\by Sergeev~I.N. \paper Oscillation and wandering characteristics of solutions of a~linear differential system \jour Izv. Math. \yr 2012 \vol 76 \issue 1 \pages 139--162 \endref %Сергеев~И.~Н. %Характеристики колеблемости и блуждаемости решений линейной дифференциальной системы \by Sergeev~I.N. \paper Definition of characteristic frequencies of a~linear equation \jour Differ. Uravn. \yr 2004 \vol 40 \issue 11 \pages 1573 \endref %Сергеев~И.~Н. %Определение характеристических частот линейного уравнения \by Sergeev~I.N. \paper Definition and properties of characteristic frequencies of a~linear equation \jour J.~Math. Sci. (N.Y.) \yr 2006 \vol 135 \issue 1 \pages 2764--2793 \endref %Сергеев И.~Н. %Определение и свойства характеристических частот линейного уравнения \by Sergeev~I.N. \paper Properties of characteristic frequencies of linear equations of arbitrary order \jour J.~Math. Sci. (N.Y.) \yr 2014 \vol 197 \issue 3 \pages 410--426 \endref %Сергеев~И.~Н. %Свойства характеристических частот линейных уравнений произвольного порядка \by Barabanov~E.A. and Voidelevich~A.S. \paper Remark on the theory of Sergeev frequencies of zeros, signs and roots for solution of linear differential equations.~I \jour Differ. Equ. \yr 2016 \vol 52 \issue 1 \pages 1249--1267 \endref %Барабанов Е.~А., Войделевич А.~С. %К теории частот Сергеева нулей, знаков и корней решений линейных дифференциальных уравнений. I \by Sergeev~I.N. \paper Definition of full frequencies of solutions of the linear equation \jour Differ. Uravn. \yr 2008 \vol 44 \issue 11 \pages 1577 \endref %Сергеев И.~Н. %Определение полных частот решений линейного уравнения \by Sergeev~I.N. \paper Definition of full frequencies of solutions of the linear system \jour Differ. Uravn. \yr 2009 \vol 45 \issue 6 \pages 908 \endref %Сергеев~И.~Н. %Определение полных частот решений линейной системы \by Sergeev~I.N. \paper The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems \jour Sb. Math. \yr 2013 \vol 204 \issue 1 \pages 114--132 \endref %Сергеев~И.~Н. %Замечательное совпадение характеристик колеблемости %и блуждаемости решений дифференциальных систем \by Sergeev~I.N. \paper Oscillation, rotation, and wandering exponents of solutions of differential systems \jour Math. Notes \yr 2016 \vol 99 \issue 5 \pages 729--746 \endref %Сергеев~И.~Н. %Показатели колеблемости, вращаемости и блуждаемости решений дифференциальных систем \by Sergeev~I.N. \paper Lyapunov characteristics of oscillation, rotation, and wandering of solutions of differential systems \jour J.~Math. Sci. (N.Y.) \yr 2018 \vol 234 \issue 4 \pages 497--522 \endref %Сергеев~И.~Н. %Ляпуновские характеристики колеблемости, вращаемости и %блуждаемости решений дифференциальных систем \by Sergeev~I.N. \paper Definition of rotational characteristic of solutions of differential systems and equation \jour Differ. Uravn. \yr 2013 \vol 49 \issue 11 \pages 1501--1503 \endref %Сергеев И.~Н. %Определение характеристик вращаемости решений дифференциальных систем и~уравнений \by Sergeev~I.N. \paper Questions about the spectra of exponents of rotatability and wandering of autonomous systems \jour Differ. Uravn. \yr 2014 \vol 50 \issue 6 \pages 844--845 \endref %Сергеев~И.~Н. %Вопросы о спектрах показателей вращаемости и блуждаемости автономных систем \by Burlakov~D.S. \paper Spectra of rotation and rotatability exponents of autonomous systems with simple purely imaginary eigenvalues \jour Differ. Uravn. \yr 2014 \vol 50 \issue 6 \pages 845 \endref %Бурлаков~Д.~С. %Спектры показателей вращения и вращаемости автономных систем %с простыми чисто мнимыми собственными числами \by Burlakov~D.S. and Tsoi~S.V. \paper Coincidence of complete and vector frequencies of solutions of a~linear autonomous system \jour J.~Math. Sci. (N.Y.) \yr 2015 \vol 210 \issue 2 \pages 155--167 \endref %Бурлаков Д.~С., Цой С.~В. %Совпадение полной и векторной частот решений линейной автономной системы \by Stash~A.Kh. \paper Properties of exponents of oscillation of linear autonomous differential system solutions \jour Vestn. Udmurt. Univ. Mat. Mekh. Komp'yuternye Nauki \yr 2019 \vol 29 \issue 4 \pages 558--568 \endref %Сташ~А.~Х. %Свойства показателей колеблемости решений линейных %автономных дифференциальных систем \by Kozlov~V.V. \paper Weighted means, strict ergodicity, and uniform distributions \jour Math. Notes \yr 2005 \vol 78 \issue 3 \pages 329--337 \endref %Козлов~В.~В. %Весовые средние, строгая эргодичность и равномерное распределение \by Harrop~R. \paper Concerning formulas of the types $A \to B \vee C$, $A \to \exists x B(x)$ \jour J.~Symb. Log. \yr 1960 \vol 26 \issue 1 \pages 27--32 \endref \by Mints~G.E. \paper Derivability of admissible rules \jour J.~Soviet Math. \yr 1976 \vol 6 \issue 4 \pages 417--421 \endref % Минц~ Г.~Е. %Выводимость допустимых правил \by Port~J. \paper The deducibilities of $S5$ \jour J.~Phylos. Logic \yr 1981 \vol 10 \issue 1 \pages 409--422 \endref \by Fridman H. \paper One hundred and two problems in mathematical logic \jour J.~Symb. Log. \yr 1975 \vol 40 \issue 3 \pages 113--130 \endref \by Tsitkin~A.I. \paper Admissible rules of intuitionistic propositional logic \jour Math. USSR-Sb. \yr 1977 \vol 31 %102 \issue 2 \pages 279--288 %314--323 \endref % Циткин~А.~И. % О допустимых правилах интуиционистской логики высказываний \by Rimatskii~V.V. \paper Explicit basis for admissible rules in $K$-saturated tabular logics \jour Diskr. Mat. \yr 2022 \vol 34 \issue 1 \pages 126--140 \endref %Римацкий В.~В. %Явный базис для допустимых правил $K$-насыщенных табличных логик \by Rybakov V.V., Terziler M., and Rimatskiy~V.V. \paper Basis in semi-reduced form for the admissible rules of the intuitionistic logic IPC \jour Math. Logic Quart. \yr 2000 \vol 46 \issue 2 \pages 207--218 \endref \by Rybakov~V.V., Terziler~M., and Genzer~C. \paper An essay on unification and inference rules for modal logic \jour Bull. Sect. Logic \yr 1999 \vol 28 \issue 3 \pages 145--157 \endref \by Iemhoff R. \paper On the admissible rules of Intuitionistic Propositional Logic \jour J.~Symb. Log. \yr 2001 \vol 66 \issue 2 \pages 281--294 \endref \by Rybakov~V.V. \paper Construction of an explicit basis for rules admissible in modal system $S4$ \jour Math. Logic Quart. \yr 2001 \vol 47 \issue 4 \pages 441--451 \endref \by Je\v{r}\'abek E. \paper Admissible rules of modal logics \jour J.~Logic Comput. \yr 2005 \vol 15 \issue 4 \pages 411--431 \endref \by Je\v{r}\'abek~E. \paper Independent bases of admissible rules \jour Logic J. IGPL \yr 2008 \vol 16 \issue 3 \pages 249--267 \endref \by Rimatsky~V.V. \paper An explicit basis for admissible rules of modal logics of finite width \jour J.~Sib. Fed. Univ. %J.~Siberian Federal University. Mathematics & Physics \yr 2008 \issue 1 \pages 85--93 \endref % Римацкий ~В.~В. %Явный базис допустимых правил вывода логик конечной ширины \by Kapustin~V.V. \paper The set of zeros of the Riemann zeta function as the point spectrum of an operator \jour St. Petersburg Math.