\by Kutateladze~S.S., Novikov~S.P., and Reshetnyak~Yu.G. \paper Aleksandr Danilovich Aleksandrov (on the 100th anniversary of his birth) \jour Russian Math. Surveys \yr 2012 \vol 67 \issue 5 \pages 959--965 \endref \by Faddeev~D.K., Dolbilin~N.P., Ryshkov~S.S., and Shtogrin~M.I. \paper Boris Nikolaevich Delone (on his life and creativity) \jour Proc. Steklov Inst. Math. \yr 1992 \issue 1992 (4) \pages 1--9 \endref \by LaRouche Jr. L.H. \paper How Bernard Russell became an evil man \jour Fidelio \yr 1994 \vol 3 \issue 3 \pages 6--75 \endref \by Unterberger~A. \paper Sobolev spaces of variable order and problems of convexity for partial differential operators with constant coefficients \inbook Ast\'{e}risque~2 et~3 \publ Soc. Math. France \publaddr Paris \yr 1973 \pages 325--341 \endref \by Vi\v{s}ik~M.I. and Eskin~G.I. \paper Convolution equations of variable order \jour Tr. Mosk. Mat. Obsc. \yr 1967 \vol 16 %\issue \pages 26--49 \endref \by Unterberger~A. and Bokobza~J. \paper Les op\'{e}rateurs pseudodiff\'{e}rentiels d'ordre variable \jour C.~R. Math. Acad.Sci. Paris \yr 1965 \vol 261 %\issue \pages 2271--2273 \endref \by Beauzamy~B. \paper Espaces de Sobolev et de Besov d'ordre variable d\'{e}finis sur $L^{p}$ \jour C. R. Math. Acad. Sci. Paris \yr 1972 \vol 274 %\issue \pages 1935--1938 \endref \by Peetre~J. \paper On spaces of Triebel--Lizorkin type \jour Ark. Math. \yr 1975 \vol 13 %\issue \pages 123--130 \endref \by Leopold H.-G. \paper On function spaces of variable order of differentiation \jour Forum Math. \yr 1991 \vol 3 %\issue \pages 1--21 \endref \by Gol'dman~M.L. \paper A~description of the traces of some function spaces \jour Tr. Mat. Inst. Steklova \yr 1979 \vol 150 %\issue \pages 99--127 \finalinfo English translation: Proc. Steklov Inst. Math., vol.~150, no.~4, 105--133 (1981) \endref \by Gol'dman~M.L. \paper A~method of coverings for describing general spaces of Besov type \jour Tr. Mat. Inst. Steklova \yr 1980 \vol 156 %\issue \pages 47--81 \endref \by Gol'dman~M.L. \paper Imbedding theorems for anisotropic Nikol'skij--Besov spaces with moduli of continuity of general type \jour Tr. Mat. Inst. Steklova \yr 1984 \vol 170 %\issue \pages 86--104 \finalinfo English translation: Proc. Steklov Inst. Math., vol.~170, no.~1, 95--116 (1987) \endref \by Kalyabin~G.A. \paper Characterization of spaces of generalized Liouville differentiation \jour Mat. Sb. \yr 1977 \vol Nov. Ser., 104 %\issue \pages 42--48 \endref \by Kalyabin~G.A. \paper Description of functions in classes of Besov--Lizorkin--Triebel type \jour Tr. Mat. Inst. Steklova \yr 1980 \vol 156 %\issue \pages 82--109 \endref \by Kalyabin~G.A. \paper Characterization of spaces of Besov--Lizorkin and Triebel type by means of generalized differences \jour Tr. Mat. Inst. Steklova \yr 1988 \vol 181 %\issue \pages 95--116 \endref \by Kalyabin~G.A. and and Lizorkin~P.I. \paper Spaces of functions of generalized smoothness \jour Math. Nachr. \yr 1987 \vol 133 %\issue \pages 7--32 \endref \by Besov~O.V. \paper Equivalent normings of spaces of functions of variable smoothness," Function spaces, approximation, and differential equations \inbook A~collection of papers dedicated to the 70th birthday of Oleg Vladimorovich Besov, a~corresponding member of the Russian Academy of Sciences \publ Moscow \publaddr Nauka \yr 2003 \pages 87--95 \finalinfo English translation: Proc. Steklov Inst. Math., vol. 243, 80--88 (2003) \endref %Tr. May. Inst. Steklova., vol. 243, Nauka, Moscow 2003, pp. 87--95; %\? \by Besov~O.V. \paper On the interpolation, embedding, and extension of spaces of functions of variable smoothness \jour Dokl. Math. \yr 2005 \vol 71 \issue 2 \pages 163--167 \endref \by Besov~O.V. \paper Interpolation, embedding, and extension of spaces of functions of variable smoothness \jour Proc. Steklov Inst. Math. \yr 2005 \vol 248 %\issue \pages 47--58 \endref \by Almeida A. and H\"{a}st\"{o} P. \paper Besov spaces with variable smoothness and integrability \jour J.~Funct. Anal. \yr 2010 \vol 258 %\issue \pages 1628--1655 \endref \by Diening~L., H\"{a}st\"{o}~P., and Roudenko~S. \paper Function spaces of variable smoothness and integrability \jour J.~Funct. Anal. \yr 2009 \vol 256 \issue 6 \pages 1731--1768 \endref \by Kempka H. \paper Atomic, molecular and wavelet decomposition of 2-microlocal Besov and Triebel-Lizorkin spaces with variable integrability \jour Funct. Aprox. \yr 2010 \vol 43 \issue 2 \pages 171--208 \endref \by Kempka H. and Vyb\'{\i}ral~J. \paper Spaces of variable smoothness and integrability: Characterizations by local means and ball means of differences \jour J.~Fourier Anal. Appl. \yr 2012 \vol 18 \issue 4 \pages 852--891 \endref \by Tyulenev A.I. \paper Some new function spaces of variable smoothness \jour Sb. Math. \yr 2015 \vol 206 \issue 6 \pages 849--891 \endref \by Dahmen~W. and Micchelli~C.A. \paper Translates of multivariate splines \jour Linear Algebra Appl. \yr 1983 \vol 5 %\issue \pages 52--53 \endref \by Sickel~W. \paper Spline representations of functions in Besov--Triebel--Lizorkin spaces on~$\Bbb{R}^{n}$ \jour Forum Math. \yr 1990 \vol 2 %\issue \pages 451--475 \endref \by Sickel~W. \paper A~remark on orthonormal bases of compactly supported wavelets in Triebel--Lizorkin spaces. The case $0> (5--10 апреля 2021~г.) \? \by Martynov~O.M. \paper Constants of strong uniqueness of minimal projections onto some $n$-dimensional subspaces of $l_\infty^{2n}$ $(n\geqslant 2)$ \jour J.~Approx. Theory \yr 2021 \vol 262 \pages 105507 \endref \by Odyniec~W. and Prophet~M. \paper A~lower bound of the strongly unique minimal projection constant of $l_\infty^n$ $(n\geqslant 3)$ \jour J.~Approx. Theory \yr 2007 \vol 145 \issue 1 \pages 111--121 \endref \by Odinets~V.P. \paper On the seminar on geometry of Banach spaces on 1990--1997 \inbook Actual Problems of Modern Mathematics and Mathematical Education: Proceedings of the International Conference ``Gertsen Readings---2007'' (April 16--21, 2007) \publaddr St. Petersburg \publ St. Petersburg Gos. Ped. Inst. im.~A.I.~Gertsena \yr 2007 \vol 60 \pages 12--26 \endref \by Одинец~В.~П. \paper О семинаре по геометрии банаховых пространств в 1990--97~гг. \inbook Некоторые актуальные проблемы современной математики и математического образования. Мат. науч. конф. <<Герценовские чтения~--- 2007>> (16--21 апреля 2007~г.)\? \by Odyniec~W. and Prophet~M. \paper The strong unicity constant and its applications \inbook Function Spaces VIII (B\c{e}dlewo, 2006). Banach Center Publ. \publaddr Warszawa \publ Inst. Mat. Polsk. Akad. Nauk \yr 2008 \vol 79 \pages 167--172 \endref \by Shakhova S.A. \paper On the quasivariety generated by a~finite $p$-group \jour Math. Notes %Mat. Zametki \yr 1993 \vol 53 \issue 1 \pages 345г-347 %144--148 \endref \by Шахова~С.~A. \paper О квазимногообразии, порожденном конечной $p$-группой \by Budkin~A.I. \paper Independent axiomatizability of quasivarieties of groups \jour Math. Notes \yr 1982 \vol 31 \issue 6 \pages 413--417 % 817--826 \endref \by Будкин~А.~И. \paper Независимая аксиоматизируемость квазимногообразий групп \by Budkin~A.I. \paper Quasivarieties of nilpotent groups of axiomatic rank 4 \jour Sib. Elektron. Math. Reports % http://semr.math.nsc.ru/v17/p2131-2141.pdf \yr 2020 \vol 17 \pages 2131--2141 \endref \by Stepanets~A.I. \paper Solution of the Kolmogorov--Nikol'skii problem for the Poisson integrals of continuous functions \jour Sb. Math. \yr 2001 \vol 192 \issue 1 \pages 113--139 %113--138 \endref \by Степанец~А.~И. \paper Решение задачи Колмогорова~--- Никольского для интегралов Пуассона непрерывных функций \by Rovenskaya~O.G. and Novikov~O.A. \paper Approximation of classes of periodic analytic functions by Fej\'er's means \jour Chebyshevskii Sb. \yr 2020 \vol 21 \issue 4 \pages 218--226 \endref \by Ровенская~О.~Г., Новиков~О.~А. \paper О приближении средними Фейера классов аналитических периодических функций \by La Vall\'ee Poussin~Ch.-J. \paper Sur la meilleure approximation des fonctions d'une variable r\'eelle par des expressions d'ordre donn\'e \jour C.~R. Acad. Sci. Paris \yr 1918 \vol 166 \pages 799--802 \endref \by Nikolski~S. \paper Sur l'allure asymptotique du reste dans l'approximation au moyen des sommes de Fejer des fonctions v\'erifiant la condition de Lipschitz \jour Izv. Akad. Nauk SSSR Ser. Mat. \yr 1940 \vol 4 \issue 6 \pages 509--520 \endref \by Никольский~С.~М. \paper О некоторых методах приближения тригонометрическими суммами \by Stechkin~S.B. \paper On de la Vall\'e-Poussin sums \jour Dokl. Akad. Nauk SSSR \yr 1951 \vol 80 \issue 4 \pages 545--548 \endref %Стечкин~С.~Б. % О суммах Валле-Пуссена \by Telyakovskii~S.A. \paper Approximation of differentiable functions by de la Vall\'e-Poussin sums \jour Dokl. Akad. Nauk SSSR \yr 1958 \vol 121 \issue 3 \pages 426--429 \endref %Теляковский~С.~А. %Приближение дифференцируемых функций суммами Валле-Пуссена \by Efimov~A.V. \paper Approximation of periodic functions by de La Vall\'ee-Poussin sums.~I \jour Izv. Akad. Nauk SSSR Ser. Mat. \yr 1959 \vol 23 \issue 5 \pages 737--770 \endref %Ефимов~А.~В. %О приближении периодических функций суммами Валле-Пуссена \by Rukasov~V.I. and Novikov~O.A. \paper Approximation of analytic functions by de La Vall\'ee-Poussin sums \inbook Fourier Series: Theory and Applications \publaddr Kiev \publ Inst. Mat. Akad. Nauk Ukrain. SSR \yr 1998 \vol 20 \pages 228--241 \endref %Рукасов~В.~И., Новиков~О.~А. %Приближение аналитических функций суммами Валле-Пуссена %Ряди Фур'е: теорiя i застосування \by Rukasov~V.I. \paper Approximation of classes of analytic functions by de la Vall\'ee-Poussin sums \jour Ukrainian Math.~J. \yr 2003 \vol 55 \issue 6 \pages 974--986 % 806--816 \endref %Рукасов~В.~И. %Приближение суммами Валле Пуссена классов аналитических функций \by Serdyuk~A.S. \paper Approximation of Poisson integrals by de la Vall\'ee-Poussin sums \jour Ukrainian Math.~J. \yr 2004 \vol 56 \issue 1 \pages 122--134 %97--107 \endref %Сердюк~А.~С. %Наближення iнтегралiв Пуассона суммами Валле-Пуссена \by Serdyuk~A.S. \paper Approximation of Poisson integrals by de la Vall\'ee-Poussin sums in uniform and integral metrics \jour Reports of the National Academy of Sciences of Ukraine %-¦ ¦Є. =L= L·иЁ\"i¤° \yr 2009 \vol 6 %\issue \pages 34--39 \endref %Сердюк~А.~С. %Наближення iнтегралiв Пуассона сумами Валле Пуссена в рiвномiрнiй та iнтегральних метриках %Приближение интегралов Пуассона суммами Валле Пуссена в рiвномiрнiй и интегральных метриках \by Zhyhallo~T.B. \paper Approximation of functions holding the Lipschitz conditions on a~finite segment of the real axis by the Poisson--Chebyshev integrals \jour J.~Automation Information Sci. %¦и¦ёv. ¦ иЁЄvї¤°а ° °¤п¦и№Ёк°·° \yr 2018 \vol 50 % 3 \issue 5 \pages 34-48 %1--14 \endref %Жигалло~Т.~В. %Приближение функций, удовлетворяющих условию Липшица на конечном отрезке вещественной оси, интегралами Пуассона~--- Чебыш\"ева \by Ganzburg~I.M. \paper A~generalization of some results obtained by S.M.~Nikolsky and A.F.~Timan \jour Dokl. Akad. Nauk SSSR \yr 1957 \vol 116 \issue 5 \pages 727--730 \endref %Ганзбург~И.~М. %Обобщение некоторых результатов С.~М.~Никольского и А.~Ф.~Тимана \by Ganzburg~I.M. and Timan~A.F. \paper Linear processes of approximation by algebraic polynomials to functions satisfying a~Lipschitz condition \jour Izv. Akad. Nauk SSSR Ser. Mat. \yr 1958 \vol 22 \issue 6 \pages 771--810 \endref %Ганзбург~И.~М., Тиман~А.~Ф. %Линейные процессы приближения функций, удовлетворяющих условию Липшица, алгебраическими многочленами \by Omataev~T.O. \paper The approximation of continuous functions by Abel--Poisson sums of their Fourier series in certain Jacobi polynomials \jour Russian Math. (Iz. VUZ. Matematika) \yr 1977 \vol 21 %6 \issue 5 \pages 63--71 % 99--106 \endref %Оматаев~Т.~О. %О приближении непрерывных на отрезке функций усеченными суммами Валле-Пуссена \by Rusak~V.N. \paper A~method of approximation by rational functions on the real line \jour Math. Notes \yr 1977 \vol 22 \issue 3 \pages 699--702 %375--380 \endref %Русак~В.~Н. %Об одном методе приближения рациональными функциями на вещественной оси \by Rovba~E.A. \paper Approximation of functions differentiable in the sense of Riemann--Liouville by rational operators \jour Dokl. Nats. Akad. Nauk Belarusi \yr 1996 \vol 40 \issue 6 \pages 18--22 \endref %Ровба~Е.~А. %Приближение функций, дифференцируемых в смысле Римана~--- Лиувилля, рациональными операторами \by Smotritskii~K.A. \paper Approximation of bounded variation functions by rational operators on a~line \jour Vestnik Grodno University \yr 2005 \vol 2 \issue 34 \pages 60--68 \endref %Смотрицкий~К.~А. % О приближении функций ограниченной вариации рациональными операторами на отрезке \by Nikolskii~S.M. \paper Approximation of functions by trigonometric polynomials in the mean \jour Izv. Akad. Nauk SSSR Ser. Mat. \yr 1946 \vol 10 \issue 9 \pages 207--256 \endref %Никольский~С.~М. %Приближение функций тригонометрическими полиномами в среднем \by Stechkin~S.B. \paper Estimation of the remainder for the Fourier series for differentiable functions \jour Proc. Steklov Inst. Math. %Trudy Mat. Inst. Steklov. \yr 1980 \vol 145 \pages 139--166 %126--151 \endref %Стечкин~С.~Б. %Оценка остатка ряда Фурье для дифференцируемых функций \by Potseiko~P.G. and Rovba~E.A. \paper Approximation of the function $|x|^s$ by de la Vall\'e-Poussin means of Fourier series by the system of Chebyshev--Markov rational fractions \jour Izv. Akad. Nauk Belarusi Ser. Fiz.-Mat. Nauk % Tї¬бi =Ёб. Ё·ЁЇ. ¤ЁЄ¦· +їvЁи¦ci. Tїи. пiў.-№Ёк. ¤ЁЄ¦· \yr 2019 \vol 55 \issue 3 \pages 263--282 \endref %Поцейко~П.~Г., Ровба~Е.~А. % О приближениях функции $|x|^s$ средними Валле-Пуссена рядов Фурье по системе рациональных дробей Чебыш\" ева~--- Маркова \by Sun Yongsheng and Li Chun \paper Best approximation of certain classes of smooth functions on the real axis by splines of a~higher order \jour Math. Notes \yr 1990 \vol 48 \issue 4 \pages 1038--1044 %100--109 \endref %Сунь~Юншен, Ли~Чунь. %Наилучшее приближение некоторых классов гладких функций на действительной оси сплайнами высшего порядка \by Vinogradov~O.L. and Ulitskaya~A.Yu. \paper Sharp estimates for mean-square approximations of classes of differentiable periodic functions by shift spaces \jour Vestnik St. Petersburg University Math. \yr 2018 \vol 5 \issue 1 \pages 15--22 %22--31 \endref %Виноградов~О.~Л., Улицкая~А.~Ю. %Точные оценки среднеквадратичных приближений классов дифференцируемых периодических функций пространствами сдвигов \by Ulitskaya~A.Yu. \paper Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts \jour St. Petersburg Math.~J. , 2021, 32:2, \yr 2021 %2020 \vol 32 \issue 2 \pages 349--369 %201--228 \endref %Улицкая~А.~Ю. %Точные оценки среднеквадратичных приближений классов периодических св\"{е}рток пространствами сдвигов \by Kolomoitsev~Yu. and Skopina~M. \paper Approximation by multivariate quasi-projection operators and Fourier multipliers \jour Appl. Math. Comput. \yr 2021 \vol 400 \pages 125955 \endref \by De Boor~C., DeVore~R., and Ron~A. \paper Approximation from shift-invariant subspaces of $L_2(\Bbb{R}^d)$ \jour Trans. Amer. Math. Soc. \yr 1994 \vol 341 \issue 2 \pages 787--806 \endref \by Vinogradov~O.L. \paper Structural characterization of deviations of quasi-projectors on the real line \jour J.~Math. Anal. Appl. \yr 2021 \vol 500 \issue 1 \pages 125115 \endref \by Vinogradov~O.L. \paper Sharp inequalities for approximations of classes of periodic convolutions by odd-dimensional subspaces of shifts \jour Math. Notes % Mat. Zametki \yr 2009 \vol 85 \issue 4 \pages 544--557 % 569--584 \endref %Виноградов~О.~Л. %Точные неравенства для приближений классов периодических сверток подпространствами сдвигов нечетной размерности \by Vinogradov~O.L. \paper Sharp constants of approximations of convolution classes with an integrable kernel by spaces of shifts \jour St. Petersburg Math.~J. \yr 2019 % 2018 \vol 30 \issue 5 \pages 841--867 %112--148 \endref % Виноградов~О.~Л. %Точные константы приближений классов сверток с суммируемым ядром пространствами сдвигов \by Vinogradov~O.L. \paper Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts \jour St. Petersburg Math.~J. \yr 2021 %2020 \vol 32 \issue 2 \pages 233--260 % 45--84 \endref %Виноградов~О.~Л. %Точные константы приближений классов сверток с семейством ядер с особенностью пространствами сдвигов \by Magaril-Il'yaev~G.G. \paper Mean dimension, widths, and optimal recovery of Sobolev classes of functions on the line \jour Sb. Math. \yr 1993 %1991 \vol 74 %182 \issue 2 %11 \pages 381--403 % 1635--1656 \endref % Магарил-Ильяев~Г.~Г. %Средняя размерность, поперечники и оптимальное восстановление соболевских классов функций на прямой \by Magaril-Il'yaev~G.G., Osipenko~K.Yu., and Tikhomirov~V.M. \paper On exact values of $n$-widths in a~Hilbert space \jour J.~Approx. Theory \yr 2001 \vol 108 \issue 1 \pages 97--117 \endref \by Ulitskaya~A.Yu. \paper Fourier analysis in spaces of shifts \jour J. Math. Sci. \yr 2022 %\doi 10.1007/s10958- 022-05966-x \finalinfo arXiv: 2208.03748; doi 10.1007/s109\allowbreak58-022-05966-x \endref \by Vinogradov~O.L. \paper Average dimension of shift spaces \jour Lobachevskii~J. Math. \yr 2018 \vol 39 \issue 5 \pages 717--721 \endref \by Dung~D. \paper Mean $\varepsilon$-dimension of the functional class~$B_{G,p}$ \jour Math. Notes \yr 1980 \vol 28 \issue 5 \pages 818--823 % 727--736 \endref %Динь Зунг %Средняя $\varepsilon$-размерность класса функций $B_{G,p}$ \by Gr\"unbaum~B. \paper Regular polyhedra---old and new \jour Aequationes Math. \yr 1977 \vol 16 \iftex \issue 1--2 \else \issue 1 \fi \pages 1--20 \endref \by Zalgaller~V.A. \paper Convex polyhedra with regular faces \lang Russian \jour Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) \vol 2 \yr 1967 \pages 1--220 \endref \by Johnson~N.W. \paper Convex polyhedra with regular faces \jour Canad.~J. Math. \yr 1966 \vol 18 \issue 1 \pages 169--200 \endref \by Subbotin~V.I. \paper On a class of polyhedra with symmetrical vertex stars \inbook Contemporary Mathematics and Its Applications. Thematic Surveys \lang Russian \publaddr Moscow \publ Nauka \yr 2019 \pages 88--97 \finalinfo Itogi Nauki i Tekhniki; vol.~169 \endref \by Subbotin~V.I. \paper On two classes of polyhedra with rhombic vertices \jour J.~Math. Sci. \yr 2020 \vol 251 %\issue \pages 531--538 \endref \by Subbotin~V.I. \paper Completeness of the list of convex $RR$-polyhedra \jour Chebyshevskii Sbornik \yr 2020 \vol 2 \issue 1 \pages 297--309 \endref \by Cauchy~A.L. \paper Sur les polygones et poly\`{e}dres. Second M\'{e}moire \jour J. \'{E}cole Polyt\'{e}chnique \yr 1813 \vol 9 \pages 87--98 \endref \by Connelly~R. \paper Rigidity \inbook Handbook of Convex Geometry %P.~M.~Gruber, J.M.~Wills (eds.) \publaddr Amsterdam \publ North-Holland \yr 1993 \pages 223--271 \endref \by Dolbilin~N.P. \paper Rigidity of convex polyhedrons \jour Quantum \yr 1998 \vol 9 \issue 1 \pages 8--13 \endref \by Dolbilin~N.P., Shtan'ko~M.A., and Shtogrin~M.I. \paper Rigidity of zonohedra \jour Russian Math. Surveys \yr 1996 \vol 51 \issue 2 \pages 326--328 \endref % Долбилин~Н.~П., Штанько~М.~А., Штогрин~М.~И. % Неизгибаемость зоноэдров \by Dolbilin~N.P., Shtan'ko~M.A., and Shtogrin~M.I. \paper Nonbendability of a~division of a~sphere into squares \jour Dokl. Math. \yr 1997 \vol 55 \issue 3 \pages 385--387 \endref % Долбилин~Н.~П., Штанько~М.~А., Штогрин~М.~И. % Неизгибаемость квадрильяжа сферы \by Dolbilin~N.P., Shtan'ko~M.A., and Shtogrin~M.I. \paper Rigidity of a~quadrillage of the torus \jour Russian Math. Surveys \yr 1999 \vol 54 \issue 4 \pages 839--840 \endref % Долбилин~Н.~П., Штанько~М.~А., Штогрин~М.~И. %Неизгибаемость квадрильяжа тора \by Shtogrin~M.I. \paper Rigidity of quadrillage of the pretzel \jour Russian Math. Surveys \yr 1999 \vol 54 \issue 5 \pages 1044--1045 \endref % Штогрин~М.~И. % Неизгибаемость квадрильяжа кренделя \by Bowers~J.C., Bowers~ Ph.L., and Pratt~K. \paper Rigidity of circle polyhedra in the 2-sphere and of hyperideal polyhedra in hyperbolic 3-space \jour Trans. Amer. Math. Soc. \yr 2019 \vol 371 \issue 6 \pages 4215--4249 \endref \by Morozov~E.A. \paper Symmetries of 3-polytopes with fixed edge length \jour Sib. Electr. Math. Reports \yr 2020 \vol 17 \pages 1580--1587 \endref \by Aleksandrov~A.D. \paper Existence of a given polyhedron and of a convex surface with a given metric \lang Russian \jour C.~R. (Dokl.) Acad. Sci. USSR, n. Ser. %\? n. \yr 1941 \vol 30 \issue 2 \pages 103--106 \endref %\by Александров~А.~Д. %\paper Существование выпуклого многогранника и выпуклой поверхности с заданной метрикой \by Alexandroff~A. \paper Existence of a convex polyhedron and of a convex surface with a~given metric \lang Russian \jour Rec. Math. [Mat. Sbornik] N.S. \yr 1942 \vol 11(53) \iftex \issue 1--2 \else \issue 1 \fi \pages 15--65 \endref % Александров~А.~Д. %Существование выпуклого многогранника и выпуклой поверхности с заданной метрикой \by Stoker~J.J. \paper Uniqueness theorems for some open and closed surfaces in three-space \jour Ann. Scuola Norm. Super. Pisa, Cl. Sci., IV. Ser. \yr 1978 \vol 5 \issue 4 \pages 657--677 \endref \by G\'alvez~J.A., Mart\'{\i}nez~A., and Teruel~J.L. \paper On the generalized Weyl problem for flat metrics in the hyperbolic 3-space \jour J.~Math. Anal. Appl. \yr 2014 \vol 410 \issue 1 \pages 144--150 \endref \by Guan~P. and Lu~S. \paper Curvature estimates for immersed hypersurfaces in Riemannian manifolds \jour Invent. Math. \yr 2017 \vol 208 \issue 1 \pages 191--215 \endref \by Lewy~H. \paper On the existence of a closed convex surface realizing a~given Riemannian metric \jour Proc. Natl. Acad. Sci. USA \yr 1938 \vol 24 \issue 2 \pages 104--106 \endref \by Volkov~Yu.A. \paper On the existence of a polyhedron with prescribed metric \lang Russian \inbook Proceedings of the Third All-Union Mathematical Congress \bookinfo V.~1, Moscow, June--July 1956 \publaddr Moscow \publ Academy of Sciences of the USSR \yr 1958 \pages 146 \endref %\by Волков~Ю.~А. %\paper О существовании выпуклой поверхности с данной метрикой %\inbook Труды 3-го Всесоюзного математического съезда \by Volkov~Yu.A. \paper Existence of a polyhedron with prescribed development.~I \lang Russian \jour Vestn. Leningr. University, Mat. Mekh. Astron. \yr 1960 \vol 19 \issue 4 \pages 75--86 \endref %\by Волков~Ю.~А. %\paper Существование выпуклого многогранника с данной разверткой.~I \by Volkov~Yu.A. and Podgornova~E.G. \paper Existence of a~polyhedron with prescribed development \lang Russian \jour Uch. Zap. Tashk. Gos. Pedagog. Inst. Im. Nizami %\?Im. \yr 1972 \vol 85 \pages 3--54 \endref %\by Волков~Ю.~А., Подгорнова~Е.~Г. %\paper Существование выпуклого многогранника с данной разверткой \by Volkov~Yu.A. \paper Existence of a~polyhedron with prescribed development \jour J.~Math. Sci., New York \yr 2020 \vol 251 \issue 4 \pages 462--479 \endref %\by Волков~Ю.~А. %\paper Существование многогранника с данной разверткой \by Bobenko~A.I. and Izmestiev~I. \paper Alexandrov's theorem, weighted Delaunay triangulations, and mixed volumes \jour Ann. Inst. Fourier \yr 2008 \vol 58 \issue 2 \pages 447--505 \endref \by Izmestiev~I. \paper A variational proof of Alexandrov's convex cap theorem \jour Discrete Comput. Geom. \yr 2008 \vol 40 \issue 4 \pages 561--585 \endref \by Shtogrin~M.I. \paper Degeneracy criterion for a~convex polyhedron \jour Russian Math. Surveys \yr 2012 \vol 67 \issue 5 \pages 951--953 \endref %\by Штогрин~М.~И. %\paper Критерий вырожденности выпуклого многогранника \by Jasiulek~M. and Korzy{\'n}ski~M. \paper Isometric embeddings of 2-spheres by embedding flow for applications in numerical relativity \jour Class. Quantum Grav. \yr 2012 \vol 29 \finalinfo Article 155018, 14~pp. \endref \by Kane~D., Price~G.N., and Demaine~E.D. \paper A~pseudopolynomial algorithm for Alexandrov's theorem \inbook Algorithms and Data Structures %F.~Dehne, M.~Gavrilova, J.-R.~Sack, C.~D.~T{\'o}th (eds.). \publaddr Cham \publ Springer \yr 2009 \pages 435--446 \finalinfo Lect. Notes Comput. Sci.; vol.~5664 \endref \by Ray~S., Miller~W.A., Alsing~P.M., and Yau~S.T. \paper Adiabatic isometric mapping algorithm for embedding 2-surfaces in Euclidean 3-space \jour Class. Quantum Grav. \yr 2015 \vol 32 \finalinfo Article no.~235012, 17~pp. \endref \by Tichy~W., McDonald~J.R., and Miller~W.A. \paper New efficient algorithm for the isometric embedding of 2-surface metrics in three dimensional Euclidean space \jour Class. Quantum Grav. \yr 2015 \vol 32 \finalinfo Article 015002, 16~pp. \endref \by Zalgaller~V.A. \paper Convex polyhedra with regular faces \lang Russian \inbook Semin. in Mathematics. V.~2 \publaddr Leningrad \publ Steklov Math. Inst. \yr 1969 \pages 5--221 \endref % Залгаллер~В.~А. % Выпуклые многогранники с правильными гранями \by Gr{\"u}nbaum~B. and Shephard~G.C. \paper Spherical tilings with transitivity properties \inbook The Geometric Vein. The Coxeter Festschrift %Ch.~Davis, B.~Gr{\"u}nbaum, F.~A.~Sherk (eds.). \publaddr New York \publ Springer \yr 1982 \pages 65--98 \endref \by Sakano~Y. and Akama~Y. \paper Anisohedral spherical triangles and classification of spherical tilings by congruent kites, darts and rhombi \jour Hiroshima Math.~J. \yr 2015 \vol 45 \issue 3 \pages 309--339 \endref \by Gluck~H. \paper Almost all simply connected closed surfaces are rigid \inbook % L.C.~Glaser, T.B.~Rushing (eds.) Geometric Topology. Proceedings of the Geometric Topology Conference Held at Park City, Utah, 1974 \publaddr Berlin \publ Springer \yr 1975 \pages 225--239 \finalinfo Lect. Notes Math.; vol.~438 \endref \by Bowers~J.C., Bowers~Ph.L., and Pratt~K. \paper Almost all circle polyhedra are rigid \jour Geom. Dedicata \yr 2019 \vol 203 \pages 337--346 \endref \by Sabitov~I.Kh. \paper Algebraic methods for solution of polyhedra \jour Russian Math. Surveys %Uspekhi Mat. Nauk \yr 2011 \vol 66 \issue 3 \pages 445--505 %3--66 \endref %Сабитов~И.~Х. %Алгебраические методы решения многогранников \by Connelly~R. \paper The rigidity of suspensions \jour J. Differ. Geom. \yr 1978 \vol 13 \issue 3 \pages 399--408 \endref \by Sabitov~I.Kh. \paper Algorithmic testing for the deformability of suspensions \jour J.~Soviet Math. \yr 1990 \vol 51 \issue 5 \pages 2584--2586 \endref %\by Сабитов~И.~Х. %\paper Алгоритмическая проверка изгибаемости подвесок \by Maehara~H. \paper On a special case of Connelly's suspension theorem \jour Ryukyu Math.~J. \yr 1991 \vol 4 \pages 35--45 \endref \by Stachel~H. \paper Flexible cross-polytopes in the Euclidean 4-space \jour J.~Geom. Graph. \yr 2000 \vol 4 \issue 2 \pages 159--167 \endref \by Mikhalev~S.N. \paper Some necessary metric conditions for flexibility of suspensions \jour Mosc. University Math. Bull. \yr 2001 \vol 56 \issue 3 \pages 14--20 \endref % Михалев~С.~Н. % Некоторые необходимые метрические условия изгибаемости подвесок \by Slutskiy~D.A. \paper A~necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space \jour Sb. Math. \yr 2013 \vol 204 \issue 8 \pages 1195--1214 \endref %\by Слуцкий~Д.~А. %\paper Необходимое условие изгибаемости невырожденной подвески в пространстве Лобачевского \by Gaifullin~A.A. \paper Embedded flexible spherical cross-polytopes with nonconstant volumes \jour Proc. Steklov Inst. Math. \yr 2015 \vol 288 \pages 56--80 \endref %\by Гайфуллин~А.~А. %\paper Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами \by Seidenberg~A. \paper A new decision method for elementary algebra \jour Ann. Math. \yr 1954 \vol 60 \issue 2 \pages 365--374 \endref \by Ivanov~V.V. \paper Perturbation of uniformly summable semigroups of operators \jour Dokl. Akad. Nauk SSSR \yr 1980 \vol 250 \issue 2 \pages 269--273 \endref %Иванов~В.~В. %Возмущение равномерно суммируемых полугрупп операторов \by Melnikov~E.V. \paper Perturbation of continuous semigroups at zero by strongly bounded operators \inbook Fundamental and Applied Mathematics \lang Russian \publaddr Omsk \publ Omsk University \yr 1994 \pages 32--37 \endref %Мельников~Е.~В. %О возмущении непрерывных в нуле полугрупп сильно ограниченными операторами \by Schappacher~W. \paper St\"orungstheorie lokal-gleichstetiger Halbgruppen \jour Ber. Math.-Statist. Sek. Forsehungszentrum Graz \yr 1976 \vol 21 \issue 2 \pages %\?02--228 \endref \by Melnikov~E.V. \paper On some endomorphism classes of a~locally convex space \inbook Vesnt. Omsk University \publaddr Omsk \yr 1998 \vol 3 \pages 16--18 \endref %Мельников~Е.~В. %О некоторых классах эндоморфизмов локально выпуклого пространства \by Komatsu~H. \paper Semi-groups of operators in locally convex spaces \jour J.~Math. Soc. Japan \yr 1964 \vol 16 \issue 3 \pages 230--262 \endref \by Mel'nikov~E.V. \paper Analyticity of vector-valued functions \inbook Omsk Scientific Readings [Electronic Resource]: %Электронный ресурс Proceedings of the Scientific-Practical Conference (Omsk, 11--16 December 2017) \publaddr Omsk \publ Omsk University \yr 2017 \pages 1037--1040 \endref %Мельников~Е.~В. %Об аналитичности векторнозначных функций Омские научные чтения \by Mel'nikov~E.V. \preprint Generalized Well-Posedness of the Abstract Cauchy Problem and Semigroups--Generalized Functions \yr 1988 \finalinfo submitted to VINITI. 1988. 6088--B88. \endmref %Мельников~Е.~В. %Обобщенная корректность абстрактной задачи Коши и полугруппы-обобщенные функции \by Mel'nikov~E.V. \paper On a~proof of Lomonosov's theorem \inbook Omsk Scientific Readings [Electronic Resource]: Proceedings of the Second Scientific Conference (Omsk, 10--15 December 2018) \publaddr Omsk \publ Omsk University \yr 2018 \pages 231--234 \endref % Мельников~Е.~В. %Об одном доказательстве теоремы В.~И.~Ломоносова \by Oldroyd~J.G. \paper On the formulation of theological equations of state \jour Proc. Roy. Soc. \yr 1950 \vol 200 %\issue \pages 523--541 \endref \by Bird ~R.B., Dotson~P.J., and Johnson~N.L. \paper Polymer solution rheology based on a finitely extensible bead-spring chain model \jour J.~Non-Newtonian Fluid Mechanics \yr 1980 \vol 7 \iftex \issue 2--3 \else \issue 2 \fi \pages 213--235 \endref \by Chilcott~M.D. and Ralliston~J.M. \paper Creeping flow of dilute polymer solutions past cylinders and spheres \jour J.~Non-Newtonian Fluid Mechanics \yr 1988 \vol 29 \issue 3 \pages 381--432 \endref \by Remmelgas~J., Harrison~G., and Leal~L.G. \paper A~differential constitutive equation for entangled polymer solutions \jour J.~Non-Newtonian Fluid Mechanics \yr 1999 \vol 80 \issue 2 \pages 115--134 \endref \by Golovicheva~I.\`E., Zinovich~S.A., and Pyshnograi~G.V. \paper Effect of the molecular mass on the shear and longitudinal viscosity of linear polymers \jour J.~Appl. Mech. Techn. Phys. \yr 2000 \vol 41 \issue 2 \pages 347--352 %154--160 \endref %Головичева~И.~Э., Зинович~С.~А., Пышнограй~Г.~В. %Влияние молекулярной массы на сдвиговую и продольную вязкость линейных полимеров \by Pyshnograi~G., Merzlikina~D., Filip~P., and Pivokonsky~R. \paper Mesoscopic single and multi-mode rheological models for polymeric melts viscometric flow description \jour WSEAS Trans. Heat Mass Transf. \yr 2018 \vol 13 %\issue \pages 49--65 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Linear asymptotic instability of a stationary flow of a~polymeric medium in a~plane channel in the case of periodic perturbations \jour J.~Appl. Industr. Math. \yr 2014 \vol 8 %17 \issue 4 %3 \pages 467--478 %13--25 \endref %Блохин~А.~М., Ткачев~Д.~Л. %Линейная асимптотическая неустойчивость стационарного течения полимерной среды в плоском канале в случае периодических возмущений \by Blokhin~A.M., Yegitov~A.V., and Tkachev~D.L. \paper Linear instability of solutions in a~mathematical model describing polymer flows in an infinite channel \jour Comp. Math. Math. Phys. \yr 2015 \vol 55 \issue 5 \pages 848--873 %850--875 \endref %Блохин~А.~М., Егитов~А.~В., Ткачев~Д.~Л. %Линейная неустойчивость решений математической модели, описывающей течения полимеров в бесконечном канале \by Blokhin A. and Tkachev D. \paper Spectral asymptotics of a~linearized problem about flow of an incompressible polymeric fluid. Base flow is analogue of a~Poiseuille flow \jour AIP Conf. Proc. \yr 2018 \vol 2027 %\issue \pages 030028 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Analogue of the Poiseuille flow for incompressible polymeric fluid with volume charge. Asymptotics of the linearized problem spectrum \jour J.~Phys. Conf. Ser. \yr 2017 \vol 894 \issue 012096 \pages 1--6 \endref \by Blokhin~A.M., Yegitov~A.V., and Tkachev~D.L. \paper Asymptotics of the spectrum of a linearized problem of the stability of a~stationary flow of an incompressible polymer fluid with a~space charge \jour Comp. Math. Math. Phys. \yr 2018 \vol 58 \issue 1 \pages 108--122 \endref %Блохин~А.