\begin{center} References\end{center} 1. Tikhonov~I.V. On the solvability of a~problem with a nonlocal integral condition for a~differential equation in a~Banach space. Differential Equations, 1998, 34:6, 841--844. 2. Tikhonov~I.V. Uniqueness theorems for linear non-local problems for abstract differential equations. Izv.: Math., 2003, 67:2, 333--363. 3. Tikhonov~I.V. A~nonlocal problem with periodic integral condition for a differential equation a~Banach space. in: Integral Transformations and Special Functions. 2004. V.~4, No.~1. P.~49--69. 4. Kozhanov~A.I. A time-nonlocal boundary value problem for linear parabolic equations. Sib. Zh. Ind. Mat., 2004, 7:1(17), 51--60. 5. Sil'chenko~Yu.~T. Parabolic-Type Equations with Nonlocal Conditions. Contemporary Mathematics. Fundamental Trends. 2006, V.~17. P.~5--10. 6. Kozhanov~A.I., Safiullova,~R.R. Linear inverse problems for parabolic and hyperbolic equations. Journal of Inverse and Ill--Posed Problems. 2010, V.~18, No.~1. P.~1--24. 7. Fedorov~V.E., Ivanova~N.D., Fedorova~Yu.Yu. On a~time nonlocal problem for inhomogeneous evolution equations. Sib. Math.~J., 2014, 55:4, 882--897. 8. Kozhanov~A.I. Solvability of boundary value problems for linear parabolic equations with an integral condition in a~time variable. Math. Notes SVFU. 2014, 21:4, 17--25. 9. Ashyralyev A., Agges~N. Nonlocal boundary value hyperbolic problems involving integral conditions. Boundary Value Problems. 2014. 2014:205. 10. Kozhanov~A.I., Lukina~G.A. Nonlocal problems with an integral boundary condition for the differential equations of odd order. Sib. Electron. Math. Rep. 2016. V.~13. P.~452--466. 11. Bitsadze~A.V., Samarskii~A.A. On some simplest generalizations of linear elliptic problems. Dokl. Akad. Nauk SSSR. 1969. V.~185, No.4. P.~739--740. 12. Bitsadze~A.V. To the theory of nonlocal boundary value problems. Dokl. Akad. Nauk SSSR. 1984. V.~277, No.~1. P.~17--19. 13. Il'in~V.A., Moiseev~E.I. An a priori estimate for the solution of a~problem associated with a~nonlocal boundary value problem of the first kind. Differential Equations, 1988, 24:5, 519--526. 14. Il'in~V.A., Moiseev~E.I. 2-D Nonlocal boundary value problem for Poisson's operator in differential and difference variants. Matem. Mod., 1990, 2:8, 139--156. 15. Zhura~N.A. Boundary value problems of Bitsadze--Samarskii type for systems that are elliptic in the Douglas--Nirenberg sense. Differential Equations, 1992, 28:1, 79--88. 16. Gushchin~A.K., Mikhailov~V.P. On solvability of nonlocal problems for a~second-order elliptic equation. Sb. Math., 1995, 81:1, 101--136. 17. Skubachevskii,~A.L. Elliptic Functional Differential Equations and Applications. Birkh\"{a}user, 1997. 18. Gushchin~A.K. A~condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations. Sb.: Math., 2002, 193:5, 649--668. 19. Ashyraliev~A. On well--posedness of the nonlocal boundary value problem for elliptic equations. Numerical Functional Analysis and Optimization. 2003. V.~24(1--2). P.~1--15. 20. Berikelashvili~G. On a nonlocal boundary--value problem for two--dimensional elliptic equation. Computational Methods in Applied Mathematics. 2003. V.~3, No.~1. P.~35--44. 21. Ashyralyev~A., Akay,~N. A note on the well-posedness of the nonlocal boundary value problem for elliptic difference equations. Applied Mathematics Computation. 2006. V.~175, No.~1. P.~49--60. 22. Skubachevskii~A.L. Nonclassical Boundary-Value Problems. I. Contemporary Mathematics. Fundamental Trends. 2007. V.~26. P.~3--132. 23. Ashyralyev~A. A note on the Bitsadze--Samarskii type nonlocal boundary value problem in a Banach space. Mathematical Analysis and Applications. 2008. V.~344. P.~557--573. 24. Kozhanov~A.I. On the solvability of spatially nonlocal problems with conditions of integral form for some classes of nonstationary equations. Differential Equations, 2015, 51:8, 1043--1050. 