f:

FR(0) == sup (I1(x) = F(x)),

with / € X# a linear functional over X. The epigraph of f* is a
convex subset of X7 and so f* is convex. Observe that —f*(0) is the
value of (C, ).
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Order Omnipresent

@ A convex function is locally a positively homogeneous convex function,
a sublinear functional. Recall that p : X — R is sublinear whenever

epip:={(x, t) € X xR p(x) <t}
is a cone. Recall that a numeric function is uniquely determined from

its epigraph.
@ Given C C X, put

H(C) = {(x, t) € X x R* | x € tC},

the Hérmander transform of C. Now, C is convex if and only if H(C)
is a cone. A space with a cone is a (pre)ordered vector space.
The order, the symmetry, the harmony enchant us. . ..
Leibniz
@ Thus, convexity and order are tightly intertwined.
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Nonoblate Cones

@ Consider cones K; and K in a topological vector space X and put
x := (K1, K2). Given a pair x define the correspondence ®,, from X?
into X by the formula

Oy 1= {(ki, ko, x) € X> i1 x = ki — ko, ks € Ki}.

Clearly, @, is a cone or, in other words, a conic correspondence.

@ The pair x is nonoblate whenever ®,, is open at the zero. Since
D, (V)=VNK,—VNK, for every V C X, the nonoblateness of x
means that

xV =(VNKi—VNK)N(VNK,—VNKyp)

is a zero neighborhood for every zero neighborhood V C X.
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Open Correspondences

@ Since xV C V — V, the nonoblateness of x is equivalent to the fact
that the system of sets {x V'} serves as a filterbase of zero
neighborhoods while V' ranges over some base of the same filter.

Let A, : x> (x,...,x) be the embedding of X into the diagonal
A,(X) of X™. A pair of cones x := (K1, K>) is nonoblate if and only if
A 1= (K1 x Ka, Ax(X)) is nonoblate in X2,

@ Cones K; and K constitute a nonoblate pair if and only if the conic

correspondence ® C X x X2 defined as

®:={(hx;,x) € XxX?:x +hekK (1:=1,2)}

is open at the zero.
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General Position of Cones

@ Cones Ki and K> in a topological vector space X are in general
position iff

@ (1) the algebraic span of K1 and K3 is some subspace Xo C X i.e.,
Xo=Ki— Ko = Ka— Ky,

@ (2) the subspace Xjp is complemented; i.e., there exists a continuous
projection P : X — X such that P(X) = Xo;

@ (3) K1 and K; constitute a nonoblate pair in  Xj.
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General Position of Operators

@ Let g, stand for the rearrangement of coordinates

on (O y1)s e s yn)) B (Gas e Xn)s (Vas - o5 Yn))

which establishes an isomorphism between (X x Y)" and X" x Y.
@ Sublinear operators Pq,..., P, : X — E U {+o0} are in general
position if so are the cones A,(X) x E" and

on(epi(P1) X -+ X epi(Pn)).
@ Given a cone K C X, put
7e(K) :={T € £L(X,E): Tk <0 (k € K)}.

Clearly, mg(K) is a cone in £(X, E).

@ Theorem. Let K1, ..., K, be cones in a topological vector space X
and let E be a topological Kantorovich space. If K1, ..., K, are in
general position then

me(KiN---N Ky = me(Ki) + - + 7e(Kp).
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Environment for Inequality

@ Assume that X is a real vector space, Y is a Kantorovich space. Let
B := B(Y) be the base of Y, i.e., the complete Boolean algebras of
positive projections in Y; and let m(Y) be the universal completion
of Y. Denote by L(X, Y) the space of linear operators from X to Y.
In case X is furnished with some Y-seminorm on X, by L™ (X, Y) we
mean the space of dominated operators from X to Y. As usual,
(T<0}:={xeX|Tx<0} ker(T) =T 10) for T: X =Y.
Also, P € Sub(X, Y) means that P is sublinear, while
P € PSub(X, Y) means that P is polyhedral, i.e., finitely generated.
The superscript (™ suggests domination.
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Kantorovich's Theorem

o Find X satisfying

@ (1): (3X) XA = B < ker(A) C ker(B).

@ (2): If W is ordered by W4 and A(X) — W4 = Wi — AX) =W

then?
(X >0)XA=B < {A<0}C{B<0.

2Cp. [2, p. 51].
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The Farkas Alternative

o Let X be a Y-seminormed real vector space, with Y a Kantorovich
space. Assume that Ay, ..., An and B belong to L(m) (X,Y).
Then one and only one of the following holds:
(1) There are x € X and b, b’ € B such that b’ < b and

b'Bx > 0,bA;x <0,...,bAyx < 0.