~М., Егитов~А.~В., Ткачев~Д.~Л. %Асимптотика спектра для линеаризованной задачи об устойчивости стационарных течений несжимаемой полимерной жидкости с объемным зарядом \by Blokhin A., Tkachev D., and Yegitov A. \paper Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid \jour Z.~Angrew. Math. Mech. \yr 2018 \vol 98 \issue 4 \pages 589--601 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid \jour J.~Hyperbolic Differ. Equ. \yr 2019 \vol 16 \issue 4 \pages 793--817 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid \jour Fluid Dyn. \yr 2019 \vol 54 \issue 8 \pages 1051--1058 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Stability of Poiseuille-type flows for a MHD model of an incompressible polymeric fluid \jour Eur. J. Mech. B. Fluids \yr 2020 \vol 80 %\issue \pages 112--121 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid \jour Sb. Math. \yr 2020 \vol 211 \issue 7 \pages 901--921 %3--23 \endref % Блохин~А.~М., Ткач\"ев~Д.~Л. %Устойчивость аналога течения Пуазейля в МГД модели несжимаемой полимерной жидкости \by Blokhin~A.M. and Tkachev~D.L. \paper MHD model of an incompressible polymeric fluid. Linear instability of the resting state \jour Complex Var. Elliptic Equ. \yr 2021 \vol 66 \issue 6--7 \pages 929--944 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Linear instability of the resting state for the MHDmodel of an incompressible polymeric fluid \jour AIP Conference Proceedings. 20th Intern. Conf. on the Methods of Aerophysical Research, ICMAR, 2020 \yr 2021 \vol 2351 %\issue \pages 040057 \endref \by Blokhin~A.M. and Tkachev~D.L. \paper Linear instability of the resting state for the MHD model of an incompressible polymer liquid in the case of absolute conductivity \jour Mat. Tr. \yr 2021 \vol 24 \issue 1 \pages 35--51 \endref %Блохин~А.~М., Ткач\"ев~Д.~Л. %Линейная неустойчивость состояния покоя для МГД модели несжимаемой полимерной жидкости в случае абсолютной проводимости \by Blokhin~A.M. and Goldin~A.Yu. \paper On linear stability of an incompressible polymer liquid at rest \jour J.~Math. Sci. % Sib. J. Pure and Appl. Math. \yr 2018 %2016 \vol 230 %16 \issue 1 %4 \pages 14--24 %17--27 \endref % Блохин~А.~М., Голдин~А.~Ю. % К вопросу о линейной устойчивости состояния покоя для несжимаемой полимерной жидкости \by Bambaeva~N.V. and Blokhin~A.M. \paper Stationary solutions of equations of incompressible viscoelastic polymer liquid \jour Comp. Math. Math. Phys. \yr 2014 \vol 54 \issue 5 \pages 874--899 %845--870 %109--134 \endref %Бамбаева~Н.~В., Блохин~А.~М. %Стационарные решения уравнений несжимаемой вязкоупругой полимерной жидкости \by Brushlinskii~K.V. \paper On the growth of solution to a~mixed problem with the system of eigenfunctions in complete %in the case when the system of eigenfunctions is incomplete \jour Izv. Akad. Nauk SSSR Ser. Mat. \yr 1959 \vol 23 \issue 4 \pages 893--912 \endref %О росте решения смешанной задачи в случае неполноты собственных функций %Брушлинский~К.~В. \by Aristov~O.Yu. \preprint Analytic Functionals on Complex Lie Groups, Smash Products, and Resolutions \yr 2022 \lang Russian % \publaddr Moscow %\finalinfo arXiv: 2203.04145v3 % Аристов~О.~Ю. %Аналитические функционалы на комплексных группах Ли, смэш-произведения и резольвенты. \by Matsushima~Y. and Morimoto~A. \paper Sur certains espaces fibr\'{e}s holomorphes sur une vari\'{e}t\'{e} de Stein \jour Bull. Soc. Math. France \yr 1960 \vol 88 \pages 137--155 \endref \by Morimoto~A. \paper Non-Compact Complex Lie Groups Without Non-Constant Holomorphic Functions \inbook Proc. of the Conf. on Complex Analysis, Minneapolis 1964 \publaddr Berlin and Heidelberg \publ Springer \yr 1965 \pages 256--272 \endref \by Morimoto~A. \paper On the classification of non-compact abelian Lie groups \jour Trans. Amer. Math. Soc. \yr 1966 \vol 123 \pages 200--228 \endref \by Aristov~O.Yu. \paper Holomorphic functions of exponential type on connected complex Lie groups \jour J.~Lie Theory \yr 2019 \vol 29 \issue 4 \pages 1045--1070 \finalinfo arXiv:1903.08080 \endref \by Malcev~A.I. \paper On arcwise connected locally closed groups \jour Dokl. Akad. Nauk SSSR \yr 1943 \vol 40 \issue 3 \pages 108--110 \endref %Мальцев~А.~И. %О линейных связных локально-замкнутых группах \by Aristov~O.Yu. \paper Functions of class $C^\infty$ in noncommuting variables in the context of triangular Lie algebras %\? \jour Izv. RAN. Ser. Mat. \yr 2022 \vol 86 \issue 6 \pages 5--46 \finalinfo arXiv:2103.06143 \endref %Аристов~О.~Ю. %Некоммутативные функции класса $C^\infty$ в контексте треугольных алгебр Ли \by Hofmann~K.H. and Neeb~K.-H. \paper The compact generation of closed subgroups of locally compact groups \jour J.~Group Theory \yr 2009 \vol 12 \pages 555--559 \endref \by Etayo~F. and Santamaria~R. \paper Distinguished connections on $(J^2 = \pm 1)$-metric manifolds \jour Arch. Math.(Brno) \yr 2016 \vol 52 \issue 3 \pages 159--203 \endref \by Wang Y. \paper Canonical connections and algebraic Ricci solitons of three-dimensional Lorentzian Lie groups \jour Chin. Ann. Math. Ser.~B \yr 2022 \vol 43 \pages 443--458 \finalinfo https://doi.org/10.1007/s11401-022-0334-5 %arXiv:2001.11656 [math.DG] %\allowbreak \endref \by Wu~T. and Wang~Y. \paper Codazzi tensors and the quasi-statistical structure associated with affine connections on three-dimensional Lorentzian Lie groups \jour Symmetry \yr 2021 \vol 13 \issue 8 \url https://www.mdpi.com/2073-8994/13/8/1459 \endref \by Wang~Y. \preprint Affine Connections and Gauss--Bonnet Theorems in the Heisenberg Group\nofrills \yr 2021 \bookinfo arXiv:2102.01907 [math.DG] \endref \by Balogh~Z., Tyson~J., and Vecchi~E. \paper Intrinsic curvature of curves and surfaces and a~Gauss--Bonnet theorem in the Heisenberg group \jour Math.~Z. \yr 2017 \vol 287 \issue 1 \pages 1--38 \endref \by Balogh~Z., Tyson~J., and Vecchi~E. \paper Correction to: Intrinsic curvature of curves and surfaces and a~Gauss--Bonnet theorem in the Heisenberg group \jour Math.~Z. \yr 2020 \vol 296 \issue 1 \pages 875--876 \endref \by Wei~S. and Wang~Y. \paper Gauss--Bonnet theorems in the Lorentzian Heisenberg group and the Lorentzian group of rigid motions of the Minkowski plane \jour Symmetry \yr 2021 \vol 13 \issue 2 %\pages \doi 10.3390/sym13020173 \endref \by Wu~T., Wei~S., and Wang~Y. \paper Gauss--Bonnet theorems and the Lorentzian Heisenberg group \jour Turk. J. Math. \yr 2021 \vol 45 \issue 2 \pages 718--741 \endref \by Liu~H. and Miao~J. \paper Gauss--Bonnet theorem in Lorentzian Sasakian space forms \jour AIMS. Math. \yr 2021 \vol 6 \issue 8 \pages 8772--8791 \endref \by Tryamkin~M.V. \paper The sub-Riemannian curvature of curves in the group of semiaffine transformations of the Euclidean plane \jour Math. Notes \yr 2019 \vol 106 \issue 3 \pages 473--477 \endref \by Tryamkin~M.V. \paper The sub-Riemannian curvature of curves in the Borel subgroup of the group $SL(2, R)$ \jour Math. Notes \yr 2018 \vol 104 \issue 5 \pages 773--777 \endref \by Wang~Y. \preprint Canonical Connections and Gauss--Bonnet Theorems in the Heisenberg Group\nofrills \yr 2021 \bookinfo ReseachGate \endref \by Albert~A.A. \paper Power-associative rings \jour Trans. Amer. Math. Soc. \yr 1948 \vol 64 \issue 3 \pages 552--593 \endref \by Myung H.C. \paper Some classes of flexible Lie-admissible algebras \jour Trans. Amer. Math. Soc. \vol 167 \yr 1972 \issue 1 \pages 79--88 \endref \by Levchuk~V.M. \paper Niltriangular subalgebra of Chevalley algebra: the enveloping algebra, ideals and automorphisms \jour Dokl. Math. \yr 2018 \vol 97 %478 \issue 1 %2 \pages 23--27 %137--140 \endref %Левчук В. М. %Нильтреугольная подалгебра алгебры Шевалле: обертывающая алгебра, идеалы и автоморфизмы \by Levchuk~V.M., Suleimanova~G.S., and Hodyunya~N.D. \paper Nonassociative enveloping algebras of Chevalley algebras \jour Trudy Instituta Matematiki i Mekhaniki UrO RAN \yr 2020 \vol 26 \issue 3 \pages 91--100 \endref %Левчук~В.~М., Сулейманова~Г.~С., Ходюня~Н.~Д. %Неассоциативные обертывающие алгебр Шевалле \by Levchuk V.M. and Suleimanova G.S. \paper The normal structure of unipotent subgroup in groups of Lie type and related questions \jour Dokl. Math. \yr 2008 \vol 77 \issue 2 \pages 595--598 \endref \by Levchuk~V.M. and Suleimanova~G.S. \paper Extremal and maximal normal abelian subgroups of a~maximal unipotent subgroup in groups of Lie type \jour J.~Algebra \yr 2012 \vol 349 \issue 1 \pages 98--116 \endref \by Egorychev~G.P. and Levchuk V.M. \paper Enumeration in the Chevalley algebras \jour ACM SIGSAM Bulletin \yr 2001 \vol 35 \issue 2 \pages 20--34 \endref \by Levchuk V.M. \paper Subgroups of the unitriangular group \jour Izv. Math. \yr 1974 \vol 8 %38 \issue 6 \pages 1191--1208 %1202--1220 \endref % Левчук В. М. %Подгруппы унитреугольной группы \by Egorychev G.P. and Levchuk V.M. \paper Enumeration of characteristic subgroups of unipotent Lie-type groups \inbook Algebra \publ Walter de Gruyter \publaddr Berlin \yr 1996 \pages 49--62 \endref \by Reiner V. \paper Non-crossing partitions for classical reflection groups \jour Discrete Math. \yr 1997 \vol 177 \pages 195--222 \endref \by Athanasiadis~C.A. and Reiner~V. \paper Noncrossing partitions for the group $D_n$ \jour SIAM J. Discrete Math. \yr 2004 \vol 18 \issue 2 \pages 397--417 \endref \by Athanasiadis~C.A. \paper On a~refinement of the generalized Catalan numbers for Weyl groups \jour Trans. Amer. Math. Soc. \yr 2005 \vol 357 \issue 1 \pages 179--197 \endref \by Sommers~E.~N. \paper $B$-Stable ideals in the nilradical of a~Borel subalgebra \jour Canad. Math. Bull. \yr 2005 \vol 48 \issue 3 \pages 460--472 \endref \by Dubish R. and Perlis S. \paper On total nilpotent algebras \jour Amer.~J. Math. \yr 1951 \vol 73 \pages 439--452 \endref \by Hodyunya N.D. \paper Enumerations of ideals in niltriangular subalgebra of Chevalley algebras \jour J.~SFU Math. Phys. \yr 2018 \vol 11 \issue 3 \pages 271--277 \endref \by Levchuk V.M. \paper Niltriangular subalgebras of the Chevalley algebras and their enveloping algebras: ideals and automorphisms \inbook Proc. Intern. Conf. ``Mathematics in the Modern World,''\nocomma \bookinfo (August 14--19, 2017) \publaddr Novosibirsk \publ Sobolev Inst. Math. \yr 2017 \pages 105 \endref \by Egorychev G.P. \paper Method of coefficients: an algebraic characterization and recent applications \inbook Advances in Combinatorial Mathematics: Proc. of the Waterloo workshop in comp. alg. 2008, devoted to the 70th birthday Georgy Egorychev \publaddr London and New York \publ Springer \yr 2009 \pages 1--30 \endref \by Egorychev~G.P., Kuzucuoglu F., and Levchuk~V.M. \paper Enumeration of ideals of some nilpotent matrix rings \jour J.~Algebra Appl. \yr 2013 \vol 12 \issue 1 \pages 1250140-1--1250140-11 \endref \by Chevalley C. \paper Sur certain groups simples \jour T\^{o}hoku Math.~J. \yr 1955 \vol 7 \iftex \issue 1--2 \else \issue 1 \fi \pages 14--66 \endref \by Krivokolesko~V.P. and Levchuk~V.M. \paper Enumeration of ideals of exceptional nilpotent matrix algebras \jour Trudy Instituta Matematiki i Mekhaniki UrO RAN \yr 2015 \vol 21 \issue 1 \pages 166--171 \endref %Кривоколеско В. П., Левчук В. М. %Перечисление идеалов исключительных нильпотентных матричных алгебр \by Tolasov~B.A. \paper On the number of normal divisors of the triangular group containing in the unitriangular subgroup \jour Algebra i Teoriya Chisel (Nalchik) \yr 1977 \issue 2 \pages 122--126 \endref %Толасов Б. А. %О числе нормальных делителей треугольной группы, содержащихся в унитреугольной подгруппе \by Egorychev~G.P. \paper The enumeration of own $t$-dimensional subspaces of a~space~$V_m$ over the field~$GF(q)$ \jour The Bulletin of Irkutsk State University. Series Mathematics \yr 2016 \vol 17 \issue 3 \pages 12--22 \endref %Егорычев Г. П. %Перечисление собственных $t$-мерных подпространств пространства $V_m$ над полем $GF(q)$ \by Levchuk~V.M. \paper Parabolic subgroups of certain ABA-groups \jour Math. Notes \yr 1982 \vol 31 \issue 4 \pages 259--267 %509--525 \endref % Левчук В.~М. %Параболические подгруппы некоторых АВА-групп \by Levchuk~V.M., Litavrin~A.V., Hodyunya~N.D., and Tsigankov~V.V. \paper Niltriangular subalgebras of the Chevalley algebras and their generalizations \jour Vladikavkaz Math.~J. \yr 2015 \vol 17 \issue 2 \pages 37--46 \endref %Левчук В. М., Литаврин~А.~В., Ходюня~Н.~Д., Цыганков~В.~В. %Нильтреугольные подалгебры алгебр Шевалле и их обобщения \by Krattenhaler~C. \paper Lattice path enumeration \inbook Handbook of Enumerative Combinatorics \publaddr Boca Raton \publ CRC \yr 2015 \pages 589--678 \finalinfo Discrete Math. Appl. \endref \by Kuchment~P. and Zeng~H. \paper Asymptotics of spectra of Neumann Laplacians in thin domains \inbook Advances in Differential Equations and Mathematical Physics %Yu. Karpeshina, G. Stolz, R. Weikard, and Y. Zeng, Eds. \publaddr Amer. Math. Soc. \publ New York \yr 2003 \pages 199--213 \finalinfo Contemp. Math.; vol.~387 \endref \by Exner~P. and Post~O. \paper Convergence of spectra of graph-like thin manifolds \jour J.~Geom. Phys. \yr 2005 \vol 54 \issue 1 \pages 77--115 \endref \by Grieser~D. \paper Spectra of graph neighborhoods and scattering \jour Proc. London Math. Soc. \yr 2008 \vol 97 \issue 3 \pages 718--752 \endref \by Molchanov S. and Vainberg B. \paper Scattering solutions in networks of thin fibers: small diameter asymptotics \jour Comm. Math. Phys. \yr 2007 \vol 273 \issue 2 \pages 533--559 \endref \by Kuchment~P. and Post~O. \paper On the spectrum of carbon nano-structures \jour Comm. Math. Phys. \yr 2007 \vol 275 \issue 3 \pages 805--826 \endref \by Panasenko~G. and Pileckas~K. \paper Asymptotic analysis of the non-steady Navier--Stokes equations in a~tube structure~I. The case without boundary-layer-in-time \jour Nonlinear Anal. \yr 2015 \vol 122 %\issue \pages 125--168 \endref \by Panasenko~G. and Pileckas~K. \paper Asymptotic analysis of the non-steady Navier--Stokes equations in a~tube structure~II. General case \jour Nonlinear Anal. \yr 2015 \vol 125 %\issue \pages 582--607 \endref \by Kozlov~V.A. and Nazarov~S.A. \paper A one-dimensional model of flow in a~junction of thin channels, including arterial trees \jour Sb. Math. %Mat. Sb. \yr 2017 \vol 208 \issue 8 \pages 1138--1186 %56--108 \finalinfo Correction: Sb. Math., 2018, vol.~209, no.~6, 919 %146 Letter to the editors%\? \endref %Козлов~В.~А., Назаров~С.~А. %Одномерная модель течения в сочленении тонких каналов в том числе артериальных деревьев \by Ghosh~A., Kozlov~V.A., and Nazarov~S.A. \paper Modified Reynolds equation for steady flow through a~curved pipe \jour J.~Math. Fluid Mech. \yr 2021 \vol 23 \issue 2 \finalinfo Article no.~29, 22~pp. \endref \by Nazarov~S.A. and Slutskii~A.S. \paper Asymptotic analysis of arbitrary spatial system of thin rods \jour Trans. Amer. Math. Soc. Ser.~2 \yr 2005 %2004 \vol 214 %10 \pages 59--107 %63--115 \endref %Назаров~С.~А., Слуцкий~А.~С. %Асимптотический анализ произвольной пространственной системы тонких стержней \by Zhikov~V.V. and Pastukhova~S.E. \paper Homogenization for elasticity problems on periodic networks of critical thickness \jour Sb. Math. \yr 2003 \vol 194 \issue 5 \pages 697--732 %61--96 \endref %Жиков~В.~В., Пастухова~С.~Е. %Усреднение задач теории упругости на периодических сетках критической ширины \by Pauling~L. \paper The diamagnetic anisotropy of aromatic molecules \jour J.~Chem. Phys. \yr 1936 \vol 4 \pages 673--677 \endref \by Nazarov~S.A. \paper Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides \jour Izv. Math. \yr 2020 \vol 84 \issue 6 \pages 1105--1160 \endref %Назаров~С.~А. % Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов \by Nazarov~S.A. \paper Breakdown of cycles and the possibility of opening spectral gaps in a~square lattice of thin acoustic waveguides \jour Izv. Math. \yr 2018 \vol 82 \issue 6 \pages 1148--1195 %3--51 \endref %Назаров~С.~А. %Разрушение циклов и возможность раскрытия спектральных лакун в квадратной решетке тонких акустических волноводов \by Kamotskii~I.V. and Nazarov S.A. \paper Spectral problems in singularly perturbed domains and self-adjoint extensions of differential operators \jour Trans. Amer. Math. Soc. Ser.~2. \yr 2000 %1998 \vol 199 %6 \pages 127--181 %151--212 \endref %%Камоцкий И. В., Назаров С. А. %Спектральные задачи в сингулярно возмущенных областях и самосопряженные расширения дифференциальных операторов \by Nazarov~S.A. \paper Modeling of a~singularly perturbed spectral problem by means of self-adjoint extensions of the operators of the limit problems \jour Funct. Anal. Appl. \yr 2015 \vol 49 \issue 1 \pages 25--39 %31--48 \endref %Назаров~С.~А. % Моделирование сингулярно возмущенной спектральной задачи при помощи самосопряженных расширений %операторов предельных задач \by Nazarov~S.A. \paper The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes \jour Russian Math. Surveys %Uspekhi Mat. Nauk \yr 1999 \vol 54 \issue 5 \pages 947--1014 %77--142 \endref %Назаров~С.~А. %Полиномиальное свойство самосопряженных эллиптических краевых задач и алгебраическое описание их атрибутов \by Vishik~M.I. and Lyusternik~L.A. \paper Regular degeneration and a~boundary layer for linear differential equations with a~small parameter \jour Uspekhi Mat. Nauk %perevoda net \yr 1957 \vol 12 \issue 5 \pages 3--122 \endref %Вишик~М.~И., Люстерник~Л.~А. %Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром \by Chatyrko~V.A. and Hattori~Y. \paper A~poset of topologies on the set of real numbers \jour Comment. Math. University Carolin. \yr 2013 \vol 54 \issue 2 \pages 189--196 \endref \by Genze L.V., Gulko S.P., and Khmyleva T.E. \paper Classification of spaces of continuous functions on ordinals \jour Comment. Math. University Carolin. \yr 2018 \vol 59 \issue 3 \pages 365--370 \endref \by Gorak R. \paper Functional spaces on ordinals \jour Comment. Math. University Carolin. \yr 2005 \vol 46 \issue 1 \pages 93--103 \endref \by Gulko~S.P. \paper Spaces of continuous functions on ordinals and ultrafilters \jour Math. Notes \yr 1990 \vol 47 \issue 4 \pages 329--334 %26--34 \endref %Гулько~C.~П. %Пространства непрерывных функций на ординалах и ультрафильтрах \by Azarov~D.N. and Tieudjo~D. \paper On root-class residuality of amalgamated free products \jour Nauch. Tr. Ivanovsk. Gos. University \yr 2002 \vol 5 \pages 6--10 \endref %Азаров~Д.~Н., Тьеджо~Д. %Об аппроксимируемости свободного произведения групп с объединенной подгруппой корневым классом групп \by Tumanova~E.A. \paper On the root-class residuality of generalized free products with a~normal amalgamation \jour Russian Math. (Iz. VUZ) % Izv. Vyssh. Uchebn. Zaved. Mat. \yr 2015 \vol 59 \issue 10 \pages 23--37 % 27--44 \endref %Туманова~Е.~А. %Об аппроксимируемости корневыми классами групп обобщенных свободных произведений с нормальным объединением \by Sokolov~E.V. and Tumanova~E.A. \paper On the root-class residuality of certain free products of groups with normal amalgamated subgroups \jour Russian Math. (Iz. VUZ) %Izv. Vyssh. Uchebn. Zaved. Mat. \yr 2020 \vol 64 \issue 3 \pages 43--56 %48--63 \endref %Соколов~Е.~В., Туманова~Е.~А. %Об аппроксимируемости корневыми классами некоторых свободных произведений групп с нормальными объединенными подгруппами \by Tieudjo~D. \paper On root-class residuality of some free constructions \jour JP~J.~Algebra, Number Theory Appl. \yr 2010 \vol 18 \issue 2 \pages 125--143 \endref \by Tumanova~E.A. \paper On the root-class residuality of HNN-extensions of groups \jour Model. Anal. Inform. Sist. \yr 2014 \vol 21 \issue 4 \pages 148--180 \endref %Туманова~Е.~А. % Об аппроксимируемости корневыми классами HNN-расширений групп \by Goltsov~D.V. \paper Approximability of HNN-extensions with central associated subgroups by a~root class of groups \jour Math. Notes %Mat. Zametki \yr 2015 \vol 97 \issue 5 \pages 679--683 % 665--669 \endref %Гольцов~Д.~В. %Аппроксимируемость HNN-расширения с центральными связанными подгруппами корневым классом групп \by Sokolov~E.V. and Tumanova~E.A. \paper Root class residuality of HNN-extensions with central cyclic associated subgroups \jour Math. Notes \yr 2017 \vol 102 \issue 4 \pages 556--568 %597--612 \endref %Соколов~Е.~В., Туманова~Е.~А. %Аппроксимируемость корневыми классами HNN-расширений с центральными циклическими связанными подгруппами \by Tumanova~E.A. \paper On the root-class residuality of certain HNN-extensions of groups \jour Russian Math. (Iz. VUZ) % Izv. Vyssh. Uchebn. Zaved. Mat. \yr 2020 \vol 64 \issue 12 \pages 38--45 %41--50 \endref %Туманова~Е.~А. %Об аппроксимируемости корневыми классами некоторых HNN-расширений групп \by Sokolov~E.~V. \paper Certain residual properties of~HNN-extensions with central associated subgroups \jour Comm. Algebra \yr 2022 \vol 50 \issue 3 \pages 962--987 \endref \by Sokolov~E.V. and Tumanova~E.A. \paper To the question of the root-class residuality of free constructions of groups \jour Lobachevskii J. Math. \yr 2020 \vol 41 \issue 2 \pages 260--272 \endref \by Sokolov~E.V. \paper Certain residual properties of generalized Baumslag--Solitar groups \jour J.~Algebra \yr 2021 \vol 582 % \issue - \pages 1--25 \endref \by Gruenberg~K.W. \paper Residual properties of infinite soluble groups \jour Proc. Lond. Math. Soc. \yr 1957 \vol 7 \issue 1 \pages 29--62 \endref \by Sokolov~E.V. \paper A~characterization of root classes of groups \jour Comm. Algebra \yr 2015 \vol 43 \issue 2 \pages 856--860 \endref \by Maltsev~A.I. \paper Generalized nilpotent algebras and their adjoined groups %\? \jour Mat. Sb. \yr 1949 \vol 25 \issue 3 \pages 347--366 \endref %Мальцев~А.~И. %Обобщенно нильпотентные алгебры и их присоединенные группы \by Karras~A. and Solitar~D. \paper The subgroups of a~free product of two groups with an~amalgamated subgroups \jour Trans. Amer. Math. Soc. \yr 1970 \vol 150 \issue 1 \pages 227--255 \endref \by Kahrobaei~D. \paper On residual solvability of generalized free products of finitely generated nilpotent groups \jour Comm. Algebra \yr 2011 \vol 39 \issue 2 \pages 647--656 \endref \by Kahrobaei~D. and Majewicz~S. \paper On the residual solvability of generalized free products of solvable groups \jour DMTCS \yr 2012 \vol 13 \issue 4 \pages 45--50 \endref \by Baumslag~G. \paper On the residual nilpotence of certain one-relator groups \jour Comm. Pure Appl. Algebra \yr 1968 \vol 21 \issue 5 \pages 491--506 \endref \by Sokolov~E.V. \preprint On the Separability of Subgroups of Nilpotent Groups by Root Classes of Groups\nofrills \yr 2022 \bookinfo arXiv~2202.01378 [math.GR] \endref \by Neumann~B.H. \paper An~essay on free products of groups with amalgamations \jour Philos. Trans. Roy. Soc. London. Ser.~A. \yr 1954 \vol 246 \issue 919 \pages 503--554 \endref \by Allenby~R.B.J.T. \paper The residual finiteness of polygonal products---two counterexamples \jour Canad. Math. Bull. \yr 1994 \vol 37 \issue 4 \pages 433--436 \endref \by Allenby~R.B.J.T. \paper Polygonal products of polycyclic by finite groups \jour Bull. Austral. Math. Soc. \yr 1996 \vol 54 \issue 3 \pages 369--372 \endref \by Cohen~D.E. \paper Subgroups of HNN~groups \jour J.~Austral. Math. Soc. \yr 1974 \vol 17 \issue 4 \pages 394--405 \endref \by Agapov S.V. and Aleksandrov D.N. \paper Fourth-degree polynomial integrals of a natural mechanical system on a two-dimensional torus \jour Math. Notes \yr 2013 \vol 93 \issue 5 \pages 780--783 %790--793 \endref %Агапов~С.~В., Александров~Д.~Н. %Полиномиальные интегралы четвертой степени натуральной механической системы на двумерном торе \by Kozlov~V.V. and Treschev~D.V. \paper On the integrability of Hamiltonian systems with toral position space \jour Math. USSR Sb. \yr 1989 %1988 \vol 63 %135 \issue 1 \pages 121--139 %119--138 \endref %Козлов~В.~В., Трещев~Д.~В. %Об интегрируемости гамильтоновых систем с торическим пространством положений \by Kozlov~V.V. \paper Topological obstacles to the integrability of natural mechanical systems \jour Soviet Math. Dokl. %Dokl. Akad. Nauk SSSR \yr 1979 \vol 206 %249 \issue 6 \pages 1413–-1415 %1299--1302 \endref %Козлов~В.~В. %Топологические препятствия к интегрируемости натуральных механических систем \by Poincar\'e~H. \paper New methods of celestial mechanics \inbook Selected Works [Russian translation] \publaddr Nauka \publ Moscow \yr 1972 \pages 9--445 \endref \by Kolokoltsov~V.N. \paper Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities \jour Math. USSR-Izv. %Izv. Akad. Nauk SSSR Ser. Mat \yr 1983 %1982 \vol 21 %46 \issue 2 %5 \pages 291--306 %994--1010 \endref %Колокольцов~В.~Н. %Геодезические потоки на двумерных многообразиях с дополнительным полиномиальным по скоростям первым интегралом \by Anderson~D.F. and Livingston~P.S. \paper The zero-divizor graph of a commutative ring \jour J.~Algebra \yr 1999 \vol 217 \issue 2 \pages 434--447 \endref \by Akbari~S., Maimani~H.R., and Yassemi~S. \paper When zero-divisor graph is planar or a complete $r$-partite graph \jour J.~Algebra \yr 2003 \vol 270 \issue 1 \pages 169--180 \endref \by Belshoff~R. and Chapman~J. \paper Planar zero-divisor graphs \jour J.~Algebra \yr 2007 \vol 316 \issue 1 \pages 471--480 \endref \by Kuz'mina~A.S. and Maltsev~Yu.N. \paper Nilpotent finite rings with planar zero-divisor graphs \jour Asian-Eur. J. Math. \yr 2008 \vol 1 \issue 4 \pages 565--574 \endref \by Kuzmina~A.S. \paper Description of finite nonnilpotent rings with planar zero-divisor graphs \jour Discrete Math. Appl. \yr 2009 \vol 19 %4 \issue 6 \pages 601--617 %60--75 \endref %Кузьмина А. С. %Описание конечных нильпотентных колец, имеющих планарные графы делителей нуля \by Kuzmina~A.S. \paper Finite rings with Eulerian zero-divisor graphs \jour J.~Algebra Appl. \yr 2012 \vol 11 \issue 3 \pages 551--559 \endref \by Akbari~S. and Mohammadian~A. \paper Zero-divisor graphs of non-commutative rings \jour J.~Algebra \yr 2006 \vol 296 \issue 2 \pages 462--479 \endref \by Kuzmina~A.S. \paper On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give isomorphic rings \jour Sib. Electr. Math. Reports \yr 2011 \vol 8 \pages 179--190 \endref % Кузьмина А. С. %О некоторых свойствах многообразий колец, в которых конечные кольца однозначно определяются %своими графами делителей нуля \by Zhuravlev~E.V., Kuz'mina~A.S., and Mal'tsev~Yu.N. \paper The description of varieties of rings whose finite rings are uniquely determined by their zero-divisor graphs \jour Russian Math. %Изв. вузов. Математика \yr 2013 \vol 57 %6 \pages 10--20 % 13--24 \endref %Журавлев~Е. В., Кузьмина А. С., Мальцев Ю. Н. %Описание многообразий колец, в которых конечные кольца однозначно задаются своими графами делителей нуля \by Bloomfield~N. and Wickham~C. \paper Local rings with genus two zero divisor graph \jour Comm. Algebra \yr 2010 \vol 38 \issue 8 \pages 2965--2980 \endref \by Bloomfield~N. \paper The zero divisor graphs of commutative local rings of order $p^4$ and~$p^3$ \jour Comm. Algebra \yr 2013 \vol 41 \issue 2 \pages 765--775 \endref \by Redmond~S.P. \paper The zero-divisor graph of a~noncommutative ring \jour Int. J. Commut. Rings \yr 2002 \vol 1 \issue 4 \pages 203--211 \endref \by Monastyreva~A.S. \paper Finite non-nilpotent rings with complete compressed zero-divisor graphs \jour Lobachevskii J. Math. \yr 2020 \vol 41 \issue 9 \pages 1666--1671 \endref \by Monastyreva~A.S. \paper The compressed zero-divisor graphs of order~$4$ \jour J.~Algebra Appl. \yr 2021 \issue 9 \pages 2250179 \endref \by Marcellan~F. and Xu~Y. \paper On Sobolev orthogonal polynomials \jour Exp. Math. \yr 2015 \vol 33 \pages 308--352 \endref \by Marcellan~F., Quintana~Y., and Urieles~A. \paper On the Pollard decomposition method applied to some Jacobi--Sobolev expansions \jour Turkish~J. Math. \yr 2013 \vol 37 \issue 6 \pages 934--948 \endref \by Ciaurri~O. and Minguez~J. \paper Fourier series of Jacobi--Sobolev polynomials \jour Integral Transforms Spec. Funct. \yr 2019 \vol 30 \pages 334--346 \endref \by Ciaurri~O. and Minguez~J. \paper Fourier series for coherent pairs of Jacobi measures \jour Integral Transforms Spec. Funct. \yr 2021 \vol 32 \pages 437--457 \endref \by Fejzullahu~B.~Xh. \paper Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer--Sobolev inner product \jour J.~Approx. Theory \yr 2010 \vol 162 \issue 2 \pages 397--406 \endref \by Fejzullahu~B.Xh., Marcellan~F., and Moreno-Balcazar~J.J. \paper Jacobi--Sobolev orthogonal polynomials: Asymptotics and a~Cohen type inequality \jour J.~Approx. Theory \yr 2013 \vol 170 \pages 78--93 \endref \by Iserles~A., Koch~P.E., Norsett~S.P., and Sanz-Serna~J.M. \paper On polynomials orthogonal with respect to certain Sobolev inner product \jour J.~Approx. Theory \yr 1991 \vol 65 \pages 151--175 \endref \by Marcellan~F., Osilenker~B.P., and Rocha~I.A. \paper On Fourier series of a discrete Jacobi--Sobolev inner product \jour J.~Approx. Theory \yr 2002 \vol 117 \issue 1 \pages 1--22 \endref \by Rocha~I.A., Marcellan~F., and Salto~L. \paper Relative asymptotics and Fourier series of orthogonal polynomials with a~discrete Sobolev inner product \jour J.~Approx. Theory \yr 2003 \vol 121 \issue 2 \pages 336--356 \endref \by Osilenker~B.P. \paper Convergence and summability of Fourier--Sobolev series \jour Vestnik MGSU \yr 2012 \vol 5 \pages 34--39 \endref %Осиленкер~Б.~П. %Сходимость и суммируемость рядов Фурье~--- Соболева \by Fejzullahu~B.Xh. and Marcellan~F. \paper On convergence and divergence of Fourier expansions with respect to some Gegenbauer--Sobolev type inner product \jour Commun. Analytic Theory Continued Fractions \yr 2009 \vol 16 \pages 1--11 \endref \by Ciaurri~O. and Minguez~J. \paper Fourier series of Gegenbauer--Sobolev polynomials \jour SIGMA. Symmetry, Integrability and Geometry: Methods and Applications \yr 2018 \vol 14 \finalinfo Article no.~14, 11~pp. \endref \by Sharapudinov~I.I. \paper Sobolev-orthogonal systems of functions and some of their applications \jour Russian Math. Surveys \yr 2019 \vol 74 \issue 4 \pages 659--733 %87--164 \endref %Шарапудинов~И.~И. %Ортогональные по Соболеву системы функций и некоторые их приложения \by Sharapudinov~I.I. \paper Sobolev-orthogonal systems of functions associated with an orthogonal system \jour Izv. Math. \yr 2018 \vol 82 \issue 1 \pages 212--244 %225--258 \endref %Шарапудинов~И.~И. %Ортогональные по Соболеву системы функций, ассоциированные с ортогональной системой функций \by Magomed-Kasumov~M.G. \paper A Sobolev orthogonal system of functions generated by a~Walsh system \jour Math. Notes % Mat. Zametki \yr 2019 \vol 105 \issue 4 \pages 543--549 %545--552 \endref %Магомед-Касумов~М.~Г. %Система функций, ортогональная в смысле Соболева и порожденная системой Уолша \by Gadzhimirzaev~R.M. \paper Sobolev-orthonormal system of functions generated by the system of Laguerre functions \jour Probl. Anal. Issues of Analysis %\?Проблемы анализа --- Issues of Analysis \yr 2019 \vol 8 \issue 1 \pages 32--46 \endref \by Sharapudinov~I.I. \paper Approximation properties of Fourier series of Sobolev orthogonal polynomials with Jacobi weight and discrete masses \jour Math. Notes % Mat. Zametki \yr 2017 \vol 101 \issue 4 \pages 718--734 %611--629 \endref %Шарапудинов~И.~И. %Аппроксимативные свойства рядов Фурье по многочленам, ортогональным по Соболеву с весом Якоби и дискретными массами \by Diaz-Gonzalez~A., Marcellan~F., Pijeira-Cabrera~H. et al. \paper Discrete-continuous Jacobi--Sobolev spaces and Fourier series \jour Bull. Malaysian Math. Sci. Soc. \yr 2021 \vol 44 \pages 571--598 \endref \by Muckenhoupt~B. \paper Mean convergence of Jacobi series \jour Proc. Amer. Math. Soc. \yr 1969 \vol 23 \pages 306--310 \endref \by Zorshchikov~A.V. \paper Uniform convergence of Fourier series in Jacobi polynomials \jour Dokl. Akad. Nauk SSSR \yr 1967 \vol 176 \issue 1 \pages 35--38 \endref %Зорщиков~А.~В. %О равномерности сходимости рядов Фурье по многочленам Якоби \by Breaz S. and C\u{a}lug\u{a}reanu G. \paper Strongly inert subgroups of Abelian groups \jour Rend. Sem. Mat. University Padova \yr 2017 \vol 138 %\issue \pages 101--114 \endref \by Chekhlov~A.R. \paper On strongly invariant subgroups of Abelian groups \jour Math. Notes \yr 2017 \vol 102 \issue 1 \pages 105--110 %125--132 \endref % А.Р. Чехлов, О сильно инвариантных подгруппах абелевых групп \by Chekhlov~A.R., Danchev~P.V., and Keef~P.W. \paper Generalizations of fully transitive and valuated Abelian $p$-groups \jour J.