~J. %Algebra i Analiz \yr 2022 \vol 33 \issue 4 \pages 661--673 %107--124 \endref %Капустин~В.~В. %Множество нулей дзета-функции Римана как точечный спектр оператора \by Babenko~K.I. \paper Estimating the quality of computational algorithms. Parts~1 and~2 \inbook Computer Methods in Applied and Engineering. Vol.~7 \publaddr Amsterdam \publ North-Holland \yr 1976 \iftex \pages 47--73; 135--152 \else \pages 47--73 \fi \endref \by Belykh~V.N. \paper Superconvergent algorithms for the numerical solution of the Laplace equation in smooth axisymmetric domains \jour Comput. Math. Math. Phys. \yr 2020 \vol 60 \issue 4 \pages 545--557 %553--566 \endref % Белых~В.~Н. % Сверхсходящиеся алгоритмы численного решения уравнения Лапласа в гладких осесимметричных областях \by Belykh~V.N. \paper Unsaturated algorithms for the numerical solution of elliptic boundary value problems in smooth axisymmetric domains \jour Siberian Adv. Math. \yr 2022 \vol 32 %25 \issue 3 %1 \pages 157--185 %3--50 \endref \endref % Белых~В.~Н. %Ненасыщаемые алгоритмы численного решения эллиптических краевых задач в гладких осесимметричных областях \by Aleksandroff~P.S. \paper Uber die Urysonsche Konstanten \jour Fundam. Math. \yr 1933 \vol 20 \pages 140--150 \endref %Александров~П.~С. \by Mityagin~B.S. \paper Approximative dimension and bases for nuclear spaces \jour Uspekhi Mat. Nauk \yr 1961 \vol 16 \issue 4 \pages 63--132 \endref %Б.~С.~Митягин, %Аппроксимативная размерность и базисы в ядерных пространствах \by Sinwel~H.F. \paper Uniform approximation of differentiable functions by algebraic polynomials \jour J.~Approx. Theory \yr 1981 \vol 1 \pages 1--8 \endref \by Maltsev~A.I. \paper On homomorphisms onto finite groups \jour Ivanovo Gos. Ped. Inst. Uchen. Zap. %Уч. зап. Ивановск. пед. ин-та. \yr 1958 \vol 18 \issue 5 \pages 49--60 \endref %Мальцев~А.~И. %О гомоморфизмах на конечные группы \by Azarov~D.N. \paper On the residual finiteness of free products of solvable minimax groups with cyclic amalgamated subgroups \jour Math. Notes %Mat. Zametki \yr 2013 \vol 93 \issue 4 \pages 503--509 %483--491 \endref %Азаров~Д.~Н. %О финитной аппроксимируемости свободного произведения разрешимых минимаксных групп с циклическими объединенными подгруппами \by Tumanova~E.A. \paper On the root-class residuality of HNN-extensions of groups \jour Model. Anal. Inform. Sist. \yr 2014 \vol 21 \issue 4 \pages 148--180 \endref %Туманова~Е.~А. % Об аппроксимируемости корневыми классами HNN-расширений групп \by Tumanova~E.A. \paper On the residual $\pi$-finiteness of generalized free products of groups \jour Math. Notes %Mat. Zametki \yr 2014 \vol 95 \issue 4 \pages 544--551 % 605--614 \endref %Туманова~Е.~А. %Об аппроксимируемости конечными $\pi$-группами обобщенных свободных произведений групп \by Tumanova~E.A. \paper On the root-class residuality of generalized free products with a~normal amalgamation \jour Russian Math. (Iz. VUZ) % Izv. Vyssh. Uchebn. Zaved. Mat. \yr 2015 \vol 59 \issue 10 \pages 23--37 % 27--44 \endref %Туманова~Е.~А. %Об аппроксимируемости корневыми классами групп обобщенных свободных произведений с нормальным объединением \by Tumanova~E.A. \paper On the residual properties of generalized direct products \jour Lobachevskii~J. Math. \yr 2020 \vol 41 \issue 9 \pages 1704--1711 \endref \by Gruenberg~K.W. \paper Residual properties of infinite soluble groups \jour Proc. Lond. Math. Soc. \yr 1957 \vol 7 \issue 1 \pages 29--62 \endref \by Azarov~D.N. and Tieudjo~D. \paper On root-class residuality of amalgamated free products \jour Nauch. Tr. Ivanovsk. Gos. Univ. \yr 2002 \vol 5 \pages 6--10 \endref %Азаров~Д.~Н., Тьеджо~Д. %Об аппроксимируемости свободного произведения групп с объединенной подгруппой корневым классом групп \by Sokolov~E.V. \paper A~characterization of root classes of groups \jour Comm. Algebra \yr 2015 \vol 43 \issue 2 \pages 856--860 \endref \by Baumslag~G. \paper On the residual finiteness of generalized free products of nilpotent groups \jour Trans. Amer. Math. Soc. \yr 1963 \vol 106 \issue 2 \pages 193--209 \endref \by Kim~G. \paper Cyclic subgroup separability of~generalized free products \jour Canad. Math. Bull. \yr 1993 \vol 36 \issue 3 \pages 296--302 \endref \by Kim~G. \paper Cyclic subgroup separability of HNN extensions \jour Bull. Korean Math. Soc. \yr 1993 \vol 30 \issue 2 \pages 285--293 \endref \by Sokolov~E.V. \paper On the cyclic subgroup separability of free products of two groups with amalgamated subgroup \jour Lobachevskii J. Math. \yr 2002 \vol 11 \pages 27--38 \endref \by Sokolov~E.V. \book Separability of Subgroups in Some Classes of Finite Groups \lang Russian \bookinfo Cand. Sci. (Phys.-Math.) Dissertation \publaddr Ivanovo \publ Ivanovo State Univ. \yr 2003 \endref % Соколов~Е.~В. %Об~отделимости подгрупп в некоторых классах конечных групп. %Дис. канд. физ.-мат. наук (Иван. гос. ун-т, Иваново, ). \by Gaivoronskaya~M.Yu. and Sokolov~E.V. \paper On finite separability of cyclic subgroups of HNN-extensions of groups \jour Vestnik Ivanovsk. Gos. Univ. Ser. Estestv., Obshch. Nauki % Вестн. Иван. гос. ун-та. Сер.:~Естественные, общественные науки \yr 2010 \issue 2 \pages 90--97 \endref %Гайворонская~М.~Ю., Соколов~Е.~В. %О финитной отделимости циклических подгрупп HNN-расширений групп \by Zhou~W. and Kim~G. \paper Abelian subgroup separability of certain HNN~extensions \jour Int.~J. Algebra Comput. \yr 2018 \vol 28 \issue 3 \pages 543--552 \endref \by Zhou~W. and Kim~G. \paper Abelian subgroup separability of certain generalized free products of groups \jour Algebra Colloq. \yr 2020 \vol 27 \issue 4 \pages 651--660 \endref \by Sokolov~E.V. and Tumanova~E.A. \paper To the question of the root-class residuality of free constructions of groups \jour Lobachevskii J. Math. \yr 2020 \vol 41 \issue 2 \pages 260--272 \endref \by Sokolov~E.V. \paper On conditions for the approximability of the fundamental groups of graphs of groups by root classes of groups \jour Lobachevskii~J. Math. \yr 2023 \vol 44 \issue 12 \pages 5434--5442 \endref \by Kuvaev~A.E. and Sokolov~E.V. \paper Necessary conditions of the approximability of generalized free products and HNN-extensions of groups \jour Russian Math. (Iz. VUZ) % Izv. Vyssh. Uchebn. Zaved. Mat. \yr 2017 \vol 61 \issue 9 \pages 32--42 % 36--47 \endref %Куваев~А.~Е., Соколов~Е.~В. %Необходимые условия аппроксимируемости обобщенных свободных произведений и HNN-расширений групп \by Allenby~R.B.J.T. \paper The potency of cyclically pinched one-relator groups \jour Arch. Math. \yr 1981 \vol 36 \issue 3 \pages 204--210 \endref \by Sokolov~E.V. \paper Structure of finitely generated bounded solvable groups \jour Vestnik Ivanovsk. Gos. Univ. Ser. Biol., Khim., Fiz., Mat. %Вестн. Иван. гос. ун-та. Сер.: Биология, Химия, Физика, Математика \yr 2003 \issue 3 \pages 128--132 \endref %Соколов~Е.~В. %Строение конечно порожденных ограниченных разрешимых групп \by Hall~P. \paper Nilpotent groups \jour Matematika \yr 1968 \vol 12 \issue 1 \pages 3--36 \endref % Холл~Ф. %Нильпотентные группы \by Sokolov~E.V. \paper On the separability of subgroups of nilpotent groups by root classes of groups \jour J.