25. Berezanskii~Yu.M. Expansions in Eigenfunctions of Selfadjoint Operators. Providence, R.I.: Amer. Math. Soc., 1968. 26. Ladyzhenskaya~O.A., Uraltseva~N.N. Linear and Quasilinear Elliptic Equations. New York, London: Academic, 1968. 27. Evans L.C. Partial Differential Equations. Novosibirsk: T.~Rozhkovskaya, 2003. %(Университетская серия; Т.~7). 28. Ionkin~N.I. The solution of a certain boundary value problem of the theory of heat conduction with a~nonclassical boundary condition. Differ. Uravn., 1977, 13:2, 294--304. 29. Samarskii~A.A. Some problems of the theory of differential equations. Differ. Uravn., 1980, 16:11, 1925--1935. \end{document} \begin{thebibliography}{16} \ref\no {\sc Sobolev~S.L.} {\it On a~new problem of mathematical physics}/ S.L.~Sobolev. Izv. Akad. Nauk SSSR Ser. Mat. --- 1954. --- Vol.~18. - No.~1. --- P.~3--50. {\sc Соболев С.Л.} {\it Об одной краевой задаче математической физики}/ С.Л. Соболев // Изв. АН СССР. Сер. Матем. - 1954. - Т. 18. - № 2. - С. 3--50. \ref\no{2} {\sc Demidenko~G.V.} {\it Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative}/ G.V.~Demidenko, S.V.~Uspenskii. --- New York; Basel: Marcel Dekker, 2003. {\sc Демиденко Г.В.} {\it Уравнения и системы, не разрешенные относительно старшей производной}/ Г.В. Демиденко, С.В. Успенский. - Новосибирск: Науч. кн., 1998. \ref\no{3} {\sc Kozhanov A.I.} {\it Composite Type Equations and Inverse Problems}/ A.I. Kozhanov. --- Utrecht: VSP, 1999. \ref\no{4} {\sc Egorov~I.E.} {\it Nonclassical Operator-Differential Equations}/ I.E.~Egorov, S.G.~Pyatkov, S.V.~Popov. --- Novosibirsk: Nauka, 2000. {\sc Егоров И.Е.} {\it Неклассические дифференциально-операторные уравнения}/ И.Е. Егоров, С.Г. Пятков, С.В. Попов. - Новосибирск: Наука, 2000. \ref\no{5} {\sc Pyatkov S.G.} {\it Operator Theory. Nonclassical Problems}/ S.G. Pyatkov. --- Utrecht; Boston; Koln; Tokyo: VSP, 2002. \ref\no{7} {\sc Sveshnikov~A.G.} {\it Linear and Nonlinear Equations of Sobolev Type}/ A.G.~Sveshnikov, A.B.~Alshin, M.O.~Korpusov, Yu.D.~Pletner. --- Moscow: Fizmatlit, 2007. {\sc Свешников А.Г.} {\it Линейные и нелинейные уравнения соболевского типа}/ А.Г. Свешников, А.Б. Альшин, М.О. Корпусов, Ю.Д. Плетнер. - М.: Физматлит, 2007. \ref\no{8} {\sc Zhegalov~V.I.} {\it Equations with Dominating Partial Derivative}/ V.I.~Zhegalov, A.N.~Mironov, E.A.~Utkina --- Kazan: Kazan Federal University, 2014. {\sc Жегалов~В.И.} {\it Уравнения с доминирующей частной производной}/ В.И. Жегалов, А.Н. Миронов, Е.А.Уткина.- Казань, Казанский федеральный университет, 2014. \ref\no{9} S.L.~Sobolev, {\it Some Applications of Functional Analysis in Mathematical Physics}. Providence: Amer. Math. Soc., 1991. С.Л. Соболев, {\it Некоторые применения функционального анализа в математической физике.} М.: Наука, 1988. 336~с. \ref\no{10} {\sc Ladyzhenskaya~O.A.} {\it Linear and Quasilinear Elliptic Equations}/ O.A.~Ladyzhenskaya, N.N.~Uraltseva --- New York, London: Academic, 1968. {\sc Ладыженская О.А.} {\it Линейные и квазилинейные уравнения эллиптического типа}/ О.А. Ладыженская, Н.Н. Уральцева. - М.: Наука, 1973. \ref\no{11} {\sc Triebel H.} {\it Interpolation Theory. Function Spaces. Differential Operators}/ H. Triebel. Berlin: VEB Deutcher Verlag der Wissenschaften, 1978. \ref\no{12} {\sc Vragov~V.N.} {\it On the theory of boundary-value problems for equations ofmixed type in space}/ V.N.~Vragov. --- Differ. Uravn. --- 1977. --- Vol.~13. --- No.~6. --- P.~1098--1105. {\sc Врагов В.Н.} {\it К теории краевых задач для уравнений смешанного типа}/ В.Н. Врагов // Дифференциальные уравнения. - 1977. - Т.~13. - №~6. - С.~1098--1105. \ref\no{13} {\sc Egorov~I.E.} {\it Higher-Order Nonclassical Equations of Mathematical Physics}/ I.E.~Egorov, V.E.~Fedorov. --- Novosibirsk, Computer Center of the Siberian Division of the Russian Academy of Sciences, 1995. {\sc Егоров И.