~Algebra \yr 2021 \vol 566 %\issue \pages 187--204 \endref \by Goldsmith B. and Salce L. \paper Abelian $p$-groups with minimal full inertia \jour Period. Math. Hung. \yr 2022 \vol 85 \issue 1 \pages 1--13 \endref \by Danchev~P.V. and Keef~P.W. \paper Abelian $p$-groups with minimal characteristic inertia \jour Comm. Algebra \inpress \endref \by Chekhlov A.R., Danchev P.V. and Goldsmith B. \paper On the socles of fully inert subgroups of Abelian $p$-groups \jour Mediterranean J. Math. \yr 2021 \vol 18 \issue 3 \pages 122--141 \endref \by Chekhlov~A.R., Danchev~P.V. and Goldsmith~B. \paper On the socles of characteristically inert subgroups of Abelian $p$-groups \jour Forum Math. \yr 2021 \vol 33 \issue 4 \pages 889--898 \endref \by C\u{a}lug\u{a}reanu G. \paper Strongly invariant subgroups \jour Glasg. Math. J. \yr 2015 \vol 57 \issue 2 \pages 431--443 \endref \by Pierce R.S. \paper Homomorphisms of primary Abelian groups \inbook Topics in Abelian Groups \publaddr Chicago \publ Illinois \yr 1963 \pages 215--310 \endref \by Goldsmith B. and Salce L. \paper Fully inert subgroups of torsion-complete $p$-groups \jour J. Algebra \yr 2020 \vol 555 %\issue \pages 406--424 \endref \by Goldsmith B., Salce L., and Zanardo P. \paper Fully inert subgroups of Abelian $p$-groups \jour J.~Algebra \yr 2014 \vol 419 \issue \pages 332--349 \endref \by Corner~A.L.S. \paper The independence of Kaplansky's notions of transitivity and full transitivity \jour Quart. J. Math. (Oxford) \yr 1976 \vol 27 %\issue \pages 15--20 \endref \by Corner~A.L.S. \paper On endomorphism rings of primary Abelian groups~II \jour Quart. J. Math. (Oxford) \yr 1976 \vol 27 %\issue \pages 5--13 \endref \by Danchev P. and Goldsmith B. \paper On the socles of characteristic subgroups of Abelian $p$-groups \jour J. Algebra \yr 2010 \vol 323 %\issue \pages 3020--3028 \endref \by Danchev P. and Goldsmith B. \paper On the socles of fully invariant subgroups of Abelian $p$-groups \jour Arch. Math. \yr 2009 \vol 92 \issue 3 \pages 191--199 \endref \by Chekhlov~A.R. and Danchev P.V. \paper Weakly fully and characteristically inert socle-regular Abelian $p$-groups \jour Comm. Algebra \yr 2022 \vol 50 \issue 11 \pages 4975--4987 \endref \by Files S. and Goldsmith B. \paper Transitive and fully transitive groups \jour Proc. Amer. Math. Soc. \yr 1998 \vol 126 \issue 6 \pages 1605--1610 \endref \by Albeverio~S., Cianci~R., and Khrennikov~A.Yu. \paper $p$-Adic valued quantization $p$-adic numbers \jour Ultra Anal. Appl. \yr 2009 \vol 1 \issue 2 \pages 91--104 %\crossref{http://dx.doi.org/10.1134/S2070046609010014} \endref \by Volovich I.V. \paper $p$-Adic strings \jour Class. Quantum Gravity \yr 1997 \vol 4 \issue 4 \pages 83--87 %\crossref{http://dx.doi.org/10.1088/0264-9381/4/4/003} \endref \by Beltrametti~E. and Cassinelli~G. \paper Quantum mechanics and $p$-adic numbers \jour Found. Phys. \yr 1972 \vol 2 \issue 1 \pages 1--7 %\crossref{http://dx.doi.org/10.1007/BF00708614} \endref \by Ahmad M.A.K., Liao~L., and Saburov~M. \paper Periodic $p$-adic Gibbs measures of q-state Potts model on Cayley trees I: The chaos implies the vastness of the set of $p$-adic Gibbs measures \jour J.~Stat. Phys. \yr 2018 \vol 171 \issue 6 \pages 1000--1034 %\crossref{http://dx.doi.org/10.1007/s10955-018-2053-6} \endref \by Saburov M. and Ahmad M.A.K. \paper Quadratic equations over $p$-adic fields and their application in statistical mechanics \jour Sci. Asia \yr 2015 \vol 41 \issue 3 \pages 209--215 %\crossref{http://dx.doi.org/10.2306/scienceasia1513-1874.2015.41.209} \endref \by Saburov M. and Ahmad M.A.K. \paper On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three \jour Math. Phys. Anal. Geom. \yr 2015 \vol 18 \pages 1--33 %\crossref{http://dx.doi.org/10.1007/s11040-015-9194-5} \endref \by Kulske C., Rozikov U.A., and Khakimov R.M. \paper Description of all translation-invariant splitting Gibbs measures for the Potts model on a~Cayley tree \jour J.~Stat. Phys. \yr 2013 \vol 156 \issue 1 \pages 189--200 %\crossref{http://dx.doi.org/10.1007/s10955-014-0986-y} \endref \by Rozikov U. \paper Gibbs measures on Cayley trees: Results and open problems \jour Rev. Math. Phys \yr 2013 \vol 25 \issue 1 (1330001) \pages 112 %\crossref{http://dx.doi.org/10.1142/S0129055X1330001X} \endref \by Mukhamedov~F. and Saburov M. \paper On equation $x^q=a$ over $\Bbb{Q}_p$ \jour J.~Number Theory \yr 2013 \vol 133 \issue 1 \pages 55--58 %\crossref{http://dx.doi.org/10.1016/j.jnt.2012.07.006} \endref \by Mukhamedov~F., Omirov B., and Saburov~M. \paper On cubic equations over $p$-adic field \jour Int. J. Number Theory \yr 2014 \vol 10 \issue 5 \pages 1171--1190 %\crossref{http://dx.doi.org/10.1142/S1793042114500201} \endref \by Saburov M. and Ahmad M.A.K. \paper Local descriptions of roots of cubic equations over $p$-adic fields \jour Bulletin of the Malaysian Mathematical Sciences Society \yr 2018 \vol 41 \issue 2 \pages 965--984 %\crossref{http://dx.doi.org/10.1007/s40840-016-0401-8} \endref \by Saburov M., Ahmad M.A.K., and Alp M. \paper The study on general cubic equations over $p$-adic fields \jour Filomat \yr 2021 \vol 35 \issue 4 \pages 1115--1131 %\crossref{http://dx.doi.org/10.2298/FIL2104115S} \endref \by Saburov~M. and Ismail~M.J. \paper On square root function over $\Bbb{Q}_p$ and its application \jour J. Phys. Conf. Ser. \yr 2017 \vol 819 \finalinfo Article no.~012028, 10~pp. \endref \by Srinivasan~S. \paper Two sufficient conditions for supersolvability of finite groups \jour Israel~J. Math. \yr 1980 \vol 35 \issue 3 \pages 210--214 \endref \by Ramadan~M. \paper Influence of normality on maximal subgroups of Sylow subgroups of a~finite group \jour Acta Math. Hungar. \yr 1992 \vol 59 \iftex \issue 1--2 \else \issue 1 \fi \pages 107--111 \endref \by Guralnick~R. \paper Subgroups of prime power index in a~simple group \jour J.~Algebra \yr 1983 \vol 81 \issue 2 \pages 304--311 \endref \by Tyutyanov~V.N. \paper On a~Hall hypothesis \jour Ukrainian Math.~J. \yr 2002 \vol 54 \issue 7 \pages 1181--1191 % 986--995 \endref %Тютянов~В.~Н. %К гипотезе Холла \by Kondratev~A.S. \paper Subgroups of finite Chevalley groups \jour Russian Math. Surveys \yr 1986 \vol 41 \issue 1 \pages 65--118 \endref %Кондратьев~А.~С. %Подгруппы конечных групп Шевалле \by Radzhabov~N.R. \paper Integral representations and boundary value problems for a~generalized Cauchy--Riemann system with singular line \jour Dokl. Akad. Nauk SSSR \yr 1982 \vol 267 \issue 2 \pages 300--305 \endref %Раджабов~Н.~Р. %Интегральные представления и граничные задачи для обобщенной системы Коши~--- Римана с сингулярной линией \by Radzhabov~N.R. and Rasulov~A.B. \paper Integral representations and boundary value problems for a~class of systems of differential equations of elliptic type with singular manifolds \jour Differ. Uravn. \yr 1989 \vol 25 \issue 7 \pages 1279--1981 \endref %Раджабов~Н.~Р., Расулов~А.~Б. %Интегральные представление и граничные задачи для одного класса систем %дифференциальных уравнений эллиптического типа с сингулярным многообразием \by Begehr~H. and Dao-Qing~Dai \paper On continuous solutions of a generalized Cauchy--Riemann system with more than one singularity \jour J.~Differ. Equ. \yr 2004 \vol 196 \pages 67--90 \endref \by Meziani~A. \paper Representation of solutions of a~singular CR equation in the plane \jour Complex Variables Elliptic Egu. \yr 2008 \vol 53 \pages 1111--1130 \endref \by Soldatov~A.P. and Rasulov~A.B. \paper Boundary value problem for a~generalized Cauchy--Riemann equation with singular coefficients \jour Diff. Equ. \yr 2016 \vol 52 \issue 5 \pages 616--629 %637--650 \endref %Солдатов~А.~П., Расулов~А.~Б. %Краевая задача для обобщенного уравнения Коши~--- Римана с сингулярными коэффициентами \by Fedorov~Yu.S. and Rasulov~A.B. \paper Hilbert type problem for a~Cauchy-Riemann equation with singularities on a~circle and at a~point in the lower-order coefficients \jour Diff. Equ. \yr 2021 \vol 57 \issue 1 \pages 127--131 %140--144 \endref %Федоров~Ю.~С., Расулов~А.~Б. %Задачи типа Гильберта для уравнения Коши~--- Римана с сингулярными окружностью и %точкой в младших коэффициентах \by Rasulov~A.B. \paper The Riemann problem on a~semicircle for a~generalized Cauchy--Riemann system with a~singular line \jour Diff. Equ. \yr 2004 \vol 40 \issue 9 \pages 1364--1366 % 1990--1992 \endref %Расулов~А.~Б. %Задача Римана на полуокружности для обобщенной системы Коши~--- Римана с сингулярной %линией \by Rasulov~A.B. \paper Integral representations and the linear conjugation problem for a~generalized Cauchy--Riemann system with a~singular manifold \jour Diff. Equ. \yr 2000 \vol 36 \issue 2 \pages 306--312 %270--275 \endref %Расулов~А.~Б. %Интегральные представления и задача линейного сопряжения для %обобщенной системы Коши~--- Римана с сингулярным многообразием \by Ostrovskii~I.V. \paper A~homogeneous Riemann boundary-value problem with infinite index on curvilinear contour \jour Teor. Funkts., Funkts. Anal. Appl. \yr 1991 \vol 56 \pages 95--105 \endref %Островский~И.~В. %Однородная краевая задача Римана с бесконечным индексом на криволинейном контуре \by Yurov~P.G. \paper The nonhomogeneous Riemann boundary-value problem with an infinite index of logarithmic order $\alpha\geq 1$ \inbook Proceedings of the All-Union Conference on Boundary-Value Problems %Матер. Всесоюз. конф. по краевым задачам \lang Russian \publaddr Kazan \publ Kazan University \yr 1970 \pages 279--284 \endref %Юров~П.~Г. %Неоднородная краевая задача Римана с бесконечным индексом логарифмического порядка $\alpha\geq 1$ \by Alekna~P.Yu. \paper On a~homogeneous Riemann boundary-value problem with an infinite index of logarithmic order for a~halfplane \jour Lith. Math.~J. %Lith.Mat. Rink. XIV \yr 1973 \vol 13 \issue 3 \pages 349--355 %5--14 \endref % Алекна~П.~Ю. %Неоднородная краевая задача Римана с бесконечным индексом логарифмического порядка для полуплоскости \by Mel'nik~I.M. \paper The Riemann boundary problem with discontinuous coefficients \jour Izv. Vyssh. Uchebn. Zaved. Matematika \yr 1959 \vol 2 \pages 158--166 \endref %Мельник~И.~М. %О краевой задаче Римана с разрывными коэффициентами \by Latyshev~V.N. \paper On the finiteness of the number of generators of a~$T$-ideal with an element $[x1, x2, x3, x4]$ \jour Sibirsk. Mat. Zh. \yr 1965 \vol 6 \issue 6 \pages 1432--1434 \endref % Латышев ~В.~Н. %О конечной порожденности $T$-идеала с элементом $[x1, x2, x3, x4]$ \by Gupta~N. and Levin~F. \paper On the Lie ideals of a~ring \jour J.~Algebra \yr 1983 \vol 81 %\issue \pages 225--231 \endref \by Volichenko~I.B. \preprint $T$-Ideal Generated by the Element $[x_1, x_2, x_3, x_4]$ %\nofrills \lang Russian \publ Inst. Mat. AN BSSR \publaddr Minsk \yr 1978 \issue 22 %\pages 13~p. \endref %Воличенко~И.~Б. %$T$-идеал, порожденный элементом $[x_1, x_2, x_3, x_4]$ %\?О $T$-идеале, порожденном элементом $[x1, x2, x3, x4]$. \by Sharma~R.K. and Srivastava~J.B. \paper Lie ideals in group rings \jour J.~Pure Appl. Algebra \yr 1990 \vol 63 %\issue \pages 67--80 \endref \by Bapat~A., Jordan~D. \paper Lower central series of free algebras in symmetric tensor categories \jour J.~Algebra \yr 2013 \vol 373 %\issue \pages 299--311 \endref \by Deryabina~G. and Krasilnikov~A. \paper On some products of commutators in an associative ring \jour Intern.~J. Algebra Comput. \yr 2019 \vol 29 \issue 2 \pages 333--341 \endref \by Pchelintsev~S.V. \paper Relatively free associative Lie nilpotent algebras of rank~3 \jour Sib. Electr. Math. Reports \yr 2019 %http://semr.math.nsc.ru. \vol 16 \pages 1937--1946 \endref \by Dangovski~R.R. \preprint On the Maximal Containments of Lower Central Series Ideals\nofrills \yr 2015 \bookinfo arXiv:1509.08030 [math.RA] \endref \by Glizburg~V. and Pchelintsev~S. \paper Some finitely generated associative algebras with a~Lie nilpotency identity \jour J.~Algebra Appl. \yr 2021 \vol 20 \issue 7 \finalinfo Article ID 2150112, 20~pp. \endref \by Jennings~S.A. \paper On rings whose associated Lie rings are nilpotent \jour Bull. Amer. Math. Soc. \yr 1947 \vol 53 \issue 6 \pages 593--597 \endref \by Shestakov~I.P. and Zhukavets~N. \paper The free alternative superalgebra on one odd generator \jour Internat.~J. Algebra Comput. \yr 2007 \vol 17 \iftex \issue 5--6 \else \issue 5 \fi \pages 1215--1247 \endref \by Pchelintsev~S.V. \paper Solvability and nilpotency of alternative algebras and algebras of type $(-1,1)$ \inbook Groups and Other Algebraic Systems with Finiteness Conditions \lang Russian \publ Nauka \publaddr Novosibirsk \yr 1984 \vol 4 \pages 81--101 \endref %С.~В.~Пчелинцев, %Разрешимость и нильпотентность альтернативных алгебр и алгебр типа~$(-1,1)$ %Группы и другие алгебраические системы с условиями конечности. \by Tyler~R. \paper On the lower central factors of a free associative rings \jour Canad.~J. Math. \yr 1975 \vol 27 \issue 2 \pages 434--438 \endref \by Pchelintsev~S.V. \paper Identities of model algebras \jour Math. USSR-Izv. \inpress \endref %Пчелинцев~С.~В. %О тождествах модельных алгебр \by Hyttinen~T. and Paolini~G. \paper First-order model theory of free projective planes \jour Ann. Pure Appl. Logic \yr 2021 \vol 172 \issue 2 \pages 102888 \endref \by Il'ev~A.V. and Remeslennikov~V.N. \paper Study of compatibility of the system of equations under graphs and finding their general solutions \jour Vesntn. Omsk University \yr 2017 \issue 4 \pages 26--32 \endref %Ильев~А.~В., Ремесленников~В.~Н. %Исследование совместности систем уравнений над графами и нахождение их общих решений \by Il'ev~A.V. and Il'ev~V.P. \paper Algorithms for solving systems of equations over various classes of finite graphs \jour Prikl. Diskr. Mat. \yr 2021 \issue 54 \pages 89--102 \endref %Ильев~А.~В., Ильев~В.~П. % Алгоритмы решения систем уравнений над различными классами конечных графов \by Nikitin~A.Yu. and Rybalov~A.N. \paper On complexity of the satisfiability problem of systems over finite posets \jour Prikl. Diskr. Mat. \yr 2018 \issue 39 \pages 94--98 \endref %Никитин~А.~Ю., Рыбалов~А.~Н. %О сложности проблемы разрешимости систем уравнений над конечными частичными порядками \by Stridsberg~E. \paper Sur la d\'emonstration de M. Hilbert du th\'eor\`eme de Waring \jour Math. Ann. \yr 1912 \vol 72 \issue 2 \pages 145--152 \endref \by Nesterenko~Yu.V. \paper On Waring's problem (elementary methods) \jour J.~Math. Sci. (New York) %Zap. Nauchn. Sem. POMI \yr 2006 \vol 137 \issue 2 \pages 4699--4715 %149--175 \endref %Нестеренко~Ю.~В. %О проблеме Варинга (элементарные методы) \by Alpay~S., Emelyanov~E., and Gorokhova~S. \paper $o\tau$-Continuous, Lebesgue, $KB$, and Levi operators between vector lattices and topological vector spaces \jour Results in Mathematics \yr 2022 \vol 77 \issue 3 \pages Article~117, 25~pp. \endref \by Jalili~S.A., Azar~K.H., and Moghimi~M.B.F. \paper Order-to-topology continuous operators \jour Positivity \yr 2021 \vol 25 %\issue 3 \pages 1313--1322 \endref \by Bahramnezhad~A. and Azar~K.H. \paper $KB$-Operators on Banach lattices and their relationships with Dunford--Pettis and order weakly compact operators \jour UPB Sci. Bull. Ser.~A: Appl. Math. Phys. \yr 2018 \vol 80 \issue 2 \pages 91--98 \endref \by Alt{\i}n~B. and Machrafi~N. \paper Some characterizations of $KB$-operators on Banach lattices and ordered Banach spaces \jour Turkish~J. Math. \yr 2020 \vol 44 %\issue 3 \pages 1736--1743 \endref \by Turan~B. and Alt{\i}n~B. \paper The relation between $b$-weakly compact operator and $KB$-operator \jour Turkish~J. Math. \yr 2019 \vol 43 %\issue 3 \pages 2818--2820 \endref \by Emelyanov~E. \preprint Algebras of Lebesgue and $KB$ Regular Operators on Banach Lattices\nofrills \yr 2022 \bookinfo arXiv.org/abs/2203.08326v2 \endref \by Koibaev~V.A. \paper On the structure of elementary nets over quadratic fields \jour Vladikavkaz. Mat. Zh. \yr 2020 \vol 22 \issue 4 \pages 87--91 \endref \bib{Койбаев В.~А.} {О строении элементарных сетей над квадратичными полями \by Dryaeva~R.Yu., Koibaev~V.A., and Nuzhin~Ya.N. \paper Full and elementary nets over the quotient field of a~principal ideal ring \jour J.~Math. Sci. (New York) \yr 2018 \vol 234 \issue 2 \pages 141--147 \endref \bib{Дряева Р.~Ю., Койбаев В.~А., Нужин Я.~Н.} {Полные и элементарные сети над полем частных кольца главных идеалов \by Borevich~Z.I. \paper Subgroups of linear groups rich in transvections \jour J.~Soviet Math. \yr 1987 \vol 37 \issue 2 \pages 928--934 \endref \bib{Боревич~З.~И.} {О подгруппах линейных групп, богатых трансвекциями \by Gilmer~R. and Ohm~J. \paper Integral domains with quotient overrings \jour Math. Ann. \yr 2064 \vol 153 \issue 2 \pages 97--103 \endref \by Askhabov~S.N., Karapetyants~N.K., and Yakubov~A.Ya. \paper Integral equations of convolution type with power nonlinearity and systems of such equations \jour Dokl. Akad. Nauk SSSR \yr 1990 \vol 311 \issue 5 \pages 1035--1039 \endref \by Askhabov~S.N. and Betilgiriev~M.A. \paper Nonlinear integral equations of convolution type with almost increasing kernels in cones \jour Differential Equations \yr 1991 \vol 27 \issue 2 \pages 234--242 \endref \by Okrasinski~W. \paper On the existence and uniqueness of nonnegative solutions of a~certain nonlinear convolution equation \jour Ann. Polon. Math. \yr 1979 \vol 36 \issue 1 \pages 61--72 \endref \by Okrasinski~W. \paper Nonlinear volterra equations and physical applications \jour Extracta Math. \yr 1989 \vol 4 \issue 2 \pages 51--80 \endref \by Keller~J.J. \paper Propagation of simple nonlinear waves in gas filled tubes with friction \jour J.~Appl. Math. Phys. \yr 1981 \vol 32 \issue 2 \pages 170--181 \endref \by Tikhonov~A.N. \paper On the cooling of bodies during radiation, following the Stefan--Boltzmann law \jour Izv. Akad. Nauk SSSR. Ser. Geogr. Geophiz. \yr 1937 \vol 3 %\issue \pages 461--479 \endref \by Ermentrout~G.B. and Cowan~J.D. \paper Secondary bifurcation in neuronal nets \jour SIAM J.~Appl. Math. \yr 1980 \vol 39 \issue 2 \pages 323--340 \endref \by Askhabov~S.N. \paper Integro-differential equation of the convolution type with a power nonlinearity and inhomogeneity in the linear part \jour Differential Equations \yr 2020 \vol 56 \issue 6 \pages 775--784 \endref \by Askhabov~S.N. \paper Nonlinear convolution integro-differential equation with variable coefficient \jour Fract. Calc. Appl. Anal. %Fractional Calculus and Applied Analysis \yr 2021 \vol 24 \issue 3 \pages 848--864 \endref \by Ho~M.C. \paper On the rotational invariance for the essential spectrum of $\lambda$-Toeplitz operators \jour J.~Math. Anal. Appl. \yr 2014 \vol 413 \issue 2 \pages 557--565 \endref \by Mirotin~A.R. \paper On the essential spectrum of $\lambda$-Toeplitz operators over compact abelian groups \jour J.~Math. Anal. Appl. \yr 2015 \vol 424 \issue 2 \pages 1286--1295 \endref \by Mirotin~A.R. and Kuzmenkova~E.Yu. \paper $\mu$-Hankel operators on Hilbert spaces \jour Opuscula Math. \yr 2021 \vol 41 \issue 6 \pages 881--899 \endref \by Mirotin~A.R. and Kovalyova~I.S. \paper The Markov--Stieltjes Transform on Hardy and Lebesgue Spaces \jour Integral Transforms and Special Functions \yr 2016 \vol 27 \issue 12 \pages 995--1007 \finalinfo Corrigendum to our paper ``The Markov--Stieltjes transform on Hardy and Lebesgue spaces,'' Integral Transforms and Special Functions, 2017, vol.~28, no.~5, pp.~421--422 \endref \by Mirotin~A.R. and Kovalyova~I.S. \paper Generalized Markov--Stieltjes operator on Hardy and Lebesgue spaces \jour Tr. Inst. Mat. \yr 2017 \vol 25 \issue 1 \pages 39--50 \endref \by Levenshtam~V.B. and Shubin~P.Ye. \paper Justification of the averaging method for differential equations with large rapidly oscillating terms and boundary conditions \jour Math. Notes \yr 2016 \vol 100 \issue 1 \pages 94--104 \endref \by Bigirindavyi~D. and Levenshtam~V.B. \paper The averaging principle for a system of rapidly oscillating ODE with boundary conditions \jour Vestnik VGU. Series Physics. Mathematics \yr 2020 \vol 58 \issue 3 \pages 553--572 \endref \by Konstantinov~M.M. and Bainov~D.D. \paper Application of the averaging method to certain multipoint boundary value problems \jour Bull. Math. Soc. Sci. Math. Roumanie (N.S.) %Mathematical Bulletin of the Society of Mathematical Sciences of the Socialist Republic of Romania \yr 1974 \vol 18(66) \issue 3/4 \pages 307--310 \endref \by Simonenko~I.B. \paper Justification of the averaging method for abstract parabolic equations \jour Math. USSR-Sb. \yr 1970 \vol 10 \issue 1 \pages 53--61 \endref \by Yudovich~V.I. \paper Vibrodynamics and vibrogeometry of systems with constraints. I--III \jour Adv. Mech. \yr 2006 \vol 4 %\issue \pages 26--158 \endref \by Levenshtam~V.B. \paper Asymptotic expansions of periodic solutions of ordinary differential equations with large high-frequency terms \jour Differ. Equ. \yr 2008 \vol 44 \issue 3 \pages 52--68 \endref \by Levenshtam~V.B. \paper Asymptotic expansion of the solution to the problem of vibrational convection \jour Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki \yr 2000 \vol 40 \issue 9 \pages 1416--1424 \endref \by Tikhonov~I.V., Sherstyukov~V.B., and Petrosova~M.~A. \paper Bernstein polynomials: The old and the new \inbook Math. Forum. Vol.~8. Part~1. Studies on Mathematical Analysis \lang Russian \publaddr Vladikavkaz \publ SMI VSC RAS and RNO-A \yr 2014 \pages 126--175 \finalinfo Results of Science. The South of Russia \endref \bib{Тихонов И.~В., Шерстюков В.~Б., Петросова М.~А.} Полиномы Бернштейна: старое и новое \by Tikhonov~I.V. and Sherstyukov~V.B. \paper Approximation of the modulus function with Bernstein polynomials \jour Bulletin of Chelyabinsk State University. Mathematics. Mechanics. Informatics \yr 2012 \vol 15 \issue 26 \pages 6--40 \endref \bib{Тихонов И.~В., Шерстюков В.~Б.} {Приближение модуля полиномами Бернштейна \by Tikhonov~I.V. and Sherstyukov~V.B. \paper Approximation of the modulus function with Bernstein polynomials: New advances and possible generalizations \inbook Modern Problems of the Theory of Functions and Their Applications: Materials of the 20th International Saratov Winter School \lang Russian \publaddr Saratov \publ Nauchnaya Kniga \yr 2020 \pages 409--414 \endref \bib{Тихонов И.~В., Шерстюков В.~Б.} {Приближение модуля полиномами Бернштейна: новые продвижения и возможные обобщения~/\!/ Современные проблемы теории функций и их приложения: материалы 20-й международной Саратовской зимней школы.---Саратов: ООО Изд-во <<Научная книга>>, 2020.---С.~409--414.} \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper Generalized Popoviciu expansions for Bernstein polynomials of a~rational module \inbook Proceedings of the Voronezh Winter Mathematical School ``Modern Methods of Function Theory and Related Problems'' (January 28--February 2, 2019) \lang Russian \publaddr Voronezh \publ Voronezh University \yr 2019 \pages 71--117 \finalinfo Part 1, Progress in Science and Technology. Contemporary Mathematics and Its Applications. Thematic Surveys; vol.~170 \endref \bib{Тихонов И.~В., Шерстюков В.~Б., Цветкович Д.~Г.} {Обобщенные разложения Поповичу для полиномов Бернштейна от рационального модуля Итоги науки и техники ВИНИТИ. Сер. Современная математика и ее прилож. \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper Comparative analysis of two-sided estimates of the central binomial coefficient \jour Chelyabinsk Phys. Math.~J. \yr 2020 \vol 5 \issue 1 \pages 70--95 \endref \bib{Тихонов И.~В., Шерстюков В.~Б., Цветкович Д.~Г.} {Сравнительный анализ двусторонних оценок центрального биномиального коэффициента \by Popov~A.Yu. \paper Two-sided estimates of the central binomial coefficient \jour Chelyabinsk Phys. Math.~J. \yr 2020 \vol 5 \issue 1 \pages 56--69 \endref Попов А.~Ю. Двусторонние оценки центрального биномиального коэффициента \by Popov~A.Yu. \paper The upper bound of the remainder of power series with positive coefficients of a~special class \jour Chelyabinsk Phys. Math.~J. \yr 2017 \vol 2 \issue 2 \pages 192--197 \endref \bib{Попов А.~Ю.} {Оценка сверху остатка степенного ряда с положительными коэффициентами специального вида \by Telyakovskii~S.A. \paper On the approximation of differentiable functions by Bernstein polynomials and Kantorovich polynomials \jour Proc. Steklov Inst. Math. \yr 2008 \vol 260 %\issue 1 \pages 289--296 \endref Теляковский C.~А. О приближении дифференцируемых функций многочленами Бернштейна и~многочленами Канторовича \by Kantorovi\^c~L.V. \paper Sur la Convergence de la Suite des Polyn\^omes de S. Bernstein en Dehors de l'Intervalle Fondamental \jour Bulletin de l'Acad\'emie des Sciences de l'URSS. Classe des sciences math\'ematiques et nat \yr 2031 \vol 8 %\issue 1 \pages 1103--1115 \endref Канторович Л.~В О сходимости последовательности полиномов С.~Н.~Бернштейна за пределами основного интервала \by Tikhonov~I.V., Tsvetkovich~D.G., and Sherstyukov~V.B. \paper Computer analysis of the attractors of zeros for classical Bernstein polynomials \jour Proc. Steklov Inst. Math. \yr 2020 \vol 245 \issue 2 \pages 217--233 \endref \bib{Тихонов И.~В., Цветкович Д.~Г., Шерстюков В.~Б.} {Компьютерное исследование аттракторов нулей для классических полиномов Бернштейна \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper How do attractors of zeros for classical Bernstein polynomials look like?\nocomma \jour Differential Equations and Control Processes \yr 2017 \vol 2 %\issue 1 \pages 59--73 \endref \bib{Тихонов И.~В., Шерстюков В.~Б., Цветкович Д.~Г.} {Как выглядят аттракторы нулей для классических полиномов Бернштейна \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper On some method for finding the convergence domain of Bernstein polynomials in the complex plane \inbook Some Actual Problems of Modern Mathematics and Mathematical Education. Herzen Readings--2018 \lang Russian \publaddr St. Petersburg \publ Herzen State Pedagogical University \yr 2018 \pages 145--153 \endref \bib{Тихонов И.~В., Шерстюков В.~Б., Цветкович Д.~Г.} {Об одном методе для нахождения области сходимости полиномов Бернштейна в~комплексной плоскости~/\!/ Некоторые актуальные проблемы совр. математики и~матем. образования. Герценовские чтения~---2018 Материалы науч. конф., 9--13~апреля 2018~г.---СПб.: \by Tsvetkovich~D.G. \paper Detailed atlas of attractors of zeros for the classical Bernstein polynomials \jour Chelyabinsk Phys. Math.~J. \yr 2018 \vol 3 \issue 1 \pages 58--89 \endref \bib{Цветкович Д.~Г.}{Подробный атлас аттракторов нулей для классических полиномов Бернштейна \by Wetherhold~R.C., Seelman~S., and Wang~S. \paper The use of functionally graded materials to eliminated or control thermal deformation \jour Compos. Sci. Technol. %Composites Science and Technology \yr 1996 \vol 56 \issue 9 \pages 1099--1104 \endref \by Razzaghi~H., Kowsary~F., and Ashjaee~M. \paper Derivation and application of the adjoint method for estimation of both spatially and temporally varying convective heat transfer coefficient \jour Appl. Therm. Eng. \yr 2019 \vol 154 %\issue - \pages 63--75 \endref \by Cao~K. and Lesnic~D. \paper Determination of space-dependent coefficients from temperature measurements using the conjugate gradient method \jour Numer. Methods Partial Differential Equations \yr 2018 \vol 43 \issue 4 \pages 1370--1400 \endref \by Dulikravich~G.S., Reddy~S.R., Pasqualette~M.A., Colaco~M.J., Orlande~H.R. and Coverston~J. \paper Inverse determination of spatially varying material coefficients in solid objects \jour J.~Inverse Ill-Posed Probl. \yr 2016 \vol 24 \issue 2 \pages 181--194 \endref \by Dmitriev~O.S. and Zhivenkova~A.A. \paper Numerical-analytical solution of the nonlinear coefficient inverse heat conduction problem \jour J.~Engineering Physics Thermophysics \yr 2018 \vol 91 \issue 6 \pages 1353--1364 \endref \by Geymonat~G. and Pagano~S. \paper Identification of mechanical properties by displacement field measurement: A~variational approach \jour Meccanica \yr 2003 \vol 38 %\issue \pages 535--545 \endref \by Jadamba~B., Khan~A.A. and Racity~F. \paper On the inverse problem of identifying Lame coefficients in linear elasticity \jour J.~Comput. Math. Appl. \yr 2008 \vol 56 \issue 2 \pages 431--443 \endref \by Dudarev~V.V., Vatulyan~A.O., Mnukhin~R.M. and Nedin~R.D. \paper Concerning an approach to identifying the Lam\'e parameters of an elastic functionally graded cylinder \jour Math. Meth. Appl. Sci. \yr 2020 \vol 43 \issue 11 \pages 6861--6870 \endref %DOI: 10.1002/mma.6428. \by Lukasiewicz~S.A., Babaei~R., and Qian~R.E. \paper Detection of material properties in a layered body by means of thermal effects \jour J.~Therm. Stresses \yr 2003 \vol 26 \issue 1 \pages 13--23 \endref \by Yang~Y.C., Chen~W.L., Chou~H.M., and Salazar~J.L.L. \paper Inverse hyperbolic thermoelastic analysis of a functionally graded hollow circular cylinder in estimating surface heat flux and thermal stresses \jour Int. J. Heat Mass Transfer \yr 2013 \vol 60 %\issue \pages 125--133 \endref \by Nedin~R., Nesterov~S., and Vatulyan~A. \paper On an inverse problem for inhomogeneous thermoelastic rod \jour Internat.~J. Solids and Structures \yr 2014 \vol 51 \issue 3 \pages 767--773 \endref \by Vatulyan~A.O. and Nesterov~S.A. \paper On the identification problem of the thermomechanical characteristics of the finite functionally graded cylinder \jour Izv. Saratov University (N.S.) Ser. Math. Mech. Inform. \yr 2021 \vol 21 \issue 1 \pages 35--47 \endref \bib{Ватульян А.~О., Нестеров С.~А.} О задаче идентификации термомеханических характеристик конечного функционально-градиентного цилиндра~/\!/ Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика \by Goldstein~S. \paper On diffusion by discontinuous movements, and on the telegraph equation \jour Quart.~J. Mech. Appl. Math. \yr 1951 \vol 4 \issue 2 \pages 129--156 \endref \by Kac~M. \paper A~stochastic model related to the telegrapher's equation \jour Rocky Mountain~J. Math. \yr 1974 \vol 4 %\issue \pages 497--509 \endref \by Orsingher~E. \paper Hyperbolic equations arising in random models \jour Stochastic Process. Appl. \yr 1985 \vol 21 \issue 1 \pages 93--106 \endref \by Orsingher~E.E. \paper A planar random motion governed by the two-dimensional telegraph equation \jour Stochastic Process. Appl. \yr 1986 \vol 23 \issue 2 \pages 385--397 \endref \by Orsingher~E. \paper Probability law, flow function, maximum distribution of wave-governed random motions, and their connections with Kirchhoff's laws \jour Stochastic Process. Appl. \yr 1990 \vol 34 \issue 1 \pages 49--66 \endref \by De Gregorio~A. and Orsingher~E. \paper Random flights connecting porous medium and Euler--Poisson--Darboux equations \jour J.~Math. Phys. \yr 2020 \vol 61 \issue 4 \finalinfo Article no.~041505, 18~pp. \endref \by Garra~R. and Orsingher~E. \paper Random flights related to the Euler--Poisson--Darboux equation \jour Markov Process. Related Fields \yr 2016 \vol 22 \issue 1 \pages 87--110 \endref \by Iacus~S. \paper Statistical Analysis of the Inhomogeneous Telegrapher's Process \jour Statist. Probab. Lett. \yr 2001 \vol 55 \issue 1 \pages 83--88 \endref \by Metzler~R. and Klafter~J. \paper The random walk's guide to anomalous diffusion: A~fractional dynamics approach \jour Phys. Rep. \yr 2000 \vol 339 \issue 1 \pages 1--77 \endref \by Gorenflo~R.R., Vivoli~A. and Mainardi~F. \paper Discrete and continuous random walk models for space-time fractional diffusion \jour Nonlinear Dynam. \yr 2004 \vol 38 \iftex \issue 1--4 \else \issue 1 \fi \pages 101--116 \endref \by De Gregorio~A. and Orsingher~E. \paper Flying randomly in $R^d$ with Dirichlet displacements \jour Stochastic Process. Appl. \yr 2012 \vol 122 \issue 2 \pages 676--713 \endref \by Luchko~Yu. \paper Algorithms for evaluation of the Wright function for the real arguments' values \jour Fract. Calc. Appl. Anal. \yr 2008 \vol 11 \issue 1 \pages 57--75 \endref \by Stankovic~B. \paper On the function of E.M.~Wright \jour Publ. Inst. Math. (Beograd) (N.S.) \yr 1970 \vol 10 \issue 24 \pages 113--124 \endref \by Sprinkhuizen-Kuyper~I.G. \paper A fractional integral operator corresponding to negative powers of a~certain second-order differential operator \jour J.~Math. Anal. Appl. \yr 1979 \vol 72 \issue 2 \pages 674--702 \endref \by Shishkina~E.L. and Sitnik~S.M. \paper On fractional powers of Bessel operators \jour Journal of Inequalities and Special Functions, Special Issue to Honor Prof. Ivan Dimovski's Contributions \yr 2017 \vol 8 \issue 1 \pages 49--67 \endref \by Shishkina~E.L. and Sitnik~S.M. \paper A fractional equation with left-sided fractional Bessel derivatives of Gerasimov--Caputo type \jour Mathematics \yr 2019 \vol 7 \issue 12 \pages 1--21 \endref \by Gerasimov~A.N. \paper a generalization of linear laws of deformation and its application to problems of internal friction \jour Akad. Nauk SSSR, Prikl. Mat. Mekh. \yr 1948 \vol 12 %\issue \pages 529--539 \endref \bib{Герасимов А.