\author М.~Х.~Файзрахманов\endauthor \Refs \ref\no 1 \by Badaev~S.A. and Goncharov~S.S. \paper On computable minimal enumerations \inbook Algebra. Proc. 3rd Int. Conf. Algebra \bookinfo (in memory of M.I.~Kargopolov) \publaddr Berlin and New York \publ De Gruyter \yr 1995 \pages 21--33 \endref \ref\no 2 \by Badaev~S.A. and Goncharov~S.S. \paper Theory of numberings \inbook Open Problems in Computability Theory and Its Applications \publaddr Providence \publ Amer. Math. Soc. \yr 2000 \pages 23--38 \finalinfo Contemp. Math.; vol.~257 \endref \ref\no 3 \by Marchenkov~S.S. \paper The computable enumerations of families of general recursive functions \jour Algebra Logic \yr 1972 \vol 11 \issue 5 \pages 326--336 \endref \ref\no 4 \by Goncharov~S.S. \paper Computable single-valued numerations \jour Algebra Logic \yr 1980 \vol 19 \issue 5 \pages 325--356 \endref \ref\no 5 \by Goncharov~S.S. \paper Positive computable numberings \jour Dokl. Akad. Nauk SSSR %Russ. Acad. Sci. Dokl. \yr 1994 %1993 \vol 322 %48 \issue 2 %2 \pages 142--143 %268--270 \endref %VN \vol 48 %VN \pages 142--143 - 268--270 %Гончаров~С.~С. %Позитивные вычислимые нумерации \ref\no 6 \by Goncharov~S.S. \paper A family with a unique univalent but not least numeration \jour Trudy Inst. Mat. Sib. Otd. AN SSSR \yr 1988 \vol 8 \pages 42--58 \endref % Гончаров~С.~С. %Семейство с единственной однозначной, но не наименьшей нумерацией \ref\no 7 \by Goncharov~S.S. \paper Families with a~unique positive numbering \jour Vychisl. sistemy \yr 1992 \issue 146 \pages 96--104 \endref %Гончаров~С.~С. % Семейства с единственной позитивной нумерацией \ref\no 8 \by Goncharov~S.S., Harizanov~V., Knight~J., McCoy~C., Miller~R., and Solomon~R. \paper Enumerations in computable structure theory \jour Ann. Pure Appl. Logic \yr 2005 \vol 136 \issue 3 \pages 219--246 \endref \ref\no 9 \by Hirschfeldt~D.R. \paper Degree spectra of relations on computable structures \jour Bull. Symb. Logic \yr 2000 \vol 6 \issue 2 \pages 197--212 \endref \ref\no 10 \by Ershov~Yu.L. \book Theory of Numberings \publaddr Moscow \publ Nauka \yr 1977 \lang Russian \endref \ref\no 11 \by Ershov~Yu.L. \paper Enumeration of families of general recursive functions \jour Sib. Math.~J. \yr 1967 \vol 8 \issue 5 \pages 771--778 \endref \ref\no 12 \by Semukhin~P. \paper Prime models of finite computable dimension \jour J.~Symb. Logic \yr 2009 \vol 74 \issue 1 \pages 336--348 \endref \ref\no 13 \by Badaev~S.A. \paper Minimal enumerations \inbook Mathematical Logic and Algorithm Theory \bookinfo Tr. Inst. Mat., vol.~25 \lang Russian \yr 1993 %\vol 25 \pages 3--34 \endref %Бадаев~С.~А. %Минимальные нумерации \ref\no 14 \by Badaev~S.A. \paper Minimal numerations of positively computable families \jour Algebra Logic \yr 1994 \vol 33 \issue 3 \pages 131--141 \endref \ref\no 15 \by V'yugin~V.V. \paper On some examples of upper semilattices of computable enumerations \jour Algebra Logic \yr 1973 \vol 12 \issue 5 \pages 512--529 \endref %Вьюгин~В.~В. %О некоторых примерах верхних полурешеток вычислимых нумераций \ref\no 16 \by Goncharov~S.S., Yakhnis~A., and Yakhnis~V. \paper Some effectively infinite classes of enumerations \jour Ann. Pure Appl. Logic \yr 1993 \vol 60 \issue 3 \pages 207--235 \endref \ref\no 17 \by Goncharov~S.S. and Sorbi~A. \paper Generalized computable numerations and nontrivial Rogers semilattices \jour Algebra Logic \yr 1997 \vol 36 \issue 6 \pages 359--369 %621--641 \endref % Гончаров~С.~С., Сорби~А. % Обобщенно-вычислимые нумерации и нетривиальные полурешетки Роджерс \ref\no 18 \by Badaev~S.A. and Goncharov~S.S. \paper Rogers semilattices of families of arithmetic sets \jour Algebra Logic \yr 2001 \vol 40 \issue 5 \pages 283--291 \endref \ref\no 19 \by Badaev~S.A. and Lempp~S. \paper A~decomposition of the Rogers semilattice of a~family of d.c.e. sets \jour J.~Symb. Log. \yr 2009 \vol 74 \issue 2 \pages 618--640 \endref \ref\no 20 \by Faizrahmanov~M.Kh. \paper Minimal generalized computable enumerations and high degrees \jour Sib. Math.~J. \yr 2017 \vol 58 \issue 3 \pages 553--558 \endref \ref\no 21 \by Faizrahmanov~M.Kh. \paper Extremal numberings and fixed point theorems \jour Math. Logic Quart. \yr 2022 \vol 68 \issue 4 \pages 398--408 \endref \ref\no 22 \by Faizrahmanov~M.Kh. \paper Two theorems on minimal generally-computable numberings \jour Moscow Univ. Math. Bull. \yr 2023 \vol 78 \issue 3 \pages 136--143 %28--35 \endref % Файзрахманов~М.~Х. %Две теоремы о минимальных обобщенно-вычислимых нумерациях \ref\no 23 \by Faizrahmanov~M.Kh. \paper On~$p$-universal and $p$-minimal numberings \jour Sib. Math.~J. \yr 2022 \vol 63 \issue 2 \pages 365--373 \endref \ref\no 24 \by Faizrahmanov~M.Kh. \paper Enumeration reducibility and positive reducibility of the numberings of families of arithmetic sets \jour Sib. Math.~J. \yr 2023 \vol 64 \issue 1 \pages 174--180 \endref \ref\no 25 \by Ershov~Yu.L. \paper Theory of numberings \inbook %E.~R.~Griffor (ed.), Handbook of Computability Theory \publaddr Amsterdam \publ Elsevier \yr 1999 \pages 473--503 \finalinfo Stud. Logic Found. Math.; vol.~140 \endref \ref\no 26 \by Soare~R.I. \book Recursively Enumerable Sets and Degrees: A~Study of Computable Functions and Computably Generated Sets \publ Springer \publaddr Berlin, Heidelberg, New York, London, Paris, and Tokyo \yr 1987 \endref \ref\no 27 \by Soare~R.I. \book Turing Computability: Theory and Applications \publaddr Berlin \publ Springer \yr 2016 \finalinfo Theory and Applications of Computability \endref \endRefs \enddocument