~Group Theory \yr 2023 \vol 26 \issue 4 \pages 751--777 \endref \by Magnus~W. \paper Beziehungen zwischen Gruppen und~Idealen in~einem speziellen Ring \jour Math. Ann. \yr 1935 \vol 111 \issue 1 \pages 259--280 \endref \by Robinson~A. \paper A~machine oriented logic based on the resolution principle \jour J.~ACM \yr 1965 \vol 12 \issue 1 \pages 23--41 \endref \by Knuth~D.E. and Bendix~P.B. \paper Simple word problems in universal algebras \inbook Automation of Reasoning %Siekmann, J.H., Wrightson, G. (eds) \publaddr Berlin and Heidelberg \publ Springer \yr 1983 \pages 342--376 \finalinfo Symbolic Computations; vol.~1064 \finalinfo \endref \by Baader~F. and Snyder~W. \paper Unification theory \inbook Handbook of Automated Reasoning.~I \publaddr Amsterdam \publ Elsevier \yr 2001 \pages 445--533 \endref \by Baader F. and Ghilardi~S. \paper Unification in modal and description logics \jour Logic~J. IGPL \yr 2011 \vol 19 \issue 6 \pages 705--730 \endref \by Baader F., Morawska B. \paper Unification in the description logic EL \jour Log. Methods Comput. Sci. \yr 2010 \vol 6 \pages 1--31 \endref \by Baader~F. and K\"usters~R. \paper Unification in a~description logic with transitive closure of roles \inbook Proceedings of the 8th International Conference Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001) \publ Springer \publaddr Berlin \yr 2001 \pages 217--232 \finalinfo Lect. Notes Comput. Sci.; vol.~2250 \endref \by Baader F. and Narendran P. \paper Unification of concept terms in description logics \jour J.~Symb. Comput. \yr 2001 \vol 31 %\issue \pages 277--305 \endref \by Rybakov V.V. \paper Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus \jour Ann. Pure Appl. Log. \yr 1990 \vol 50 \issue 1 \pages 71--106 \endref \by Rybakov V.V. \paper Rules of inference with parameters for intuitionistic logic \jour J.~Symb. Log. \yr 1992 \vol 57 \issue 3 \pages 912--923 \endref \by Ghilardi S. \paper Unification through projectivity \jour J.~Logic Comput. \yr 1997 \vol 7 \issue 6 \pages 733--752 \endref \by Ghilardi~S. \paper Unification, finite duality and projectivity in varieties of Heyting algebras \jour Ann. Pure Appl. Logic \yr 2004 \vol 127 \issue 1--3 \pages 99--115 \endref \by Ghilardi S. \paper Unification in intuitionistic logic \jour J.~Symb. Log. \yr 1999 \vol 64 \issue 2 \pages 859--880 \endref \by Ghilardi S. \paper Best solving modal equations \jour Ann. Pure Appl. Logic \yr 2000 \vol 102 %\issue \pages 183--198 \endref \by Ghilardi~S. \paper Filtering unification and most general unifiers in modal logic \jour J.~Symb. Log. \yr 2004 \vol 69 \issue 3 \pages 879--906 \endref \by Jer\'abek~E. \paper Admissible rules of modal logics \jour J.~Logic Comput. \yr 2005 \vol 15 %\issue\? \pages 411--431 \endref \by Jer\'abek~E. \paper Independent bases of admissible rules \jour Logic~J. IGPL \yr 2008 \vol 16 %\issue \? \pages 249--267 \endref \by Je\v r\'abek~E. \paper Rules with parameters in modal logic.~I \jour Ann. Pure Appl. Logic \yr 2015 \vol 166 \issue 9 \pages 881--933 \endref \by Iemhof~R. \paper On the admissible rules of intuitionistic propositional logic \jour J.~Symb. Log. \yr 2001 \vol 66 %\issue \pages 281--294 \endref \by Iemhoff~R. and Metcalfe~G. \paper Proof theory for admissible rules \jour Ann. Pure Appl. Logic \yr 2009 \vol 159 %\issue \pages 171--186 \endref \by Balbiani Ph. and Mojtahedi~M. \paper Unification with parameters in the implication fragment of classical propositional logic \jour Logic J. IGPL \yr 2022 \vol 30 \issue 3 \pages 454--464 \endref \by Balbiani~Ph. \paper Unification in modal logic \inbook Indian Conference on Logic and Its Applications (ICLA), 1~March--5~March, 2019 \yr 2019 \publ Narosa %\? \publaddr Delhi, India \pages 1--5 %https://doi.org/10.1007/978-3-662-58771-3-1 %\? \endref \by Bashmakov~S., Kosheleva~A., and Rybakov~V. \paper Non-unifiability in linear temporal logic of knowledge with multi-agent relations \jour Sib. Math. Rep. \yr 2016 \vol 13 %\issue \pages 656--663 \endref \by Gabbay~D.M. and Hodkinson~I.M. \paper An axiomatization of the temporal logic with Until and Since over the real numbers \jour J.~Logic Comput. \yr 1990 \vol 1 %\issue \pages 229--260 \endref \by Vardi M.Y. \paper Reasoning about the past with two-way automata \inbook Automata, Languages and Programming. ICALP 1998 \publaddr Berlin and Heidelberg \publ Springer \yr 1998 \pages 628--641 \finalinfo Lect. Notes Comput. Sci.; vol.~1443 \endref \by Rybakov V.V. \paper Linear temporal logic with until and next, logical consecution \jour Ann. Pure Appl. Logic \yr 2008 \vol 155 %\issue \pages 32--45 \endref \by Babenyshev S. and Rybakov V. \paper Linear temporal logic LTL: basis for admissible rules \jour J.~Logic Comput. \yr 2011 \vol 21 %\issue \pages 157--177 \endref \by Rybakov~V. \paper Logical consecutions in discrete linear temporal logic \jour J.~Symb. Log. \yr 2005 \vol 70 \issue 4 \pages 1137--1149 \endref \by Rybakov~V. \paper Logics with universal modality and admissible consecutions \jour J. Appl. Non-Class. Log. \yr 2007 \vol 17 \issue 3 \pages 381--394 \endref \by Rybakov Vladimir V. \paper Writing out unifiers in linear temporal logic \jour J.~Logic Comput. \yr 2012 \vol 22 \issue 5 \pages 1199--1206 \endref \by Rybakov V. \paper Unifiers in transitive modal logics for formulas with coefficients (meta-variables) \jour Logic J. IGPL \yr 2013 \vol 21 \issue 2 \pages 205--215 \endref \by Dzik W. and Wojtylak~P. \paper Projective unification in modal logic \jour Logic~J. IGPL \yr 2012 \vol 121 \issue 1 \pages 121--152 \endref \by Wr\'onski A. \paper Transparent unification problem \jour Rep. Math. Logic \yr 1995 \vol 20 %\issue \pages 105--107 \endref \by Wr\'onski~A. \paper Transparent verifiers in intermediate logics \inbook Abstracts of the 54th Conference in History of Mathematics \publ The Jagiellonian University \publaddr Cracow \yr 2008 \pages 6 \endref \by Sharapudinov~I.I., Gadzhieva~Z.D., and Gadzhimirzaev~R.M. \paper Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems \jour Dagestan Electr. Math. Reports \yr 2016 \vol 6 \pages 31--60 \endref %Шарапудинов~И.~И., Гаджиева~З.~Д., Гаджимирзаев~Р.~М. %Системы функций, ортогональных относительно скалярных произведений типа Соболева с дискретными массами, порожденных классическими %ортогональными системами \by Sharapudinov~I.I. and Magomed-Kasumov~M.G. \paper On representation of a~solution to the Cauchy problem by a~Fourier Series in Sobolev-orthogonal polynomials generated by Laguerre polynomials \jour Differ. Equ. %Differ. Uravn. \yr 2018 \vol 54 \issue 1 \pages 49--66 %51--68 \endref %Шарапудинов~И.~И., Магомед-Касумов~М.~Г. %О представлении решения задачи Коши рядом Фурье по полиномам, ортогональным по Соболеву, порожденным многочленами Лагерра \by Gadzhimirzaev~R.M. \paper On the uniform convergence of the Fourier series by the system of polynomials generated by the system of Laguerre polynomials \jour Izv. Saratov Univ. Math. Mech. Inform. \yr 2020 \vol 20 \issue 4 \pages 416--423 \endref %Гаджимирзаев~Р.