~Н.} Обобщение линейных законов деформации и их приложение к задачам внутреннего трения~/\!/ АН СССР. Прикладная математика и механика.---1948.---Т.~12.---С.~529-539. %Academy of Sciences of the USSR. Applied Mathematics and Mechanics Vol. 12 \by Mophou~G.M. \paper Optimal control of fractional diffusion equation \jour Comput. Appl. Math. \yr 2010 \vol 61 \issue 1 \pages 68--78 \endref % DOI: 10.1016/j.camwa.2010.10.030. \by Tang~Q. and Ma~Q. \paper Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives \jour Adv. Difference Equ. \yr 2015 \vol Article no.~283 %\issue \endref % DOI: 10.1186/s13662-015-0593-5. \by Zhou~Z. and Gong~W. \paper Finite element approximation of optimal control problems governed by time fractional diffusion equation \jour Comput. Appl. Math. \yr 2016 \vol 71 \issue 1 \pages 301--318 \endref \by Sandev~T. and Tomovski~Z. \paper The general time fractional wave equation for a vibrating string \jour J.~Phys.~A: Math. Theoret. \yr 2010 \vol 43 \issue 5 \pages Paper ID~055204 \endref \by Agrawal~O.P. \paper Fractional variational calculus in terms of Riesz fractional derivatives \jour J.~Phys.~A: Math. Theoret. \yr 2007 \vol 40 \issue 24 \pages 6287--6303 \endref \by Kubyshkin~V.A. and Postnov~S.S. \paper Time-optimal boundary control for systems defined by a~fractional order diffusion equation \jour Automation and Remote Control \yr 2018 \vol 79 \issue 5 \pages 884--896 \endref Кубышкин В.~А., Постнов С.~C. Оптимальное по быстродействию граничное управление для систем, описываемых уравнением диффузии дробного порядка \by Yurko~V.A. \paper Boundary value problems with discontinuity conditions in an interior point \jour Differ. Equ. \yr 2000 \vol 36 \issue 8 \pages 1266--1269 %1139--1140 \endref % Юрко~В.~А. %О краевых задачах с условиями разрыва внутри интервала \by Savchuk~ A.M. and Shkalikov~A.A. \paper Inverse problems for Sturm--Liouville operators with potentials in Sobolev spaces: Uniform stability \jour Funct. Anal. Appl. \yr 2010 \vol 44 \issue 4 \pages 270--285 %34--53 \endref %Савчук~А.~М., Шкаликов~А.~А. %Обратные задачи для оператора Штурма~--- Лиувилля с потенциалами из пространств Соболева. Равномерная устойчивость \by Ishkin~Kh.K. \paper On localization of the spectrum of the problem with complex weight \jour J.~Math. Sci. (N. Y.) \yr 2008 %2006 \vol 150 %12 \issue 6 % 5 \pages 2488--2499 %49--64 \endref %Ишкин~Х.~К. %О локализации спектра задачи с комплексным весом \by Ishkin~Kh.K. \paper Localization criterion for the spectrum of the Sturm--Liouville operator on a~curve \jour St. Petersburg Math.~J. \yr 2017 %2016 \vol 28 \issue 1 \pages 37--63 % 52--88 \endref %Ишкин~Х.~К. %Критерий локализации спектра оператора Штурма~--- Лиувилля на кривой \by Ishkin~Kh.K. and Rezbayev~A.V. \paper On the Davies formula for the distribution of eigenvalues of a~non-self-adjoint differential operator \jour J.~Math. Sci. (N. Y.) \yr 2021 \vol 252 \issue 3 \pages 374--383 \endref %Ишкин~Х.~К., Резбаев~А.~В. %К формуле Дэвиса о распределении собственных чисел несамосопряженного дифференциального оператора~// %Современная математика и ее приложения. Тематические обзоры. Комплексный анализ. %М.: ВИНИТИ РАН, 2018. Т.~153. С.~84--93. (Итоги науки и техники). \by Golubkov~A.A. \paper Asymptotics of transfer matrix of Sturm--Liouville equation with piecewise-entire potential function on a~curve \jour Moscow University Math. Bull. \yr 2019 \vol 74 \issue 2 \pages 65--69 %37--41 \endref %Голубков~А.~А. %Асимптотика передаточной матрицы уравнения Штурма~--- Лиувилля с кусочно-целым потенциалом на кривой \by Golubkov~A.A. \paper A~boundary value problem for the Sturm-Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions \jour Sib. Electr. Math. Reports \yr 2019 \vol 16 \pages 1005--1027 \endref %Голубков~А.~А. %Краевая задача для уравнения Штурма~--- Лиувилля с кусочно-целым %потенциалом на кривой и условиями разрыва решений \by Golubkov~A.A. \paper Spectrum of the Sturm--Liouville operator on a~curve with parameters in the boundary conditions and discontinuity conditions for solutions \inbook Modern Methods of the Theory of Boundary Value Problems. Part~4 \bookinfo Proceedings of the Voronezh Spring Mathematical School: ``Pontryagin Readings-XXX'' (May 3--9, 2019) \lang Russian \publaddr Voronezh \publ Tsentr.-Chernozem. Knizh. Izdat. %\? \yr 2021 \pages 45--68 \finalinfo Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz.; vol.~193 \endref % Голубков~А.~А. %Спектр оператора Штурма~--- Лиувилля на кривой с параметром в краевых %условиях и условиях разрывов решений %Материалы Воронежской весенней математической школы. %Современные методы теории краевых задач. Понтрягинские чтения-XXX. Воронеж, \by Ishkin~Kh.K. \paper On a trivial monodromy criterion for the Sturm--Liouville equation \jour Math. Notes \yr 2013 \vol 94 \issue 4 \pages 508--523 %552--568 \endref %Ишкин~Х.~К. %О критерии безмонодромности уравнения Штурма~--- Лиувилля \by Golubkov~A.A. \paper Inverse problem for Sturm--Liouville operators in the complex plane \jour Izv. Saratov University Math. Mech. Inform. \yr 2018 \vol 18 \issue 2 \pages 144--156 \endref %Голубков~А.~А. %Обратная задача для операторов Штурма~--- Лиувилля в комплексной плоскости \by Golubkov~A.A. and Kuryshova~Y.V. \paper Inverse problem for Sturm--Liouville operators on a curve \jour Tamkang J.~Math. \yr 2019 \vol 50 \issue 3 \pages 349--359 \endref \by Golubkov~A.A. \paper Inverse problem for the Sturm--Liouville Equation with piecewise entire potential and piecewise constant weight on a~curve \jour Sib. Electron. Math. Rep. \yr 2021 \vol 18 \issue 2 \pages 951--974 \endref %Голубков~А.~А. %Обратная задача для уравнения Штурма~--- Лиувилля с кусочно-целым потенциалом и кусочно-постоянным весом на кривой \by Golubkov~A.A. and Makarov V.A. \paper Reconstruction of dielectric permittivity profile of a~plate with strong frequency dispersion \jour Moscow University Phys. Bull. \yr 2009 \vol 64 \issue 6 \pages 658--660 %95--97 \endref %Голубков~А.~А., Макаров~В.~А. %Определение профиля диэлектрической проницаемости пластинки, обладающей сильной частотной дисперсией 0 \by Golubkov~A.A. and Makarov V.A. \paper Determining the coordinate dependence of some components of the cubic susceptibility tensor $ \widehat \chi^{(3)}(z, \omega, - \omega, \omega,\omega)$ of a~one-dimensionally inhomogeneous absorbing plate at an arbitrary frequency dispersion \jour Quantum Electron. %Kvantovaya Elektronika \yr 2010 \vol 40 \issue 11 \pages 1045--1050 \endref %Голубков~А.~А., Макаров~В.~А. %Определение координатной зависимости некоторых компонент тензора %кубической восприимчивости $ \widehat \chi^{(3)}(z, \omega, - \omega, \omega, %\omega)$ одномерно неоднородной пластины с поглощением и произвольной частотной дисперсией \by Freiling~G. and Yurko~V.A. \paper Inverse problems for differential equations with turning points \jour Inverse Probl. \yr 1997 \vol 13 \issue 5 \pages 1247--1263 \endref \by Yurko~V.A. \paper Inverse spectral problems for Sturm--Liouville operators with complex weights \jour Inverse Probl. Sci. Engineering \yr 2018 \vol 26 \issue 10 \pages 1396--1403 \endref 5 \by Yurko~V.A. \paper On the inverse problem for differential operators on a~finite interval with complex weights \jour Math. Notes \yr 2019 \vol 105 \issue 2 \pages 301--306 %313--320 \endref %Юрко~В.~А. %Об обратной задаче для дифференциальных операторов на конечном интервале с комплексными весами \by Duistermaat~J.J. and Gr\"unbaum~F.A. \paper Differential equations in the spectral parameter \jour Commun. Math. Phys. \yr 1986 \vol 103 \issue 2 \pages 177--240 \endref \by Levchuk~V.M. \paper Commutator structure of some subgroups of Chevalley groups \jour Ukrainian Math.~J. \yr 1992 \vol 44 \issue 6 \pages 710--718 %710--718 \endref %Левчук~В.~М. %Коммутаторная структура некоторых подгрупп групп Шевалле \by Abe~E. and Suzuki~K. \paper On normal subgroups of Chevalley groups over commutative rings \jour T\^{o}hoku Math.~J. \yr 1976 \vol 28 \issue 2 \pages 185--198 \endref \by Cruceanu~V., Fortuny~P., and Gadea~P.M. \paper A~survey on paracomplex geometry \jour Rocky Mountain J. Math. \yr 1996 \vol 26 \issue 1 \pages 83--115 \endref \by Alekseevsky~D.V., Medori~A., and Tomassini~A. \paper Homogeneous para-K\"ahler Einstein manifolds \jour Russian Math. Surveys %Uspekhi Mat. Nauk \yr 2009 \vol 64 \issue 1 \pages 1--43 %3--50 \endref %Алексеевский~Д.~В., Медори~К., Томассини~А. %Однородные пара-кэлеровы многообразия Эйнштейна \by Hitchin~N.J. \paper The geometry of three-forms in six dimensions \jour J.~Diff. Geom. \yr 2000 \vol 55 \pages 547--576 \endref \by Daurtseva~ N.A. and Smolentsev~N.K. \paper On almost complex structures on six-dimensional products of spheres \jour J.~Math. Sci. (N.~Y.) \yr 2020 \vol 245 \issue 5 \pages 568--600 \endref %Даурцева~Н.~А., Смоленцев~Н.~К. % О почти комплексных структурах на шестимерных произведениях сфер \by Smolentsev~N.K. \paper On almost (para)complex Cayley structures on spheres $S^{2,4}$ and~$S^{3,3}$ \jour Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika \yr 2018 \vol 53 \pages 22--38 \endref %Смоленцев~Н.~К. %О почти (пара) комплексных структурах Кэли на сферах $S^{2,4}$ и $S^{3,3}$ \by Gualtieri~M. \paper Generalized complex geometry \jour Ann. Math. \yr 2011 \vol 174 \issue 1 \pages 75--123 \endref \by Svoboda~D. \paper Algebroid structures on para-Hermitian manifolds \jour J.~Math. Phys. \yr 2018 \vol 59 \issue 12 \pages 122--302 \endref \by Rickart C.E. \paper Banach algebras with an adjoint operation \jour Ann. of Math. \yr 1946 \vol 47 %\issue \pages 528--550 \endref \by Sherman S. \paper The second adjoint of a~$C^*$-algebra \jour Proc. Internat. Congr. Math. Cambridge \yr 1950 \vol 1 %\issue \pages 470 \endref \by Takeda Z. \paper Conjugate spaces of operator algebras \jour Proc. Japan Acad. \yr 1954 \vol 30 %\issue \pages 90--95 \endref \by Birkenmeier~G.F. and Park~J.K. \paper Self-adjoint ideals in Baer $\ast$-rings \jour Comm. Algebra \yr 2000 \vol 28 \issue 9 \pages 4259--4268 \endref \by Ahmadi~M., Golestani~N., and Moussavi~M. \paper Generalized quasi-Baer $\ast$-rings and Banach $\ast$-algebras \jour Comm. Algebra \yr 2020 \vol 48 \issue 5 \pages 2207--2247 % DOI: 10.1080/00927872.2019.1710841 \endref \by Cui J. and Wang Z. \paper A note on strongly $\ast$-clean rings \jour J.~Korean Math. Soc. \yr 2015 \vol 52 \issue 4 \pages 839--851 \endref \by Paykan K. and Moussavi A. \paper A generalization of Baer rings \jour Int.~J. Pure Appl. Math. \yr 2015 \vol 99 \issue 3 \pages 257--275 \endref \by Birkenmeier G.F., Park J.K., and Tariq Rizvi~S. \paper Hulls of semiprime rings with applications to $C^*$-algebras \jour J.~Algebra \yr 2009 \vol 322 %\issue \pages 327--352 \endref \by Ahmadi M. and Moussavi A. \paper Rings whose singular ideals are nil \jour Comm. Algebra \yr 2020 \vol 48 \issue 11 \pages 4796--4808 \endref \by Handelman D. \paper Pr\"{u}fer domains and Baer $\ast$-rings \jour Arch. Math. (Basel) \yr 1977 \vol 29 \issue 3 \pages 241--251 \endref \by Huh~C., Kim~H.K., and Lee~Y. \paper P.P.~rings and generalized p.p.~rings \jour J.~Pure Appl. Algebra \yr 2002 \vol 167 \issue 1 \pages 37--52 \endref \by Small L.W. \paper Semihereditary rings \jour Bull. Amer. Math. Soc. \yr 1967 \vol 73 %\issue \pages 656--658 \endref \by \^{O}hori M. \paper On non-commutative generalized p.p. rings \jour Math. J. Okayama University \yr 1984 \vol 26 \issue 1 \pages 157--167 \endref \by \^{O}hori M. \paper Some studies on generalized p.p. rings and hereditary rings \jour Math. J. Okayama University \yr 1985 \vol 27 \pages 157--167 \endref 0 \by Pierce R.S. \paper Modules over commutative regular rings \jour Mem. Amer. Math. Soc. \yr 1967 \vol 70 \pages 1--112 \endref 1 \by Tyukavkin D.V. \paper An analogue of Pierce sheaves for rings with involution \jour Russian Math. Surveys \yr 1983 \vol 38 \issue 5 \pages 164--165 \endref 2 \by Kaplansky~I. \paper Topological representation of algebras.~II \jour Trans. Amer. Math. Soc. \yr 1950 \vol 68 \issue 1 \pages 62--75 \endref \by Azumaya G. \paper Strongly $\pi$-regular rings \jour J.~Fac. Sci. Hokkaido University \yr 1954 \vol 13 \pages 34--39 \endref \by Trautmann~G. and Miro-Roig~R.M. \paper The moduli scheme M(0,2,4) over~P3 \jour Math. Z. \yr 1994 \vol 216 \issue 2 \pages 283--316 \endref \by Bia\l ynicki-Birula~A.S. \paper Some theorems on actions of algebraic groups \jour Ann. Math. \yr 1973 \vol 98 \issue 3 \pages 480--497 \endref \by Ellingsrud~G. and Stromme~S.A. \paper On the rationality of the moduli space for stable rank-2 vector bundles on P2 \inbook Singularities, Representation of Algebras, and Vector Bundles \publ Springer \publaddr Berlin and Heidelberg \yr 1987 \pages 363--371 \endref \by Hulek~K. \paper Stable rank-2 vector bundles on $\Bbb P_2$ with $c_1$ odd \jour Math. Ann. \yr 1979 \vol 242 \pages 241--266 \endref \by Maeda~T. \paper An elementary proof of the rationality of the moduli space for rank~2 vector bundles on~$P2$ \jour Hiroshima Math.~J. \yr 1990 \vol 20 \pages 103--107 \endref \by Hirschowitz~A. \paper Rank techniques and jump stratifications \inbook Vector Bundles on Algebraic Varieties. Proc. Bombay 1984 \publaddr Oxford \publ Oxford University \yr 1987 \pages 159--205 \endref \by Katsylo~P.I. \paper Birational geometry of moduli varieties of vector bundles over~$P2$ \jour Math. USSR-Izv. \yr 1992 %1991 \vol 38 %55 \issue 2 \pages 419--428 %429--438 \endref % Кацыло~П.~И. %Бирациональная геометрия многообразий модулей векторных расслоений над $P2$ \by Kraft~H. \preprint Regularization of Rational Group Actions\nofrills \yr 2018 \bookinfo arXiv:1808.08729 \endref \by Vodopyanov~S.K. \paper Moduli inequalities for $W^1_{n-1,\operatorname{loc}}$-mappings with weighted bounded $(q, p)$-distortion \jour Complex Var. Elliptic Equ. %Complex Variables and Elliptic Equations \yr 2021 \vol 66 \iftex \issue 6--7 \else \issue 5 \fi \pages 1037--1072 \endref \by Ukhlov~A. and Vodop'yanov~S.K. \paper Mappings with bounded $(P,Q)$-distortion on Carnot groups \jour Bull. Sci. Math. \yr 2010 \vol 134 \issue 6 \pages 605--634 \endref \by Tukia~P. and V\"{a}is\"{a}l\"{a}~J. \paper Quasisymmetric embeddings of metric spaces \jour Ann. Acad. Sci. Fenn. Ser. AI Math. \yr 1980 \vol 5 \issue 1 \pages 97--114 \endref \by V\"{a}is\"{a}l\"{a}~J. \paper Quasim\"{o}bius maps \jour J.~Anal. Math. \yr 1984/85 \Yr 1984 \vol 44 \issue 1 \pages 218--234 \endref \by Abrosimov~N.V. and Aseev~V.V. \paper Multivalued quasim\"{o}bius property and bounded turning \jour Sib. Electr. Math. Reports \inpress \endref \by Khukhro~E.I. \paper Graded Lie rings with many commuting components and an application to 2-Frobenius groups \jour Bull. Lond. Math. Soc. \yr 2008 \vol 40 \issue 5 \pages 907--912 \endref \by Makarenko~N.Yu. and Shumyatsky~P. \paper Frobenius groups as groups of automorphisms \jour Proc. Amer. Math. Soc. \yr 2010 \vol 138 \issue 10 \pages 3425--3436 \endref \by Khukhro~E.I., Makarenko~N.Yu., and Shumyatsky~P. \paper Frobenius groups of automorphisms and their fixed points \jour Forum Math. \yr 2014 \vol 26 \issue 1 \pages 73--112 \endref \by Shalev~A. \paper Automorphisms of finite groups of bounded rank \jour Israel J. Math. \yr 1993 \vol 82 \iftex \issue 1--3 \else \issue 1 \fi \pages 395--404 \endref \by Kreknin~V.~A. \paper The solubility of Lie algebras with regular automorphisms of finite period \jour Dokl. Akad. Nauk SSSR \yr 1963 \vol 150 \issue 3 \pages 467--469 \endref % Крекнин В. А. % Разрешимость алгебр Ли с регулярными автоморфизмами конечного периода \by Hall~P. \paper Some sufficient conditions for a group to be nilpotent \jour Illinois J. Math. \yr 1958 \vol 2 \issue 4B \pages 787--801 \endref \by Skiba~A.~N. \paper On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups \jour J.~Algebra \yr 2015 \vol 436 \issue 8 \pages 1--16 \endref \by Skiba~A.N. \paper On some results in the theory of finite partially soluble groups \jour Commun. Math. Stat. \yr 2016 \vol 4 %\issue \pages 281--309 \endref \by Ballester-Bolinches~A., Esteban-Romero~R., and Robinson~D.J.S. \paper On finite minimal non-nilpotent groups \jour Proc. Amer. Math. Soc. \yr 2005 \vol 133 \issue 12 \pages 3455--3462 \endref \by Semenchuk~V.N. \paper Finite groups with a~system of minimal non-$\frak{F}$-subgroups \inbook Subgroup Structure of Finite Groups \lang Russian \publaddr Minsk \publ Nauka i Tekhnika \yr 1981 \pages 138--149 \endref %Семенчук~В.~Н. %Конечные группы с системой минимальных не $\frak{F}$-подгрупп %Подгрупповая структура конечных групп \by Al-Sharo~K. and Skiba~A.N. \paper On finite groups with $\sigma$-subnormal Schmidt subgroups \jour Comm. Algebra \yr 2017 \vol 45 \issue 10 \pages 4158--4165 \endref \by Hu~B. and Huang~J. \paper On finite groups with generalized $\sigma$-subnormal Schmidt subgroups \jour Comm. Algebra \yr 2018 \vol 46 \issue 7 \pages 3127--3134 \endref \by Yi~X. and Kamornikov~S.F. \paper Finite groups with $\sigma$-subnormal Schmidt subgroups \jour J.~Algebra \yr 2020 \vol 560 \issue 15 \pages 181--191 \endref \by Monakhov~V.S. and Kniahina~V.N. \paper Finite groups with Hall subnormally embedded Schmidt subgroups \jour Comm. Algebra \yr 2020 \vol 48 \issue 1 \pages 93--100 \endref \by Liu~A.-M., Guo~W., Safonova~I.~N., Skiba~A.~N. \paper A~generalization of subnormality \jour Mediter. J. Math. \yr 2022 \vol 19 \issue 3 \pages 98 \endref \by Skiba~A.N. \paper Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups \jour J.~Algebra \yr 2018 \vol 495 \issue 1 \pages 114--129 \endref \by Belonogov~V.A. \paper Finite groups in which all 2-maximal subgroups are $\pi$-decomposable \jour Proc. Steklov Inst. Math. (Suppl. Issues) %Trudy Instituta Matematiki i Mekhaniki UrO RAN \yr 2015 %2014 \vol 289 %20 \issue 1 %2 \pages 26--41 %29--43 \endref %Белоногов~В.~А. %Конечные группы, все $2$-максимальные подгруппы которых $\pi$-разложимы \by Hu~B., Huang~J., and Skiba~A.N. \paper On the generalized $\sigma$-Fitting subgroup of finite groups \jour Rend. Sem. Mat. University Padova \yr 2019 \vol 141 %\issue \pages 19--36 \endref \by Wang~Z., Cai~J., Safonova~I.N., and Skiba~A.N. \paper Finite groups with abnormal minimal non-nilpotent subgroup \jour Bull. Aust. Math. Soc. \yr 2023 \vol 107 \issue 2 \pages 261--270 \endref \by Kargapolov~M.I. and Timoshenko~E.I. \paper To the question of finite approximability with respect to conjugacy of metabelian groups \inbook Proceedings of the 4th All-Union Symposium on Group Theory \publaddr Novosibirsk \publ Inst. Mat. \yr 1973 \pages 86--88 \endref %Каргаполов~М.~И, Тимошенко~Е.~И. %К вопросу о финитной аппроксимируемости относительно сопряженности метабелевых групп \by Romanovskii~N.S. \paper Finite approximability of free products with respect to occurrence \jour Math. USSR-Izv. \yr 1969 \vol 3 %33 \issue 6 \pages 1245--1249 % 1324--1329 \endref %Романовский~Н.~С. %О финитной аппроксимируемости свободных произведений относительно вхождения \by Gaglione~A.M. and Spellman~D. \paper Some model theory of free groups and free algebras \jour Houston J. Math. \yr 1993 \vol 19 \issue 3 \pages 322--356 \endref \by Gupta~N. and Levin~F. \paper Generating groups of certain soluble varieties \jour J.~Austr. Math. Soc. \yr 1974 \vol 17, Part~2 \issue 3 \pages 222--233 \endref \by Baumslag~G., Neumann~B.H., Neumann~H., and Neumann~P.M. \paper On varieties generated by a~finitely generated group \jour Math. Z. \yr 1964 \vol 86 %\issue \pages 93--122 \endref %VN finitely - a~finitely \by Gupta~C.K. and Romanovski~N.S. \paper On torsion in free factors of polynilpotent series of a~group with a~single relation \jour Intern. J. Algebra Comput. \yr 2004 \vol 14 \issue 4 \pages 513--523 \endref \by Magnus~W. \paper On a~theorem of Marshal Hall \jour Ann. Math. (Ser. II) \yr 1939 \vol 40 %\issue \pages 764--768 \endref \by Shmelkin~A.L. \paper Free polynilpotent groups \jour Izv. Akad. Nauk SSSR Ser. Mat. \yr 1964 \vol 28 \issue 1 \pages 91--122 \endref % Шмелькин~А.~Л. %Свободные полинильпотентные группы \by Shkalikov~A.A. \paper Boundary value problems for ordinary differential equations with a~parameter in the boundary conditions \jour J.~Soviet Math. %Tr. Semin. im. I.G. Petrovskogo \yr 1986 %1983 \vol 33 %9 \issue 6 \pages 1311--1342 %190--229 \endref \endref %А. А.~Шкаликов, % Краевые задачи для обыкновенных дифференциальных уравнений со %спектральным параметром в граничных условиях \by Aslanova~N.M., Bayramoglu~M., and Aslanov~Kh.M. \paper Some spectral properties of fourth order differential operator equation \jour Oper. Matr. \yr 2018 \vol 12 \issue 1 \pages 287--299 \endref \by M\"oller~M. and Pivovarchik~V. \paper Spectral properties of a~fourth order differential equation \jour Z.~Anal. Anwend. \yr 2006 \vol 25 \issue 3 \pages 341--366 \endref \by M\"oller~M. and Zinsou~B. \paper Self-adjoint fourth order differential operators with eigenvalue parameter dependent boundary conditions \jour Quaest. Math. \yr 2011 \vol 34 \issue 3 \pages 393--406 \endref \by M\"oller~M. and Zinsou~B. \paper Spectral asymptotics of self-adjoint fourth order differential operators with eigenvalue parameter dependent boundary conditions \jour Complex Anal. Oper. Theory \yr 2012 \vol 6 \issue 3 \pages 799--818 \endref \by M\"oller~M. and Zinsou~B. \paper Asymptotics of the eigenvalues of self-adjoint fourth order differential operators with separated eigenvalue parameter dependent boundary conditions \jour Rocky Mountain~J. Math. \yr 2017 \vol 47 \issue 6 \pages 2013--2042 \endref \by Kerimov N.B. and Aliyev~Z.S. \paper Basis properties of a~spectral problem with spectral parameter in the boundary condition \jour Sb. Math. \yr 2006 \vol 197 \issue 10 \pages 1467--1487 %65--86 \endref %Керимов~Н.~Б., Алиев~З.~С. %Базисные свойства одной спектральной задачи со спектральным параметром в граничном условии \by Kerimov N.B. and Aliev~Z.S. \paper On the basis property of the system of eigenfunctions of a~spectral problem with spectral parameter in the boundary condition \jour Differ. Equ. \yr 2007 \vol 43 \issue 7 \pages 905--915 % 886--895 \endref %Керимов~Н.~Б., Алиев~З.~С. %О базисности системы собственных функций одной спектральной задачи %со спектральным параметром в граничном условии \by Aliev~Z.S. \paper Basis properties in $L_p$ of systems of root functions of a~spectral problem with spectral parameter in a boundary condition \jour Differ. Equ. \yr 2011 \vol 47 \issue 6 \pages 766--777 %764--775 \endref % Алиев~З.~С. %Базисные свойства в пространстве $L_p$ систем корневых функций одной %спектральной задачи со спектральным параметром в граничном условии \by Aliyev~Z.S. and Mamedova~G.T. \paper Some properties of eigenfunctions for the equation of vibrating beam with a~spectral parameter in the boundary conditions \jour J.~Differ. Equat. \yr 2020 \vol 269 \issue 2 \pages 1383--1400 \endref \by Kerimov N.B., Aliyev~Z.S., and Mehrabov~B.A. \paper Convergence of eigenfunction expansions for a~boundary value problem with spectral parameter in the boundary conditions.~I \jour Differ. Equ. \yr 2020 \vol 56 \issue 2 \pages 143--157 % 147--161 \endref %Алиев~З.~С., Керимов~Н.~Б., Мехрабов~В.~А. % О сходимости разложений по собственным функциям одной краевой задачи %со спектральным параметром в граничных условиях.~I \by Kerimov N.B., Aliyev~Z.S., and Mehrabov~B.A. \paper Convergence of eigenfunction expansions for a~boundary value problem with spectral parameter in the boundary conditions.~II \jour Differ. Equ. \yr 2020 \vol 56 \issue 3 \pages 277--289 %291--302 \endref %Алиев~З.~С., Керимов~Н.~Б., Мехрабов~В.~А. %О сходимости разложений по собственным функциям одной краевой задачи %со спектральным параметром в граничных условиях.~II \by Badanin~A. and Korotyaev~E. \paper Third-order operators with three-point conditions associated with Boussinesq's equation \jour Appl. Anal. \yr 2021 \vol 100 \issue 3 \pages 527--560 \endref \by Polyakov~D.M. \paper Sharp eigenvalue asymptotics of fourth-order differential operators \jour Asymptot. Anal. \yr 2022 \vol 130 \iftex \issue 3--4 \else \issue 3 \fi \pages 477--503 \endref \by Korotyaev~E. \paper Inverse problem and the trace formula for the Hill operator.~II \jour Math.~Z. \yr 1999 \vol 231 \issue 2 \pages 345--368 \endref \by Melkman~A.A. and Micchelli~C.A. \paper Optimal estimation of linear operators in Hilbert spaces from inaccurate data \jour SIAM~J. Numer. Anal. \yr 1979 \vol 16 \issue 1 \pages 87--105 \endref \by Magaril-Il'yaev~G.G., Osipenko~K.Yu., and Tikhomirov~V.M. \paper On optimal recovery of heat equation solutions \inbook Approximation Theory: A~Volume Dedicated to B.~Bojanov %(D.~K.~Dimitrov, G.~Nikolov, R.~Uluchev, eds.) \publaddr Sofia \publ Marin Drinov \yr 2004 \pages 163--175 \endref \by Balova~E.A. \paper Optimal reconstruction of the solution of the Dirichlet problem from inaccurate input data \jour Math. Notes \yr 2007 \vol 82 \issue 3 \pages 285--294 %323--334 \endref %Балова~Е.~А. %Об оптимальном восстановлении решений задачи Дирихле по неточным исходным данным \by Balova~E.A. and Osipenko~K.Yu. \paper Optimal recovery methods for solutions of the Dirichlet problem that are exact on subspaces of spherical harmonics \jour Math. Notes \yr 2018 \vol 104 \issue 6 \pages 781--788 %803--811 \endref % Балова~Е.~А., Осипенко~К.~Ю. %Оптимальные методы восстановления решений задачи Дирихле, точные на подпространствах сферических гармоник \by Pontryagin~ L. and Shnirelman~L. \paper On one metric property of dimension \jour Ann. Math. \yr 1932 \vol 33 \pages 156--162 \endref \by Ivanov A.V. and Fomkina~O.V. \paper On the order of metric approximation of maximal linked systems and capacitarian dimensions \jour Tr. Karelian Research Center of the Russian Academy of Sciences %. No.~7. % Mathematical Modeling and Information Technologies \yr 2019 \vol 7 \pages 5--14 \endref %Иванов~А.~В., Фомкина~О.~В. %О порядке метрической аппроксимации максимальных сцепленных систем и емкостных размерностях \by Ivanov~A.V. \paper On metric order in spaces of the form $F(X)$ \jour Topology Appl. \yr 2017 \vol 221 \pages 107--113 \endref \by Xu~X. \paper Novikov--Poisson algebras \jour J.~Algebra \yr 1997 \vol 190 \pages 253--279 \pages \endref \by Zakharov~A.S. \paper Gelfand--Dorfman--Novikov--Poisson superalgebras and their envelopes \jour Sib. Elektr. Mat. Reports \yr 2019 \vol 16 \pages 1843--1855 \endref \by Kolesnikov~P.S., Sartayev~B., and Orazgaliev~A. \paper Gelfand--Dorfman algebras, derived identities, and the Manin product of operads \jour J.~Algebra \yr 2019 \vol 539 \pages 260--284 \endref \by Xu~X. \paper Quadratic conformal superalgebras \jour J.~Algebra \yr 2000 \vol 231 \pages 1--38 \endref \by Xu~X. \paper Gel'fand--Dorfman bialgebras \jour Southeast Asian Bull. Math. \yr 2003 \vol 27 \pages 561--574 \endref \by Kolesnikov~P.S., Kozlov~R.A., and Panasenko~A.S. \paper Quadratic Lie conformal superalgebras related to Novikov superalgebras \jour J.~Noncommut. Geom. \yr 2021 \vol 15 \issue 4 \pages 1485--1500 \endref \by Bokut~L.A., Chen~Y., and Zhang~Z. \paper Gr\"obner--Shirshov bases method for Gelfand--Dorfman--Novikov algebras \jour J.~Algebra Appl. \yr 2017 \vol 16 \issue 1 \pages 1--22 \endref \by Kolesnikov~P.S. and Sartayev~B.K. \paper On the special identities of Gelfand--Dorfman algebras \jour Exp. Math. \yr 2022 \doi 10.1080/10586458.2022.2041134 \endref \by Bai~C., Bai~R., Guo~L., and Wu~Y. \preprint Transposed Poisson algebras, Novikov--Poisson algebras, and 3-Lie algebras\nofrills \yr ??? \finalinfo arXiv: 2005.01110 \endref \by Kac~V.G. \paper Formal distribution algebras and conformal algebras \inbook 12th International Congress of Mathematical Physics (ICMP '97) %De Wit, D. et al. (eds.) \publaddr Cambridge \publ Internat. \yr 1999 \pages 80--97 %\finalinfo \endref \by Roitman~M. \paper On free conformal and vertex algebras \jour J.~Algebra \yr 1999 \vol 217 % \issue 1 \pages 496--527 \endref \by Roitman~M. \paper Universal enveloping conformal algebras \jour Selecta Math. \yr 2000 \vol 6 \issue 3 \pages 319--345 \endref \by Kolesnikov~P.S. \paper Identities of conformal algebras and pseudoalgebras \jour Comm. Algebra \yr 2006 \vol 34 \issue 6 \pages 1965--1979 \endref \by Hong~Y. and Li~F. \paper Left-symmetric conformal algebras and vertex algebras \jour J.~Pure Appl. Algebra \yr 2015 \vol 219 \issue 8 \pages 3543--3567 \endref \by Bakalov~B., D'Andrea~A., and Kac~V.G. \paper Theory of finite pseudoalgebras \jour Adv. Math. \yr 2001 \vol 162 \issue 1 \pages 1--140 \endref \by Lebedeva~N., Petrunin~A., and Zolotov~V. \paper Bipolar comparison \jour Geom. Funct. Anal. \yr 2019 \vol 29 \issue 1 \pages 258--282 \endref \by Toyoda~T. \paper An intrinsic characterization of five points in a~CAT(0) space \jour Anal. Geom. Metr. Spaces \yr 2020 \vol 8 \issue 1 \pages 114--165 \endref \by Toyoda~T. \preprint A Non-Geodesic Analogue of Reshetnyak's Majorization Theorem\nofrills \yr 2019 \finalinfo arXiv: 1907. 09067\allowbreak [math.MG] \endref \by Lebedeva~N. and Petrunin~A. \preprint 5-Point Toponogov Theorem\nofrills \yr 2022 \finalinfo arXiv: 2202.13049 [math.DG] \endref \by Lebedeva~N. \paper On open flat sets in spaces with bipolar comparison \jour Geom. Dedicata \yr 2019 \vol 203 \pages 347--351 \endref \by Lebedeva~N. and Petrunin~A. \paper 5-Point CAT(0) spaces after Tetsu Toyoda \jour Anal. Geom. Metr. Spaces \yr 2021 \vol 9 \issue 1 \pages 160--166 \endref \by Lebedeva~N. and Petrunin~A. \preprint Trees Meet Octahedron Comparison\nofrills \yr 2022 \finalinfo arXiv: 2212.06445 [math.MG] \endref \by Lang~U. and Schroeder~V. \paper Kirszbraun's theorem and metric spaces of bounded curvature \jour Geom. Funct. Anal. \yr 1997 \vol 7 \issue 3 \pages 535--560 \endref \by Sturm~K.T. \paper Metric spaces of lower bounded curvature \jour Exposition. Math. \yr 1999 \vol 17 \issue 1 \pages 35--47 \endref \by Ma~X.-N., Trudinger~N., and Wang~X.-J. \paper Regularity of potential functions of the optimal transportation problem \jour Arch. Ration. Mech. Anal. \yr 2005 \vol 177 \issue 2 \pages 151--183 \endref \by Alexander~S., Kapovitch~V., and Petrunin~A. \preprint Alexandrov Geometry: Foundations\nofrills \yr 2022 \finalinfo 1903.08539 [math.DG] \endref \by Piskin E. \paper On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms \jour Boundary Value Problems \yr 2015 \vol 2015 \issue 127 \finalinfo Article 127, 14~pp. %\doi 10.1186/s13661-015-0395-4 \endref \by Messaoudi S.A. and Talahmeh~A.A. \paper On wave equation: review and recent results \jour Arab. J. Math. \yr 2018 \vol 7 \issue 2 \pages 113--145 \endref \by Ogbiyele P.A. and Arawomo P.O. \paper Existence and blow up time estimate for a~negative initial energy solution of a~nonlinear Cauchy problem \jour Acta Appl. Math. \yr 2020 \vol 170 %\issue - \pages 443--458 \endref \by Assylbekov Y.M. and Zhou~T. \paper Direct and inverse problems for the nonlinear time-harmonic Maxwell equations in Kerr-type media %\nofrills \jour J.~Spectral Theory \yr 2017 \vol 11 \issue 1 \pages 1--38 %\bookinfo arXiv: 1709.07767 \endref \by Kurylev Y., Lassas M., and Uhlmann~G. \paper Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations \jour Invent. Math. \yr 2018 \vol 212 \issue 3 \pages 781--857 \endref \by Lassas M., Uhlmann~G., and Wang~Y. \paper Inverse problems for semilinear wave equations on Lorentzian manifolds \jour Comm. Math. Phys. \yr 2018 \vol 360 \issue 2 \pages 555--609 \endref \by Lassas M. \paper Inverse problems for linear and non-linear hyperbolic equations \jour Proc. Internat. Congress Math. \yr 2018 \vol 3 \pages 3739--3760 \endref \by Wang Y. and Zhou~T. \paper Inverse problems for quadratic derivative nonlinear wave equations \jour Comm. Partial Differential Equations \yr 2019 \vol 44 \issue 11 \pages 1140--1158 \endref \by Hintz P. and Uhlmann~G. \paper Reconstruction of Lorentzian manifolds from boundary light observation sets \jour Internat. Math. Res. Notices \yr 2019 \vol 22 \pages 6949--6987 \endref \by Barreto A.S. \paper Interactions of semilinear progressing waves in two or more space dimensions \jour Inverse Probl. Imaging \yr 2020 \vol 14 \issue 6 \pages 1057--1105 \endref \by Hintz P., Uhlmann~G., and Zhai~J. \paper An inverse boundary value problem for a~semilinear wave equation on Lorentzian manifolds \jour Internat. Math. Res. Notices \yr 2021 \vol 2022 \issue 17 \pages 13181--13211 \endref % arXiv:2005.10447v2 [math.AP] \by Uhlmann G. and Zhai~J. \paper On an inverse boundary value problem for a~nonlinear elastic wave equation \jour J.