Е.} {\it Неклассические уравнения математической физики высокого порядка}/ И.Е. Егоров, В.Е. Федоров. - Изд-во ВЦ СО РАН, Новосибирск, 1995. \ref\no{14} {\sc Kozhanov~A.I.} {\it Boundary-value problems for some higher-order nonclassical differential equations}/ A.I.~Kozhanov; N.R.~Pinigina. --- Math. Notices. --- 2017. --- Vol.~101. --- No.~3. --- P.~467--474. {\sc Кожанов А.И.} {\it Краевые задачи для некоторых неклассических дифференциальных уравнений}/ А.И. Кожанов, Н.Р. Пинигина // Математические заметки. - 2017. - Т.~101. - вып.~3. - С. 403-412. \ref\no{15} {\sc Trenogin~V.A.} {\it Functional Analysis}/ Trenogin~V.A. --- Moscow: Fizmatlit, 2007. {\sc Треногин В.А.} {\it Функциональный анализ}/ В.А. Треногин. - М.: Наука, 1980. \ref\no{16} {\sc Kozhanov~A.I.} {\it Linear inverse problems for a~class of degenerate equations of Sobolev type}/ A.I.~Kozhanov. --- Vestnik YUrGU. --- 2012. --- Vol.~5~(264). --- No.~11. --- P.~33--42. {\sc Кожанов А.И.} {\it Линейные обратные задачи для одного класса вырождающихся уравнений соболевского типа}/ А.И. Кожанов // Вестник Южно--Уральского университета. Математическое моделирование и программирование. - 2012. - №~5~(264). - вып.~11. - С. 33-42. O.A.~Ladyzhenskaya, V.A.~Solonnikov, and N.N.~Uraltseva, {\it Linear and Quasilinear Equations of Parabolic Type}. Providence: Amer. Math. Soc., 1968. О.А. Ладыженская, В.А. Солонников, Н.Н. Уральцева, {\it Линейные и квазилинейные уравнения параболического типа.} М.: Наука, 1967. 736~c. \end{thebibliography} A.A. Sarsenbi, {\it The ill-posed problem for the heat transfer equation with involution}. Zhurnal SVMO. Vol.~21, \textnumero~1. 2019. С.~48-59. DOI: 10.15507/2079-6900.21.201901.48-59. А.А. Сарсенби, {\it Некорректная задача для уравнения типа теплопроводности с инволюцией}// Журнал Средневолжского математического общества. Т.~21, \textnumero~1. 2019. С.~48-59. DOI: 10.15507/2079-6900.21.201901.48-59. B.Kh.~Turmetov, {\it On a~generalization of the third boundary value problem for the Laplace equation}. Chelyab. Fiz.-Mat. Zh. Vol.~4, \textnumero~1. 2019. P.~33–41. Б.Х. Турметов, {\it Об одном обобщении третьей краевой задачи для уравнения Лапласа}// Челябинский физико-математический журнал. \textnumero~1. 2019. С.~33–41. D.N. Altynbek, M.A. Muratbekova, {\it Solvability of some boundary value problems for higher order equations with involution}. The International scientific-practical conference ``Problems of a~modern fundamental and applied mathematics'' to the 30th anniversary of independence of the Republic of Kazakhstan and the 20ер anniversary of the Kazakstan branch in the name of M.V.~Lomonosov. Nur-Sultan, 2021. P.~85-88. Д.Н. Алтынбек, М.А. Муратбекова, {\it Вопросы разрешимости некоторых краевых задач для уравнения высокого порядка с инволюцией}// Международная научно-практическая конференция «Проблемы современной фундаментальной и прикладной математики» посвященная 30-летию независимости Республики Казахстан и 20-летию Казахстанского филиала МГУ имени М.В. Ломоносова. Нур-Султан, 2021. 85-88 с. A.M. Sarsenbi, {\it Solvability of the mixed problem for the heat transfer equation with involution perturbation}. The International scientific-practical conference ``Problems of a~modern fundamental and applied mathematics'' to the 30th anniversary of independence of the Republic of Kazakhstan and the 20th anniversary of the Kazakstan branch in the name of M.V.~Lomonosov. Nur-Sultan, 2021. P.~143-144. А.М. Сарсенби, {\it Разрешимость смешанной задачи для уравнения теплопроводности с инволютивным возмущением}// Международная научно-практическая конференция «Проблемы современной фундаментальной и прикладной математики» посвященная 30-летию независимости Республики Казахстан и 20-летию Казахстанского филиала МГУ имени М.В. Ломоносова. Нур-Султан, 2021. 143-144 с.