(2) There are positive orthomorphisms a1, . ..,ay € Orth(m(Y))+
such that B = ZLVZI arAg.
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Inhomogeneous Inequalities

@ Theorem. Let X be a Y-seminormed real vector space, with Y
a Kantorovich space. Assume given some dominated operators
Ai,....,An, B € L(m)(X, Y) and elements uy,...,un,v € Y. The
following are equivalent:
(1) For all b € B the inhomogeneous operator inequality bBx < bv is
a consequence of the consistent simultaneous inhomogeneous operator
inequalities bA1x < buy, ..., bAnx < buy, Ie.,

(bB < bv} D {bA; < bu} N--- N {bAy < bun.

(2) There are positive orthomorphisms a1, . ..,ay € Orth(m(Y))
satisfying

N N
B = ZakAk; v > Zakuk.
k=1 k=1
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-
Boolean Modeling

@ The above infinite-dimensional results appear as interpretations of
one-dimensional predecessors on using model theory.

@ Cohen'’s final solution of the problem of the cardinality of the
continuum within ZFC gave rise to the Boolean valued models by
Scott, Solovay, and Vopénka.3

@ Takeuti coined the term “Boolean valued analysis” for applications of
the models to analysis.

3
Cp. [4].
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Scott's Comments

@ Scott forecasted in 1969:*

We must ask whether there is any interest in these nonstandard models
aside from the independence proof; that is, do they have any mathematical
interest? The answer must be yes, but we cannot yet give a really good
argument.

@ In 2009 Scott wrote:®
At the time, | was disappointed that no one took up my suggestion. And
then | was very surprised much later to see the work of Takeuti and his
associates. | think the point is that people have to be trained in Functional
Analysis in order to understand these models. | think this is also obvious
from your book and its references. Alas, | had no students or collaborators
with this kind of background, and so | was not able to generate any progress.

4Cp. [14].
5Letter of April 29, 2009 to S. S. Kutateladze.
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Art of Invention

@ Leibniz wrote about his version of calculus that “the difference from
Archimedes style is only in expressions which in our method are more
straightforward and more applicable to the art of invention.”

@ Nonstandard analysis has the two main advantages: it “kills
quantifiers” and it produces the new notions that are impossible within
a single model of set theory.

@ Let us turn to the nonstandard presentations of Kuratowski—Painlevé
limits of use in tangent calculus, and explore the variations of tangents.

@ Recall that the central concept of Leibniz was that of a monad

(cp. [15]). In nonstandard analysis the monad () of a standard
filter ¥ is the intersection of all standard elements of ¥
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Monadic Limits

@ Let F C X x Y be an internal correspondence from a standard set X
to a standard set Y. Assume given a standard filter & on X and

a topology 7 on Y. Put

VY(F) ="y | (Yx € w(N) Ndom(F))(Yy ~ y')(x.y) € F},
AV(F) :=*{y' | @x € w(N) Ndom(F)(Yy ~ y')(x.y) € F},
VA(F) :=*{y" | (¥ x € p(N) Ndom(F)) 3y ~ y')(x.y) € F},
FA(F) :=="{y' | @x € p(N) Ndom(F)) 3y =~ y')(x.y) € F},

with * symbolizing standardization and y ~ y’ standing for the infinite
proxitity between y and y’ in 7, i.e. y' € u(z(y)).

o Call Q1Q2(F) the Q1Qq-limit of F (here Qi (k := 1,2) is one of the
quantifiers V or 3).
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Kuratowski—Painlevé Limits

@ Assume for instance that F is a standard correspondence on some
element of N and look at the 33-limit and the V3-limit. The former is
the limit superior or upper limit; the latter is the limit inferior or lower
limit of F along V.

@ Theorem. If F is a standard correspondence then

FF) = ) c|(U F(x));

UeN xelU
vaF) = () c|(U F(x)),
veN  x€U

where N is the grill of a filter N on X, i.e., the family comprising all
subsets of X meeting ju(N).
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]
Hadamard, Clarke, and Bouligand Tangents

Ha(F,x) := U int¢ ﬂ F;X§

Uer&@ x€FNU
O<a<a’

arxy= U (

VeN, Uer&@ xeFNU
O<a<a’

)

F—x

Bo(f.x) = () e |J —,

Uet(x) x€FNU
o O<a<ao’

where, as usual, 7(x’) := x’ + N; and N, the zero neighborhood
filterbase of the topology z. Obviously,

Ha(F,x") c CI(F,x") Cc Bo(F,x).
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Infinitesimal Quantifiers

@ Agree on notation for a ZFC formula ¢ and x’ € F :

(V*x)p = (Vx ~¢ X = (VX)(x € FAx ~; X') = o,
(V*h)g := (Yh~; h)g = (Yh)(he X Ah~; h) = ¢,
(V*a)p := (Va ~ 0)¢ := (Va)(a@ > 0 A a ~ 0) — ¢.