~Math. Pures Appl. \yr 2021 \vol 153 \pages 114--136 \endref \by Barreto A.S. and Stefanov~P. \preprint Recovery of a General Nonlinearity in the Semilinear Wave Equation\nofrills %\jour \yr 2021 \bookinfo arXiv: 2107.08513v1 [math.AP] \endref \by Hintz P., Uhlmann G., and Zhail~J. \preprint The Dirichlet-to-Neumann Map for a~Semilinear Wave Equation on Lorentzian Manifolds\nofrills %\jour \yr 2021 \bookinfo arXiv:2103.08110v1 [math.AP] \endref \by Barreto A.S. and Stefanov~P. \paper Recovery of a cubic non-linearity in the wave equation in the weakly nonlinear regime \jour Comm. Math. Phys. \yr 2022 \vol 392 \pages 25--53 \endref \by Romanov~V.G. and Bugueva~T.V. \paper Inverse problem for a nonlinear wave equation \jour J.~Appl. Industr. Math. %Sib. Zh. Ind. Mat. \yr 2022 \vol 16 %25 \issue 2 \pages 333--348 %83--100 \endref %Романов В.~Г., Бугуева ~Т.~В. %Обратная задача для нелинейного волнового уравнения \by Romanov~V.G. and Bugueva~T.V. \paper The problem of determining the coefficient of the nonlinear term in a~quasilinear wave equation \jour J.~Appl. Industr. Math. %Sib. Zh. Ind. Mat. \yr 2022 \vol 16 %25 \issue 3 \pages 550--562 %154--169 \endref %Романов В.~Г., Бугуева Т.~В. %Задача об определении коэффициента при нелинейном члене квазилинейного волнового уравнения \by Romanov~V.G. \paper An inverse problem for a~semilinear wave equation \jour Dokl. Math. \yr 2022 \vol 105 %504 \issue 3 %1 \pages 166--170 %36--41 \endref %Романов В.~Г. % Обратная задача для полулинейного волнового уравнения \by Romanov~V.G. and Bugueva~T.V. \paper Inverse problem for wave equation with polynomial nonlinearity \jour J.~Appl. Industr. Math. %Sib. Zh. Ind. Mat. \yr 2023 \vol 17 %26 \issue 1 \pages 163--167 %142--149 \endref % Романов В.~Г., Бугуева Т.~В. %Обратная задача для волнового уравнения с полиномиальной нелинейностью \by Begehr H., Demidenko G.V., and Matveeva I.I. \paper An overview of some works of S.L. Sobolev \jour Complex Var. Elliptic Equ. \vol 66 \iftex \issue 6--7 \else \issue 6 \fi \yr 2021 \pages 1162--1181 \endref \by Sobolev S.L. \paper General theory of wave diffraction on Riemann surfaces \jour Proc. Steklov Inst. \issue 9 \yr 1935 \pages 39--105 \endref \by Sobolev S.L. \paper Cauchy problem in the space of functionals \jour Doklady AN SSSR %\? \yr 1935 \vol 3 \issue 7 \pages 291--294 \endref \by Sobolev S.L. \paper M\'ethode nouvelle \`a r\'esoudre le probl\`eme de Cauchy pour les \'equations lin\'eaires hyperboliques normales \jour Mat. Sb. \yr 1936 \vol 1 \issue 1 \pages 39--70 \endref \by Kutateladze S.S. \paper Banach, Sobolev, and tumultuous years \jour Sib. Electr. Math. Reports \yr 2017 \vol 14 \pages A58--A65 \endref \by Kutateladze S.S. \paper The tragedy of mathematics in Russia \jour Sib. Elect. Math. Reports \yr 2012 \vol 9 \pages A85--A100 \endref \mref{14.} {\it The XVIII Congress of the All-Union Communist Party (Bolsheviks). March 10--21, 1939: Minutes}, Moscow State Publishers of Political Literature (1939). \endmref \mref{15.} Sobolev S.L., ``Some problems of the theory of wave propagation,'' in: Ph. Frank and R. Mises {\it Differential and Integral Equations of Mathematical Physics,} Moscow and Leningrad, ONTI, Chapter 12 (1937), 468--617 [Russian]. \endmref \by Sobolev S.L. \paper To the theory of nonlinear hyperbolic equations with partial derivatives \jour Math. Sb. \yr 1939 \vol 5 \issue 1 \pages 71--98 \endref \by Sobolev S.L. \paper On motion of a symmetric top with a cavity filled with fluid \inbook Selected Works of S.L. Sobolev. Vol.~I \publaddr New York \publ Springer \yr 2006 \pages 334--382 \endref \by Kutateladze S.S. \paper Sobolev and Schwartz: Two fates and two fames \jour J. Appl. Indust. Math. \vol 2 \issue 3 \yr 2008 \pages 301--310 \endref \by Ortner N. and Wagner P. \paper A short proof of the Malgrange--Ehrenpreis theorem \inbook Functional Analysis (Trier, 1994) \publaddr Berlin \publ de Gruyter \yr 1996 \pages 343--352 \endref \by Ortner N. and Wagner P. \paper A survey on explicit representation formulae for fundamental solutions of linear partial differential operators \jour Acta Appl. Math. \yr 1997 \vol 47 \issue 1 \pages 101--124 \endref \by Kutateladze S.S. \paper Some comments on Sobolev and Schwartz \jour Math. Intelligencer \yr 2004 \vol 26 \issue 1 \pages 51 \endref \by Ramazanov D., Rakhmatullin D.Y., and Bannikova E.L. \paper Cubature formulas of S.L. Sobolev: evolution of the theory and applications \jour Eurasian Math.~J. \vol 1 \issue 1 \yr 2010 \pages 123--136 \endref \by Merikoski~J.K. \paper On $I_{p_1,p_2}$ antinorms of nonnegative matrices \jour Linear Algebra Appl. \yr 1990 \vol 140 %\issue \pages 31--44 \endref \by Bourin~J.-C. and Hiai~F. \paper Anti-norms on finite von Neumann algebras \jour Publ. Res. Inst. Math. Sci. \yr 2015 \vol 51 \issue 2 \pages 207--235 \endref \by Guglielmi~N. and Zennaro~M. \paper Canonical construction of polytope Barabanov norms and antinorms for sets of matrices \jour SIAM J. Matrix Anal. Appl. \yr 2015 \vol 36 \issue 2 \pages 634--655 \endref \by Guglielmi~N. and Zennaro~M. \paper An antinorm theory for sets of matrices: Bounds and approximations to the lower spectral radius \jour Linear Algebra Appl. \yr 2020 \vol 607 %\issue \pages 89--117 \endref \mref{5.} Protasov~V.Yu., ``Antinorms on cones: duality and applications,'' Linear Multilinear Algebra (2021). DOI: 10.1080/03081087.2021.1988885. \endmref \by Moszy\'nska~M. and Richter~W.-D. \paper Reverse triangle inequality, antinorms and semi-antinorms \jour Studia Sci. Math. Hung. \yr 2012 \vol 49 \issue 1 \pages 120--138 \endref \by Guglielmi~N. and Protasov~V.Yu. \paper Exact computation of joint spectral characteristics of linear operators \jour Found. Comput. Math. \yr 2013 \vol 13 \issue 1 \pages 37--97 \endref \by Guglielmi~N., Laglia~L., and Protasov~V.Yu. \paper Polytope Lyapunov functions for stable and for stabilizable LSS \jour Found. Comput. Math. \yr 2017 \vol 17 %\issue \pages 567--623 \endref \by Fornasini~E. and Valcher~M.E. \paper Stability and stabilizability criteria for discrete-time positive switched systems \jour IEEE Trans. Automat. Control \yr 2012 \vol 57 \issue 5 \pages 1208--1221 \endref \by Fornasini~E. and Valcher~M.E. \paper Asymptotic stability and stabilizability of special classes of discrete-time positive switched systems \jour Linear Alg. Appl. \yr 2013 \vol 438 \issue 4 \pages 1814--1831 \endref \by Blanchini~F. and Savorgnanb~C. \paper Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions \jour Automatica \yr 2008 \vol 44 \issue 4 \pages 1166--1170 \endref \by Blondel~V.D. and Tsitsiklis~J.N. \paper The Lyapunov exponent and joint spectral radius of pairs of matrices are hard---when not impossible---to compute and to approximate \jour Math. Control, Signals, Systems \yr 1997 \vol 10 %\issue \pages 31--40 \endref \by Bochi~J. and Morris~I.D. \paper Continuity properties of the lower spectral radius \jour Proc. London Math. Soc. \yr 2014 \vol 110 \issue 2 \pages 477--509 \endref \by Furstenberg~H. and Kesten~H. \paper Products of random matrices \jour Ann. Math. Statist. \yr 1960 \vol 31 %\issue \pages 457--469 \endref \by Hennion~H. \paper Limit theorems for products of positive random matrices \jour Ann. Prob. \yr 1997 \vol 25 \issue 4 \pages 1545--1587 \endref \by Jungers~R.M. and Protasov~V.Yu. \paper Lower and upper bounds for the largest Lyapunov exponent of matrices \jour Linear Algebra Appl. \yr 2013 \vol 438 % \issue \pages 4448--4468 \endref \by Protasov~V.Yu. \paper Invariant functionals of random matrices \jour Funct. Anal. Appl. \yr 2010 \vol 44 % \issue \pages 230--233 \endref \by Protasov~V.Yu. \paper Invariant functionals for the Lyapunov exponents of random matrices \jour Sb. Math. \yr 2011 \vol 202 \issue 1 \pages 101--126 \endref \by Protasov~V.Yu. \paper Asymptotics of products of nonnegative random matrices \jour Funct. Anal. Appl. \yr 2013 \vol 47 \issue 2 \pages 138--147 \endref \by Oseledets~V.I. \paper A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems \jour Trans. Mosc. Math. Soc. \yr 1968 \vol 19 % \issue \pages 197--231 \endref \by Pollicott~M. \paper Maximal Lyapunov exponent for random matrix products \jour Invent. Math. \yr 2010 \vol 181 % \issue \pages 209--226 \endref \by Bourin~J.-C. and Hiai~F. \paper Norm and anti-norm inequalities for positive semi-definite matrices \jour Internat. J. Math. \yr 2011 \vol 22 \issue 8 \pages 1121--1138 \endref \by Bourin~J.-C. and Hiai~F. \paper Jensen and Minkowski inequalities for operator means and anti-norms \jour Linear Algebra Appl. \yr 2014 \vol 456 % \issue \pages 22--53 \endref \by Herforth~W. and Plaumann~P. \paper Boolean and profinite loops \jour Topology Proc. \yr 2011 \vol 37 \pages 233--237 \endref \by Kakkar~V. \paper Boolean loops with compact left inner mapping groups are profinite \jour Topology Appl. \yr 2018 \vol 244 \pages 51--54 \endref \by Ludkovsky~S.V. \paper Topological transformation groups of manifolds over non-Archimedean fields; representations and quasi-invariant measures \jour J.~Math. Sci., N.~Y. (Springer) \yr 2008 \vol 150 \issue 4 \pages 2123--2223 \endref \by Ludkovsky~S.V. \paper Stochastic processes on geometric loop groups; diffeomorphism groups of connected manifolds; associated unitary representations \jour J.~Math. Sci., N.~Y. (Springer) \yr 2007 \vol 141 \issue 3 \pages 1331--1384 \endref \by Ludkovsky~S.V. \paper Meta-centralizers of non locally compact group algebras \jour Glasgow Math.~J. \yr 2015 \vol 57 \pages 349--364 \endref \by Ludkovsky~S.V. \paper Existence of an invariant measure on a~topological quasigroup \jour Topology Appl. \yr 2020 \vol 275 %\issue 3 \finalinfo Article~107147, 11~pp. \endref \by Ludkowski~S.V. \paper Left invariant measures on locally compact nonassociative core quasigroups \jour Southeast Asian Bull. Math. \yr 2022 \vol 46 \issue 3 \pages 365--404 \endref \by Alexandroff~A.D. %\?Alexandrov~A.D. \paper Additive set-functions in abstract spaces. I--IV %\? \jour Mat. Sb. \iftex \vol 1940, 1941, 1943 \else \vol 1940 \fi %\? \yr 1940, 1941, 1943 \iftex \vol 8, 9, 13 \else \vol 8 \fi %\? \vol 8, 9, 13 \iftex \issue 2, 3, 3 \else \issue 2 \fi %\? \issue 2, 3, 3 \iftex \pages 307--348, 563--628, 169--238 \else \pages 307--348 \fi %\? \pages 307--348, 563--628, 169--238 \endref %\?307--348 %\?Additive set-functions in abstract spaces.~II, ~III // %\?Мат.~ сб. --- 1941. --- Т.~9, вып.~3. --- С.~563--628. % Additive set-functions in abstract spaces.~IV // Мат. сб. --- 1943. --- % Т.~13, вып.~2--3. --- С.~169--238. \by Christensen~J.P.R. \paper On some measures analogous to Haar measure \jour Math. Scand. \yr 1970 \vol 26 \pages 103--106 \endref \by Loomis~L.H. \paper Haar measures in uniform structures \jour Duke Math.~J. \yr 1949 \vol 16 \issue 2 \pages 193--208 \endref \by Korablin~Yu.P. \paper Equivalence of the schemes of programs based on the algebraic approach to setting the semantics of programming languages \jour Russ. Technol.~J. % Российский технол. журн. \yr 2022 \vol 10 \issue 1 \pages 18--27 \endref %Кораблин~Ю.~П. %Эквивалентность схем программ на основе %алгебраического подхода к заданию семантики языков программирования \by Markov~V.N., Mikhalev~A.V., and Nechaev~A.A. \paper Nonassociative algebraic structures in cryptography and coding \jour J.~Math. Sci., N.~Y. (Springer) \yr 2020 \vol 245 \issue 2 \pages 178--196 \endref \by Shum~K.P., Ren~X., and Wang~Y. \paper Semigroups on semilattice and the constructions of generalized cryptogroups \jour Southeast Asian Bull. Math. \yr 2014 \vol 38 \pages 719--730 \endref \by Dairbekov N.S., Penkin O.M., and Sarybekova L.O. \paper An analog of the Sobolev inequality on a~stratified set \jour St. Petersburg Math.~J. \yr 2019 %2018 \vol 30 \issue 5 \pages 869--875 %149--158 \endref %Даирбеков Н. С., Пенкин О. М., Сарыбекова Л. О. % Аналог неравенства Соболева на стратифицированном множестве \by Penkin O.M. \paper About a~geometrical approach to multistructures and some qualitative properties of solutions \inbook Partial Differential Equations on Multistructures \publ Marcel Dekker \publaddr New York \yr 2001 \pages 183--191 \finalinfo Lecture Notes Pure Appl. Math.; vol.~219 \endref \by Penkin O.M. \book Elliptic Equations on Stratified Sets \bookinfo Doct. (Phys.-Math.) Dissertation \publaddr Voronezh \publ Voronezh University \yr 2003 \lang Russian \endref % Пенкин О. М. %Эллиптические уравнения на стратифицированных множествах. \by Besedina S.V. \paper The Harnack inequality for an elliptic equation on a~stratified set \jour Comm. of Voronezh State University Phyz.-Math. Ser. %Вестн. ВГУ. Сер. физика, математика \yr 2004 \issue 1 \pages 77--81 \endref %Беседина С. В. % Неравенство Харнака для эллиптического уравнения на стратифицированном множестве \by Ore~O. \paper Contributions in the theory of groups of finite order \jour Duke Math.~J. \yr 1939 \vol 5 \issue 2 \pages 431--460 \endref \by Stonehewer S.E. \paper Permutable subgroups of infinite groups \jour Math.~Z. \yr 1972 \vol 125 \issue 1 \pages 1--16 \endref \by Ito~N. and Szep~J. \paper Uber die Quasinormalteiler von endlichen Gruppen \jour Acta Sci. Math. \yr 1962 \vol 23 \iftex \issue 1--2 \else \issue 1 \fi \pages 168--170 \endref \by Guo~W.B., Shum~K.P., and Skiba~A.N. \paper $X$-Semipermutable subgroups of finite groups \jour J.~Algebra \yr 2007 \vol 315 \issue 1 \pages 31--41 \endref \by Vasil'ev~A.F. and Tyutyanov~V.N. \paper Alternating groups with hereditarily $G$-permutable subgroup \jour Izv. F.~Skorina Gomel State University \yr 2012 \vol 5 \issue 74 \pages 148--150 \endref %Васильев~А.~Ф., Тютянов~В.~Н. %Знакопеременные группы с наследственно $G$-перестановочной подгруппой \by Tyutyanov~V.N. and Bychkov~P.V. \paper On hereditarily $G$-permutable subgroups of sporadic groups \jour Vestnik Polotsk State University \yr 2008 \vol 3 %\issue \pages 23--29 \endref %Тютянов~В.~Н., Бычков~П.~В. %О наследственно $G$-перестановочных подгруппах спорадических групп \by Ito~N. \paper On the factorizations of the linear fractional groups $LF(2, p^n)$ \jour Acta Sci. Math. \yr 1953 \vol 15 %\issue \pages 79--84 \endref \by Gorenstein~D. and Lyons~R. \paper The local structure of finite groups of characteristic~$2$ type \jour Mem. Amer. Math. Soc. \yr 1983 \vol 42 \pages 1--731 \endref %\?The local structure of finite groups of characteristic 2 type %\?1983. V.~276. \by Craven~D.A. \paper The maximal subgroups of the exceptional groups $F_4(q)$, $E_6(q)$ and $^2E_6(q)$ and related almost simple groups \jour Invent. Math. \yr 2023 %\vol 54 %\issue 4 \url https://doi.org/10.1007/s00222-023-01208-2 \endref \by Craven~D.A. \preprint On the Maximal Subgroups of $E_7(q)$ and Related Almost Simple Groups\nofrills \yr 2022 \finalinfo arXiv:2201.07081v1 \endref \by Ballantyne~J., Bates~C., Rowley~P. \paper The maximal subgroups of $E_7(2)$ \jour LMS J. Comput. Math. \yr 2015 \vol 18 \issue 1 \pages 323--371 \endref \by Liebeck~M.W. and Seitz~G.M. \paper A~survey of maximal subgroups of exceptional groups of Lie type \inbook Groups, Combinatorics and Geometry (Durham, 2001) \publaddr River Edge %, NJ \publ World Sci. \yr 2003 %\vol \pages 139--146 \endref \by Liebeck~M.W., Saxl~J., and Seitz~G.M. \paper Subgroups of maximal rank in finite exceptional groups of Lie type \jour Proc. London Math. Soc. \yr 1992 \vol 65 \issue 3 \pages 297--325 \endref \by Kurosch~A. \paper Die Untergruppen der freien Produkte von beliebigen Gruppen \jour Math. Ann. \yr 1934 \vol 109 \issue 1 \pages 647--660 \endref \by Karras~A. and Solitar~D. \paper The subgroups of a~free product of two groups with an~amalgamated subgroups \jour Trans. Amer. Math. Soc. \yr 1970 \vol 150 \issue 1 \pages 227--255 \endref \by Karras~A. and Solitar~D. \paper Subgroups of HNN groups and groups with one defining relation \jour Can. J. Math. \yr 1971 \vol 23 \issue 4 \pages 627--643 \endref \by Michaelis~W. \paper Lie coalgebras \jour Adv. Math. \yr 1980 \vol 38 \issue 1 \pages 1--54 \endref \by Anquella~J., Cortes~T., and Montaner~F. \paper Nonassociative coalgebras \jour Comm. Algebra \yr 1994 \vol 22 \issue 12 \pages 4693--4716 \endref \by Slinko~A.M. \paper Local finiteness of coalgebraic Lie coalgebras \jour Comm. Algebra \yr 1995 \vol 23 \issue 5 \pages 1165--1170 \endref \by Zhelyabin~V.N. \paper Embedding of Jordan copairs into Lie coalgebras \jour Comm. Algebra \yr 2007 \vol 35 \issue 2 \pages 561--576 \endref \by Santos Filho~G., Murakami~L., and Shestakov~I. \paper Locally finite coalgebras and the locally nilpotent radical.~I \jour Linear Algebra Appl. \yr 2021 \vol 621 %\issue 2 \pages 235--253 \endref \by Kozybaev~D., Umirbaev~U., and Zhelyabin~V. \paper Some examples of nonassociative coalgebras and supercoalgebras \jour Linear Algebra Appl. \yr 2022 \vol 643 %\issue 2 \pages 235--257 \endref \by Gelfand~I.M. and Dorfman~I.Ya. \paper Hamilton operators and associated algebraic structures \jour Funct. Anal. Appl. \yr 1979 \vol 13 %\issue 2 \pages 13--30 \endref \by Гельфанд И. М., Дорфман И. Я. \paper Гамильтоновы операторы и связанные с ними алгебраические структуры \by King~D. and McCrimmon~K. \paper The Kantor construction of Jordan superalgebras \jour Comm. Algebra \yr 1992 \vol 20 \issue 1 \pages 109--126 \endref \by McCrimmon~K. \paper Speciality and nonspeciality of two Jordan superalgebras \jour J. of Algebra \yr 1992 \vol 149 \issue 2 \pages 326--351 \endref \by Michaelis~W. \paper An example of a non-zero Lie coalgebra $M$ for which $\operatorname{Loc}(M) = 0$ \jour J.~Pure Appl. Algebra \yr 1990 \vol 68 %\issue 2 \pages 341--348 \endref \by Nichols~W.D. \paper The structure of the dual Lie coalgebra of the Witt algebra \jour J.~Pure Appl. Algebra \yr 1990 \vol 68 %\issue 2 \pages 359--364 \endref \by Nichols~W.D. \paper On Lie and associative duals \jour J.~Pure Appl. Algebra \yr 1993 \vol 87 %\issue 2 \pages 313--320 \endref \by Zhelyabin~V.N. and Kolesnikov~P.S. \paper Dual coalgebra of the differential polynomial algebra in one variable and related coalgebras \jour Sib. Electr. Math. Reports \yr 2022 \vol 19 \issue 2 \pages 792--803 \endref \by Kozybaev~D. and Umirbaev~U. \paper Identities of the left-symmetric Witt algebras \jour Int. J. Algebra Comput. \yr 2016 \vol 26 \issue 2 \pages 435--450 \endref \by Rucklidge~A.M. \paper Chaos in models of double convection \jour J.~Fluid Mechanics \yr 1992 \vol 237 \pages 209--229 \endref \by Lima~M.F.S., Llibre~J., and Valls~C. \paper Integrability of the Rucklidge system \jour Nonlinear Dynamics \yr 2014 \vol 77 \issue 4 \pages 1441--1453 \endref \by Dong~N., Jia~L., Jie~Q., and Li~H. \paper Symbolic encoding of periodic orbits and chaos in the Rucklidge system \jour Complexity \yr 2021 \finalinfo Article~4465151 \endref \by Wang~X. \paper Sil'nikov chaos and Hopf bifurcation analysis of Rucklidge system \jour Chaos Solitons Fractals \yr 2009 \vol 42 \issue 4 \pages 2208--2217 \endref \by Shimizu~T. and Morioka~N. \paper On the bifurcation of a symmetric limit cycle to an asymmetric one in a~simple model \jour Phys. Lett.~A. \yr 1980 \vol 76 \pages 201--204 \endref \by Leonov~G.A. \paper The Tricomi problem for the Shimizu--Morioka dynamical system \jour Dokl. Math. \yr 2012 \vol 86 % 447 \issue 3 \pages 850--853 % 603--606 \endref %Леонов~Г.~А. %Задача Трикоми для динамической системы Шимицу~--- Мориока \by Shilnikov~A. \paper Bifurcation and chaos in the Morioka--Shimizu system \jour Selecta Math. %\?Soviet \yr 1991 \vol 10 \issue 2 \pages 105--117 \endref \by Shilnikov~A.L. \paper On bifurcations of the Lorenz attractor in the Shimizu--Morioka model \jour Phys.~D \yr 1993 \vol 62 \iftex \issue 1--4 \else \issue 1 \fi \pages 338--346 \endref \by Goncharenko~S.V., Kaynov~M.N., Kazakov~A.O., and Turaev~D.V. \paper On methods for verification of the pseudohyperbolicity of strange attractors \jour Iz. VUZ. Applied Nonlinear Dynamics \yr 2021 \vol 29 \issue 1 \pages 160--185 \endref %Гонченко~С.~В., Кайнов~М.~Н., Казаков~А.~О., Тураев~Д.~В. %О методах проверки псевдогиперболичности странных аттракторов \by Kazakov~A. \paper On bifurcations of Lorenz attractors in the Lyubimov--Zaks model \jour Chaos \yr 2021 \vol 31 %\issue \pages Article 093118 \endref \by Yoshida~H. \paper Necessary condition for the existence of algebraic first integrals.~I: Kowalevski's exponents and~II: Condition for algebraic integrability \jour Celestial Mech. \yr 1983 \vol 31 \pages 363--399 \endref \by Demina~M.V. \paper Classifying algebraic invariants and algebraically invariant solutions \jour Chaos, Solitons and Fractals \yr 2020 \vol 140 %\issue \pages Article 110219 \endref \by Demina~M.V. \paper Meromorphic solutions of autonomous ordinary differential equations without the finiteness property \jour J. Math. Anal. Appl. \yr 2022 \vol 516 \issue 2 \pages Article 126516 \endref \by Demina~M.V. \paper The method of Puiseux series and invariant algebraic curves \jour Comm. Contemp. Math. \yr 2021 \vol 24 \issue 3 \pages Article 2150007 \endref \by Demina~M.V. \paper Invariant surfaces and Darboux integrability for non--autonomous dynamical systems in the plane \jour J.~Phys.~A: Math. Theor. \yr 2018 \vol 51 \issue 50 \pages Article 505202 \endref \by Bruno~A.D. \paper Asymptotic behaviour and expansions of solutions of an ordinary differential equation \jour Russian Math. Surveys \yr 2004 \vol 59 \issue 3 \pages 429--481 \endref \by Demina~M.V. \paper Necessary and sufficient conditions for the existence of invariant algebraic curves \jour Electron. J. Qualitative Theory of Differ. Equ. \yr 2021 \vol 48 \pages 1--22 \endref \by Demina~M.V. \paper Liouvillian integrability of the generalized Duffing oscillators \jour Anal. Math. Physics \yr 2021 \vol 11 \issue 1 \pages 1--25 \endref \by Lorenz~E.N. \paper Deterministic nonperiodic flow \jour J.~Atmospheric Sci. \yr 1963 \vol 20 \issue 2 \pages 130--141 \endref \by Huang~K., Shi~S., and Li~W. \paper Integrability analysis of the Shimizu--Morioka system \jour Comm. Nonlinear Sci. Numer. Simulation \yr 2020 \vol 84 %\issue \pages Article 105101 \endref \by Bolsinov~A.V., Matveev~V.S., and Fomenko~A.T. \paper Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry \jour Sb. Math. \yr 1998 \vol 189 \issue 10 \pages 1441--1466 %5--32 \endref %Болсинов А.~В., Матвеев ~В.~С., Фоменко ~А.~Т. %Двумерные римановы метрики с интегрируемым геодезическим потоком. Локальная и глобальная геометрия \by Kozlov~V.V. and Denisova~N.V. %Denisova~N.V. and Kozlov~V.V. \paper Symmetries and the topology of dynamical systems with two degrees of freedom \jour Sb. Math. \yr 1995 %1993 \vol 80 %184 \issue 1 %9 \pages 105--124 % 125--148 \endref %Козлов В.~В., Денисова ~Н.~В. %Симметрии и топология динамических систем с двумя степенями свободы \by Denisova~N.V. and Kozlov~V.V. \paper Polynomial integrals of geodesic flows on a two-dimensional torus \jour Russian Acad. Sci. Sb. Math. \yr 1995 %1994 \vol 83 %185 \issue 2 %12 \pages 469--481 %49--64 \endref %Денисова~Н.~В., Козлов~В.~В. %Полиномиальные интегралы геодезических потоков на двумерном торе \by Taimanov~I.A. \paper On first integrals of geodesic flows on a two-torus \jour Proc. Steklov Inst. Math. \yr 2016 \vol 295 \issue 1 \pages 225--242 %241--260 \endref %Тайманов~И.~А. %О первых интегралах геодезических потоков на двумерном торе \by Bialy M.L. and Mironov~A.E. \paper Rich quasi-linear system for integrable geodesic flows on 2-torus \jour Disc. Cont. Dyn. Syst.---Series~A \yr 2011 \vol 29 \issue 1 \pages 81--90 \endref \by Bialy M.L. and Mironov~A.E. \paper Cubic and quartic integrals for geodesic flow on 2-torus via system of hydrodynamic type \jour Nonlinearity \yr 2011 \vol 24 %\issue \pages 3541--3554 \endref \by Bialy M.L. and Mironov~A.E. \paper Integrable geodesic flows on 2-torus: Formal solutions and variational principle \jour J.~Geom. Phys. \yr 2015 \vol 87 \issue 1 \pages 39--47 \endref \by Pavlov~M.V. and Tsarev~S.P. \paper On local description of two-dimensional geodesic flows with a~polynomial first integral \jour Phys. A. Math. Theor. \yr 2016 \vol 49 \issue 17 \pages 175201 \endref \by Abdikalikova~G. and Mironov~A.E. \paper On exact solutions of a~system of quasilinear equations describing integrable geodesic flows on a~surface \jour Sib. Electr. Math. Reports \yr 2019 \vol 16 \pages 949--954 \endref %Абдикаликова Г., Миронов А.~Е. %О точных решениях системы квазилинейных уравнений, описывающей %интегрируемые геодезические потоки на поверхности \by Ferapontov E.V. \paper Integration of weakly nonlinear hydrodynamic systems in Riemann invariants \jour Phys. Lett.~A \yr 1991 \vol 158 %\issue \pages 112--118 \endref \by Tsarev~S.P. \paper The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method \jour Math. USSR-Izv. \yr 1991 %1990 \vol 37 %54 \issue 2 %5 \pages 397--419 %1048--1068 \endref %Царев~С.~П. %Геометрия гамильтоновых систем гидродинамического типа. Обобщенный метод годографа \by Rozhdestvenskii~B.L. and Sidorenko~A.D. \paper Impossibility of the ``gradient catastrophe'' for slightly non-linear systems \jour Comput. Math. Math. Phys. \yr 1967 \vol 7 \issue 5 \pages 282--287 % 1176--1179 \endref %Рождественский Б.~Л., Сидоренко ~А.~Д. %О невозможности <<градиентной катастрофы>> для слабонелинейных систем \by Pavlov~M.V. \paper Hamiltonian formalism of weakly nonlinear hydrodynamic systems \jour Theor. Math. Phys. \yr 1987 \vol 73 \issue 2 \pages 1242--1245 %316--320 \endref %Павлов М.~В. %Гамильтонов формализм слабонелинейных систем гидродинамики \by Ferapontov E.V. \paper Integration of weekly nonlinear semi-hamiltonian systems of hydrodynamic type by methods of the theory of webs \jour Sb. Math. \yr 1992 %1990 \vol 71 %181 \issue 1 %9 \pages 65--79 %1220--1235 \endref %Ферапонтов Е.В. %Интегрирование слабо нелинейных полугамильтоновых систем гидродинамического типа методами теории тканей \by Bu Q. and Buskes G. \paper Polynomials on Banach lattices and positive tensor products \jour J.~Math. Anal. Appl. \yr 2012 \vol 388 \issue 2 \pages 845--862 \endref \by Loane~J. \paper Polynomials on Riesz spaces \jour J.~Math. Anal. Appl. \yr 2010 \vol 364 \issue 1 \pages 71--78 \endref \by Boulabier K. and Buskes~G. \paper Vector lattice powers: $f$-algebras and functional calculus \jour Comm. Algebra \yr 2006 \vol 34 \issue 4 \pages 1435--1442 \endref \by Kusraeva~Z.A. \paper On extension of regular homogeneous orthogonally additive polynomials \jour Vladikavkaz. Mat. Zh. \yr 2011 \vol 13 \issue 4 \pages 28--34 \endref %Кусраева~З.~А. %Об одновременном продолжении регулярных однородных ортогонально аддитивных полиномов \by Kusraev~A.G. \preprint On a~Property of the Base of $K$-Space of Regular Operators and Some of Their Applications \lang Russian \publ Inst. Mat. (Novosibirsk) \publaddr Novosibirsk \yr 1977 \endref % Кусраев~А.~Г. % Об одном свойстве базы $K$-пространства регулярных операторов и некоторых его приложениях. \by Buskes~G. and Kusraev~A.G. \paper Representation and extension of orthoregular bilinear operators \jour Vladikavk. Math.~J. \yr 2007 \vol 9 \issue 1 \pages 16--29 \endref \by Zalduendo~I. \paper Extending polynomials on Banach spaces---A~survey \jour Rev. Uni\'on Matem\'atica Argentina \yr 2005 \vol 46 \issue 2 \pages 45--72 \endref \by Fremlin~D.H. \paper Tensor product of Archimedean vector lattices \jour Amer.~J. Math. \yr 1972 \vol 94 \pages 777--798 \endref \by Gutman~A.E., Emel'yanov~E.Yu., and Matyukhin~A.V. \paper Nonclosed Archimedean cones in locally convex spaces \jour Vladikavkaz. Mat. Zh. \yr 2015 \vol 17 \issue 3 \pages 36--43 \lang Russian % \doi 10.23671/VNC.2017.3.7262 \endref \by Гутман~А.~Е., Емельянов~Э.~Ю., Матюхин~А.~В. \paper Незамкнутые архимедовы конусы в~локально выпуклых пространствах \by Storozhuk~K.V. \paper Subtle hyperplanes \jour Sib. Elektr. Mat. Reports \yr 2018 \vol 15 \pages 1553--1555 \lang Russian % \doi 10.33048/semi.2018.15.128 \endref \by Сторожук~К.~В. \paper Тонкие гиперплоскости \by Borwein~J.M. and Lewis~A.~S. \paper Partially finite convex programming, Part I: Quasi relative interiors and duality theory \jour Math. Program. \yr 1992 \vol 57 \pages 15--48 % \doi 10.1007/BF01581072 \endref \by Anger~B. and Lembcke~J. \paper Extension of linear forms with strict domination on locally compact cones \jour Math. Scand. \yr 1980 \vol 47 \pages 251--265 % \doi 10.7146/math.scand.a-11888 \endref \by Demidenko G. \paper The Cauchy problem for pseudohyperbolic equations \jour Sel\v cuk J. Appl. Math. \yr 2001 \vol 1 \issue 1 \pages 47--62 \endref \by Galpern~S.A. \paper The Cauchy problem for general systems of linear partial differential equations \jour Uspekhi Mat. Nauk %per net \yr 1963 \vol 18 \issue 2 \pages 239--249 \endref %Гальперн~С.~А. %Задача Коши для общих систем линейных уравнений с частными производными %(автореферат докторской диссертации) \by Fedotov~I. and Volevich~L.R. \paper The Cauchy problem for hyperbolic equations not resolved with respect to the highest time derivative \jour Russian~J. Math. Phys. \yr 2006 \vol 13 \issue 3 \pages 278--292 \endref \by Demidenko~G.V. \paper The Cauchy problem for generalized S.L.~Sobolev equations \inbook Functional Analysis and Mathematical Physics \bookinfo Russian \publaddr Novosibirsk \publ Inst. Mat. \yr 1985 \pages 88--105 \endref %Демиденко~Г.~В. %Задача Коши для обобщенных уравнений С.~Л.~Соболева \by Uspenskii~S.V. \paper The representation of functions defined by a~certain class of hypoelliptic operators \jour Proc. Steklov Inst. Math. %Trudy Mat. Inst. Steklov. \yr 1972 \vol 117 \pages 343--352 %292--299 \endref %Успенский~С.~В. %О представлении функций, определяемых одним классом гипоэллиптических операторов %pr \by Dubinskii~Yu.A. \paper Nonlinear elliptic and parabolic equations \jour J.~Soviet Math. \vol 12 \issue 5 \yr 1979 \pages 475--554 \endref %Дубинский~Ю.~А. %Нелинейные эллиптические и параболические уравнения \by Dubinskii~Yu.A. \paper Quasilinear elliptic and parabolic equations of arbitrary order \jour Russian Math. Surveys \vol 23 \issue 1 \yr 1968 \pages 45--91 %45--90 \endref %Дубинский~Ю.~А. %Квазилинейные эллиптические и параболические уравнения любого порядка \by Skubachevskii~A.L. \paper The first boundary value problem for strongly elliptic differential-difference equations \jour J.~Diff. Equ. \yr 1986 \vol 63 \issue 3 \pages 332--361 \endref \by Skubachevskii~A.L. \paper Boundary-value problems for elliptic functional-differential equations and their applications \jour Russian Math. Surveys \yr 2016 \vol 71 \issue 5 \pages 801--906 %3--112 \endref \by Rossovskii~L.E. \paper Elliptic functional-differential equations with contraction and expansion of the arguments of an unknown function \jour Sovrem. Mat. Fundam. Napravl. \yr 2014 \vol 54 %\issue \pages 3--138 \endref \by Skubachevskii~A.L. \paper Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics \jour Nonlinear Anal. \yr 1998 \vol 32 \pages 261--278 \endref \by Selitskii~A.M. and Skubachevskii~A.L. \paper Second boundary-value problem for parabolic differential-difference equations \jour Russian Math. Surveys \yr 2007 \vol 62 \issue 1 \pages 191--192 % 207-208 \endref %Скубачевский~А.~Л., Селицкий~А.~М. %Вторая краевая задача для параболического дифференциально-разностного уравнения \by Muravnik~A.B. \paper Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem \jour J.~Math. Sci. \yr 2016 % 2014 \vol 216 %52 \issue 3 \pages 345--496 % 3--143 \endref %Муравник~А.~Б. %Функционально-дифференциальные параболические уравнения: интегральные %представления и качественные свойства задачи Коши \by Solonukha~O.V. \paper The first boundary value problem for quasilinear parabolic differential-difference equations \jour Lobachevskii~J. Math. \yr 2021 \vol 42 \issue 5 \pages 1067--1077 \endref \by Solonukha~O.V. \paper On the solvability of nonlinear parabolic functional-differential equations with shifts in the spatial variables \jour Math. Notes \yr 2023 \vol 113 \issue 5 \pages 708--722 %757--773 \endref %Солонуха~O.~В. %О разрешимости нелинейных параболических функционально-дифференциальных %уравнений со сдвигами по пространственным переменным \by Solonukha~O.V. \paper Existence of solutions of parabolic variational inequalities with one-sided restrictions \jour Math. Notes \yr 2005 \vol 77 \issue 3 \pages 424--439 %460--476 \endref % Солонуха~O.~В. %О существовании решений нелинейных параболических вариационных неравенств с односторонними ограничениями \by Solonukha~O.V. \paper On nonlinear nonlocal parabolic problem \jour Russian J. Math. Physics \yr 2022 \vol 29 \issue 1 \pages 121--140 \endref \by Solonukha~O.V. \paper On a class of essentially nonlinear elliptic differential-difference equations \jour Proc. Steklov Inst. Math. \yr 2013 \vol 283 \pages 226--244 %233--251 \endref % Солонуха~O.