~М. %О равномерной сходимости ряда Фурье по системе полиномов, порожденной системой полиномов Лагерра \by Xu~Y. \paper Approximation by polynomials in Sobolev spaces with Jacobi weight \jour J.~Fourier Anal. Appl. \yr 2018 \vol 24 \issue 6 \pages 1438--1459 \endref \by Xu~Y., Wang~Z., and Li~H. \paper Jacobi--Sobolev orthogonal polynomials and spectral methods for elliptic boundary value problems \jour Commun. Appl. Math. Comput. \yr 2019 \vol 1 \issue 2 \pages 283--308 \endref \by Garc\'ia-Ardila~J.C. and Marriaga~M.E. \paper Approximation by polynomials in Sobolev spaces associated with classical moment functionals \jour Numer. Algor. \yr 2023 %\?Published 30 June 2023 \doi 10.1007/s11075-023-01572-3 \pages 34~pp. \endref \by Leonardo~E.F. \preprint Weighted Sobolev Orthogonal Polynomials and Approximation in the Ball\nofrills \bookinfo arXiv:2308.05469 \yr 2023 \endref \by Askey~R. and Wainger~S. \paper Mean convergence of expansions in Laguerre and Hermite series \jour Amer.~J. Math. \yr 1965 \vol 87 \issue 3 \pages 695--708 \endref \by Muckenhoupt~B. \paper Mean convergence of Hermite and Laguerre series.~II \jour Trans. Amer. Math. Soc. \yr 1970 \vol 147 \issue 2 \pages 433--460 \endref \by Gadzhimirzaev~R.M. and Shakh-Emirov~T.N. \paper Approximation properties of the Vall\'ee-Poussin means of partial sums of a~special series in Laguerre polynomials \jour Math. Notes \yr 2021 \vol 110 \issue 4 \pages 475--488 %483--497 \endref %Гаджимирзаев~Р.~М., Шах-Эмиров~Т.~Н. %Аппроксимативные свойства средних Валле-Пуссена частичных сумм специального ряда по полиномам Лагерра \by Dunford~N. \paper An individual ergodic theorem for non-commutative transformations \jour Acta Sci. Math. (Szeged) \yr 1951 \vol 14 \pages 1--4 \endref \by Zygmund~A. \paper An individual ergodic theorem for non-commutative transformations \jour Acta Sci. Math. (Szeged) \yr 1951 \vol 14 \pages 103--110 \endref \by Karagulyan~G.A., Lacey~M.T., and Martirosyan~V.A. \paper On the convergence of multiple ergodic means \jour New York J. Math. \yr 2022 \vol 28 %\issue \pages 1448--1462 \endref \by Nevo~A. \paper Pointwise ergodic theorems for actions of groups \inbook Handbook of Dynamical Systems \bookinfo Vol.~1. Part~B \yr 2006 \pages 871--982 \endref \by Kachurovskii~A.G. \paper The rate of convergence in ergodic theorems \jour Russian Math. Surveys %Uspekhi Mat. Nauk \yr 1996 \vol 51 \issue 4 \pages 653--703 % 73--124 \endref %Качуровский~А.~Г. %Скорости сходимости в эргодических теоремах \by Kachurovskii~A.G. and Podvigin I.V. \paper Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems \jour Trans. Moscow Math. Soc. %Tr. Mosk. Mat. Obs. \yr 2016 \vol 77 \issue 1 \pages 1--53 %1--66 \endref %Качуровский~А.~Г., Подвигин~И.~В. %Оценки скоростей сходимости в эргодических теоремах фон Неймана и Биркгофа \by Kachurovskii~A.G. \paper Convergence of averages in the ergodic theorem for groups~${{\Bbb Z}^d}$ \jour J.~Math. Sci. (N.Y.) \yr 2001 %1999 \vol 107 %256 \issue 5 \pages 4231--4236 %121--128 \endref %Качуровский~А.~Г. %О сходимости средних в эргодической теореме для групп~${{\Bbb Z}^d}$ \by Tempelman~A. \paper Randomized consistent statistical inference for random processes and fields \jour Stat. Inference Stoch. Process \yr 2022 \vol 25 \pages 599--627 \endref \by Kachurovskii~A.G., Podvigin I.V., and Todikov~V.\`E. \paper Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time \jour Sib. Electr. Math. Reports \yr 2023 \vol 20 \issue 1 \pages 183--206 \endref %Качуровский~А.~Г., Подвигин~И.~В., Тодиков~В.~Э. \by Kachurovskii~A.G., Podvigin I.V., and Khakimbaev~A.J. \paper Uniform convergence on subspaces in von Neumann ergodic theorem with discrete time \jour Math. Notes % Mat. Zametki \yr 2023 \vol 113 \issue 5 \pages 680--693 %713--730 \endref %Качуровский~А.~Г., Подвигин~И.~В., Хакимбаев~A.~Ж. %Равномерная сходимость на подпространствах в эргодической теореме фон Неймана с дискретным временем \by Cohen~G. and Lin~M. \paper Double coboundaries for commuting contractions \jour Pure Appl. Funct. Anal. \yr 2017 \vol 2 \issue 1 \pages 11--36 \endref \by Cohen~G. and Lin~M. \paper Joint and double coboundaries of commuting contractions \jour Indiana Univ. Math.~J. \yr 2021 \vol 70 \issue 4 \pages 1355--1394 \endref \by Itoh~J. and Kiyohara~K. \paper The cut loci and the conjugate loci on ellipsoids \jour Manuscripta Math. \yr 2004 \vol 114 %\issue \pages 247--264 \endref \by Sinclair~R. and Tanaka~M. \paper The cut locus of a two sphere of revolution and Toponogov's comparison theorem \jour T\^{o}hoku Math.~J. \yr 2007 \vol 59 %\issue \pages 379--399 \endref \by Grishin~A.V. and Pchelintsev~S.V. \paper On centers of relatively free associative algebras with a~Lie nilpotency identity \jour Sb. Math. %Mat. Sb. \yr 2015 \vol 206 \issue 11 \pages 1610--1627 % 113--130 \endref %Гришин~А.~В., Пчелинцев~С.~В. %О центрах относительно свободных ассоциативных алгебр с тождеством лиевой нильпотентности \by Grishin~A.V. and Pchelintsev~S.V. \paper Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees~5 and~6 \jour Sb. Math. %Mat. Sb. \yr 2016 \vol 207 \issue 12 \pages 674--692 %54--72 \endref %Гришин~А.~В., Пчелинцев~С.~В. %Собственные центральные и ядерные многочлены относительно свободных ассоциативных алгебр с тождеством лиевой нильпотентности степени~5 и~6 \by Sagle~A.A. \paper Malcev algebras \jour Trans. Amer. Math. Soc. \yr 1961 \vol 101 \issue 3 \pages 426--458 \endref \by Shestakov~I.P. and Zhukavets~N. \paper The free alternative superalgebra on one odd generator \jour Internat.~J. Algebra Comput. \yr 2007 \vol 17 \iftex \issue 5--6 \else \issue 5 \fi \pages 1215--1247 \endref \by Vaulin~A.N. \paper A~free alternative algebra with the identity $[[[x,y],z],t]=0$ \jour Chebyshevskii Sb. (Tula) \yr 2003 \vol 4 \issue 1 \pages 54--60 \endref %Ваулин ~А.~Н. %Свободная альтернативная алгебра с тождеством $[[[x,y],z],t]=0$ \by Kemer~A.R. \paper Varieties and $\Bbb{Z}_2$-graded algebras \jour Math. USSR-Izv. %Izv. Akad. Nauk SSSR Ser. Mat. \vol 25 %48 \issue 2 %5 \yr 1985 %1984 \pages 359--374 % 1042--1059 \endref %Кемер~А.~Р. %Многообразия и $\Bbb{Z}_2$-градуированные алгебры \by Gordienko~A.S. \paper Codimensions of commutators of length~4 \jour Russian Math. Surveys % Uspekhi Mat. Nauk \yr 2007 \vol 62 \issue 1 \pages 187--188 %191--192 \endref %Гордиенко~А.~С. %Коразмерности коммутатора длины $4$ \by Zygmund A. \paper The approximation of functions by typical means of their Fourier series \jour Duke Math.~J. \yr 1945 \vol 12 \issue 4 \pages 695--704 \endref \by Oberchoff N. \paper Applications de la sommation par les moyennes arithm\'etiques dans la th\'eorie des s\'eries de Fourier, des s\'eries sph\'eriques et ultrasph\'eriques \jour Bull. Math. Soc. Sci. Math. Roumanie (N.S.) %Bulletin math\'ematique de la Soci\'et\'e Roumaine des Sciences. % Actes du deuxi\'eme congr\'es interbalkanique des math\'ematiciens \yr 1938 \vol 40 \iftex \issue 1--2 \else \issue 1 \fi \pages 27--38 \endref \by Kwee B. \paper The approximation of continuous functions by Riesz typical means of their Fourier series \jour J.