@ The quantifiers 3°x, 3%h, 3%« are defined in the natural way by duality
on assuming that

3*x)p = Ax ~r X)) = @Ax)(x € F Ax ~¢ X') A @,
(3 g 1= @h ~p H)p = @h)(he X A h~e H) Ao,
F*a)p ;= Fa ~ 0)p := FAa)(@ > 0Aa ~0) A @.
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Infinitesimal Representations

@ The Bouligand cone is the standardization of the 333-cone; i.e., if h' is
standard then

h € Bo(F,x') < (3*x)(3%°«)(3°h)x + ah € F.
@ The Hadamard cone is the standardization of the VVVY-cone:
Ha(F,x) = VVV(F,x),

with t(Ry) the external set of positive infinitesimals.
@ The Clarke cone is the standardization of the ¥YV3-cone: i.e.,

CI(F,x") = YV3(F,X).
In more detail,
H e CI(F,x') < (Y*x)(YV*a)(3°h) x +ah € F.

A. G. Kusraev and S. S. Kutateladze (So Calculus of Tangents and Beyond August 15, 2017 23 /35



-
Convexity Is Stable

@ Convexity of harpedonaptae was stable in the sense that no variation
of stakes within the surrounding rope can ever spoil the convexity of
the tract to be surveyed.

@ Stability is often tested by perturbation or introducing various epsilons
in appropriate places, which geometrically means that tangents travel.
One of the earliest excursions in this direction is connected with the
classical Hyers—Ulam stability theorem for e-convex functions. Exact
calculations with epsilons and sharp estimates are often bulky and
slightly mysterious. Some alternatives are suggested by actual
infinities, which is illustrated with the conception of infinitesimal
optimality.
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|
Enter Epsilon

@ Assume given a convex operator f : X — E® and a point X in the
effective domain dom(f) := {x € X | f(x) < +o0} of f.

@ Given ¢ > 0 in the positive cone E4 of E, by the e-subdifferential of f
at X we mean the set

3 (X) :={T € L(X.E) |
VxeX)(Tx—f(x) < Tx—f(x)+ 8)}.
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-
Topological Setting

@ The usual subdifferential df (x) is the intersection of e-subfifferentials:

of (%) := () 0:F (X).

e>0

In topological setting we use continuous operators, replacing L(X, E)
with £(X, E).
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-
e-Optimality

@ Theorem. Let 1 : X xY - E®and b : Y x Z — E® be convex
operators and 8§, € E™. Suppose that the convolution f, A f; is
8-exact at some point (x,y,z); i.e.,
5+ (h A A)(x,y) = fA(x,y) + fa(y, z). If, moreover, the convex sets
epi(f1, Z) and epi(X, f) are in general position, then

ds(2 A ) (x,y) =
U 8826(_)/72)0881&()(7)/)'

€1 20562 ZO’
g1+er=¢+48
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N
Enter Monad

@ Distinguish some downward-filtered subset & of E that is composed
of positive elements. Assuming E and & standard, define the monad
1(&) of & as u(€) :=({[0,¢] | € € °€}. The members of (&) are
positive infinitesimals with respect to &. As usual, °€ denotes the
external set of all standard members of E, the standard part of &.

@ Assume that the monad (&) is an external cone over °R and,
moreover, (£(&) N °E = 0. In application, & is usually the filter of
order-units of E. The relation of infinite proximity or infinite closeness
between the members of E is introduced as follows:

ee~e < e—e€ul)&e—e eul8).
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Infinitesimal Subdifferential

o Now

DF):= () %:Fx) = ] 8.

£€°E eeu(8)

which is the infinitesimal subdifferential of f at X. The elements of
Df (x) are infinitesimal subgradients of f at X.
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Infinitesimal Solution

@ Assume that there exists a limited value e := inf,ec f(x) of some
program (C, f). A feasible point xq is called an infinitesimal solution if
f(xo) =~ e, i.e., if f(xg) < f(x)+ ¢ for every x € C and every
standard ¢ € §.

@ A point xg € X is an infinitesimal solution of the unconstrained
problem f(x) — inf if and only if 0 € Df(xp).
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Exeunt Epsilon

® Theorem. Letfi : X XY — E®and > :Y x Z — E® be convex
operators. Suppose that the convolution f, A f is infinitesimally exact
at some point (x,y,z); i.e., (b A A)(x,y) ~ i(x,y) + h(y,2). If,
moreover, the convex sets epi(f1, Z) and epi(X, ) are in general
position then

D(f, A f1)(x,y) = Df(y, z) o Dfi(x,y).
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