~В. %Об одном классе существенно нелинейных эллиптических дифференциально-разностных уравнений \by Solonukha~O.V. \paper On nonlinear and quasilinear elliptic functional-differential equations \jour Discrete Contin. Dyn. Syst. Ser.~S \yr 2016 \vol 9 \issue 3 \pages 847--868 \endref \by Gluck~H. \paper Almost all simply connected closed surfaces are rigid \inbook % L.C.~Glaser, T.B.~Rushing (eds.) Geometric Topology. Proceedings of the Geometric Topology Conference Held at Park City, Utah, 1974 \publaddr Berlin \publ Springer \yr 1975 \pages 225--240 \finalinfo Lect. Notes Math.; vol.~438 \endref %Почти все односвязные замкнутые поверхности неизгибаемы %Исследования по метрической теории поверхностей. %Новое в зарубежной науке \by Yau Shing-Tung \paper Problem section of the seminar in differential geometry at Tokyo \jour Semin. Diff. Geom. Ann. Math. Stud. \yr 1982 \vol 102 \pages 669--706 \endref \by Sabitov~I.Kh. \paper Local theory on bendings of surfaces \inbook Geometry III. Theory of Surfaces. Encycl. Math. Sci., \bf{48} \publaddr Berlin \publ Springer \yr 1992 %1989 \pages 179--250 %196--270 \endref % Сабитов И.~Х. %Локальная теория изгибаний поверхностей %Современные проблемы математики. Фундаментальные направления. Т.~48. Геометрия-3 \by Sabitov~I.Kh. \paper Quasiconformal mappings of a~surface generated by its isometric transformation, and bendings of the surface onto itself \jour Fundam. Prikl. Mat. \yr 1995 \vol 1 \issue 1 \pages 281--288 \endref %Сабитов И.~Х. %Квазиконформные отображения поверхности, порожденные ее изометрическими преобразованиями, и изгибания поверхности на себя \by Alexandrov~V. \paper New manifestations of the Darboux's rotation and translation fields of a~surface \jour New Zealand~J. Math. \yr 2010 \vol 40 \pages 59--65 \endref \by Efimov~N.V. \paper Qualitative problems of the theory of deformation of surfaces %(in Russian) \jour Uspekhi Mat. Nauk \yr 1948 \vol 3 \issue 2 \pages 47--157 \endref %Ефимов~Н.~В. %Качественные вопросы теории деформаций поверхностей \by Sabitov~I.Kh. \paper Two-dimensional manifolds with metrics of revolution \jour Sb. Math. \yr 2000 \vol 191 \issue 10 \pages 1507--1525 %87--104 \endref %Сабитов И.~Х. %Двумерные многообразия с метриками вращения \by Kor\'anyi~A. and Reimann~H.M. \paper Foundations for the theory of quasiconformal mappings on the Heisenberg group \jour Adv. Math. \yr 1995 \vol 111 \pages 1--87 \endref \by Chernikov~V.M. and Vodop'yanov~S.K. \paper Sobolev spaces and hypoelliptic equations.~I, II \jour Siberian Adv. Math. \yr 1996 \vol 6 \iftex \issue 3, 4 \else \issue 3 \fi \iftex \pages 27--67, 64--96 \else \pages 27--67 \fi \endref %Водопьянов С. К., Черников В. М. %Пространства Соболева и гипоэллиптические уравнения %(Перевод на англ.: Chernikov~V.M., Vodopyanov~S.K. \by Dairbekov N.S. \paper Mappings with bounded distortion of two-step Carnot groups \inbook Proceedings on Geometry and Analysis \bookinfo Russian \publ Sobolev Institute \publaddr Novosibirsk \yr 2000 \pages 122--155 \endref \by Bondarev~S.A. \paper Lebesgue points for functions from the generalized Sobolev classes $M^p_\alpha(X)$ in the critical case \jour J.~Belorussian State University. Math. Inform. %Журн. Белорус. гос. ун-та. Математика. Информатика \yr 2018 \vol 3 \pages 4--11 \endref %Бондарев~С.~А. %Точки Лебега для функций из обобщенных классов Соболева $M^p_\alpha(X)$ в критическом случае %VN лебега - Лебега %VN соболева - Соболева \by Vodopyanov~S.K. \book Function-Theoretic Approach to Some Problems of the Theory of Space Quasiconformal Mappings \bookinfo Extended Abstract of Cand. Sci. (Phys.--Math.) Dissertation \publ Sobolev Institute of Mathematics \publaddr Novosibirsk \yr 1975 \lang Russian \endref \by Ball~J.M. \paper Convexity conditions and existence theorems in nonlinear elasticity \jour Arch. Ration. Mech. Anal. \yr 1977 \vol 63 \pages 337--403 \endref \by Molchanova~A. and Vodop'yanov~S. \paper Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity \jour Calc. Var. %Calculus of Variations and PDE \yr 2020 \vol 59 \issue 1 \finalinfo Article no.~17 \endref \by Stothers~W.W. \paper Polynomial identities and hauptmoduln \jour Quart. J. Math. Oxford \yr 1981 \vol 32 \issue 3 \pages 349--370 \endref \by Makar-Limanov~L.G. \paper On the hypersurface $x+x^2 y+z^2 +t^3=0$ in ${\Bbb K}^4$ or a ${\Bbb K}^3$-like threefold which is not ${\Bbb K}^3$ \jour Israel J. Math. \yr 1996 \vol 96 \pages 419--429 \endref \by Finston~D. and Maubach~S. \paper The automorphism group of certain factorial threefolds and a~cancellation problem \jour Isr.~J. Math. \yr 2008 \vol 163 \pages 369--381 \endref \by Chitayat~M. and Daigle~D. \paper On the rigidity of certain Pham--Brieskorn rings \jour J.~Algebra \yr 2020 \vol 550 \pages 290--308 \endref \by Crachiola~A.J. and Maubach~S. \paper Rigid rings and Makar-Limanov techniques \jour Comm. Algebra \yr 2013 \vol 41 \issue 11 \pages 4248--4266 \endref \by Finston~D. and Maubach~S. \paper Constructing (almost) rigid rings and a UFD having infinitely generated Derksen and Makar-Limanov invariants \jour Canad. Math. Bull. \yr 2010 \vol 53 \issue 1 \pages 77--86 \endref \by Arzhantsev~I.V. \paper Polynomial curves on trinomial hypersurfaces \jour Acta Arith. \yr 2018 \vol 186 \issue 1 \pages 87--99 \endref \by Gundersen~G.G. and Hayman~W.K. \paper The strength of Cartan's version of Nevanlinna theory \jour Bull. Lond. Math. Soc. \yr 2004 \vol 36 \pages 433--454 \endref \by Lang~S. \paper Old and new conjectured Diophantine inequalities \jour Bull. Amer. Math. Soc. \yr 1990 \vol 23 \pages 37--75 \endref \by Hausen~J. and Herppich~E. \paper Factorially graded rings of complexity one \inbook Torsors, \'Etale Homotopy and Applications to Rational Points \publaddr Cambridge \publ Cambridge University \yr 2013 \vol 405 \pages 414--428 \endref \by Arzhantsev~I.V. \paper On rigidity of factorial trinomial hypersurfaces \jour Int. J. Algebra Comput. \yr 2016 \vol 26 \issue 5 \pages 1061--1070 \endref \by Gaifullin~S.A. \preprint On Rigidity of Trinomial Hypersurfaces and Factorial Trinomial Varieties \yr 2019 \bookinfo arXiv:1902.06136 %20~p. \endref \by Dubouloz~A. \paper Rigid affine surfaces with isomorphic ${\Bbb A}^2$-cylinders \jour Kyoto J. Math. \yr 2019 \vol 59 \issue 1 \pages 182--193 \endref \by Abramovich~Yu.A. and Wickstead~A.W. \paper The regularity of order bounded operators into $C(K)$.~II \jour Quart. J. Math. Oxford Ser.~2 \yr 1993 \vol 44 \issue 3 \pages 257--270 \endref \by Fremlin D.H. \paper Tensor products of Banach lattices \jour Math. Ann. \yr 1974 \vol 211 %\issue 2 \pages 87--106 \endref \by Schep~A. \paper Factorization of positive multilinear maps \jour Illinois~J. of Math. \yr 1984 \vol 28 \issue 4 \pages 579--591 \endref \by Koolen~J.H. and Park~J. \paper Shilla distance-regular graphs \jour European J. Combinatorics \yr 2010 \vol 31 \issue 8 \pages 5--77 \endref 2064--2073 \by Belousov~I.N. and Makhnev~A.A. \paper Shilla graphs with $b = 5$ and $b = 6$ \jour Ural Math.~J. \yr 2021 \vol 7 \issue 2 \pages 51--58 \endref \by Coolsaet~K. and Jurishich~A. \paper Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs \jour J.~Combinatorial Theory, Series~A \yr 2008 \vol 115 \issue 6 \pages 1086--1095 \endref \by Gavrilyuk~A.L. and Koolen~J.H. \paper A characterization of the graphs of bilinear $(d\times d)$-forms over ${\Bbb F}_2$ \jour Combinatorica \yr 2010 \vol 39 \issue 2 \pages 289--321 \endref \by Lyakhov~L.N. and Polovinkina~M.V. \paper The space of weighted Bessel potentials \jour Proc. Steklov Inst. Math. \yr 2005 \vol 250 %\issue \pages 178--182 \endref \by Lyakhov~L.N. \paper Inversion of Riesz $B$-potentials \jour Soviet Math. Dokl. % Dokl. Akad. Nauk SSSR \yr 1992 %1991 \vol 44 % 321 \issue 3 %3 \pages 717--720 % 466--469 \endref \by Lyakhov~L.N. \paper On a class of hypersingular integrals \jour Soviet Math. Dokl. %Doklady Mathematics \yr 1991 \vol 42 \issue 3 \pages 765--769 \endref \by Aronszajn~N. and Smith~K.T. \paper Functional spaces and functional completion \jour Ann. Inst. Fourier (Grenoble) \yr 1956 \vol 6 %\issue \pages 125--185 \endref \by Aronszajn~N. and Smith~K.T. \paper Characterization of positive reproducing kernels. Applications to Green's functions \jour Amer.~J. Math. \yr 1957 \vol 79 \issue 3 \pages 611--622 \endref \by Aronszajn~N. and Smith~K.T. \paper Theory of Bessel potentials \jour Ann. Inst. Fourier (Grenoble) \yr 1961 \vol 11 %\issue \pages 385--475 \endref \by Banach~S. and Saks~S. \paper Sur la Convergence Forte dans les Champs~$L^p$ \jour Studia Math. \yr 1930 \vol 2 %\issue \pages 51--57 \endref \by Goldman~M.L. \paper The cone of rearrangements for generalized Bessel potentials \jour Proc. Steklov Inst. Math. \yr 2008 \vol 260 %\issue \pages 144--156 \endref Гольдман~М.~Л. Конус перестановок для обобщенных бесселевых потенциалов \by Goldman~M.L. \paper Rearrangement invariant envelopes of generalized Bessel and Riesz potentials \jour Dokl. Math. \yr 2008 \vol 78 \issue 3 \pages 814--818 \endref Гольдман~М.~Л. Перестановочно-инвариантные оболочки обобщенных потенциалов Бесселя и Рисса \by Ekincioglu~I., Shishkina~E.L., and Keskin~C. \paper Generalized Bessel potential and its application to non-homogeneous singular screened Poisson equation \jour Integral Transforms Spec. Funct. \yr 2021 \vol 32 \issue 12 \pages 932--947 \endref %DOI: 10.1080/10652469.2020.1867983. \by Dzhabrailov~A., Luchko~Y., and Shishkina~E. \paper Two forms of an inverse operator to the generalized Bessel potential \jour Axioms \yr 2021 \vol 10 \issue 3 \pages 1--20 \endref \by Avsyankin~O.G. \paper On the $C^*$-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative translations \jour Dokl. Math. %Dokl. RAN \yr 2008 \vol 77 %419 \issue 2 %6 \pages 298--299 % 727--728 \endref %Авсянкин~О.~Г. %О $C^*$-алгебре, порожденной многомерными интегральными %операторами с однородными ядрами и операторами мультипликативного сдвига \by Avsyankin~O.G. \paper Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces \jour Russian Math. \yr 2017 \vol 61 \issue 11 \pages 1--9 %3--12 \endref %Авсянкин О.~Г. %Об интегральных операторах типа Вольтерра с однородными ядрами в весовых $L_p$--пространствах \by Avsyankin~O.G. \paper Invertibility of multidimensional integral operators with bihomogeneous kernels \jour Math. Notes \yr 2020 \vol 108 \issue 2 \pages 277--281 %291--295 \endref %Авсянкин О.~Г. % Об обратимости многомерных интегральных операторов с~биоднородными ядрами \by Avsyankin~O.G. \paper On integral operators with homogeneous kernels and trigonometric coefficients \jour Russian Math. \yr 2021 \vol 65 \issue 4 \pages 1--7 %3--10 \endref %Авсянкин~О.~Г. %Об интегральных операторах с~однородными ядрами и~тригонометрическими коэффициентами \by Umarkhadzhiev~S.M. \paper One-sided integral operators with homogeneous kernels in grand Lebesgue spaces \jour Vladikavkaz. Mat. Zh. \yr 2017 \vol 19 \issue 3 \pages 70--82 \endref %Умархаджиев~С.~М. %Односторонние интегральные операторы с однородными ядрами в гранд-пространствах Лебега \by Avsyankin~O.G. \book Development of the Theory of Multidimensional Integral Operators with Homogeneous and Bihomogeneous Kernels \bookinfo Dr. Science Thesis \publ South Federal University \publaddr Rostov-on-Don \yr 2009 \lang Russian \endref %Авсянкин~О.~Г. %Развитие теории многомерных интегральных операторов с однородными и биоднородными ядрами \by Chazy Z. \paper Sur l'allure finale du mouvement dans le probl\'eme des trois corps quand le temps cr\^oit ind\'efiniment \jour Annales de l'Ecole Norm. Sup. \yr 1922 \vol 39 %\issue \pages 29--130 \endref \by Sitnikov~K.A. \paper The existence of oscillatory motions in the three-body problems \jour Soviet Physics Dokl. \yr 1960 \vol 5 %\issue \pages 647--650 \endref %Ситников К.~А. %Существование осциллирующих движений в задаче трех тел~/\!/ %Докл. АН СССР.---1960.---Т.~133, \No~2.---С.~303--306 \by Leontovich~M.A. \paper On the existence of unbounded oscillating trajectories in a~billiard problem \jour Dokl. Akad. Nauk SSSR \yr 1962 \vol 145 \issue 3 \pages 523--526 \endref %Леонтович А.~М. %О существовании осциллирующих траекторий в одной биллиардной задаче \by Alekseev~V.M. \paper Quasirandom dynamical systems. II. One-dimensional nonlinear vibrations in a periodically perturbed field \jour Math. USSR-Sb. \yr 1968 \vol 6 \issue 4 \pages 505--560 \endref %Алексеев В.~М. Квазислучайные динамические системы. II \by Pustyl'nikov~L.D. \paper The existence of a set of positive measure of oscillating motions in a certain problem of dynamics \jour Dokl. Akad. Nauk SSSR \yr 1972 \vol 2 %\issue \pages 287--289 \endref %Пустыльников Л.~Д. %Существование множества положительной меры осциллирующих движений в одной задаче динамики \by Pustyl'nikov~L.D. \paper Strict justification of the possibility of unbounded increase in particle energy in a~problem of nuclear physics \jour 1985 \yr Dokl. Akad. Nauk SSSR \vol 283 \issue 3 \pages 550--553 \endref %Пустыльников Л.~Д. %О строгом обосновании возможности неограниченного роста %энергии частиц в одной задаче ядерной физики \by Pustyl'nikov~L.D. \paper A new mechanism for particle acceleration and a~relativistic analogue of the Fermi--Ulam model \jour Theor. Math. Phys. \yr 1988 \vol 77 \issue 1 \pages 1110--1115 \endref %Пустыльников Л.~Д. %Новый механизм ускорения частиц и релятивистский аналог модели Ферми~--- Улама \by Pustyl'nikov~L.D. \paper Poincar\'{e} models, rigorous justification of the second element of thermodynamics on the basis of mechanics, and the Fermi acceleration mechanism \jour Russian Math. Surveys \yr 1995 \vol 50 \issue 1 \pages 145--149 \endref %Пустыльников Л.~Д. %Модели Пуанкаре, строгое обоснование второго начала %термодинамики из механики и механизм ускорения Ферми \by Lapin~K.S. \paper Uniform boundedness in the sense of Poisson of solutions of systems of differential equations and Lyapunov vector functions \jour Differ. Equ. \yr 2018 \vol 54 \issue 1 \pages 38--48 \endref %Лапин К.~С. %Равномерная ограниченность по Пуассону решений систем дифференциальных %уравнений и вектор-функции Ляпунова \by Yoshizawa~T. \paper Liapunov's function and boundedness of solutions \jour Func. Ekv. %\?Funcialaj Ekvacioj \yr 1959 \vol 5 %\issue \pages 95--142 \endref %Йосидзава T. %Функция Ляпунова и ограниченность решений %\?Математика.---1965.---\No~5.---С.~95--127.} \by Lapin~K.S. \paper Lyapunov vector functions, Krasnosel'skii canonical domains, and existence of Poisson bounded solutions \jour Differ. Equ. \yr 2020 \vol 56 \issue 10 \pages 1270--1275 \endref %Лапин К.~С. %Вектор-функции Ляпунова, канонические области Красносельского и существование %ограниченных по Пуассону решений \by Lapin~K.S. \paper Lyapunov vector functions, rotation of vector fields, guiding functions, and the existence of Poisson bounded solutions \jour Differ. Equ. \yr 2021 \vol 57 \issue 3 \pages 284--290 \endref %Лапин К.~С. %Вектор-функции Ляпунова, вращения векторных полей, направляющие функции и существование %ограниченных по Пуассону решений \by Lapin~K.S. \paper Partial total boundedness of solutions to systems of differential equations with partly controlled initial conditions \jour Math. Notes \yr 2016 \vol 99 \issue 2 \pages 253--260 \endref %Лапин К.~С. %Частичная тотальная ограниченность решений систем %дифференциальных уравнений с частично контролируемыми начальными условиями \by Miki K., Masamichi A., and Shoichi S. \paper On the partial total stability and partially total boundedness of a system of ordinary differential equations \jour Res. Rept. Akita Tech. Coll. \yr 1985 \vol 20 %\issue \pages 105--109 \endref \by Lapin~K.S. \paper Poisson total boundedness of solutions of systems of differential equations and Lyapunov vector functions \jour Math. Notes \yr 2018 \vol 104 \issue 2 \pages 253--262 \endref %Лапин К.~С. %Тотальная ограниченность по Пуассону решений систем дифференциальных уравнений %и вектор-функции Ляпунова \by Ballester-Bolinches A. and Pedraza-Aguilera M.C. \paper Sufficient conditions for supersolubility of finite groups \jour J.~Pure Appl. Algebra \yr 1998 \vol 127 \issue 2 \pages 113--118 \endref \by Guo Y. and Isaacs~I.M. \paper Conditions on $p$-subgroups implying $p$-nilpotence or $p$-supersolvability \jour Arch. Math. (Basel) \yr 2015 \vol 105 \issue 3 \pages 215--222 \endref \by Huang Y., Li Y., and Qiao S. \paper On weakly $s$-permutably embedded subgroups of finite groups.~II \jour Front. Math. China \yr 2013 \vol 8 \issue 4 \pages 855--867 \endref \by Li Y., Qiao S., and Wang Y. \paper On weakly {$s$}-permutably embedded subgroups of finite groups \jour Comm. Algebra \yr 2009 \vol 37 \issue 3 \pages 1086--1097 \endref \by Qiao S. and Wang Y. \paper On weakly {$s$}-permutably embedded subgroups of finite groups.~II \jour Bull. Aust. Math. Soc. \yr 2012 \vol 86 \issue 1 \pages 41--49 \endref \by Yu~H. \paper On weakly $S$-permutably embedded subgroups of finite groups \jour Bull. Aust. Math. Soc. \yr 2016 \vol 94 \issue 3 \pages 437--448 \endref \by Zhang X., Li X., and Miao~L. \paper Sylow normalizers and $p$-nilpotence of finite groups \jour Comm. Algebra \yr 2015 \vol 43 \issue 3 \pages 1354--1363 \endref \by Li Y., Qiao S., Su N., and Wang Y. \paper On weakly $s$-semipermutable subgroups of finite groups \jour J.~Algebra \yr 2012 \vol 371 \pages 250--261 \endref \by Li Y., Wang Y., and Wei H. \paper On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded \jour Acta Math. Hungar. \yr 2005 \vol 108 \issue 4 \pages 283--298 \endref \by Yu~H. \paper Some sufficient and necessary conditions for $p$-supersolvablity and $p$-nilpotence of a finite group \jour J.~Algebra Appl. \yr 2017 \vol 16 \issue 3 \pages Article no.~ 1750052. 9~pp. \endref \by Skiba~A.N. \paper A~characterization of the hypercyclically embedded subgroups of finite groups \jour J.~Pure Appl. Algebra \yr 2011 \vol 215 \issue 3 \pages 257--261 \endref \by Skiba~A.N. \paper On weakly $s$-permutable subgroups of finite groups \jour J.~Algebra \yr 2007 \vol 315 \issue 1 \pages 192--209 \endref \by Berkovich Y. and Isaacs I.M. \paper $p$-Supersolvability and actions on $p$-groups stabilizing certain subgroups \jour J.~Algebra \yr 2014 \vol 414 %\issue 1 \pages 82--94 \endref \by Medvedev~T., Nozdrinova~E., and Pochinka~O. \paper On periodic data of diffeomorphisms with one saddle orbit \jour Topology Proc. \yr 2019 \vol 54 \pages 49--68 \endref \by Nielsen J. \paper Die Struktur periodischer Transformationen von Fl{\"a}chen \jour Levin \& Munksgaard \yr 1937 \vol 15 \pages ??? \endref % Mat.-Fys. Medd. Danske Vid. Selsk. 1937. Bd~15. %English translation: %\finalinfo Collected Papers~2, Birkh\"auser, 1986 %\? \by Baranov~D.A. and Pochinka~O.V. \paper Classification of periodic transformations of an orientable surface of genus two \jour Zhurnal SVMO %Журн. Средневолжского мат. о-ва \yr 2021 \vol 23 \issue 2 \pages 147--158 \endref %VN \issue 2 %Баранов~Д.~А,, Починка~О.~В. %Классификация периодических преобразований ориентируемой поверхности рода два \by Wang~Sh. \paper Maximum orders of periodic maps on closed surfaces \jour Topology Appl. \yr 1991 \vol 41 \pages 255--262 \endref \by Pochinka~O.V., Grines~V.Z., and Kapkaeva~S.H. \paper A~three-colour graph as a~complete topological invariant for gradient-like diffeomorphisms of surfaces \jour Sb. Math. \yr 2014 \vol 205 \issue 10 \pages 1387--1412 %19--46 \endref %Починка~О.~В., Гринес~В., Капкаева~С. %Трехцветный граф как полный топологический инвариант для % градиентно-подобных диффеоморфизмов поверхностей \by Smale~S. \paper Differentiable dynamical systems \jour Bull. Amer. Math. Soc. \yr 1967 \vol 73 \issue 6 \pages 747--817 \endref \by Burde D. \paper Left-symmetric algebras, or pre-Lie algebras in geometry and physics \jour Cent. Eur.~J. Math. \yr 2006 \vol 4 \issue 3 \pages 323--357 \endref \by Umirbaev~U.U. \paper Associative, Lie, and left-symmetric algebras of derivations \jour Transform. Groups \yr 2016 \vol 201 \pages 851--869 \endref \by Albert~A.A. \paper Almost alternative algebras \jour Port. Math. %раньше так назывался, сейчас Port. Math.~J. \yr 1949 \vol 8 \issue 1 \pages 23--36 \endref \by Kleinfeld E., Kosier~F., Osborn J.M., and Rodabaugh~D. \paper The structure of associator dependent rings \jour Trans. Amer. Math. Soc. \yr 1964 \vol 110 \issue 3 \pages 473--483 \endref \by Kokoris~L.~A. \paper On rings of $(\gamma,\delta)$-type \jour Proc. Amer. Math. Soc. \yr 1958 \vol 9 \issue 6 \pages 897--904 \endref \by Shestakov~I.P. \paper General superalgebras of vector type and $(\gamma,\delta)$-superalgebras \jour Resenhas IME-USP \yr 1999 \vol 4 \issue 2 \pages 223--228 \endref %\jour Resenhas do Instituto de Matematica e Estatistica da Universidade de S\~{a}o Paulo \by Zel'manov~E.I. \paper A class of local translation-invariant Lie algebras \jour Dokl. Akad. Nauk SSSR \yr 1987 \vol 292 \issue 6 \pages 1294--1297 \endref %Зельманов~Е.~И. %Об одном классе локально трансляционно инвариантных алгебр Ли \by Kleinfeld~E. \paper Simple algebras of type (1,1) are associative \jour Canad.~J. Math. \yr 1961 \vol 13 \issue 1 \pages 129--148 \endref \by Pozhidaev~A., Umirbaev~U., and Zhelyabin~V. \paper On simple left-symmetric algebras \jour J.~Algebra \yr 2023 \vol 621 \pages 58--86 \endref \by Burde~D. \paper Simple left-symmetric algebras with solvable Lie algebra \jour Manuscr. Math. \yr 1998 \vol 95 \pages 397--411 \endref \by Mizuhara~A. \paper On simple left symmetric algebras over a solvable Lie algebra \jour Sci. Math. Jpn. \yr 2003 \vol 57 \issue 2 \pages 325--337 \endref \by Merikoski~J.K. \paper On $I_{p_1,p_2}$ antinorms of nonnegative matrices \jour Linear Algebra Appl. \yr 1990 \vol 140 %\issue \pages 31--44 \endref \by Bourin~J.-C. and Hiai~F. \paper Anti-norms on finite von Neumann algebras \jour Publ. Res. Inst. Math. Sci. \yr 2015 \vol 51 \issue 2 \pages 207--235 \endref \by Guglielmi~N. and Zennaro~M. \paper Canonical construction of polytope Barabanov norms and antinorms for sets of matrices \jour SIAM J. Matrix Anal. Appl. \yr 2015 \vol 36 \issue 2 \pages 634--655 \endref \by Guglielmi~N. and Zennaro~M. \paper An antinorm theory for sets of matrices: Bounds and approximations to the lower spectral radius \jour Linear Algebra Appl. \yr 2020 \vol 607 %\issue \pages 89--117 \endref \mref{\bf 5.} {\sl Protasov~V.~Yu.} Antinorms on cones: duality and applications~// Linear Multilinear Algebra. 2021. DOI: 10.1080/03081087.2021.1988885. \endmref \by Moszy\'nska~M. and Richter~W.-D. \paper Reverse triangle inequality, antinorms and semi-antinorms \jour Studia Sci. Math. Hung. \yr 2012 \vol 49 \issue 1 \pages 120--138 \endref \by Guglielmi~N. and Protasov~V.Yu. \paper Exact computation of joint spectral characteristics of linear operators \jour Found. Comput. Math. \yr 2013 \vol 13 \issue 1 \pages 37--97 \endref \by Guglielmi~N., Laglia~L., and Protasov~V.Yu. \paper Polytope Lyapunov functions for stable and for stabilizable LSS \jour Found. Comput. Math. \yr 2017 \vol 17 %\issue \pages 567--623 \endref \by Fornasini~E. and Valcher~M.E. \paper Stability and stabilizability criteria for discrete-time positive switched systems \jour IEEE Trans. Automat. Control \yr 2012 \vol 57 \issue 5 \pages 1208--1221 \endref \by Fornasini~E. and Valcher~M.E. \paper Asymptotic stability and stabilizability of special classes of discrete-time positive switched systems \jour Linear Alg. Appl. \yr 2013 \vol 438 \issue 4 \pages 1814--1831 \endref \by Blanchini~F. and Savorgnanb~C. \paper Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions \jour Automatica \yr 2008 \vol 44 \issue 4 \pages 1166--1170 \endref \by Blondel~V.D. and Tsitsiklis~J.N. \paper The Lyapunov exponent and joint spectral radius of pairs of matrices are hard---when not impossible---to compute and to approximate \jour Math. Control, Signals, Systems \yr 1997 \vol 10 %\issue \pages 31--40 \endref \by Bochi~J. and Morris~I.D. \paper Continuity properties of the lower spectral radius \jour Proc. London Math. Soc. \yr 2014 \vol 110 \issue 2 \pages 477--509 \endref \by Furstenberg~H. and Kesten~H. \paper Products of random matrices \jour Ann. Math. Statist. \yr 1960 \vol 31 %\issue \pages 457--469 \endref \by Hennion~H. \paper Limit theorems for products of positive random matrices \jour Ann. Prob. \yr 1997 \vol 25 \issue 4 \pages 1545--1587 \endref \by Jungers~R.M. and Protasov~V.Yu. \paper Lower and upper bounds for the largest Lyapunov exponent of matrices \jour Linear Algebra Appl. \yr 2013 \vol 438 % \issue \pages 4448--4468 \endref \by Protasov~V.Yu. \paper Invariant functionals of random matrices \jour Funct. Anal. Appl. \yr 2010 \vol 44 % \issue \pages 230--233 \endref \by Protasov~V.Yu. \paper Invariant functionals for the Lyapunov exponents of random matrices \jour Sb. Math. \yr 2011 \vol 202 \issue 1 \pages 101--126 \endref \by Protasov~V.Yu. \paper Asymptotics of products of nonnegative random matrices \jour Funct. Anal. Appl. \yr 2013 \vol 47 \issue 2 \pages 138--147 \endref \by Oseledets~V.I. \paper A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems \jour Trans. Mosc. Math. Soc. \yr 1968 \vol 19 % \issue \pages 197--231 \endref \by Pollicott~M. \paper Maximal Lyapunov exponent for random matrix products \jour Invent. Math. \yr 2010 \vol 181 % \issue \pages 209--226 \endref \by Bourin~J.-C. and Hiai~F. \paper Norm and anti-norm inequalities for positive semi-definite matrices \jour Internat. J. Math. \yr 2011 \vol 22 \issue 8 \pages 1121--1138 \endref \by Bourin~J.-C. and Hiai~F. \paper Jensen and Minkowski inequalities for operator means and anti-norms \jour Linear Algebra Appl. \yr 2014 \vol 456 % \issue \pages 22--53 \endref Podzorov~S.Yu. \paper Dual covers of the greatest element of the Rogers semilattice \jour Siberian Adv. Math. %Mat. Tr. \yr 2004 \vol 15 %7 \issue 2 %2 \pages 104--114 %98--108 \endref %Подзоров~С.~Ю. %О предельности наибольшего элемента полурешетки Роджерса \by Jockusch~C.J. \paper Degrees in which the recursive sets are uniformly recursive \jour Canad.~J. Math. \yr 1972 \vol 24 \issue 6 \pages 1092--1099 \endref \by Chen Y. \paper Positivity of principal matrix coefficients of principal series representations of $\operatorname{GL}_n(\Bbb{R})$ \jour J.~Lie Theory \yr 2019 \vol 29 \issue 3 \pages 601--610 \endref \by Chen Y. and Sun B. \paper Schwartz homologies of representations of almost linear Nash groups \jour J.~Funct. Anal. \yr 2021 \vol 280 \issue 7 \pages Article 108817 \endref \by Sun B. \paper Almost linear Nash groups \jour Chin. Ann. Math. Ser.~B \yr 2015 \vol 36 %\issue - \pages 355--400 \endref \by Du Cloux F. \paper Sur les repr\'{e}sentations diff\'{e}rentiables des groupes de Lie alg\'{e}briques \jour Ann. Sci. Ecole Norm. Sup. \yr 1991 \vol 24 \issue 3 \pages 257--318 \endref \by Aizenbud A. and Gourevitch D. \paper Schwartz functions on Nash manifolds \jour Int. Math. Res. Not. \yr 2008 \vol 2008 \issue 5 \pages Article ID rnm155 %\? \endref \by Liu Y. and Sun B. \paper Uniqueness of Fourier--Jacobi models: The Archimedean case \jour J.~Funct. Anal. \yr 2013 \vol 265 \issue 12 %\? \pages 3325--3344 \endref \by Aizenbud A. and Gourevitch D. \paper Smooth transfer of Kloostermann integrals (the Archimedean case) \jour Amer. J. Math. \yr 2013 \vol 135 %\issue \pages 143--182 \endref \by Bidkham~M. and Dewan~K.K. \paper Inequalities for a~polynomial and its derivative \jour J.~Math. Anal. Appl. \yr 1992 \vol 166 \issue 2 \pages 319--324 \endref \by Chanam~B. and Dewan K.K. \paper Inequalities for a~polynomial and its derivative \jour J.~Math. Anal. Appl. \yr 2007 \vol 336 \issue 1 \pages 171--179 \endref \by Dubinin V.N. \paper Applications of the Schwarz lemma to inequalities for entire functions with constraints on zeros \jour J.~Math. Sci. \yr 2007 \vol 143 \issue 3 \pages 3069--3076 \endref \by Mir~A. and Dar~B. \paper Inequalities concerning the rate of growth of polynomials \jour Afr. Mat. \yr 2016 \vol 27 \iftex \issue 1--2 \else \issue 1 \fi \pages 279--290 \endref \by Varga R.S. \paper A~comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials \jour J.~Soc. Indust. Appl. Math. \yr 1957 \vol 5 %\issue \pages 39--46 \endref \by Ankeny N.C. and Rivlin T.J. \paper On a~theorem of S.~Bernstein \jour Pacific~J. Math. \yr 1955 \vol 5 %\issue \pages 849--852 \endref \by Rivlin T.J. \paper On the maximum modulus of polynomials \jour Amer. Math. Monthly \yr 1960 \vol 67 %\issue \pages 251--253 \endref \by Kumar P. \paper A~remark on a~theorem of Rivlin \jour C.~R. Acad. Bulgare Sci. \yr 2021 \vol 74 \issue 12 \pages 1723--1728 \endref \by Kumar P. and Milovanovi\'{c} G.V. \paper On sharpening and generalization of Rivlin's inequality \jour Turk.~J. Math. \yr 2022 \vol 46 \issue 4 \pages 1436--1445 \endref \by Aziz~A. and Dawood~Q.M. \paper Inequalities for a~polynomial and its derivative \jour J.~Approx. Theory \yr 1988 \vol 54 \issue 3 \pages 306--313 \endref \by Osserman R. \paper A sharp Schwarz inequality on the boundary \jour Proc. Amer. Math. Soc. \yr 2000 \vol 128 \issue 12 \pages 3513--3517 \endref \by Gardner~R.B., Govil~N.K., and Musukula S.R. \paper Rate of growth of polynomials not vanishing inside a circle \jour J.~Ineq. Pure Appl. Math. \yr 2022 \vol 6 %\issue 3 \pages Article 53, 9~pp. %1--9 \endref \by Aziz A. and Rather N.A. \paper New $L^ {q}$ inequalities for polynomials \jour Math. Inequal. Appl. \yr 1998 \vol 1 \issue 2 \pages 177--191 \endref \by Rahman Q.I. and Schmeisser G. \paper $L^ {p}$ inequalities for polynomials \jour J.~Approx. Theory \yr 1988 \vol 53 \issue 1 \pages 26--32 \endref \by Ovsyannikov~L.V. \paper The 'podmodeli' program. Gas dynamics %\?PODMODELI \jour J.~Appl. Math. Mech. \yr 1994 \vol 58 \issue 4 \pages 601--627 %30--55 \endref %Овсянников~Л.~В. % Программа <<Подмодели>>. Газовая динамика \by Golovin~S.V. \book The Optimal System of Subalgebras for a~Lie Algebra of Operators Admitted by the Gas Dynamics Equations in the Case of a Polytropic Gas \lang Russian \publ Lavrentev Inst. of Hydrodynamics (Novosibirsk) \publaddr Novosibirsk \yr 1996 \finalinfo Preprint 5--96, 31~pp. \endref %Головин С.~В. %Оптимальная система подалгебр для алгебры Ли операторов, %допускаемых уравнениями газовой динамики в случае политропного газа. \by Cherevko~A.A. \book The Optimal System of Subalgebras for an~Operator Algebra Admitted by the Gas Dynamics Equations in the Case of the State Equation $p=f(S)\rho^{5/3}$ \lang Russian \publ Lavrentev Inst. of Hydrodynamics (Novosibirsk) \publaddr Novosibirsk \yr 1996 \finalinfo Preprint 4--96, 39~pp. \endref % Черевко А.~А. % Оптимальная система подалгебр для алгебры операторов, %допускаемых уравнениями газовой динамики в случае уравнения состояния $p=f(S)\rho^{5/3}$ \by Khabirov~S.V. \preprint Optimal Systems of Subalgebras Admitted by the Gas Dynamics Equations \lang Russian \publ Inst. Mekh. UNTs RAN %Ин-т механики УНЦ РАН \publaddr Ufa \yr 1998 %\pages 33~pp. \endref % Хабиров~С.~В. % Оптимальные системы подалгебр, допускаемых уравнениями газовой динамики \by Makarevich E.V. \paper An optimal system of subalgebras admitted by the gas dynamics equations in case of the state equation with separated density \jour Sib. Electr. Math. Reports \yr 2011 \vol 8 \pages 19--38 \endref %Макаревич Е.~В. %Оптимальная система подалгебр, допускаемых уравнениями газовой динамики в случае уравнения состояния с разделенной плотностью \by Khabirov~S.V. \paper Nonisomorphic Lie algebras admitted by gas dynamic models \jour Ufa Math.~J. \yr 2011 \vol 3 \issue 2 \pages 85--88 % 87--90 \endref %Хабиров С.~В. %Неизоморфные алгебры Ли, допускаемые моделями газодинамического типа \by Khabirov~S.V. \paper Optimal system for the sum of two ideals admitted by the hydrodynamic type equations \jour Ufa Math.~J. \yr 2014 \vol 6 \issue 2 \pages 97--101 % 99--103 \endref % Хабиров С.~В. %Оптимальные системы суммы двух идеалов, допускаемых уравнениями гидродинамического типа \by Mukminov~T.F. and Khabirov~S.V. \paper The graph of embedded subalgebras of the 11-dimensional symmetry algebra for a~continuous medium \jour Sib. Electr. Math. Reports \yr 2019 \vol 16 \pages 121--143 \endref %Мукминов~Т.~Ф., Хабиров~С.~В. %Граф вложенных подалгебр 11-мерной алгебры симметрий сплошной среды \by Golovin~S.V. \paper An invariant solution of gas dynamics equations \jour J.~Appl. Mech. Techn. Phys. %Prikl. Mekh. Tekh. Fiz. \yr 1997 \vol 38 \issue 1 \pages 1--7 %3--10 \endref %Головин С.