\author S.~Chandragiri\endauthor \Refs \ref\no 1 \by Mohanty S.G. \book Lattice Path Counting and Applications \publ Academic \publaddr Newyork \yr 1979 \endref \ref\no 2 \by Stanley~R.P. \book Enumerative Combinatorics \bookinfo Vol.~1 \publ Cambridge University \publaddr Cambridge \yr 1990 \endref \ref\no 3 \by Bousquet-M\'elou M. and Petkov\v sek M. \paper Linear recurrences with constant coefficients: the multivariate case \jour Discrete Math. \yr 2000 \vol 225 %\issue \pages 51--75 \endref %https://doi.org/10.1016/S0012-365X(00)00147-3 \ref\no 4 \by Leinartas~E.K. \paper Multiple Laurent series and difference equations \jour Sib. Math.~J. \yr 2004 \vol 45 \issue 2 \pages 321--326 \endref %https://doi.org/10.1023/B:SIMJ.0000021287.35640.87 \ref\no 5 \by Leinartas~E.K. \paper Multiple Laurent series and fundamental solutions of linear difference equations \jour Sib. Math.~J. \yr 2007 \vol 48 \issue 2 \pages 268--272 \endref %https://doi.org/10.1007/s11202-007-0026-0 \ref\no 6 \by Leinartas~E.K. and Nekrasova T.I. \paper Constant coefficient linear difference equations on the rational cones of the integer lattice \jour Sib. Math.~J. \yr 2016 \vol 57 \issue 1 \pages 74--85 \endref %https://doi.org/10.1134/S0037446616010080 \ref\no 7 \by Lyapin A.P. and Chandragiri S. \paper The Cauchy problem for multidimensional difference equations in lattice cones \jour J.~Sib. Fed. Univ. Math. Phys. \yr 2020 \vol 13 \issue 2 \pages 187--196 \endref %https://doi.org/10.17516/1997-1397-2020-13-2-187-196 \ref\no 8 \by Lyapin A.P. and Chandragiri S. \paper Generating functions for vector partitions and a basic recurrence relation \jour J.~Difference Equations and Applications \yr 2019 \vol 25 \issue 7 \pages 1052--1061 \endref %https://doi.org/10.1080/10236198.2019.1649396 \ref\no 9 \by Chandragiri S. \paper Difference equations and Generating functions for some Lattice path problems \jour J.~Sib. Fed. Univ. Math. Phys. \yr 2019 \vol 12 \issue 5 \pages 551--559 \endref %https://doi.org/10.17516/1997-1397-2019-12-5-551-559 \ref\no 10 \by Chandragiri S. \paper Counting lattice paths by using difference equations with non-constant coefficients \jour The Bulletin of Irkutsk state University, Ser. Math. \yr 2023 \vol 44 %\issue \pages 55--70 \endref %https://doi.org/10.26516/1997-7670.2023.44.55 \ref\no 11 \by Merlini D., Rogers D.G., Sprugnoli R., and Verri M.C. \paper Underdiagonal lattice paths with unrestricted steps \jour Discrete Appl. Math. \yr 1999 \vol 91 %\issue \pages 197--213 \endref %https://doi.org/10.1016/S0166-218X(98)00126-7 \ref\no 12 \by Lyapin A.P. and Cuchta T. \paper Sections of the generating series of a solution to a~difference equation in a simplicial cone \jour The Bulletin of Irkutsk state University, Ser. Math. \yr 2022 \vol 42 %\issue \pages 75--89 \endref %https://doi.org/10.26516/1997-7670.2022.42.75 \ref\no 13 \by Luz\'{o}n A. and Mor\'{o}n M.A. \paper Recurrence relations for polynomial sequences via Riordan matrices \jour Linear Algebra Appl. \yr 2010 \vol 44 %\issue \pages 1422--1446 \endref %https://doi.org/10.1016/j.laa.2010.05.021 \ref\no 14 \by Shapiro L.W., Getu S., Woan W.J., and Woodson L.C. \paper The Riordan group \jour Discrete Appl. Math. \yr 1991 \vol 34 %\issue \pages 229--239 \endref %https://doi:10.1016/0166-218X(91)90088-E \ref\no 15 \by Lyapin A.P. \paper Riordan's arrays and two-dimensional difference equations \jour J.~Sib. Fed. Univ. Math. Phys. \yr 2009 \vol 2 \issue 2 \pages 210--220 \endref %https://doi.org/10.48550/arXiv.1911.00060 \ref\no 16 \by Luz\'{o}n A., Merlini D., Mor\'{o}n M.A., and Sprugnoli R. \paper Identities induced by Riordan arrays \jour Linear Algebra Appl. \yr 2012 \vol 436 %\issue \pages 631--647 \endref %https://doi:10.1016/j.laa.2011.08.007 \ref\no 17 \by Merlini D. and Verri M.C. \paper Generating trees and proper Riordan arrays \jour Discrete Math. \yr 2000 \vol 218 %\issue \pages 167--183 \endref %https://doi.org/10.1016/S0012-365X(99)00343-X \ref\no 18 \by Rogers D.G. \paper Pascal triangles, Catalan numbers and Renewal arrays \jour Discrete Math. \yr 1978 \vol 22 %\issue \pages 301--310 \endref %https://doi:10.1016/0012-365X(78)90063-8 \ref\no 19 \by Yang S.L., Dong Y.N., Yang L., and Yin~J. \paper Half of a Riordan and restricted lattice paths \jour Linear Algebra Appl. \yr 2018 \vol 537 %\issue \pages 1--11 \endref %https://doi.org/10.1016/j.laa.2017.09.027 \ref\no 20 \by Rogers D.G. and Shapiro L.W. \paper Some correspondences involving the Schr\"{o}der numbers and relations \jour Comb. Math. Lecture Notes in Math. \yr 1978 \vol 686 %\issue \pages 267--274 \endref %https://doi.org/10.1007/BFb0062541 \ref\no 21 \by Stanley R.P. \paper Hipparchus, Plutarch, Schr\"{o}der and Hough \jour Amer. Math. Monthly \yr 1997 \vol 104 \issue 4 \pages 344--350 \endref %https://doi.10.1080/00029890.1997.11990645 \ref\no 22 \by He T.X. \paper Parametric Catalan numbers and Catalan triangles \jour Linear Algebra Appl. \yr 2013 \vol 438 \issue 3 \pages 1467--1484 \endref %https://doi.org/10.1016/j.laa.2012.10.001 \endRefs \enddocument