~Austral. Math. Soc. \yr 1967 \vol 7 \issue 4 \pages 539--544 \endref \by Stepanyants~S.A. \paper A~problem of inclusion of discrete Riesz means methods \jour Vestnik Moskov. Univ. Ser.~I Mat. Mekh. \yr 2007 \vol 4 \pages 12--17 \endref %Степанянц С. А. %К вопросу включения методов дискретных средних Рисса \by Hahinov~I.V. \paper Interconnection of Ces\`aro methods and discrete Riesz means \jour Vestnik Moskov. Univ. Ser.~I Mat. Mekh. \yr 2011 \vol 5 \pages 51--55 \endref %Хахинов И. В. %О взаимосвязи методов Чезаро и методов дискретных средних Рисса \by Il'yasov~N.A. \paper Approximation of periodic functions by Zygmund means \jour Math. Notes \yr 1986 \vol 39 \issue 3 \pages 200--209 %367--382 \endref %Ильясов Н. А. %Приближение периодических функций средними Зигмунда \by Geit~V.E. \paper Embedding theorems for Boas classes \jour Russian Math. (Iz. VUZ) \yr 1996 \vol 40 \issue 5 %6 \pages 27--31 %78--79 \endref %Гейт В. Э. %Характеризация последовательности приближений средними Зигмунда \by Stepanets~A.I. \paper Approximate properties of the Zygmund method \jour Ukrainian Math. J. \yr 1999 \vol 51 \issue 4 \pages 493--518 \endref \by Chikina~T.S. \paper Approximation by Zygmund--Riesz means in the $p$-variation metric \jour Anal. Math. \yr 2013 \vol 39 \issue 1 \pages 29--44 \endref \by Volosivets~S.S. and Likhacheva~T.B. \paper Several questions of approximation by polynomials with respect to multiplicative systems in weighted~$L_p$ spaces \jour Izv. Saratov University. Math. Mech. Inform. \yr 2015 \vol 15 \issue 3 \pages 251--258 \endref %Волосивец~С.~С., Лихачева~Т.~В. %Некоторые вопросы приближения полиномами по мультипликативным системам в весовых пространствах $L_p$ \by Rusak~V.N. \paper A~method of approximation by rational functions \jour Vestsi Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk %Весцi АН БССР. Сер. фiз.-мат. навук. \yr 1978 \vol 3 %\issue \pages 15--20 \endref %Русак~В.~Н. %Об одном методе приближения рациональными функциями \by Rovba~E.A. \paper Rational integral operators on a~segment \jour Vestnik BGU \yr 1996 \vol 1 \issue 1 \pages 34--39 \endref % Ровба~Е.~А. %Рациональные интегральные операторы на отрезке \by Smotritskii~K.A. \paper Approximation of convex functions by rational integral operators on a~line \jour Vestn. Belarus. Gos. University. Fiz., Mat., Inform. %Вестн. БГУ. Сер.~1. Физика. Математика. Информатика \yr 2005 \issue 3 \pages 64--70 \endref %Смотрицкий~К.~А. %О приближении выпуклых функций рациональными интегральными операторами на отрезке \by Rovba~E.A. and Potseiko~P.G. \paper Riesz--Zygmund means of rational Fourier--Chebyshev series and approximations of the function $|x|^s$ \jour Tr. Inst. Mat. \yr 2020 \vol 28 \issue 1--2 \pages 74--90 \endref %Ровба~Е.~А. Поцейко~П.~Г. %Средние Зигмунда~--- Рисса рациональных рядов Фурье~--- Чебыш\"ева и аппроксимации функции $|x|^s$ \by Rovba~E.A. \paper On a~direct method in a~rational approximation \jour Dokl. Nats. Akad. Nauk Belarusi \yr 1979 \vol 23 \issue 11 \pages 968--971 \endref %Ровба~Е.~А. %Об одном прямом методе в рациональной аппроксимации \by Potseiko~P.G. and Rovba~E.A. \paper Conjugate rational Fourier--Chebyshev operator and its approximation properties \jour Russian Math. (Iz. VUZ) \yr 2022 \vol 66 \issue 3 \pages 35--49 % 44--60 \endref %Поцейко~П.~Г., Ровба~Е.~А. %Сопряженный рациональный оператор Фурье~--- Чебыш\"ева и его аппроксимационные свойства \by Potseiko~P.G., Rovba~E.A., and Smotritskii~K.A. \paper On one rational integral operator of Fourier--Chebyshev type and approximation of Markov functions \jour J.~Belarusian State University. Math. Inform. \yr 2020 \vol 2 \pages 6--27 \endref %Поцейко~П.~Г., Ровба~Е.~А., Смотрицкий~К.~А. %О рациональных интегральных операторах типа Фурье~--- Чебыш\"ева и аппроксимациях функций Маркова \by Potseiko~P.G. and Rovba~E.A. \paper On rational Abel--Poisson means on a segment and approximations of Markov functions \jour J.~Belarusian State University. Math. Inform. \yr 2021 \vol 3 \pages 6--24 \endref %Поцейко~П.~Г., Ровба~Е.~А. %О рациональных суммах Абеля~--- Пуассона на отрезке и аппроксимациях функций Маркова \by Potseiko~P.G. and Rovba~E.A. \paper On rational approximations of the Markov function on the segment by the Fejer sums with a~fixed number of poles \jour Tr. Inst. Mat. \yr 2022 \vol 30 \iftex \issue 1--2 \else \issue 1 \fi \pages 57--77 \endref % Поцейко~П.~Г., Ровба~Е.~А. %О рациональных аппроксимациях функции Маркова на отрезке суммами Фейера с фиксированным количеством полюсов \by Bernstein~S. \paper Sur meilleure approximation de $|x|$ par des polynom\'es de degr\'es donn\'es \jour Acta Math. \yr 1914 \vol 37 \issue 1 \pages 1--57 \endref \by Newman~D.J. \paper Rational approximation to $|x|$ \jour Michigan Math. J. \yr 1964 \vol 11 \issue 1 \pages 11--14 \endref \by Bulanov~A.P. \paper Asymptotics for least deviation of $|x|$ from rational functions \jour Math. USSR-Sb. \yr 1968 \vol 5 %76 \issue 2 \pages 275--290 %288--303 \endref %Буланов~А.~П. %Асимптотика для наименьших уклонений $|x|$ от рациональных функций \by Vyacheslavov~N.S. \paper Approximation of the function $|x|$ by rational functions \jour Math. Notes \yr 1974 \vol 16 \issue 1 \pages 680--685 %163--171 \endref %Вячеславов~Н.~С. %О приближении функции $|x|$ рациональными функциями \by Stahl~H. \paper Best uniform rational approximation of $|x|$ on $[-1,1]$ \jour Sb. Math. \yr 1993 %1992 \vol 76 %183 \issue 2 %8 \pages 461--487 %85--118 \endref %Шталь~Г. %Наилучшие равномерные рациональные аппроксимации $|x|$ на $[-1,1]$ \by Bernstein~S. \paper Sur la meilleure approximation de $|x|^p$ par des polynom\'es de degr\'es tr\'es el\'eves \jour Izv. Akad. Nauk SSSR Ser. Mat \yr 1938 \vol 2 \issue 2 \pages 169--190 \endref \by Freud~G. and Szabados~J. \paper Rational approximation to $x^\alpha$ \jour Acta Math. Acad. Sci. Hungar. \yr 1967 \vol 18 \iftex \issue 3--4 \else \issue 3 \fi \pages 393--399 \endref \by Gonchar~A.A. \paper On the rapidity of rational approximation of continuous functions with characteristic singularities \jour Math. USSR-Sb. \yr 1967 \vol 2 %73 \issue 4 \pages 561--568 %630--638 \endref %Гончар~А.~А. %О скорости рациональной аппроксимации непрерывных функций с характерными особенностями \by Vyacheslavov~N.S. \paper On the approximation of $x^\alpha$ by rational functions \jour Math. USSR-Izv. \yr 1981 %1980 \vol 16 %44 \issue 1 \pages 83--101 %92--109 \endref %Вячеславов~Н.~С. %Об аппроксимации $x^\alpha$ рациональными функциями \by Stahl~H. \paper Best uniform rational approximation of $x^\alpha$ on $[0,1]$ \jour Bull. Amer. Math. Soc. \yr 1993 \vol 28 \issue 1 \pages 116--122 \endref %Шталь~Г. \by Revers~M. \paper On the asymptotics of polynomial interpolation to $x^\alpha$ at the Chebyshev nodes \jour J.