~В. %Об одном инвариантном решении уравнений газовой динамики \by Khabirov~S.V. \paper Plane steady vortex submodel of ideal gas \jour J.~Appl. Mech. Techn. Phys. \yr 2021 \vol 62 \issue 4 \pages 600--615 %88--104 \endref %Хабиров С.~В. % Стационарная плоская вихревая подмодель идеального газа \by Ovsyannikov~L.V. \paper Regular and irregular partially invariant solutions \jour Dokl. Math. %Dokl. Akad. Nauk \yr 1995 \vol 52 %343 \issue 1 %2 \pages 23--26 %156--159 \endref % Регулярные и нерегулярные частично инвариантные решения %Овсянников~Л.~В. \by Ovsyannikov~L.V. and Chupakhin~A.P. \paper Regular partially invariant submodels of the equations of gas dynamics \jour J.~Appl. Math. Mech. %Nonlinear Math. Phys. \yr 1996 \vol 60 \issue 6 \pages 969--978 %990--999 \endref %Овсянников~Л.~В., Чупахин~А.~П. %Регулярные частично инвариантные подмодели уравнений газовой динамики \by Khabirov~S.V. \paper The differential-invariant solutions for the axis-symmetric gas flows \jour Ufimsk. Mat. Zh. \yr 2009 \vol 1 \issue 3 \pages 154--159 \endref %Хабиров~С.~В. %Дифференциально-инвариантные решения осесимметричных течений газа \by Khabirov~S.V. \paper Simple waves of a seven-dimensional subalgebra of all translations in gas dynamics \jour J.~Appl. Mech. Techn. Phys. \yr 2014 \vol 55 \issue 2 \pages 362--366 %199--203 \endref %Хабиров~С.~В. %Простые волны семимерной подалгебры всех переносов в газовой динамике \by Vladimirov V.A. \paper Modelling system for relaxing media. Symmetry, restrictions and attractive features of invariant solutions \jour Proc. Inst. Math. NAS Ukraine \yr 2000 \vol 30 \issue 1 \pages 231--238 \endref \by Maltsev~A.I. \paper Constructive algebras.~I \jour Russian Math. Surveys % Uspekhi Mat. Nauk \yr 1961 \vol 16 \issue 3 \pages 77--129 %3--60 \endref %Мальцев~А.~И. %Конструктивные алгебры. I \by Andrews~U. and Sorbi~A. \paper Joins and meets in the structure of ceers \jour Computability \yr 2019 \vol 8 \iftex \issue 3--4 \else \issue 3 \fi \issue \pages 193--241 \endref \by Andrews~U., Belin~D.F., and San Mauro~L. \paper On the structure of computable reducibility on equivalence relations of natural numbers \jour J.~Symb. Log. \yr 2022 \vol 87 \issue 1 \pages 1--26 %DOI 10.1017/jsl.2022.28. \endmref \by Kasymov~N.Kh. \paper Recursively separable enumerated algebras \jour Russian Math. Surveys %Uspekhi Mat. Nauk \yr 1996 \vol 51 \issue 3 \pages 509--538 % 145--176 \endref %Касымов~Н.~Х. %Рекурсивно отделимые нумерованные алгебры \by Bergstra~J.A. and Tucker~J.V. \paper A~characterization of computable data types by means of a~finite, equational specification method \jour Lecture Notes in Comput. Sci. \yr 1980 \vol 85 \pages 76--90 \endref \by Morozov~A.S. and Truss~J.K. \paper On computable automorphisms of the rational numbers \jour J.~Symb. Log. \yr 2001 \vol 66 \issue 3 \pages 1458--1470 \endref \by Jockusch~C.G. \paper Semurecursive sets and positive reducibility \jour Trans. Amer. Math. Soc. \yr 1968 \vol 131 %\issue \pages 420--436 \endref \by Jockusch~C.G. and Owings~J.C. \paper Weakly semirecursive sets \jour J.~Symb. Log. \yr 1990 \vol 55 \issue 2 \pages 637--644 \endref \by Kummer~M. and Stephan~F. \paper Weakly semirecursive sets and r.e. orderings \jour Ann. Pure Appl. Logic \yr 1993 \vol 60 %\issue \pages 133--150 \endref \by Avgustinovich S.V. and Frid A.E. \paper A unique decomposition theorem for factorial languages \jour Internat.~J. Algebra Comput. \yr 2005 \vol 15 \issue 1 \pages 149--160 \endref \by Avgustinovich S.V. and Frid A.E. \paper Canonical decomposition of a~regular factorial language \inbook Computer Science---Theory and Applications \publ Springer \publaddr Berlin \yr 2006 \pages 18--22 %149--160 \finalinfo Lecture Notes Comput. Sci.; vol.~3967 \endref \by Frid A.E. \paper Canonical decomposition of catenation of factorial languages \jour Sib. Electr. Math. Reports \yr 2007 \vol 4 \pages 12--19 \endref \by Dolgachev~I. \paper Weighted projective varieties \inbook Group Actions and Vector Fields \publaddr Berlin \publ Springer \yr 1982 \pages 34--71 \finalinfo Lecture Notes Math.; vol.~956 \endref \by Iano-Fletcher~A.R. \paper Working with weighted complete intersections \inbook Explicit Birational Geometry of 3-Folds \publaddr Cambridge \publ Cambridge University \yr 2000 \pages 101--173 \finalinfo London Math. Soc. Lecture Note Ser.; vol.~281 \endref \by Dimca~A. \paper Singularities and coverings of weighted complete intersections \jour J.~Reine Angew. Math. \yr 1986 \vol 366 \pages 183--193 \endref \by Przyjalkowski~V. and Shramov~C. \paper Bounds for smooth Fano weighted complete intersections \jour Commun. Number Theory Phys. \yr 2020 \vol 14 \issue 3 \pages 511--553 \endref \by Kian~Y., Soccorsi~E., and Yamamoto~M. \paper On time-fractional diffusion equations with space-dependent variable order \jour Ann. Henri Poincare \yr 2018 \vol 19 \issue 12 \pages 3855--3881 \endref \ref \no 2 \by Van Bockstal~K. \paper Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order \jour Adv. Difference Equ. \yr 2021 \finalinfo Article no.~314, 43~pp. \endref \by Zacher R. \paper Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces \jour Funkc. Ekv. \yr 2009 \vol 52 \issue 1 \pages 1--18 \endref \by Wittbold~P., Wolejko~P., and Zacher~R. \preprint Bounded Weak Solutions of Time-Fractional Porous Medium Type and More General Nonlinear and Degenerate Evolutionary Integro-Differential Equations \yr 2008 \finalinfo arXiv: 2008.10919v1 \endref %https://doi.org/10.48550/arXiv.2008.10919. \ref \no 7 \by Orlovsky~D.G. \paper Parameter determination in a differential equation of fractional order with Riemann-Liouville fractional derivative in a~Hilbert space \jour J.~Sib. Fed. University Math. Phys. \yr 2015 \vol 8 \issue 1 \pages 55--63 \endref %Орловский~Д.~Г. %Определение параметра дифференциального уравнения дробного порядка с %производной Римана~--- Лиувилля в гильбертовом пространстве \ref \no 8 \by Sakamoto~K. and Yamamoto~M. \paper Inverse source problem with a~final overdetermination for a~fractional diffusion equation \jour Math. Control Related Fields \yr 2011 \vol 1 \issue 4 \pages 509--518 \endref \ref \no 9 \by Van Bockstal~K. \paper Uniqueness for inverse source problems of determining a space dependent source in time-fractional equations with non-smooth solutions \jour Fractal Fract. \yr 2021 \vol 5 \issue 4 \finalinfo Article no.~169 11~pp. \endref \ref \no 10 \by Kinash~N. and Janno~J. \paper Inverse problems for a generalized subdiffusion equation with final overdetermination \jour Math. Model. Anal. \yr 2019 \vol 24 \issue 2 \pages 236--262 \endref \ref \no 11 \by Kinash~N. and Janno~J. \paper Inverse problem to identify a~space-dependent diffusivity coefficient in a~generalized subdiffusion equation from final data \jour Proc. Est. Acad. Sci. \yr 2022 \vol 71 \issue 1 \pages 3--15 \endref \ref \no 12 \by Janno~J. and Kinash~N. \paper Reconstruction of an order of derivative and a source term in a~fractional diffusion equation from final measurements \jour Inverse Problems \yr 2018 \vol 34 \issue 2 \finalinfo Article no.~025007 \endref %DOI 10.1088/1361-6420/aaa0f0 \ref \no 13 \by Alimov~S. and Ashurov~R. \paper Inverse problem of determining an order of the Riemann--Liouville time-fractional derivative \jour Progr. Fract. Differ. Appl. \yr 2022 \vol 8 \issue 4 \pages 467--474 \endref \by Zacher R. \paper Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients \jour J.~Math. Anal. Appl. \yr 2008 \issue 348 \issue 1 \pages 137--149 \endref \by Zacher R. \paper A weak Harnack inequality for fractional evolution equations with discontinuous coefficients \jour Ann. Sc. Norm. Super. Pisa Cl. Sci. \yr 2013 \vol 12 \issue 5 \pages 903--940 \endref \by Gol'dshtein~V.M. and Troyanov~M. \paper Axiomatic theory of Sobolev spaces \jour Expo. Math. \yr 2001 \vol 19 \issue 4 \pages 289--336 \endref \by Hal\l asz~P. \paper Sobolev spaces on an arbitrary metric spaces \jour Potential Anal. \yr 1996 \vol 5 \issue 4 \pages 403--415 \endref \by Heinonen~J. and Koskela~P. \paper Quasiconformal maps in metric spaces with controlled geometry \jour Acta Math. \yr 1998 \vol 181 \issue 1 \pages 1--61 \endref %VN on metric - in metric %VN controled - controlled %VN \issue 1 \by Heinonen~J. and Koskela~P. \paper A note on Lipschitz functions, upper gradients, and the Poincar\'e inequality \jour New Zealand~J. Math. \yr 1999 \vol 28 \pages 37--42 \endref \by Shanmugalingam~N. \paper Newtonian spaces: An extension of Sobolev spaces to metric measure spaces \jour Rev. Mat. Iberoamericana \yr 2000 \vol 16 \issue 2 \pages 243--279 \endref \by Koskela~P. and MacManus~P. \paper Quasiconformal mappings and Sobolev spaces \jour Studia Math. \yr 1998 \vol 131 \issue 1 \pages 1--17 \endref \by Balogh~Z.M. and Koskela~P. \paper Quasiconformality, quasisymmetry, and removability in Loewner spaces \jour Duke Math.~J. \yr 2000 \vol 101 \issue 3 \pages 554--577 \endref \by Heinonen~J., Koskela~P., Shanmugalingam~N., and Tyson~J. \paper Sobolev classes of Banach space-valued functions and quasiconformal mappings \jour J.~Anal. Math. \yr 2001 \vol 85 \issue 1 \pages 87--139 \endref \by Lahti~P. and Zhou~X. \preprint Quasiconformal and Sobolev Mappings in Non-Ahlfors Regular Metric Spaces When $p > 1$ %\nofrills \yr 2021 \bookinfo arXiv.org/abs/2109.01260 \endref \by Korevaar~N.J. and Schoen~R.M. \paper Sobolev spaces and harmonic maps for metric space targets \jour Comm. Anal. Geom. \yr 1993 \vol 1 \iftex \issue 3--4 \else \issue 3 \fi \pages 561--659 \endref \by Hal\l asz~P. \paper Sobolev mappings between manifolds and metric spaces \inbook Sobolev Spaces in Mathematics.~I. Sobolev Type Inequalities \publaddr New York \publ Springer \yr 2009 \pages 185--222 \finalinfo Intern. Math. Ser.; vol.~8 \endref \by Haj\l asz~P. and Kinnunen~J. \paper H\"older quasicontinuity of Sobolev functions on metric spaces \jour Rev. Mat. Iberoam. \yr 1998 \vol 14 \issue 3 \pages 601--622 \endref \by Romanov~A.S. \paper On the continuity of Sobolev-type functions on homogeneous metric spaces \jour Sib. Electr. Math. Reports \yr 2022 \vol 19 \issue 2 \pages 460--483 \endref \by Vodopyanov~S.K. \paper Composition operators on Sobolev spaces \inbook Complex Analysis and Dynamical Systems.~II: \bookinfo A~conference in honor of Professor Lawrence Zalcman's Sixtieth Birthday, June 9--12, 2003, Nahariya, Israel (M.~Agranovsky, L.~Karp, D.~Shoikhet, eds) \yr 2005 \pages 327--342 \publaddr Ann Arbor \publ Amer. Math. Soc. \finalinfo Contemp. Math.; V.~382 \endref %\by Vodop'yanov~S.~K. %\paper Composition operators on Sobolev spaces %\jour Contemp. Math. %\yr 2005 %\vol 382 %\pages 327--342 %\endref \by Gaisin~A.M. \paper Estimates of the growth and decrease on curves of an entire function of infinite order \jour Sb. Math. \yr 2003 \vol 194 \issue 8 \pages 1167--1194 %55--82 \endref %Гайсин А.~М. %Оценки роста и убывания целой функции бесконечного порядка на кривых \by Gaisin~A.M. and Gaisin~R.A. \paper Incomplete system of exponentials on arcs and nonquasianalytic Carleman classes. II \jour St. Petersburg Math.~J. \yr 2016 %2015 \vol 27 \issue 1 \pages 33--50 %49--73 \endref %Гайсин А.~М., Гайсин Р.~А. %Неполные системы экспонент на дугах и неквазианалитические классы Карлемана. II \by Gaisin~R.A. \paper Interpolation sequences and nonspanning systems of exponentials on curves \jour Sb. Math. \yr 2021 \vol 212 \issue 5 \pages 655--675 %58--79 \endref %Гайсин Р.~А. %Интерполяционные последовательности и неполные системы экспонент на кривых \by Gaisin A.M. \paper Behavior of the logarithm of the modulus value of the sum of a Dirichlet series converging in a~half-plane \jour Izv. Math. \yr 1995 %1994 \vol 45 %53 \issue 1 %4 \pages 175--186 %173--185 \endref %Гайсин~А.~М. %Поведение логарифма модуля суммы ряда Дирихле, сходящегося в полуплоскости \by Skaskiv~O.B. \paper On Wiman's theorem concerning the minimum modulus of a~function analytic in the unit disk \jour Math. USSR-Izv. \yr 1990 %1989 \vol 35 %53 \issue 1 %4 \pages 165--182 %833--850 \endref %VN \vol 58 - 53 %Скаскив~О.~Б. %К теореме Вимана о минимуме модуля аналитических в единичном круге функций \by Krasichkov-Ternovskii I.F. \paper A~geometric lemma useful in the theory of entire functions and Levinson-type theorems \jour Math. Notes %Mat. Zametki \yr 1978 \vol 24 \issue 4 \pages 784--792 %531--546 \endref %Красичков-Терновский И. Ф. %Одна геометрическая лемма, полезная в теории целых функций, и теоремы типа Левинсона \by Gaisin~A.M. \paper Behavior of the sum of a Dirichlet series having a prescribed growth \jour Math. Notes %Mat. Zametki \yr 1991 \vol 50 \issue 4 \pages 1018--1024 %47--56 \endref %Гайсин ~А.~М. %Поведение cуммы ряда Дирихле заданного роста \by Gaisin~A.M. and Belous~T.I. \paper Maximal term of Dirichlet series converging in half-plane: stability theorem \jour Ufa Math.~J. \yr 2022 \vol 14 \issue 3 \pages 23--34 \endref %Гайсин А.М., Белоус Т.~И. %Максимальный член ряда Дирихле, сходящегося в полуплоскости: теорема об устойчивости \by Shakhova~S.A. \paper The axiomatic rank of the Levi class generated by the almost Abelian quasivarieties of nilpotent groups \jour Lobachevskii~J. Math. \yr 2020 \vol 17 \issue 9 \pages 1680--1683 \endref \by Fedorov~A.N. \paper Quasi-identities of a~free 2-nilpotent group \jour Math. Notes %Mat. Zametki \yr 1986 \vol 40 \issue 5 \pages 837--841 %590--597 \endref %Федоров А.~Н. %Квазитождества свободной 2-нильпотентной группы \by Bialy~M.L. \paper First integrals that are polynomial in momenta for a~mechanical system on a~two-dimensional torus \jour Funct. Anal. Appl. \yr 1987 \vol 21 \issue 4 \pages 310--312 %64--65 \endref %Бялый~М.~Л. % О полиномиальных по импульсам первых интегралах для механической системы на двумерном торе \by Denisova~N.V., Kozlov~V.V., and Treschev~D.V. \paper Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space \jour Izv. Math. \yr 2012 \vol 76 \issue 5 \pages 907--921 %57--72 \endref %Денисова~Н.~В., Козлов~В.~В., Трещев~Д.~В. %Замечания о полиномиальных интегралах высших степеней обратимых систем с торическим пространством конфигураций \by Denisova~N.V. and Kozlov~V.V. \paper Polynomial integrals of reversible mechanical systems with a~two-dimensional torus as the configuration space \jour Sb. Math. \yr 2000 \vol 191 \issue 2 \pages 189--208 %43--63 \endref %Денисова~Н.~В., Козлов~В.~В. %Полиномиальные интегралы обратимых механических систем с конфигурационным пространством в виде двумерного тора \by Mironov A.E. \paper On polynomial integrals of a mechanical system on a two-dimensional torus \jour Izv. Math. \yr 2010 \vol 74 \issue 4 \pages 805--817 %145--156 \endref %Миронов~А.~Е. %О полиномиальных интегралах механической системы на двумерном торе \by Kozlov~V.V. \paper Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees \jour Izv. Ross. Akad. Nauk Ser. Mat. \yr 2023 \vol 87 \issue 5 \pages \? \endref %Козлов В.~В. %Дискретные симметрии уравнений динамики с полиномиальными интегралами высших степеней \by Bolsinov~A.V., Kozlov~V.V., and Fomenko~A.T. \paper The Maupertuis principle and geodesic flows on a sphere arising from integrable cases in the dynamics of a rigid body \jour Russian Math. Surveys \yr 1995 \vol 50 \issue 3 \pages 473--501 %3--32 \endref %Болсинов~А.~В., Козлов~В.~В., Фоменко~А.~Т. %Принцип Мопертюи и геодезические потоки на сфере, возникающие из интегрируемых случаев динамики твердого тела \by Kozlov~V.V. \paper On rational integrals of geodesic flows \jour Regul. Chaotic Dyn. %Нелинейная динамика \yr 2014 \vol 19 %10 \issue 6 %4 \pages 601--606 %439--445 \endref %Козлов~В.~В. %О рациональных интегралах геодезических потоков \by Agapov S. and Shubin~V. \paper Rational integrals of 2-dimensional geodesic flows: new examples \jour J.~Geom. Phys. \yr 2021 \vol 170 \finalinfo Article no.~104389, 8~pp. %\?v litr \endref \by Saleeby E.G. \paper Meromorphic solutions of generalized inviscid Burgers equations and a~family of quadratic PDEs \jour J.~Math. Anal. Appl. \yr 2015 \vol 425 \issue 1 \pages 508--519 \endref \by Vladimirov A.A. \paper Nonstationary dissipative evolution equations in Hilbert space \jour Nonlinear Anal. % Th., Meth., Appl. \yr 1991 \vol 17 \issue 6 \pages 499--518 \endref \by Kunze M. and Marques D.~P. %\?Monteiro Marques~M.~D.~P. \paper BV solutions to evolution problems with time dependent domains \jour Set-Valued Anal. \yr 1997 \vol 5 \issue 1 \pages 57--72 \endref \by Tolstonogov~A.A. \paper Sweeping process with unbounded nonconvex perturbation \jour Nonlinear Anal. \yr 2014 \vol 108 \pages 291--301 \endref \by Attouch~H. and Wets~R.J.-B. \paper Quantitative stability of variational systems. I. The epigraphical distance \jour Trans. Amer. Math. Soc. \yr 1991 \vol 328 \issue 2 \pages 695--729 \endref \by Attouch~H. \paper Familles d'op\'erateurs maximaux monotones et mesurabilit\'e \jour Ann. Math. Pura Appl. \yr 1979 \vol 120 \issue 1 \pages 35--111 \endref \by Tolstonogov~A.A. \paper Comparison theorems for evolution inclusions with maximal monotone operators. $L^2$-Theory \jour Mat. Sb. \yr 2023 \vol 214 \issue 6 \pages 110--135 \endref % Толстоногов~А.~А. % Теоремы сравнения для эволюционных включений с максимально %монотонными операторами. $L^2$-теория \by Tolstonogov~A.A. \paper Convergence of maximal monotone operators in a Hilbert space \jour Nonlinear Differ. Equ. Appl. \yr 2022 \vol 6 \pages 29--69 \endref \by Azzam-Laouir~D., Belhoula~W., Castaing~C., and Marques D.~P. %\?Monteiro Marques~M.D.P. \paper Perturbed evolution problems with absolutely continuous variation in time and applications \jour J.~Fixed Point. Theory Appl. \yr 2019 \vol 21 \pages 40 \endref \by Garc\'\i a-Cuerva~J. and Gatto~A.E. \paper Lipschitz spaces and Calder\'{o}n--Zygmund operators associated to non-doubl\-ing measures \jour Publ. Mat. \yr 2005 \vol 49 \issue 2 \pages 285--296 \endref \by Monti~R. and Morbidelli~D. \paper Trace theorems for vector fields \jour Math.~Z. \yr 2002 \vol 239 \pages 747--776 \endref \by Capogna~L. and Garofalo~N. \paper Ahlfors type estimates for perimeter measures in Carnot--Carath\'eodory spaces \jour J.~Geom. Anal. \yr 2006 \vol 16 \issue 3 \pages 455--497 \endref \by Haj\l asz~P. \paper Sobolev spaces on metric-measure spaces \jour Contemp. Math. \yr 2003 \vol 338 %\issue 4 \pages 173--218 \endref %Auscher, Pascal (ed.) et al., Heat kernels and analysis on manifolds, graphs, and metric spaces. Lecture notes from a quarter program on %heat kernels, random walks, and analysis on manifolds and graphs, April 16--July 13, 2002, Paris, France. Providence, RI: American %Mathematical Society (AMS) (ISBN 0-8218-3383-9/pbk). Contemp. Math. 338, 173-218 (2003). \by Rothschild~L.P. and Stein~E.M. \paper Hypoelliptic differential operators and nilpotent groups \jour Acta Math. \yr 1976 \vol 137 \iftex \issue 3--4 \else \issue 3 \fi \pages 247--320 \endref \by Karmanova~M. and Vodopyanov~S. \paper A~coarea formula for smooth contact mappings of Carnot--Carath\'eodory spaces \jour Acta Appl. Math. \yr 2013 \vol 128 \issue 1 \pages 67--111 \endref %VN \yr 2011 - \yr 2013 \by Haj\l asz~P. \paper Sobolev spaces on an arbitrary metric space \jour Potential Anal. \yr 1996 \vol 5 \issue 4 \pages 403--415 \endref \by Vodopyanov~S.K. \paper $\Cal P$-Differentiability on Carnot groups in various topologies and related topics \inbook Proceedings on Analysis and Geometry \publaddr Novosibirsk \publ Sobolev Institute of Mathematics \yr 2000 \pages 603--670 \endref \by Calder\'on~C.P., Fabes~E.B., and Riviere~N.M. \paper Maximal smoothing operators \jour Indiana University Math.~J. \yr 1974 \vol 23 \pages 889--988 \endref \by Meyers~N.G. \paper Taylor expansion of Bessel potentials \jour Indiana University Math.~J. \yr 1974 \vol 23 \pages 1043--1049 \endref \by Martio~O. and Mal\'y~J. \paper Lusin's condition ($N$) and mappings of the class $W^1_n$ \jour J.~Reine Angew. Math. \yr 1995 \vol 485 \pages 19--36 \endref \by Vodopyanov S.K. \paper Differentiability of maps of Carnot groups of Sobolev classes \jour Sb. Math. \yr 2003 \vol 194 \issue 6 \pages 857--877 %67--86 \endref \by Gehring~F.W. and Lehto~O. \paper On the total differentiability of functions of a complex variable \jour Ann. Acad. Sci. Fenn. Ser. A~I \yr 1959 \finalinfo Article no.~272, 9~pp. \endref \by V\"ais\"al\"a~J. \paper Two new characterizations for quasiconformality \jour Ann. Acad. Sci. Fenn. Ser. A~I \yr 1965 \finalinfo Article no.~362, 12~pp. \endref \by Kruglikov~V.I. \paper Capacity of condensers and spatial mappings quasiconformal in the mean \jour Math. USSR-Sb. \yr 1987 %1986 \vol 58 %130 \issue 1 %2 \pages 185--205 \endref %Кругликов~В.~И. %Емкости конденсаторов и пространственные отображения, квазиконформные в среднем \by Kutateladze S.S. \paper What is Boolean valued analysis?\nocomma \jour Siberian Adv. Math. \yr 2007 \vol 17 \issue 2 \pages 91--111 \endref \by Mashreghi J. and Ransford Th. \paper Gleason--Kahane--\D Zelazko theorems in function spaces \jour Acta Sci. Math. (Szeged) \vol 84 \iftex \issue 1--2 \else \issue 1 \yr 2018 \pages 227--238 \fi \endref \by Shultz F.W. \paper On normed Jordan algebras which are Banach dual spaces \jour J.~Funct. Anal. \yr 1979 \vol 31 \issue 3 \pages 360--376 \endref \by Tang Y. \paper A new version of the Gleason--Kahane--\D Zelazko theorem in complete random normed algebras \jour J.~Inequal. Appl. \year 2012 \finalinfo Article no.~86, 6~pp. \endref \by Ozawa M. \paper A classification of type I ${AW}^{*}$-algebras and Boolean valued analysis \jour J.~Math.~Soc. Japan \yr 1984 \vol 36 \issue 4 \pages 589--608 \endref \by Kaplansky I. \paper Modules over operator algebras \jour Amer. J. Math. \vol 75 \yr 1953 \pages 839--858 \endref \by Ozawa M. \paper A~transfer principle from von Neumann algebras to $AW^\ast$-algebras \jour J.~London Math. Soc. \yr 1985 \vol 32 \issue 1 \pages 141--148 \endref \by Topping~D.M. \paper Jordan algebras of self-adjoint operators \jour Mem. Amer. Math. Soc. \yr 1965 \issue 53 \pages 1--48 \endref \by St\o rmer~E. \paper Jordan algebras of type~I \jour Acta. Math. \yr 1966 \vol 115 \iftex \issue 3--4 \else \issue 3 \fi \pages 165--184 \endref \by Alfsen~E.M., Shultz~F.W., and St\o rmer~E. \paper A~Gelfand--Neumark theorem for Jordan algebras \jour Adv. Math. (NY) \yr 1978 \vol 28 \issue 1 \pages 11--56 \endref \by Kostecki R.P. \preprint $W^\ast$-Algebras and Noncommutative Integration \yr 2014 \finalinfo arXiv: 1307.4818 \endref \by Korol' A.M. and Chilin V.I. \paper Measurable operators in a Boolean-valued model of set theory \jour Dokl. Akad. Nauk UzSSR \vol 3 \yr 1989 \pages 7--9 \lang Russian \endref \by Kadison R.V. and Liu Zh. \paper Derivations of Murray--von Neumann algebras \jour Math. Scand. \vol 115 \issue 2 \yr 2014 \pages 206--228 \endref \by Ber A.F., Sukochev F.A., and Chilin V.I. \paper Derivations in commutative regular algebras \jour Math. Notes \yr 2004 \vol 75 \iftex \issue 3--4 \else \issue 3 \fi \pages 418--419 \endref \by Albeverio S., Ayupov Sh.A., and Kudaybergenov K.K. \paper Derivations on the algebras of measurable operators \jour Infin. Dimens. Anal. Quantum Probab. Relat. Top. \vol 13 \yr 2010 \issue 2 \pages 305--337 \endref \by Ayupov Sh.A., Kudaybergenov K.K., and Peralta A.M. \paper A survey on local and $2$-local derivations on $C^\ast$-al\-ge\-bras and von Neumann algebras \inbook Topics in Functional Analysis and Algebra \publ Amer. Math. Soc. \publaddr Providence \yr 2016 \pages 73--126 \finalinfo Contemp. Math., vol.~672 \endref \by Boyle~L. and Farnsworth~S \paper Non-commutative geometry, non-associative geometry and the standard model of particle physics \jour New J. Phys. \vol 16 \yr 2014 \finalinfo Article~123027, 6~pp. \endref \by Takeuti G. \paper Quantum set theory \inbook Current Issues in Quantum Logic \publ Plenum \publaddr New York \yr 1981 \pages 303--322 \endref \by Schultz~P. \paper The endomorphism ring of the additive group of a~ring \jour J.~Austral.~Math.~Soc. \yr 1973 \vol 15 \issue 1 \pages 60--69 \endref \by Bowshell R.A. and Schultz~P. \paper Unital rings whose additive endomorphisms commute \jour Math.~Ann. \yr 1977 \vol 228 \issue 3 \pages 197--214 \endref \by Beaumont R.A. and Pierce R.S. \paper Torsion-free rings \jour Illinois J.~Math. \yr 1961 \vol 5 \issue 1 \pages 61--98 \endref \by G\"{o}bel R., Shelah S., and Str\"{u}ngmann L. \paper Generalized $E$-rings \inbook Rings, Modules, Algebras, and Abelian Groups \bookinfo Proceedings of the Algebra Conference. Venezia (June 03--08, 2002). \publaddr New York and Basel \publ Marcel Dekker \yr 2004 \pages 291--306 \finalinfo Lect.~Notes Pure Appl.~Math.; vol.~236 \endref \by Zonov~M.N. and Timoshenko~E.A. \paper Quotient divisible groups of rank~2 \jour Math. Notes %Mat. Zametki \yr 2021 \vol 110 \issue 1 \pages 48--60 %37--51 \endref %Зонов М.~Н., Тимошенко Е.~А. %О факторно делимых группах ранга $2$ \by Tsarev~A.V. \paper $E$-rings of low ranks \jour Chebyshevskii Sb. \yr 2017 \vol 18 \issue 2 \pages 235--244 \endref %Царев А.~В. %$E$-кольца малых рангов \by Reid~J.D. \paper A note on torsion free abelian groups of infinite rank \jour Proc. Amer. Math. Soc. \yr 1962 \vol 13 \issue 2 \pages 222--225 \endref \by Davydova~O.I. \paper Rank-1 quotient divisible groups \jour J.~Math. Sci. (New York) %Фундам. и прикл. математика \yr 2008 %2007 \vol 154 %13 \issue 3 %3 \pages 295--300 %25--33 \endref %Давыдова О.~И. %Факторно делимые группы ранга~1 \by Komech~A.I. \paper Linear partial differential equations with constant coefficients \inbook Partial Differential Equations II %Egorov, Y.V., Shubin, M.A. (eds) \publaddr Berlin and Heidelberg %Moscow \publ Springer %VINITI \yr 1994 %1988 \vol 31 \pages 121--255 %127--261 \finalinfo Encyclopaedia of Mathematical Sciences; vol.~31 \endref %Комеч А.~И. %Линейные уравнения в частных производных с постоянными коэффициентами \by Pavlov A.L. \paper On regularization of a certain class of distributions \jour Math. Nachr. \yr 2015 \vol 288 \iftex \issue 17--18 \else \issue 17 \fi \pages 2093--2108 \endref \by Pavlov A.L. \paper Regularization of distributions \jour Mat. Sb. \yr 2023 \vol 214 \issue 4 \pages 76--113 \endref % Павлов А.~Л. %Регуляризация обобщенных функций \by Pavlov~A.L. \paper The Cauchy problem for one equation of Sobolev type \jour Siberian Adv. Math. %Mat. Tr. \yr 2019 %2018 \vol 29 %21 \issue 1 %1 \pages 57--76 %125--154 \endref %Павлов А. Л. %Задача Коши для одного уравнения соболевского типа в классе обобщенных функций медленного роста \by H\"ormander~L. \paper On the division of distributions by polynomials \jour Math. \yr 1959 \vol 3 \issue 5 \pages 117--130 \endref %Хермандер~Л. %О делении обобщенных функций на полиномы \by Lojasiewicz~S. \paper Sur le probl$\acute{e}$me de la division \jour Stud. Math. \yr 1959 \vol 18 \pages 87--136 \endref \by Pavlov~A.L. \paper On the division of the distribution by a~polynomial \jour Tr. IPPM \yr 2021 \vol 35 \pages 49--66 \endref % Павлов А.~Л. %О делении обобщенной функции на многочлен \by Volevich~L.R. and Gindikin~S.G. \paper The Cauchy problem and other related problems for convolution equations \jour Russian Math. Surveys %Uspekhi Mat. Nauk \yr 1972 \vol 27 \issue 4 \pages 71--160 % 65--143 \endref %Волевич Л. Р., Гиндикин С. Г. % Задача Коши и связанные с ней задачи для уравнений в свертках \by Lukomskii~S.F., Berdnikov~G.S., and Kruss~Yu.S. \paper On the orthogonality of a system of shifts of the scaling function on Vilenkin groups \jour Math. Notes \yr 2015 \vol 98 \issue 2 \pages 339--342 %339--342 \endref %Лукомский~С.~Ф., Бердников~Г.~С., Крусс~Ю.~С. % Об ортогональности системы сдвигов масштабирующей функции на группах Виленкина \by Vodolazov~A.M. and Lukomskii~S.F. \paper Orthogonal shift systems in the field of $p$-adic numbers \jour Izv. Saratov University Math. Mech. Inform. \yr 2016 \vol 16 \issue 3 \pages 256--262 \endref %Водолазов~А.~М., Лукомский~С.~Ф. %Ортогональные системы сдвигов в поле p-адических чисел \by Lukomskii~S.F. \paper Haar system on the product of groups of $p$-adic integers \jour Math. Notes \yr 2011 \vol 90 \issue 4 \pages 517--532 %517--532 \endref %Лукомский~С.~Ф. %О системе Хаара на произведении групп целых $p$-адических чисел \by Protasov~V.Yu. and Farkov~Yu.A. \paper Dyadic wavelets and refinable functions on a~half-line \jour Sb. Math. \yr 2006 \vol 197 %190 \issue 10 \pages 1529--1558 %129--160 \endref %VN \vol 190 - 197 %Протасов~В.~Ю., Фарков~Ю.~А. %Диадические вейвлеты и масштабирующие функции на полупрямой \by Lang~W.C. \paper Fractal multiwavelets related to the Cantor dyadic group \jour Intern. J. Math. and Math. Sci. \yr 1998 \vol 21 \issue 1 \pages 307--317 \endref \by Karapetyants~M. and Protasov~V. \paper Spaces of dyadic distributions \jour Funct. Anal. Appl. \yr 2020 \vol 54 \issue 1 \pages 272--277 \endref \by Golubov~B.I. \paper Dyadic distributions \jour Sb. Math. \yr 2007 \vol 198 \issue 2 \pages 207--230 % 67--90 \endref %Голубов Б. И. %Двоичные обобщенные функции \paper On the smoothness properties of a family of Bernoulli convolutions %On the smoothness properties of Bernoulli convolutions \jour Amer. J. Math. \yr 1940 \vol 62 \issue 1 \pages 180--186 \endref %VN название такое On the smoothness properties of a family of Bernoulli convolutions %VN Bernuolli - Bernoulli \by Erd\"os~P. \paper On a~family of symmetric Bernoulli convolutions \jour Amer. J. Math. \yr 1939 \vol 61 \issue 4 \pages 974--975 \endref \by Garsia~A.M. \paper Arithmetic properties of Bernoulli convolutions \jour Trans. Amer. Math. Soc. \yr 1962 \vol 101 \issue 1 \pages 409--432 \endref \by Peres~Y. and Solomyak~B. \paper Absolute continuity of Bernoulli convolution, a~simple proof \jour Math. Res. Lett. \yr 1996 \vol 3 \issue 2 \pages 231--239 \endref \by Solomyak~B. \paper On the random series $ \sum \pm \lambda^j $ (an Erd\"os problem) \jour Ann. Math. \yr 1995 \vol 142 \issue 1 \pages 611--625 \endref \by Derfel~G. \paper A~criterion for the existence of bounded solutions of a~functional-differential equation arising in probability theory \jour Funct. Differ. Equ. %\?Functional-differential equations and their applications \yr 1985 \vol 2 \issue 1 \pages 25--31 \endref \by Zakusilo~O.K. \paper On classes of limit distributions in some scheme of summation \jour Teor. Verojatnost. i Mat. Statist. \yr 1975 \vol 12 \issue 1 \pages 44--48 \endref \by Zakusilo~O.K. \paper Some properties of the class~$L_c$ of limit distributions \jour Teor. Verojatnost. i Mat. Statist. \yr 1976 \vol 15 \issue 1 \pages 68--73 \endref \by Protasov~V. \paper Refinement equations with nonnegative coefficients \jour J.~Fourier Anal. Appl. \yr 2000 \vol 1 \issue 6 \pages 11--35 \endref \by Derfel~G., Dyn~N., and Levin~D. \paper Generalized refinement equations and subdivision processes \jour J.~Approx. Theory \yr 1995 \vol 80 \issue 2 \pages 272--297 \endref \by Derfel~G. and Schilling~R. \paper Spatially chaotic configurations and functional equations with rescaling \jour J.~Phys.~A. \yr 1995 \vol 15 \issue 1 \pages 4537--4547 \endref \by Kapica~R. and Morawiec~J. \paper Inhomogeneous refinement equations with random affine maps \jour J.~Difference Equ. Appl. \yr 2015 \vol 12 \issue 21 \pages 1200--1211 \endref \by Kapica~R. and Morawiec~J. \paper Refinement type equations and Grincevi\v cjus series \jour J.~Math. Anal. Appl. \yr 2009 \vol 350 \issue 1 \pages 393--400 \endref \by Morawiec~J. \paper On $L_1$-solutions of a two-direction refinement equation \jour J.~Math. Anal. Appl. \yr 2009 \vol 354 \issue 1 \pages 648--656 \endref \by Karapetyants~M.A. \paper Subdivision schemes on the dyadic half-line \jour Izv. Math. \yr 2020 \vol 84 \issue 5 \pages 910--929 %98--118 \endref %Карапетянц~М.~А. %Уточняющие алгоритмы на диадической полупрямой \by Ado~I.D. \paper On subgroups of the countable symmetric group \jour C.~R. (Doklady) Acad. Sci. URSS %Докл. АН СССР \yr 1945 \vol 50 \issue 3 \pages 15--17 \endref %Адо И. Д. %О подгруппах счетных симметрических групп \by Suchkov~N.M. and Suchkova~N.G. \paper On groups of limited permutations \jour J.~Siberian Federal University Math. Phys. \yr 2010 \vol 3 \issue 2 \pages 262--266 \endref %Сучков~Н.~М., Сучкова~Н.~Г. %О группах ограниченных подстановок \by Sozutov~A.I., Suchkov~N.M., and Suchkova~N.G. \paper On subgroups of group $\operatorname{Lim}(N)$ \jour Sib. Electr. Math. Reports \yr 2020 \vol 17 \pages 208--217 \endref % Созутов~А.~И., Сучков~Н.~М., Сучкова~Н.~Г. % О подгруппах группы Lim(N) \by Hall~P. \paper Some constructions for locally finite groups \jour J.