\Refs \ref\no1 \by Aifantis~E.C. \paper Gradient effects at the Macro, Micro and Nano scales \jour J.~Mech. Behav. Biomed. Mater. \yr 1994 \vol 5 %\issue \pages 335--353 \endref \ref\no2 \by Toupin~R.A. \paper Elastic materials with couple stresses \jour Arch. Ration. Mech. Anal. \yr 1962 \vol 11 %\issue \pages 385--414 \endref \ref\no3 \by Mindlin~R.D. \paper Micro-structure in linear elasticity \jour Arch. Ration. Mech. Anal. \yr 1964 \vol 16 %\issue \pages 51--78 \endref \ref\no4 \by Ru~C.Q. and Aifantis~E.C. \paper A simple approach to solve boundary value problems in gradient elasticity \jour Acta Mech. \yr 1993 \vol 101 %\issue \pages 59--68 \endref \ref\no5 \by Papargyri-Beskou~S. and Tsinopoulos~S. \paper Lame's strain potential method for plane gradient elasticity problems \jour Arch. Appl. Mech. \yr 2015 \vol 85 \iftex \issue 9--10 \else \issue 9 \fi \pages 1399--1419 \endref \ref\no6 \by Charalambopoulos~A., Tsinopoulos~S.V., and Polyzos~D. \paper Plane strain gradient elastic rectangle in bending \jour Arch. Appl. Mech. \yr 2020 \vol 90 %\issue \pages 967--986 \endref \ref\no7 \by Solyaev~Y.O. and Lurie~S.A. \paper Trefftz collocation method for two-dimensional strain gradient elasticity \jour Int.~J Numer. Methods Eng. \yr 2020 \vol 90 %\issue \pages 967--986 \endref \ref\no8 \by Li~A., Zhou~S., and Wang~B. \paper A size-dependent bilayered microbeam model based on strain gradient elasticity theory \jour Compos. Struct. \yr 2014 \vol 108 %\issue \pages 259--266 \endref \ref\no9 \by Guangyang~F., Shenjuie~Z., and Lu~Q. \paper The size-dependent static bending of a~partially covered laminated microbeam \jour Int.~J. Mech. Sci. \yr 2019 \vol 152 %\issue \pages 411--419 \endref \ref\no10 \by Lurie~S.A., Solyaev~Yu.O., Rabinsky~L.N., Kondratova~Yu.N., and Volov~M.I. \paper Simulation of the stress-strain state of thin composite coating based on solutions of the plane problem of strain-gradient elasticity for layer \jour Vestnik PNIPU. Mekhanika %\?PNRPU Mech. Bull. \yr 2013 \vol 1 %\issue \pages 161--181 \endref \ref\no11 \by Vatulyan~A.O. and Nesterov~S.A. \paper On the deformation of a~composite rod in the framework of gradient thermoelasticity \jour Mater. Phys. Mech. \yr 2020 \vol 46 %\issue \pages 27--41 \endref \ref\no12 \by Vatulyan~A.O., and Nesterov~S.A., and Yurov~V.O. \paper Solution of the gradient thermoelasticity problem for a~cylinder with a~heat-protected coating \jour Comput. Contin. Mech. \yr 2021 \vol 14 \issue 3 \pages 253--264 \endref %Ватульян А.~О., Нестеров С.~А., Юров В.~О. % Решение задачи градиентной термоупругости для цилиндра с термозашитным покрытием \ref\no13 \by Vatulyan~A.O., and Nesterov~S.A., and Yurov~V.O. \paper Investigation of the stress-strain state of a~hollow cylinder with a~coating based on the gradient model of thermoelasticity \jour PNRPU Mech. Bull. \yr 2021 \vol 4 %\issue 3 \pages 60--70 \endref %Ватульян А.~О., Нестеров С.~А., Юров В.~О. %Исследование напряженно-деформированного состояния полого цилиндра с покрытием %на основе градиентной модели термоупругости \ref\no14 \by Vatulyan~A.O. and Nesterov~S.A. \paper Solution of the problem of gradient thermoelasticity for a~coated strip \jour Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauk \yr 2021 \vol 163 \issue 2 \pages 181--196 \endref %Ватульян А.~О., Нестеров С.~А. %Решение задачи градиентной термоупругости для полосы с покрытием \endRefs