~Approx. Theory \yr 2013 \vol 165 \issue 1 \pages 70--82 \endref \by Ganzburg~M.I. \paper The Bernstein constant and polynomial interpolation at the Chebyshev nodes \jour J.~Approx. Theory \yr 2002 \vol 119 \issue 2 \pages 193--213 \endref \by Raitsin~R.A. \paper Asymptotic properties of uniform approximations of functions with algebraic singularities by partial sums of a~Fourier--Chebyshev series \jour Izv. Vyssh. Uchebn. Zaved. Matematika \yr 1980 \vol 3 \pages 45--49 \endref %Райцин~Р.~А. %Асимптотические свойства равномерных приближений функций с %алгебраическими особенностями частичными суммами ряда Фурье~--- Чебыш\"ева \by Lungu~K.N. \paper On best approximations by rational functions with a~fixed number of poles \jour Sb. Math. \yr 1971 \vol 15 %86 \issue 2 \pages 313--324 % 314--324 \endref %Лунгу~К.~Н. %О наилучших приближениях рациональными функциями с фиксированным числом полюсов \by Ballester-Bolinches~A., Kamornikov~S.F., and Yi~X. \paper Finite groups with $\sigma$-subnormal Schmidt subgroups \jour Bull. Malays. Math. Sci. Soc. \yr 2022 \vol 45 \issue 5 \pages 2431--2440 \endref \by Ballester-Bolinches~A., Kamornikov~S.F., and Perez-Calabuig~V., Tyutyanov~V.N. \paper Finite groups with $G$-permutable Schmidt subgroups \jour Mediterr. J. Math. \yr 2023 \vol 20 \issue 3 \pages Article~174; 12~pp. \endref \by Huang~J. and Guo~W. \paper $S$-Conditionally permutable subgroups of finite groups \jour Chinese Ann. Math. Ser.~A \yr 2007 \vol 28 \issue 1 \pages 17--26 \endref \by Kegel~O.H. \paper Sylow-Gruppen und Subnormalteiler endlicher Gruppen \jour Math.~Z. \yr 1962 \vol 78 \pages 205--221 \endref \by Xu~Y. and Li~X.~H. \paper $S$-Conditionally permutable subgroups and $p$-nilpotency of finite groups \jour Ukrainian Math.~J. \yr 2014 \vol 66 \issue 6 \pages 961--967 \endref \by Mirdamadi~E. and Rezaeezadeh~G. \paper Finite groups with some $S$-conditionally permutable subgroups \jour J.~Algebra Appl. \yr 2017 \vol 16 \issue 12 \pages Article 1750224; 12~pp. \endref \by Schmidt~O.Yu. \paper \"Uber Gruppen, deren s\"amtliche Teiler spezielle Gruppen sind %Groups whose all subgroups are special \jour Mat. Sb. \yr 1924 \vol 31 \issue 3 \pages 366--372 \endref %Шмидт~О.~Ю. %Группы, все подгруппы которых специальные \by Golfand~Yu.A. \paper On groups all subgroups of which are special \jour Dokl. Akad. Nauk SSSR \yr 1948 \vol 60 \issue 8 \pages 1313--1315 \endref %Гольфанд~Ю.~А. %О группах, все подгруппы которых специальные \by Ito~N. \paper Note on $(LN)$-groups of finite order \jour Kodai Math. Seminar Report. \yr 1951 \vol 3 \iftex \issue 1--2 \else \issue 1 \fi \pages 1--6 \endref \by Tyutyanov~V.N. and Shemetkov~L.A. \paper Triple factorizations of finite groups \jour Dokl. NAN Belarusi \yr 2002 \vol 46 \issue 4 \pages 52--55 \endref %Тютянов~В.~Н., Шеметков~Л.~А. %Тройные факторизации в конечных группах \by Seitz~G.M. \paper Flag-transitive subgroups of Chevalley groups \jour Ann. Math. \yr 1973 \vol 97 \issue 1 \pages 27--56 \endref \by Amberg~B., Carocca~A., and Kazarin~L.S. \paper Criteria for the solubility and non-simplicity of finite groups \jour J.~Algebra \yr 2005 \vol 285 \issue 1 \pages 58--72 \endref \by Liebeck~M.W., Praeger~C.E., and Saxl~J. \paper A~classification of the maximal subgroups of the finite alternating and symmetric groups \jour J.~Algebra \yr 1987 \vol 111 \issue 2 \pages 365--383 \endref \by Vdovin~E.P. and Revin~D.O. \paper Theorems of Sylow type \jour Russian Math. Surveys \yr 2011 \vol 66 \issue 5 \pages 829--870 %3--46 \endref %Вдовин~Е.~П., Ревин~Д.~О. %Теоремы силовского типа \by Thompson~J.G. \paper Nonsolvable finite groups all of whose local subgroups are solvable \jour Bull. Amer. Math. Soc. \yr 1968 \vol 74 \issue 3 \pages 383--437 \endref \by Suzuki~M. \paper On a~class of doubly transitive groups.~I \jour Ann. Math. \yr 1962 \vol 75 \issue 1 \pages 105--145 \endref \by Kytmanov~A.A., Tikhomirov~A.S., and Tikhomirov~S.A. \paper Series of rational moduli components of stable rank two vector bundles on P3 \jour Selecta Mathematica. New Ser. \yr 2019 \vol 25 \issue 2 \pages 29 \endref \by Kytmanov~A.A., Osipov~N.N., Tikhomirov~S.A., and Zykova~T.V. \paper On numerical characteristics of some bundles and their isomorphism classes on~P3 \jour Sib. Electr. Math. Reports \yr 2022 \vol 19 \issue 2 \pages 415--425 \endref %Кытманов~А.~А., Осипов~Н.~Н., Тихомиров~С.~А., Зыкова~Т.~В. %О числовых характеристиках некоторых расслоений и их пространства модулей на P3 \by Almeida~C., Jardim~M., Tikhomirov~A.S., and Tikhomirov~S.A. \paper New moduli components of rank~2 bundles on projective space \jour Sb. Math. \yr 2021 \vol 212 \issue 11 \pages 1503--1552 %3--54 \endref %Алмейда~Ч., Жардим~М., Тихомиров~А.~С., Тихомиров~С.~А. %Новые компоненты пространства модулей расслоений ранга ~2 на проективном пространстве \by Tikhomirov~A. and Vassiliev~D. \paper Construction of symplectic vector bundles on projective space~~${\Bbb P}^3$ \jour J.~Geom. Phys. \yr 2020 \vol 158 \finalinfo Article 103949, 24~pp. \endref \by Jardim~M., Markushevich~D., and Tikhomirov~A.S. \paper Two infinite series of moduli spaces of rank~2 sheaves on~P3 \jour Ann. Mat. Pura Appl. \yr 2017 \vol 196 \issue 4 \pages 1573--1608 \endref \by Almeida~C., Jardim~M., and Tikhomirov~S.A. \paper Irreducible components of the moduli space of rank 2 sheaves of odd determinant on projective space \jour Adv. Math. \yr 2022 \vol 402 %\issue 4 \pages 108363 \endref \by Chang~M.-C. \paper Stable rank 2 bundles on $P3$ with $c1=0$, $c2=4$ and $a=1$ \jour Math.~Z. \yr 1983 \vol 184 \issue 3 \pages 407--415 \endref \by Hartshorne~R. \paper Stable reflexive sheaves \jour Math. Ann. \yr 1980 \vol 254 \issue 2 \pages 121--176 \endref \by Birman~J.S. and Hilden~H.M. \paper On the mapping class groups of closed surfaces as covering spaces \inbook Advances in the Theory of Riemann Surfaces \publaddr Princeton \publ Princeton University Press \yr 1971 \pages 81--115 \finalinfo Ann. Math. Stud.; vol.~66 \endref \by Birman~J.S. and Hilden~H.M. \paper Isotopies of homeomorphisms of Riemann surfaces and a theorem about Artin's braid group \jour Bull. Amer. Math. Soc. \yr 1972 \vol 78 \issue 6 \pages 1002--1004 \endref \by Birman~J.S. and Hilden~H.M. \paper Lifting and projecting homeomorphisms \jour Arch. Math. (Basel) \yr 1972 \vol 23 \pages 428--434 \endref \by Birman~J.S. and Hilden~H.M. \paper On isotopies of homeomorphisms of Riemann surfaces \jour Ann. Math. (2) \yr 1973 \vol 97 \pages 424--439 \endref \by Birman~J.S. and Hilden~H.M. \paper Erratum to `Isotopies of homeomorphisms of Riemann surfaces' \jour Ann. Math. (2) \yr 2017 \vol 185 \pages 345 \endref \by Zieschang H. \paper On the homeotopy group of surfaces \jour Math. Ann. \yr 1973 \vol 206 \pages 1--21 \endref \by Maclachlan~C. and Harvey~W.J. \paper On mapping-class groups and Teichm\"{u}ller spaces \jour Proc. Lond. Math. Soc. \yr 1975 \vol 30 \pages 496--512 \endref \by Berstein~I. and Edmonds~A.L. \paper On the construction of branched coverings of low-dimensional manifolds \jour Trans. Amer. Math. Soc. \yr 1979 \vol 247 \pages 87--124 \endref \by Fuller~T. \paper On fiber-preserving isotopies of surface homeomorphisms \jour Proc. Amer. Math. Soc. \yr 2001 \vol 129 \issue 4 \pages 1247--1254 \endref \by Aramayona~J., Leininger~C.J., and Souto~J. \paper Injections of mapping class groups \jour Geom. Topol. \yr 2009 \vol 13 \issue 5 \pages 2523--2541 \endref \by Winarski~R.R. \paper Symmetry, isotopy, and irregular covers \jour Geom. Dedicata \yr 2015 \vol 177 \pages 213--227 \endref \by Ghaswala~T. and Winarski~R.R. \paper Lifting homeomorphisms and cyclic branched covers of spheres \jour Michigan Math.