~London Math. Soc. \yr 1959 \vol 34 \pages 305--319 \endref \by Nuzhin~Ya.N. \paper Generating triples of involutions of alternating groups \jour Math. Notes \yr 1992 \vol 51 \issue 4 \pages 389--392 %91--95 \endref %VN \yr 1990 - \yr 1992 %Нужин~Я.~Н. %Порождающие тройки инволюций знакопеременных групп \by Timofeenko~A.V. \paper On generating triples of involutions of large sporadic groups \jour Discrete Math. Appl. \yr 2003 \vol 13 %15 \issue 3 %2 \pages 291--300 %103--112 \endref %Тимофеенко~А.~В. %О порождающих тройках инволюций больших спорадических групп \by Ward J.M. \book Generation of Simple Groups by Conjugate Involutions \bookinfo Thesis of Doctor of Philosophy \publaddr London \publ Queen Mary College \yr 2009 %\finalinfo \endref \by Scott~L.L. \paper Matrices and cohomology \jour Ann. Math. \yr 1977 \vol 5 \pages 473--492 \endref \by Nuzhin~Ya.N. \paper Tensor representations and generating sets of involutions of some matrix groups \jour Trudy Instituta Matematiki i Mekhaniki UrO RAN \yr 2020 \vol 26 \issue 3 \pages 133--141 \endref %Нужин~Я.~Н. %Тензорные представления и порождающие множества инволюций некоторых матричных групп \by Malle~G., Saxl~J., and Weigel~T. \paper Generation of classical groups \jour Geom. Dedicata \yr 1994 \vol 49 \pages 85--116 \endref \by Dubinkina~T.V. \paper On one property of the groups $SL_3(2^n)$ and $SU_3(2^{2n})$ \jour Vestn. Krasnoyarsk. Gos. Tekhn. University \yr 1999 \vol 16 \pages 19--34 \endref %Дубинкина~Т.~В. %Об одном свойстве групп $SL_3(2^n)$, $SU_3(2^{2n})$ \by Hartley~R.W. \paper Determination of the ternary collineation groups whose coefficients lie in the $GF(2^n)$ \jour Ann. Math. \yr 1925 \vol 27 \issue 2 \pages 140--158 \endref \by Mitchell~H.H. \paper Determination of the ordinary and modular linear groups \jour Trans. Amer. Math. Soc. \yr 1911 \vol 12 \pages 207--242 \endref \by Stibe~P. \paper Conjugacy separability of certain free products with amalgamation \jour Trans. Amer. Math. Soc. \yr 1971 \vol 156 \pages 119--129 \endref \by Wong~P.C., Tang~C.K., and Gan~H.W. \paper Weak potency of fundamental groups of graphs of groups \jour Bull. Malays. Math. Sci. Soc. \yr 2010 \vol 33 \issue 2 \pages 243--251 \endref \by Allenby~R.B.J.T. \paper The potency of cyclically pinched one-relator groups \jour Arch. Math. \yr 1981 \vol 36 \issue 3 \pages 204--210 \endref \by Hartley~B., Lennox~J.C., and Rhemtulla~A.H. \paper Cyclically separated groups \jour Bull. Austral. Math. Soc. \yr 1982 \vol 26 \issue 3 \pages 355--384 \endref \by Smirnov~D.M. \paper On the theory of finitely approximable groups \jour Ukr. Mat. Zh. \yr 1963 \vol 15 \pages 453--457 \endref %Смирнов~Д.~М. %К теории финитно аппроксимируемых групп \by Baumslag~G. \paper Automorphism groups of residually finite groups \jour J.~London Math. Soc. \yr 1963 \vol 38 \pages 117--118 \endref \by Maltsev~A.I. \paper On homomorphisms onto finite groups \jour Ivanovo Gos. Ped. Inst. Uchen. Zap. %Уч. зап. Ивановск. пед. ин-та. \yr 1958 \vol 18 \issue 5 \pages 49--60 \endref %Мальцев~А.~И. %О гомоморфизмах на конечные группы \by Gruenberg~K.W. \paper Residual properties of infinite soluble groups \jour Proc. London Math. Soc. \yr 1957 \vol 3 \issue 7 \pages 29--62 \endref \by Azarov~D.N. \paper On the residual nilpotence of free products of free groups with cyclic amalgamation \jour Math. Notes \yr 1998 \vol 64 \issue 1 \pages 3--7 % 3--8 \endref %Азаров~Д.~Н. %О нильпотентной аппроксимируемости свободных произведений свободных групп с циклическим объединением \by Baumslag~G. \paper On the residual finiteness of generalized free products of nilpotent groups \jour Trans. Amer. Math. Soc. \yr 1963 \vol 106 \issue 2 \pages 193--209 \endref \by Baumslag~B. and Tretkoff~M. \paper Residually finite HNN-extensions \jour Comm. Algebra \yr 1978 \vol 6 \issue 2 \pages 179--194 \endref \by Martio~O., Rickman~S., and V\"ais\"al\"a~J. \paper Definitions for quasiregular mappings \jour Ann. Acad. Sci. Fenn. Ser. AI \yr 1960 \vol 448 \issue 12 \pages 1--40 \endref \by Martio~O., Rickman~S., and V\"ais\"al\"a~J. \paper Distortion and singularities of quasiregular mappings \jour Ann. Acad. Sci. Fenn. Ser. AI \yr 1970 \vol 465 \pages 1--13 \endref \by Martio~O., Rickman~S., and V\"ais\"al\"a~J. \paper Topological and metric properties of quasiregular mappings \jour Ann. Acad. Sci. Fenn. Ser. AI \yr 1971 \vol 488 \pages 1--31 \endref \by Church~R.T. and Hemmingsen~E. \paper Light open maps on $n$-manifolds \jour Duke Math.~J. \yr 1960 \vol 27 \issue 4 \pages 527--536 \endref \by Chernavskii~A.V. \paper Finite-to-one open mappings on manifolds \jour Mat. Sb. \yr 1964 \vol 65 \issue 3 \pages 357--369 \endref %А.~В.~Чернавский, %Конечнократные открытые отображения многообразий \by Chernavskii~A.V. \paper A~supplement to the article: `Finite-to-one open mappings on manifolds' \jour Mat. Sb. \yr 1965 \vol 66 \issue 3 \pages 471--472 \endref %Чернавский~А.~В. %Дополнение к статье [[О конечнократных открытых отображениях многообразий]] \by V\"{a}is\"{a}l\"{a}~J. \paper Minimal mappings in Euclidean spaces \jour Ann. Acad. Sci. Fenn. Ser. AI Math. \yr 1965 \vol 366 \pages 1--22 \endref \by V\"{a}is\"{a}l\"{a}~J. \paper Discrete open mappings on manifolds \jour Ann. Acad. Sci. Fenn. Ser AI Math. \yr 1966 \vol 392 \pages 1--10 \endref \by Miniowitz~R. \paper Normal families of quasimeromorphic mappings \jour Trans. Amer. Math. Soc. \yr 1982 \vol 84 \issue 1 \pages 35--43 \endref \by Rickman~S. \paper On the value distribution of quasimeromorphic maps \jour Ann. Acad. Sci. Fenn. Ser. AI Math. \yr 1976 \vol 2 \issue 2 \pages 447--466 \endref \by Aseev~V.V. \paper The distortion of tetrads under quasimeromorphic mappings of Riemann sphere \jour Adv. Theory Nonlinear Anal. Appl. \yr 2023 \vol 7 \issue 1 \pages 189--194 \endref \by Aseev~V.V. \paper Quasisymmetric embeddings \jour J.~Math. Sci. (New York) \yr 2002 \vol 108 %\? \vol 198 \issue 3 \pages 375--410 \endref \by Aseev~V.V. and Kuzin~D.G. \paper Locally quasi-m\"{o}bius mappings on a circle \jour J.~Math. Sci. (New York) \yr 2015 \vol 211 \issue 6 \pages 724--737 \endref \by Karmanova~M.B. \paper Sub-Riemannian properties of the level sets of noncontact mappings of Heisenberg groups \jour Siberian Adv. Math. \yr 2023 %2022 \vol 33 %25 \issue 2 \pages 28--38 %107--125 \endref %Карманова~М.~Б. %Субримановы свойства множеств уровня неконтактных отображений групп Гейзенберга \by Franchi~B., Serapioni~R., and Serra Cassano~F. \paper Rectifiability and perimeter in the Heisenberg group \jour Math. Ann. \yr 2001 \vol 321 \pages 479--531 \endref \by Basalaev~S.G. \paper One-dimensional level surfaces of $hc$-differentiable mappings on Carnot--Carath\'{e}odory spaces \jour Vestn. NGU \yr 2013 \vol 13 \issue 4 \pages 16--36 \endref %pr %Басалаев С. Г. %Одномерные поверхности уровня $hc$-дифференцируемых отображений пространств Карно~--- Каратеодори \by Franchi~B. and Serapioni~R. \paper Intrinsic Lipschitz graphs within Carnot groups \jour J.~Geom. Anal. \yr 2016 \vol 26 \issue 3 \pages 1946--1994 \endref \by Karmanova~M. and Vodopyanov~S. \paper A~coarea formula for smooth contact mappings of Carnot--Carath\'eodory spaces \jour Acta Appl. Math. \yr 2013 \vol 128 \issue 1 \pages 67--111 \endref \by Vodopyanov~S. \paper Geometry of Carnot--Carath\'{e}odory spaces and differentiability of mappings \inbook The Interaction of Analysis and Geometry. Contemporary Mathematics \publaddr Providence \publ Amer. Math. Soc. \yr 2007 \vol 424 \pages 247--301 \finalinfo Contemporary Mathematics; vol.~424 \endref \by Sbai~A., El Hadfi~Y., and Zeng~S. \paper Nonlinear singular elliptic equations of $p$-Laplace type with superlinear growth in the gradient \jour Mediterr.~J. Math. \yr 2023 \vol 20 \issue 32 \pages 1--20 \endref \by Dall'Aglio~A., Giachetti~D., and Segura de Leon~S. \paper Global existence for parabolic problems involving the $p$-Laplacian and a critical gradient term \jour Indiana University Math.~J. \yr 2009 \vol 58 \issue 1 \pages 1--48 \endref \by Dall'Aglio~A., De Cicco~V., Giachetti~D., and Puel~J.-P. \paper Existence of bounded solutions for nonlinear elliptic equations in unbounded domains \jour Nonlinear Differ. Equ. Appl. \yr 2004 \vol 11 \issue 4 \pages 431--450 \endref \by Nakao~M. and Chen~C. \paper Global existence and gradient estimates for the quasilinear parabolic equations of $m$-Laplacian type with a nonlinear convection term \jour J.~Differ. Equ. \yr 2000 \vol 162 \issue 1 \pages 224--250 \endref \by Figueiredo~D.~G., Sanchez~J., and Ubilla~P. \paper Quasilinear equations with dependence on the gradient \jour Nonlinear Anal. \yr 2009 \vol 71 \issue 10 \pages 4862--4868 \endref \by Iturriaga~L., Lorca~S., and Sanchez~J. \paper Existence and multiplicity results for the $p$-Laplacian with a~$p$-gradient term \jour Nonlinear Differ. Equ. Appl. \yr 2008 \vol 15 %\issue \pages 729--743 \endref \by Li~Jinkai, Yin~Jingxue, and Ke~Yuanyuan \paper Existence of positive solutions for the $p$-Laplacian with $p$-gradient term \jour J.~Math. Anal. Appl. \yr 2011 \vol 383 \issue 1 \pages 147--158 \endref \by Ruiz~D. \paper A~priori estimates and existence of positive solutions for strongly nonlinear problems \jour J.~Differ. Equ. \yr 2004 \vol 199 \issue 1 \pages 96--114 \endref \by Zou~H.H. \paper A priori estimates and existence for quasilinear elliptic equations \jour Calc. Var. Partial Differ. Equ. \yr 2008 \vol 33 %\issue \pages 417--437 \endref \by Dwivedi~G. and Gupta~S. \paper An existence result for $p$-Laplace equation with gradient nonlinearity in ${\Bbb R}^N$ \jour Comm. Math. \yr 2022 \vol 30 \issue 1 \pages 149--159 \endref \by Medina~M. and Ochoa~P. \paper On viscosity and weak solutions for non-homogeneous $p$-Laplace equations \jour Adv. Nonlinear Anal. \yr 2019 \vol 8 \issue 1 \pages 468--481 \endref \by Leonori~T., Porretta~A., and Riey~G. \paper Comparison principles for $p$-Laplace equations with lower order terms \jour Ann. Mat. Pura Appl. \yr 2017 \vol 196 %\issue \pages 877--903 \endref \by Razani~A. \paper Game-theoretic $p$-Laplace operator involving the gradient \jour Miskolc Math. Notes \yr 2017 \vol 23 \issue 2 \pages 867--879 \endref \by Tersenov~Ar.S. \paper Influence of Gradient Terms on the Existence of Solutions to the Dirichlet Problem for p-Laplacian \jour J.~Math. Sci. \yr 2018 %2016 \vol 228 %1 \issue 4 \pages 463--474 %130--142 \endref %Терсенов~А.~С. %О влиянии градиентных членов на существование решения задачи Дирихле для уравнения $p$-лапласиана \by Tersenov~Ar.S. \paper Radially symmetric solutions of the p-Laplace equation with gradient terms \jour J.~Appl. Industr. Math. \yr 2018 \vol 12 %21 \issue 4 \pages 770--784 %121--136 \endref %Терсенов~А.~С. %Радиально-симметричные решения уравнения p-лапласиана при наличии градиентного члена \by Tersenov~Al.S. and Tersenov~Ar.S. \paper Global solvability for a class of quasilinear parabolic equations \jour University Math. J. \yr 2001 \vol 50 \issue 4 \pages 1899--1913 \endref \by Franchi~B., Lanconelli~E., and Serrin~J. \paper Existence and uniqueness of nonnegative solutions of quasilinear equations in $R^n$ \jour Adv. Math. \yr 1996 \vol 118 %\issue \pages 177--243 \endref \by Myshkis~A.D. \paper On solutions of linear homogeneous differential equations of the second order of periodic type with a~retarded argument \jour Mat. Sb. \yr 1951 \vol 28 \issue 3 \pages 641--658 \endref %Мышкис~А.~Д. % О решениях линейных однородных дифференциальных уравнений первого порядка устойчивого типа с запаздывающим аргументом \by Yorke~J.A. \paper Asymptotic stability for one dimensional differential-delay equations \jour J.~Differ. Equ. \yr 1970 \vol 7 \pages 189--202 \endref \by Amemiya~T. \paper On the delay-independent stability of a~delayed differential equation of $1$st order \jour J.~Math. Anal. Appl. \yr 1989 \vol 142 \issue 1 \pages 13--25 \endref \by Malygina~V.V. \paper Stability of solutions of some linear differential equations with aftereffect \jour Russian Math. (Iz. VUZ. Matematika) \yr 1993 \vol 37 \issue 5 \pages 63--75 %72--85 \endref %Малыгина~В.~В. %Об устойчивости решений некоторых линейных дифференциальных уравнений с последействием \by Malygina~V.V. and Chudinov~K.M. \paper Stability of solutions to differential equations with several variable delays.~III \jour Russian Math. (Iz. VUZ. Matematika) \yr 2013 \vol 57 %8 \issue 8 \pages 37--48 % 44--56 \endref %Малыгина~В.~В., Чудинов~К.~М. %Устойчивость решений дифференциальных уравнений с несколькими переменными запаздываниями. III \by Andronov~A.A. and Maier~A.G. \paper Simple linear systems with delay %\? \jour Avtomat. i Telemekh. %Autom. Remote Control \yr 1946 \vol 7 \iftex \issue 2--3 \else \issue 2 \fi \pages 95--106 \endref %Андронов~А.~А., Майер~А.~Т. %Простейшие линейные системы с запаздыванием \by Krisztin~T. \paper On stability properties for one-dimensional functional differential equations \jour Funkcial. Ekvac. \yr 1991 \vol 34 \issue 2 \pages 241--256 \endref \by Ladas~G., Sficas~Y.G., and Stavroulakis~I.P. \paper Asymptotic behavior of solutions of retarded differential equations \jour Proc. Amer. Math. Soc. \yr 1983 \vol 88 \issue 2 \pages 247--253 \endref \by Yoneyama~T. \paper On the ${3/2}$ stability theorem for one-dimensional delay-differential equations \jour J.~Math. Anal. Appl. \yr 1987 \vol 125 \issue 1 \pages 161--173 \endref \by Yoneyama~T. \paper The $3/2$ stability theorem for one-dimensional delay-differential equations with unbounded delay \jour J.~Math. Anal. Appl. \yr 1992 \vol 165 \issue 1 \pages 133--143 \endref \by Gusarenko~S.A. \paper Solvability criteria for the problems of the accumulation of perturbations of functional differential equations \inbook Functional-Differential Equations \lang Russian \publaddr Perm \publ Perm Polytechnic University \yr 1987 \pages 30--40 \endref %Гусаренко~С.~А. %Признаки разрешимости задач о накоплении возмущений для функционально-дифференциальных уравнений \by Gusarenko~S.A. and Domoshnitskii~A.I. \paper Asymptotic and oscillation properties of first-order linear scalar functional-differential equations \jour Differ. Equ. \yr 1989 \vol 25 \issue 12 \pages 1480--1491 %2090--2103 \endref %Гусаренко~С.~А., Домошницкий~А.~И. %Об асимптотических и осцилляционных свойствах линейных скалярных функционально-дифференциальных уравнений первого порядка \by Gy\H{o}ri~I. and Hartung~F. \paper Stability in delayed perturbed differential and difference equations \jour Fields Institute Communications \yr 2001 \vol 29 \pages 181--194 \endref \by Yoneyama~T. and Sugie~J. \paper Perturbing uniformly stable nonlinear scalar delay-differential equations \jour Nonlinear Anal. \yr 1988 \vol 12 \issue 3 \pages 303--311 \endref \by So~J.W.-H., Yu~J.S., and Chen~M.P. \paper Asymptotic stability for scalar delay differential equations \jour Funkcial. Ekvac. \yr 1996 \vol 39 \issue 1 \pages 1--17 \endref \by Cooke~K.L. and Yorke~J.A. \paper Some equations modelling growth processes and gonorrhea epidemics \jour Math. Biosci. \yr 1973 \vol 16 \iftex \issue 1--2 \else \issue 1 \fi \pages 75--101 \endref \by Yoneyama~T. \paper On the stability for the delay-differential equation $\dot x(t)=-a(t)f(x(t-r(t)))$ \jour J.~Math. Anal. Appl. \yr 1986 \vol 120 \issue 1 \pages 271--275 \endref \by Friedrichs~K.O. \paper On the derivation of shallow water theory.~I \jour Comm. Pure Appl. Math. \yr 1948 \pages 109--134 \endref \by Akramov~T.A. \paper Quantitative and numerical analysis of the model of the reactor with a~countercurrent \inbook Mathematical Modeling of Catalytic Reactors \lang Russian \publaddr Novosibirsk \publ Nauka \yr 1989 \pages 195--214 \endref %Акрамов~T.~А. %Количественный и численный анализ модели реактора с противотоком \by Russell~D. \paper Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions \jour SIAM Review \yr 1978 \vol 20 \pages 639--739 \endref \by Balakrishnan~A.V. \paper On superstability of semigroups \inbook Systems Modelling and Optimization % M.~P.~Polis et al. (Eds.). Proceedings of the 18th IFIP TC7 Conference on System Modelling and Optimization \publaddr Chapman and Hall \publ New York \yr 1999 \pages 12--19 \finalinfo CRC Research Notes in Mathematics \endref \by Balakrishnan~A.V. \paper Superstability of systems \jour Appl. Math. Comput. \yr 2005 \vol 164 \issue 4 \pages 321--326 \endref \by Kmit~I. and Lyul'ko~N. \paper Perturbation of superstable linear hyperbolic problems \jour J.~ Math. Anal. Appl. \yr 2018 \vol 460 %\issue \pages 838--862 \endref \by Bhat~S.P. and Bernstein~D.S. \paper Finite-time stability of continuous autonomous systems \jour SIAM J. Control. Optim. \yr 2000 \vol 38 %\issue \pages 751--766 \endref \by Coron~J.-M. and Nguyen~H.-M. \paper Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space \jour ESAIM Control Optim. Calc. Var. \yr 2020 \vol 26 % \issue 2 \pages 24 % \finalinfo https://doi.org/10.1051/cocv/2020061 \endref \by Tikhonov~I.V. and Vu Nguyen Son Tung \paper The solvability of the linear inverse problem for the evolution equation with a~superstable semigroup \jour RUDN~J. of MIPh % РУДН. Сер. МИФ \yr 2018 \vol 26 \issue 2 \pages 103--118 \endref % Тихонов~И.~В., Nguen Ву Нгуен Шон Тунг %Разрешимость линейной обратной задачи для эволюционного уравнения с суперустойчивой полугруппой \by \"Eltysheva~N.A. \paper On qualitative properties of solutions of some hyperbolic systems on the plane \jour Mat. Sb. \yr 1988 \vol 135 \issue 2 \pages 186--209 \endref %Елтышева~Н.~А. %О качественных свойствах решений некоторых гиперболических систем на плоскости \by Kmit~I. and Lyul'ko~N. \paper Finite time stabilization of nonautonomous first-order hyperbolic systems \jour SIAM J. Control. Optim. \yr 2021 \vol 59 \issue 5 \pages 3179--3202 \endref \by Kmit~I. and H\"ormann~G. \paper Systems with singular non-local boundary conditions: reflection of singularities and delta waves \jour J.~Anal. Appl. \yr 2001 \vol 20 \issue 3 \pages 637--659 \endref \by Kmit~I. \paper Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems \jour Intern. J. Dynamic Systems Differ. Equ. \yr 2008 \vol 1 \issue 3 \pages 191--195 \endref \by Abolinya~V.E. and Myshkis~A.D. \paper A~mixed problem for an almost linear hyperbolic system on the plane \jour Mat. Sb. \yr 1960 \vol 50 \issue 4 \pages 423--442 \endref %Аболиня~В.~Э., Мышкис~А.~Д. %Смешанная задача для почти линейной гиперболической системы на плоскости \by Alexandrov~V. \paper How to decide whether two convex octahedra are affinely equivalent using their natural developments only \jour J.~Geom. Graph. \yr 2022 \vol 26 \issue 1 \pages 29--38 \endref \by Havel~T. and Li~H. \paper From molecular distance geometry to conformal geometric algebra \inbook %M.~Sitharam (ed.) et al. Handbook of Geometric Constraint Systems Principles \yr 2019 \publaddr Boca Raton \publ CRC \pages 107--137 \endref \by Kor\'anyi~A. and Reimann~H.M. \paper Foundations for the theory of quasiconformal mappings on the Heisenberg group \jour Adv. Math. \yr 1995 \vol 111 \issue 1 \pages 1--87 \endref \by Vodopyanov~S.K. \paper $\Cal P$-Differentiability on Carnot groups in various topologies and related topics \inbook Proceedings on Analysis and Geometry \publaddr Novosibirsk \publ Sobolev Institute of Mathematics \yr 2000 \pages 603--670 \endref \by Garofalo~N. and Nhieu~D.M. \paper Isoperimetric and Sobolev inequalities for Carnot--Carath\'eodory spaces and the existence of minimal surfaces \jour Comm. Pure Appl. Math. \yr 1996 \vol 49 \issue 10 \pages 1081--1144 \endref \by Ambrosio~L. \paper Metric space valued functions of bounded variation \jour Ann. Sc. Norm. Super. Pisa Cl. Sci.~(5) \yr 1990 \vol 17 \issue 3 \pages 493--478 \endref \by Volpert~A.I. \paper Spaces $BV$ and quasilinear equations \jour Mat. Sb. \yr 1967 \vol 73 \issue 2 \pages 255--302 \endref %Вольперт~А.~И. %Пространства $BV$ и квазилинейные уравнения \by Kleprl{\'\i}k~L. \preprint Composition Operator for Functions of Bounded Variation \yr 2020 \bookinfo arXiv:2001.01657 \endref \by Vodopyanov~S.K. \book Function-Theoretic Approach to Some Problems of the Theory of Space Quasiconformal Mappings \bookinfo Extended Abstract of Cand. Sci. (Phys.--Math.) Dissertation \publ Sobolev Institute of Mathematics \publaddr Novosibirsk \yr 1975 \lang Russian \endref %Водопьянов~С.~К. %Функционально-теоретический подход к некоторым задачам теории пространственных квазиконформных отображений: \by Manfredi J.J. and Villamor~E. \paper An extension of Re\v{s}hetnyak's theorem \jour Indiana University Math.~J. \yr 1998 \vol 47 \issue 3 \pages 1131--1146 \endref \by Onninen J. and Zhong~X. \paper Mappings of finite distortion: A~new proof for discreteness and openness \jour Proc. Royal Soc. Edinburgh Sect.~A: Mathematics \yr 2008 \vol 138 \issue 5 \pages 1097--1102 \endref \by Heinonen J. and Holopainen~I. \paper Quasiregular maps on Carnot groups \jour J.~Geom. Anal. \yr 1997 \vol 7 \pages 109--148 \endref \by Rotschild~L.P. and Stein E.M. \paper Hypoelliptic differential operators and nilpotent groups \jour Acta Math. \yr 1976 \vol 137 \pages 247--320 \endref \by Vodopyanov~S.K. \paper $\Cal P$-Differentiability on Carnot groups in various topologies and related topics \inbook Proceedings on Analysis and Geometry \publaddr Novosibirsk \publ Sobolev Institute of Mathematics \yr 2000 \pages 603--670 \endref \by Dairbekov~N.S. \paper Mappings with bounded distortion on two-step Carnot groups \inbook Proceedings on Analysis and Geometry \publaddr Novosibirsk \publ Sobolev Institute of Mathematics \yr 2000 \pages 122--155 \endref \by Basalaev~S.G. \paper Mollifications of contact mappings of the Engel group \jour Vladikavkaz. Mat. Zh. \yr 2023 \vol 25 \issue 1 \pages 5--19 \endref \by Alexandrov~A.D. \paper Certain estimates for the Dirichlet problem \jour Soviet Math. Dokl. \yr 1961 %1960 \vol 1 % 134 %\issue 5 \pages 1151--1154 % 1001--1004 \endref % Александров~А.~Д. %Некоторые оценки, касающиеся задачи Дирихле \by Krylov~N.V. \paper On the maximum principle for nonlinear parabolic and elliptic equations \jour Math. USSR-Izv. \yr 1979 %1978 \vol 13 %42 \issue 2 %5 \pages 335--347 %1050--1062 \endref %Крылов~Н.~В. %О принципе максимума для нелинейных параболических и эллиптических уравнений \by Nazarov~A.I. \paper The A.D.~Aleksandrov maximum principle \jour J.~Math. Sci. %Современная математика и ее приложения \yr 2007 %2005 \vol 142 %29 \pages 2154--2171 %127--143 \endref %Назаров~А.~И. %Принцип максимума А.~Д. ~Александрова \by Apushkinskaya~D.E. and Nazarov~A.I. \paper The normal derivative lemma and surrounding issues \jour Russian Math. Surveys \yr 2022 \vol 77 \issue 2 \pages 189--249 %3--68 \endref %Апушкинская~Д.~Е. Назаров~А.~И. %Лемма о нормальной производной и вокруг нее \by Oshchepkova~S.N. and Penkin~O.M. \paper The mean-value theorem for elliptic operators on stratified sets \jour Math. Notes \yr 2007 \vol 81 \issue 3 \pages 365--372 % 417--426 \endref % Ощепкова С. Н., Пенкин О. М. % Теорема о среднем для эллиптического оператора на стратифицированном множестве \by Luo~Y. \paper An Aleksandrov--Bakelman type maximum principle and applications \jour J.~Differ. Equ. \yr 1993 \vol 101 \issue 2 \pages 213--231 \endref \by Apushkinskaya~D.E. and Nazarov~A.I. \paper H\"older estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Venttsel boundary condition \jour Amer. Math. Soc. Transl. \yr 1995 \vol 64 \pages 1--13 \endref \by Apushkinskaya~D.E. \paper An estimate for the maximum of solutions of parabolic equations with Venttsel boundary conditions \jour Vestn. Leningrad. University, Mat. Mekh. Astron., Ser.~I \yr 1991 \issue 2 \pages 3--12 \endref %Апушкинская~Д.~Е. % Оценка максимума решений параболических уравнений с граничными условиями Вентцеля \by Apushkinskaya~D.E. and Nazarov~A.I. \paper Linear two-phase Venttsel problems \jour Ark. Mat. \yr 2001 \vol 39 \issue 2 \pages 201--222 \endref \by Mironenko~F.D. and Nazarov~A.I. \paper Local Aleksandrov--Bakelman type maximum estimate for solutions to elliptic equations on a~book-type stratified set \jour Zap. Nauchn. Sem. POMI \yr 2022 \vol 519 \pages 105--113 \endref %Мироненко~Ф.~Д. Назаров~А.~И. %Локальная оценка максимума типа Александрова~--- Бакельмана для %решений эллиптических уравнений на стратифицированном множестве вида книжка \by Nazarov~A.I. and Uraltseva~N.N. \paper Convex-monotonous bulls and an estimate of the maxima of solutions of a~parabolic equation \jour Zap. Nauchn. Sem. POMI \yr 1985 \vol 147 \pages 95--109 \endref %Назаров~А.~И. Уральцева~Н.~Н. %Выпукло-монотонные оболочки и оценка максимума решения параболического уравнения \by Levchuk~V.M. \paper Parabolic subgroups of certain ABA-groups \jour Math. Notes \yr 1982 \vol 31 \issue 4 \pages 259--267 %509--525 \endref % Левчук В.~М. %Параболические подгруппы некоторых АВА-групп \by Koibaev~V.A. \paper Elementary nets in linear groups \jour Trudy Inst. Mat. i Mekh. UrO RAN \yr 2011 \vol 17 \issue 4 \pages 134--141 \endref %Койбаев~В.~А. %Элементарные сети в линейных группах \by Kuklina~S.K., Likhacheva~A.O., and Nuzhin~Ya.N. \paper On closedness of carpets of Lie type over commutative rings \jour Trudy Inst. Mat. i Mekh. UrO RAN \yr 2015 \vol 21 \issue 3 \pages 192--196 \endref % Куклина С. К., Лихачева А. О., Нужин Я. Н. %О замкнутости ковров лиева типа над коммутативными кольцами \by Koibaev~V.A., Kuklina~S.K., Likhacheva~A.O., and Nuzhin~Ya.N. \paper Subgroups, of Chevalley groups over a locally finite field, defined by a~family of additive subgroups \jour Math. Notes \yr 2017 \vol 102 \issue 6 \pages 792--798 \endref %Койбаев В. А., Куклина С. К., Лихачева А. О., Нужин Я. Н. %Подгруппы групп Шевалле над локально конечным полем, определяемые набором аддитивных подгрупп \by Mazur S. \paper O metodach sumowalno\'sci \inbook Ksiega Pamiatkowa Pierwszego Polskiego Zjazdu Matematycznego, Lwow, 7--10.IX.1927 \bookinfo Dodatek do {\it Annales de la Soci\'et\'e Polonaise de Math\'ematique} \yr 2013 \finalinfo Polskie Towarzystwo Matematyczne \url https://www.ptm.org.pl/zjazd/pliki/102-107.html \pages 102--107 \endref %\ref\no1 %\by Mazur~S. %\paper O metodach sumowalno\'sci %\jour Ann. Soc. Polon. Math. (Suppl.) %\yr 1929 %\vol 9 %\pages 102--107 %\endref \by Lorentz~G.G. \paper A~contribution to the theory of divergent sequences \jour Acta Math. \yr 1948 \vol 80 \issue 1 \pages 167--190 \endref \by Sucheston~L. \paper Banach limits \jour Amer. Math. Monthly \yr 1967 \vol 74 \issue 3 \pages 308--311 \endref \by Semenov~E.M., Sukochev~F.A., and Usachev~A.S. \paper Geometry of Banach limits and their applications \jour Russian Math. Surveys \yr 2020 \vol 75 \issue 4 \pages 725--763 %153--194 \endref %Семенов~Е.~М., Сукочев~Ф.~А., Усачев~А.~С. %Геометрия банаховых пределов и их приложения \by Avdeev~N.N. \paper On the space of almost convergent sequences \jour Math. Notes \yr 2019 \vol 105 \issue 3 \pages 462--466 %464--468 \endref %Авдеев~Н.~Н. %О пространстве почти сходящихся последовательностей \by Hall~R.R. and Tenenbaum~G. \paper On Behrend sequences \inbook Mathematical Proceedings of the Cambridge Philosophical Society \bookinfo vol.~112 \publaddr Cambridge \publ Cambridge University \yr 1992 \pages 467--482 \finalinfo \endref \by Davenport H. and Erdos P. \paper On sequences of positive integers \jour Acta Arithm. \yr 1936 \vol 2 %\issue \pages 147--151 \endref \by Davenport H. and Erdos P. \paper On sequences of positive integers \jour J.~Indian Math. Soc., N.~S. \yr 1951 \vol 15 %\issue \pages 19--24 \endref \by Besicovitch A. \paper On the density of certain sequences of integers \jour Math. Ann. \yr 1935 \vol 100 \issue 1 \pages 336--341 \endref \by Euler L. \paper Variae observationes circa series infinitas \inbook The Early Mathematics of Leonhard Euler \publ MAA \publaddr Providence \pages 249--260 \bookinfo The MAA Tercentenary Euler Celebration. AMS/MAA Spectrum, vol.~98 \yr 2007 \finalinfo {\it Commentarii Academiae Scientiarum Imperialis Petropolitanae}, {\rm vol.~9, 160--168 (1737)} \url https://www.biodiversitylibrary.org/\linebreak page/10093417 \endref \by Lorenzi~A. and Sinestrari~E. \paper An inverse problem in the theory of materials with memory.~I \jour Nonlinear Analysis: Theory, Methods and Applications \yr 1988 \vol 12 \issue 12 \pages 1317--1335 \endref \by Lorenzi~A. \paper An inverse problem in the theory of materials with memory.~II \inbook Semigroup Theory and Applications (Trieste, 1987) \publ Marcel Dekker \publaddr New York \yr 1989 \pages 261--290 \finalinfo Lecture Notes in Pure and Appl. Math.; vol.~116 \endref \by Durdiev~D.K. \paper An inverse problem for the three-dimensional wave equation in a~medium with memory \inbook Mathematical Analysis and Discrete Mathematics \lang Russian \publ Novosibirsk University \publaddr Novosibirsk \yr 1989 \pages 19--27 \endref % Дурдиев~Д.~K. % Обратная задача для трехмерного волнового уравнения в среде с памятью % Математический анализ и дискретная математика \by Lorenzi~A. and Paparoni~E. \paper Direct and inverse problems in the theory of materials with memory \jour Rend. Sem. Mat. University Padova \yr 1992 \vol 87 % \issue 12 \pages 105--138 \endref \by Bukhgeym~A.L. \paper Inverse problems of memory reconstruction \jour Inverse Ill-Posed Probl. Ser. \yr 1993 \vol 1 \issue 3 \pages 193--206 \endref \by Bukhgeim~A.L. and Dyatlov~G.V. \paper Inverse problems for equations with memory \jour SIAM J. Math. Fool. \yr 1998 \vol 1 \issue 2 \pages 1--17 \endref \by Durdiev~D.K. and Safarov~Zh.Sh. \paper Local solvability of the problem of definition of the spatial part of the multidimensional kernel in an integro-differential equation of hyperbolic type \jour Vestnik Samarsk. Gos. University Ser. Fiz.-Mat. Nauki \yr 2012 \vol 29 \issue 4 \pages 37--47 \endref %Дурдиев~Д.~К.,~Cафаров~Ж.~Ш. %Локальная разрешимость задачи определения пространственной части многомерного ядра в %интегродифференциальном уравнении гиперболического типа \by Durdiev~D.K. and Safarov~Zh.Sh. \paper Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a~bounded domain \jour Math. Notes % Mat. Zametki \yr 2015 \vol 97 \issue 6 \pages 867--877 %855--867 \endref %pr %Дурдиев Д.~К., Сафаров Ж.~Ш. %Обратная задача об определении одномерного ядра уравнения вязкоупругости в ограниченной области \by Durdiev~D.K. and Totieva~Zh.D. \paper The problem of determining the multidimensional kernel of the viscoelasticity equation \jour Vladikavkaz. Mat. Zh. \yr 2015 \vol 17 \issue 4 \pages 18--43 \endref % Дурдиев~Д.~К., Тотиева~Ж.~Д. %Задача об определении многомерного ядра уравнения вязкоупругости \by Durdiev~D.K. and Rahmonov~A.A. \paper Inverse problem for a system of integro-differential equations for sh waves in a~visco-elastic porous medium: Global solvability \jour Theor. Math. Phys. %TMF \yr 2018 \vol 195 \issue 3 \pages 923--937 %491--506 \endref %Дурдиев~Д.~К., Рахмонов~А.~А. %Обратная задача для системы интегродифференциальных уравнений SH-волн в вязкоупругой пористой среде: глобальная разрешимость \by Durdiev~D.K. \paper A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation \jour Eurasian~J. Math. Comp. Appl. \yr 2019 \vol 7 \issue 2 \pages 4--19 \endref \by Durdiev~D.K. and Totieva~Zh.~D. \paper A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation \jour Math. Methods Appl. Sci. \yr 2019 \vol 42 \issue 18 \pages 7440--7451 \endref \by Kumar~P., Kinra~R., and Mohan~M. \paper A local in time existence and uniqueness result of an inverse problem for the Kelvin--Voigt fluids \jour Inverse Probl. \yr 2021 \vol 37 \issue 8 \pages 085005 \endref \by Blagoveshchenskii~D.A. and Fedorenko~A.S. \paper The inverse problem for the acoustic equation in a~weakly horizontally inhomogeneous medium \jour J.~Math. Sci. \yr 2008 \vol 155 \issue 3 \pages 379--389 \endref %Благовещенский~А.~С., Федоренко~Д.~А. %Обратная задача для уравнения акустики в слабо горизонтально-неоднородной среде \by Durdiev~D.K. and Bozorov~Z.R. \paper A problem of determining the kernel of integrodifferential wave equation with weak horizontal properties \jour Dal'nevost. Mat. Zh. \yr 2013 \vol 13 \issue 2 \pages 209--221 \endref %Дурдиев~Д.~К., Бозоров~З.~Р. %Задача определения ядра интегро-дифференциального волнового уравнения со слабо горизонтальной однородностью \by Durdiev~D.K. \paper An inverse problem for determining two coefficients in an integrodifferential wave equation \jour Sib. Zh. Ind. Mat. %J.~Appl. Ind. Math. \yr 2009 \vol 12 \issue 3 \pages 28--49 \endref %Дурдиев~Д.~К. %Обратная задача определения двух коэффициентов в одном интегро-дифференциальном волновом уравнении