\Refs \ref\no 1 \by Andreev~E.M. \paper On convex polyhedra in Lobacevskii spaces \jour Math. USSR-Sb. \yr 1970 \vol 10 \issue 3 \pages 413--440 \endref \ref\no 2 \by Coxeter~H.S.M. \paper Discrete groups generated by reflections \jour Ann. Math. \yr 1934 \vol 35 \issue 2 \pages 588--621 \endref \ref\no 3 \by Andreev~E.M. \paper On convex polyhedra of finite volume in Lobachevskii space \jour Math. USSR-Sb. \yr 1970 \vol 12 \issue 2 \pages 255--259 \endref \ref\no 4 \by Roeder~R.K.W., Hubbard~J.H., and Dunbar~W.D. \paper Andreev's theorem on hyperbolic polyhedra \jour Ann. Inst. Fourier, Grenoble \yr 2007 \vol 57 \issue 3 \pages 825--882 \endref \ref\no 5 \by Milnor~J. \paper Hyperbolic geometry: the first 150 years \jour Bull. Amer. Math. Soc. (N.S.) \yr 1982 \vol 6 \issue 1 \pages 9--24 \endref \ref\no 6 \by Kellerhals~R. \paper On the volume of hyperbolic polyhedra \jour Math. Ann. \yr 1989 \vol 285 %\issue 1 \pages 541--569 \endref \ref\no 7 \by Vinberg~E.B. \paper Volumes of non-Euclidean polyhedra \jour Russian Math. Surveys %Uspekhi Mat. Nauk \yr 1993 \vol 48 \issue 2 \pages 15--45 %17--46 \endref % Винберг~Э.~Б. %Объемы неевклидовых многогранников \ref\no 8 \by Kashaev~R.M. \paper The hyperbolic volume of knots from quantum dilogarithm \jour Lett. Math. Phys. \yr 1997 \vol 39 %\issue 2 \pages 269--275 \endref \ref\no 9 \by Cho~Y. and Kim~H. \paper On the volume formula for hyperbolic tetrahedra \jour Discrete Comput. Geom. \yr 1999 \vol 22 %\issue 2 \pages 347--366 \endref \ref\no 10 \by Murakami~J. and Yano~M. \paper On the volume of a hyperbolic and spherical tetrahedron \jour Comm. Anal. Geom. \yr 2005 \vol 13 \issue 2 \pages 379--400 \endref \ref\no 11 \by Thurston~W.P. \book The Geometry and Topology of Three-Manifolds \publaddr Princeton \publ Princeton University \yr 1980 \url http://www.msri.org/publications/books/gt3m/ \endref \ref\no 12 \by Belletti~G. \paper The maximum volume of hyperbolic polyhedra \jour Trans. Amer. Math. Soc. \yr 2021 \vol 374 %\issue 2 \pages 1125--1153 \endref \ref\no 13 \by Alexandrov~S.A., Bogachev~N.V., Vesnin~A.Yu., and Egorov~A.A. \paper On volumes of hyperbolic right-angled polyhedra \jour Sb. Math. \yr 2023 \vol 214 \issue 2 \pages 148--165 %3--22 %\url{https://arxiv.org/abs/2111.08789} \endref \ref\no 14 \by Atkinson~C. \paper Volume estimates for equiangular hyperbolic Coxeter polyhedra \jour Algebr. Geom. Topol. \yr 2009 \vol 9 %\issue 2 \pages 1225--1254 \endref \ref\no 15 \by Egorov~A. and Vesnin~A. \paper Ideal right-angled polyhedra in Lobachevsky space \jour Chebyshevskii Sb. \yr 2020 \vol 21 \issue 2 \pages 65--83 %\url{http://doi.org/10.22405/2226-8383-2020-21-2-65-83} \endref \ref\no 16 \by Egorov~A. and Vesnin~A. \paper Volume estimates for right-angled hyperbolic polyhedra \jour Rend. Istit. Mat. Univ. Trieste \yr 2020 \vol 52 %\issue 2 \pages 565--576 %\url{https://rendiconti.dmi.units.it/volumi/52/029.pdf} \endref \ref\no 17 \by Adams~C. \paper Bipyramids and bounds on volumes of hyperbolic links \jour Topology Appl. \yr 2017 \vol 222 %\issue 2 \pages 100--114 \endref \ref\no 18 \by Dasbach~O. and Tsvietkova~A. \paper A refined upper bound for the hyperbolic volume of alternating links and the colored Jones polynomial \jour Math Res. Letters \yr 2015 \vol 22 %\issue 2 \pages 1047--1060 \endref \ref\no 19 \by Lackenby~M. \paper The volume of hyperbolic alternating link complements. With an appendix by I.~Agol and D.~Thurston \jour Proc. London Math. Soc. \yr 2004 \vol 88 %\issue 2 \pages 204---224 \endref \ref\no 20 \by Purcell~J.S. \book Hyperbolic Knot Theory \publaddr Providence %\? \publ Amer. Math. Soc. \yr 2020 \finalinfo Graduate Studies in Mathematics; vol.