~J. \yr 2017 \vol 66 \issue 4 \pages 885--890 \endref \by Atalan~F. and Medetogullari~E. \paper The Birman--Hilden property of covering spaces of nonorientable surfaces \jour Ukrainian Math.~J. %Ukra\"\i n. Mat. Zh. \yr 2020 \vol 72 \issue 3 \pages 348--357 %307--315 \endref \by Margalit~D. and Winarski~R.R. \paper Braids groups and mapping class groups: The Birman--Hilden theory \jour Bull. Lond. Math. Soc. \yr 2021 \vol 53 \issue 3 \pages 643--659 \endref \by Kolbe~B., Evans~M.E. \paper Isotopic tiling theory for hyperbolic surfaces \jour Geom. Dedicata \yr 2021 \vol 212 \pages 177--204 \endref \by Dey~S., Dhanwani~N.K., Patil~H., and Rajeevsarathy~K. \preprint Generating the Liftable Mapping Class Groups of Regular Cyclic Covers\nofrills \yr 2021 \bookinfo arXiv:2111.01626v1 %14~pp. \endref \by Vogt~E. \paper Projecting isotopies of sufficiently large $P^2$-irreducible $3$-manifolds \jour Arch. Math. (Basel) \yr 1977 \vol 29 \issue 6 \pages 635--642 \endref \by Ohshika~K. \paper Finite subgroups of mapping class groups of geometric $3$-manifolds \jour J.~Math. Soc. Japan \yr 1987 \vol 39 \issue 3 \pages 447--454 \endref \by Artin~E. \paper Theorie der Z\"opfe \jour Abh. Math. Sem. Univ. Hamburg \yr 1925 \vol 4 \pages 47--72 \endref \by Morton~H.R. \paper Infinitely many fibred knots having the same Alexander polynomial \jour Topology \yr 1978 \vol 17 \issue 1 \pages 101--104 \endref \by Edwards~R.D. and Kirby~R. \paper Deformations of spaces of imbeddings \jour Ann. Math. (2) \yr 1971 \vol 93 \pages 63--88 \endref \by Epstein~D.B.A. \paper Curves on 2-manifolds and isotopies \jour Acta Math. \yr 1966 \vol 115 \pages 83--107 \endref \by Chernavskii~A.V. \paper Local contractibility of the group of homeomorphisms of a manifold \jour Math. USSR Sb. \yr 1969 \vol 8 %79 \issue 3 \pages 287--333 %307--356 \endref %Чернавский~А.~В. %Локальная стягиваемость группы гомеоморфизмов многообразия \by Brown~M. \paper Locally flat imbeddings of topological manifolds \jour Ann. Math. (2) \yr 1962 \vol 75 \pages 331--341 \endref \by Arnold A., Schmeiser C., and Signorello B. \paper Propagator norm and sharp decay estimates for Fokker--Planck equations with linear drift \jour Commun. Math. Sci. \yr 2022 \vol 20 \issue 4 \pages 1047--1080 \endref \by Bogachev V.I. \paper Ornstein--Uhlenbeck operators and semigroups \jour Russian Math. Surveys \yr 2018 \vol 73 \issue 2 \pages 191--260 \endref % Богачев В.~И. %Операторы и полугруппы Орнштейна~--- Уленбека %Uspekhi Matem. Nauk, 73:2 (2018), 3--74 \by Metafune G., Pallara D., and Priola E. \paper Spectrum of Ornstein--Uhlenbeck operators in $L^p$ spaces with respect to invariant measures \jour J.~Funct. Anal. \yr 2002 \vol 196 \issue 1 \pages 40--60 \endref \by Metafune G., Pr\"uss J., Rhandi A., and Schnaubelt R. \paper The domain of the Ornstein--Uhlenbeck operator on an $L^p$-space with invariant measure \jour Ann. Sc. Norm. Super. Pisa Cl. Sci.~(5) \yr 2002 \vol 1 \issue 2 \pages 471--485 \endref \by Bogachev V.I., R\"ockner M., and Stannat W. \paper Uniqueness of invariant measures and maximal dissipativity of diffusion operators on~$L^1$ \inbook Infinite Dimensional Stochastic Analysis \bookinfo Proceedings of the Colloquium, Amsterdam, 11--12 February, 1999 \publaddr Amsterdam \publ Royal Netherlands Academy of Arts and Sciences \yr 2000 \pages 39--54 %\finalinfo \endref \by Bogachev V.I., R\"ockner M., and Stannat W. \paper Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions \jour Sb. Math. \yr 2002 \vol 193 \issue 7 \pages 945--976 \endref %Mat. Sb., 193:7 (2002), 3--36 %Богачев В.~И., Р\"екнер М., Штаннат В. %Единственность решений эллиптических уравнений и единственность инвариантных мер диффузий \by Bogachev V.I., R\"ockner M., and Shaposhnikov S.V. \paper Uniqueness problems for degenerate Fokker--Planck--Kol\-mogorov equations \jour J.~Math. Sci. (N.Y.) \yr 2015 \vol 20 \issue 2 \pages 147--165 \endref \by Smirnova G.N. \paper Cauchy problems for parabolic equations degenerating at infinity \inbook Fifteen Papers on Analysis \publaddr Providence \publ Amer. Math. Soc. \yr 1968 \pages 119--134 \finalinfo American Mathematical Society Translations. Ser.~2; vol.~72 \endref %Matem. Sbornik, 70:4 (1966), 591--604 % Смирнова Г.~Н. %Задачи Коши для параболических уравнений, вырождающихся на бесконечности \by Zakai M. and Snyders~J. \paper Stationary probability measures for linear differential equations driven by white noise \jour J. Differential Equations \yr 1970 \vol 8 %\issue 2 \pages 27--33 \endref \by Snyders J. and Zakai M. \paper On nonnegative solutions of the equation $AD+DA'=-C$ \jour SIAM J. Appl. Math. \yr 1970 \vol 18 %\issue 2 \pages 704--714 \endref \by Zhang X.S. \paper Existence and uniqueness of invariant probability measure for uniformly elliptic diffusion \inbook Dirichlet Forms and Stochastic Processes (Beijing, 1993) \publaddr Berlin \publ De Gruyter \yr 1995 \pages 417--423 \endref \by Iwaniec~T. and \v{S}ver\'ak~V. \paper On mappings with integrable dilatation \jour Proc. Amer. Math. Soc. \yr 1993 \vol 118 \issue 1 \pages 181--188 \endref \by Manfredi~J.J. and Villamor~E. \paper Mappings with integrable dilatation in higher dimensions \jour Bull. Amer. Math. Soc. (N.S.) \yr 1995 \vol 32 \issue 2 \pages 235--240 \endref \by Hencl~S. and Mal\'y~J. \paper Mappings of finite distortion: Hausdorff measure of zero sets \jour Math. Ann. \yr 2002 \vol 324 \pages 451--464 \endref \by Rajala~K. \paper Remarks on the Iwaniec--\v{S}ver\'ak conjecture \jour Indiana Univ. Math.~J. \yr 2010 \vol 59 \issue 6 \pages 2027--2039 \endref \by Ball~J.M. \paper Global invertibility of Sobolev functions and the interpretation of matter \jour Proc. Roy. Soc. Edinburgh Sect.~A \yr 1981 \vol 88A %\issue \pages 315--328 \endref \by Dairbekov~N.S. \paper Mapping with bounded distortion of two-step Carnot groups \inbook Proceedings on Analysis and Geometry %(S. K. Vodopyanov, ed.) \publaddr Novosibirsk \publ Sobolev Institute of Mathematics \yr 2000 \pages 122--155 \endref \by Vodop'yanov~S.K. \paper Foundations of the theory of mappings with bounded distortion on Carnot groups \inbook The Interaction of Analysis and Geometry \publaddr Providence \publ Amer. Math. Soc. \yr 2007 \pages 303--344 \finalinfo Contemp. Math.; vol.