~209 \endref \ref\no 21 \by Bao~X. and Bonahon~F. \paper Hyperideal polyhedra in hyperbolic 3-space \jour Bull. Soc. Math. France \yr 2002 \vol 130 \issue 3 \pages 457--491 \endref \ref\no 22 \by Ushijima~A. \paper A volume formula for generalized hyperbolic polyhedra \inbook Non-Euclidean Geometries %. Andras Prekopa and Emil Molnar (Ed.) \yr 2006 \publaddr Boston \publ Springer \pages 249--265 \finalinfo Mathematics and Its Applications; vol.~581 \endref %Preprint version available at \url{https://arxiv.org/abs/math/0309216v2 } \ref\no 23 \by Atkinson~C. \paper Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra \jour Geom. Dedicata \yr 2011 \vol 153 %\issue 2 \pages 177--211 \endref \ref\no 24 \by Kellerhals~R. \paper A~polyhedral approach to the arithmetic and geometry of hyperbolic chain link complements \jour J.~Knot Theory Ramif. \yr 2023 \url https://homeweb.unifr.ch/kellerha/pub/Kellerhals.pdf \endref \ref\no 25 \by Meyer~J.S., Millichap~C., and Trapp~R. \paper Arithmeticity and hidden symmetries of fully augmented pretzel link complements \jour New York~J. Math. \yr 2020 \vol 26 %\issue 2 \pages 149--183 \endref %Available freely at \url{https://nyjm.albany.edu/j/2020/26-8v.pdf} \ref\no 26 \by Brinkmann~G., Greenberg~S., Greenhill~C., McKay~B.D., Thomas~R., and Wollan~P. \paper Generation of simple quadrangulations of the sphere \jour Discrete Math. \yr 2005 \vol 305 %\issue 2 \pages 33--54 \endref \ref\no 27 \by Kawauchi~A. \book A~Survey of Knot Theory \publaddr Basel \publ Birkh\"auser \yr 1996 \endref \ref\no 28 \by Rolfsen~D. \book Knots and Links \publaddr Chelsea %Berkeley \publ Amer. Math. Soc. %Publish or Perish \yr 1976 \endref \ref\no 29 \by SNAP-Python Module of ESAТs Sentinel Application Platform % \By SnapPy \preprint SnapPy, a~Computer Program\nofrills \bookinfo Version~3.1 \yr 2023 \url https://snappy.math.uic.edu \endref \ref\no 30 \by Adams~C. \book Hyperbolic Structures on Link Complements \bookinfo Ph.D. Thesis \publaddr University of Wisconsin \publ Madison %\? \yr 1983 \endref \ref\no 31 \by Adams~C. \paper Triple crossing number of knots and links \jour J.~Knot Theory Ramif. \yr 2013 \vol 22 \issue 2 \pages Article~1350006 \endref \ref\no 32 \by Dasbach~O. and Tsvietkova~A. \paper Simplicial volume of links from link diagrams \jour Mathematical Proceedings of the Cambridge Philosophical Society \yr 2019 \vol 166 \issue 1 \pages 75--81 \endref \ref\no 33 \by Dasbach~O.T. and Lin~X.-S. \paper A volumish theorem for the Jones polynomial of alternating knots \jour Pacific~J. Math. \yr 2007 \vol 231 \issue 2 \pages 279--291 \endref \ref\no 34 \by Livingston~C. and Moore~A.H. \preprint KnotInfo: Table of Knot Invariants\nofrills \yr ??? \url http://knotinfo.math.indiana.edu \endref \ref\no 35 \by Gu\'{e}ritaud~F. and Futer~D. \paper On canonical triangulations of once-punctured torus bundles and two-bridge link complements \jour Geom. Topol. \yr 2006 \vol 10 %\issue 3 \pages 1239--1284 \endref \ref\no 36 \by Petronio~C. and Vesnin~A. \paper Two-sided bounds for the complexity of cyclic branched coverings of two-bridge links \jour Osaka J. Math. \yr 2009 \vol 46 %\issue 3 \pages 1077--1095 \endref \ref\no 37 \by Purcell~J.S. \paper An introduction to fully augmented links \inbook Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory \publaddr Providence \publ Amer. Math. Soc. \yr 2011 \pages 205--220 \finalinfo Contemp. Math.; vol.~541 \endref \ref\no 38 \by Kwon~A. \preprint Fully Augmented Links in the Thickened Torus\nofrills \yr 2020 \url https://arXiv.org/abs/2007.12773 \endref \ref\no 39 \by Adams~C. \paper Thrice-punctured spheres in hyperbolic 3-manifolds \jour Trans. Amer. Math. Soc. \yr 1985 \vol 287 %\issue 2 \pages 645--656 \endref \ref\no 40 \by Futer~D., Kalfagianni~E., and Purcell~J.S. \paper Dehn filling, volume, and the Jones polynomial \jour J. Differential Geom. \yr 2008 \vol 78 \issue 3 \pages 429--464 \endref \endRefs \enddocument