~424 \endref \by Vodopyanov~S.K. and Ukhlov~A.D. \paper Superposition operators in Sobolev spaces \jour Russian Math. (Iz. VUZ) \yr 2002 \vol 46 \issue 10 \pages 9--31 %\? \pages 11--33 \endref % Водопьянов~С. К., Ухлов~А. Д. %Операторы суперпозиции в пространствах Соболева \by John F. \paper Rotation and strain \jour Commun. Pure Appl. Math. \yr 1961 \vol 14 \pages 391--413 \endref \by Lu~G. \paper The sharp Poincar\'e inequality for free vector fields: an endpoint result \jour Rev. Mat. Iberoamericana \yr 1994 \vol 10 \issue 2 \pages 453--466 \endref \by Isangulova~D.V. and Vodopyanov~S.K. \paper Coercive estimates and integral representation formulas on Carnot groups \jour Eurasian Math.~J. \yr 2010 \vol 1 \issue 2 \pages 58--96 \endref \by Vodopyanov~S.K. \paper Differentiability of maps of Carnot groups of Sobolev classes \jour Sb. Math. \yr 2003 \vol 194 \issue 6 \pages 857--877 %67--86 \endref %Водопьянов~С.~К. %О дифференцируемости отображений классов Соболева на группе Карно \by Kleiner~B., M\"uller~S., and Xie~X. \preprint Pansu Pullback and Exterior Differentiation for Sobolev Maps on Carnot Groups\nofrills \yr 2021 \bookinfo arXiv:2007.06694v2 \endref \by Pansu~P. \paper M\'etriques de Carnot--Carath\'eodory et quasi-isom\'etries des espaces sym\'etriques de rang un \lang French \jour Ann. Math. \yr 1989 \vol 129 \issue 1 \pages 1--60 \endref \by Bagby~T. and Ziemer~W.P. \paper Pointwise differentiability and absolute continuity \jour Trans. Amer. Math. Soc. \yr 1974 \vol 191 \pages 129--148 \endref \by Lu~G. \paper Weighted Poincar\'e and Sobolev inequalities for vector fields satisfying H\"ormander's condition and applications \jour Rev. Mat. Iberoamericana \yr 1992 \vol 8 \issue 3 \pages 367--439 \endref \by Koskela~P. and Mal\'y~J. \paper Mappings of finite distortion: The zero set of the Jacobian \jour J.~EMS \yr 2003 \vol 5 \issue 2 \pages 95--105 \endref \by Kappe L.C. \paper On Levi-formations \jour Arch. Math. \yr 1972 \vol 23 \issue 6 \pages 561--572 \endref \by Levi F.W. \paper Groups in which the commutator operation satisfies certain algebraic conditions \jour J.~Indian Math. Soc., New Ser. \yr 1942 \vol 6 \pages 87--97 \endref \by Morse R.F. \paper Levi-properties generated by varieties \inbook The Mathematical Legacy of Wilhelm Magnus\nocomma \bookinfo (May 1--3, 1992, Polytechnic Univ. Brooklin, NY, USA) %W.~Abikoff (ed.) et al. \publaddr Providence \publ Amer. Math. Soc. \yr 1994 \pages 467--474 \finalinfo (Contemp. Math.; vol.~169) \endref \by Clay A. and Rolfsen D. \preprint Ordered Groups and Topology\nofrills \yr 2015 \bookinfo arXiv:1511.05088v1 \endref % Nov. 2015, 126 \by Scott D. \paper Boolean models and nonstandard analysis \inbook Applications of Model Theory to Algebra, Analysis, and Probability \publaddr New York \publ Holt, Rinehart, and Winston \yr 1969 \pages 87--92 \endref \by Kutateladze S.S. \paper What is Boolean valued analysis?\nocomma \jour Siberian Adv. Math. \yr 2007 \vol 17 \issue 2 \pages 91--111 \endref \by Cunningham F. \paper $L$-Structure in $L$-spaces \jour Trans. Amer. Math. Soc. \vol 95 \yr 1960 \pages 274--299 \endref \by Cunningham F. \paper $M$-Structure in Banach spaces \jour Proc. Camb. Phil. Soc. \vol 63 \yr 1967 \pages 613--629 \endref \by Haydon R. \paper Injective Banach lattices \jour Math.~Z. \yr 1977 \vol 156 \issue 1 \pages 19--47 \endref \by Kusraev A.G. and Kutateladze S.S. \paper Geometric characterization of preduals of injective Banach lattices \jour Indag. Math. \yr 2020 \vol 31 \issue 5 \pages 863--878 \endref \by Gutman A.E. \paper Banach bundles in the theory of lattice-normed spaces.~I. Continuous Banach bundles \jour Siberian Adv. Math. \vol 3 \issue 3 \yr 1993 \pages 1--55 \moreref \paper II. Measurable Banach bundles \jour Siberian Adv. Math. \vol 3 \issue 4 \yr 1993 \pages 8--40 \moreref \paper III. Approximating sets and bounded operators \jour Siberian Adv. Math. \vol 4 \issue 2 \yr 1994 \pages 54--75 \endref \by Ganiev I.G. \paper Measurable bundles of lattices and their applications \inbook Studies on Functional Analysis and Its Applications \bookinfo Eds. Kusraev A.G. and Tikhomirov V.M. \publ Nauka \publaddr Moscow \yr 2006 \pages 9--49 \endref \by Maharam~D. \paper On positive operators \inbook Conference in Modern Analysis and Probability (New Haven, Conn., 1982) \publ Amer. Math. Soc. \publaddr Providence \yr 1984 \pages 263--277 \finalinfo Contemp. Math.; vol.~26 \endref \by Maharam~D. \paper On kernel representation of linear operators \jour Trans. Amer. Math. Soc. \yr 1955 \vol 79 \pages 229--255 \endref \by Luxemburg W.A.J. and Schep~A. \paper Radon--Nikodym type theorem for positive operators and a~dual \jour Indag. Math. \yr 1978 \vol 40 \issue 3 \pages 357--375 \endref \by Luxemburg W.A.J. and de Pagter D. \paper Maharam extension of positive operators and $f$-algebras \jour Positivity \yr 2002 \vol 6 \issue 2 \pages 147--190 \endref \by Luxemburg W.A.J. \paper The work of Dorothy Maharam on kernel representation of linear operators \inbook Measures and Measurable Dynamics \bookinfo Rochester 1987 \publ Amer. Math. Soc. \publaddr Providence \yr 1989 \pages 177--183 \finalinfo Contemp. Math.; vol.~94 \endref \by Maharam D. \paper The representation of abstract integrals \jour Trans. Amer. Math. Soc. \yr 1953 \vol 75 \pages 154--184 \endref \by Chilin V.I. and Zakirov B. \paper Non-commutative $L_p$-spaces associated with a~Maharam trace \jour J.~Operator Theory \yr 2012 \vol 68 \issue 1 \pages 67--83 \endref \by Ibragimov M.M. and Kudaibergenov K.K. \paper Geometric description of $L^1$-spaces \jour Russian Math. (Iz. VUZ) \yr 2013 \vol 57 \issue 9 \pages 16--21 \endref \by Kudaybergenov K.K. and Seipullaev Zh.Kh. \paper Characterization of $JBW$-algebras with strongly facially symmetric predual space \jour Math. Notes \yr 2020 \vol 107 \issue 4 \pages 600--608 \endref \by Kusraev A.G. \paper Operators on injective Banach lattices \jour Vladikavk. Math.~J. \yr 2016 \vol 18 \issue 1 \pages 42--50 \endref \by Kusraev A.G. and Kutateladze S.S. \paper Geometric characterization of injective Banach lattices \jour Mathematics MDPI \vol 9(3) \issue 250 \yr 2021 \doi 10.3390/math9030250 \endref \by Agniel V. \paper $L^p$-Projections on subspaces and quotients of Banach spaces \jour Adv. Oper. Theory \yr 2021 \vol 6 \finalinfo Article 38, 47 pp. \endref \by Lotz H.P. \paper Extensions and liftings of positive linear mappings on Banach lattices \yr 1975 \jour Trans. Amer. Math. Soc. \vol 211 \pages 85--100 \endref \by Abramovich~Yu.A. \paper Injective envelopes of normed lattices \jour Dokl. Acad. Nauk SSSR \yr 1971 \vol 197 \issue 1 \pages 743--745 \endref \by Grothendieck A. \paper Une caracterisation vectorielle-metrique des espaces $L^1$ \jour Canad. J. Math. \yr 1955 \vol 4 \pages 552--561 \endref \by Kusraev A.G. and Wickstead A.W. \preprint Some Problems Concerning Operators on Banach Lattices \publ South. Math. Institute \publaddr Vladikavkaz \yr 2016 \endref \by Duan Y. and Lin B.-L. \paper Characterizations of $L^1$-predual spaces by centerable subsets \jour Comment. Math. Univ. Carolin. \yr 2007 \vol 48 \issue 2 \pages 239--243 \endref \by Alfsen E.M. and Effros E.G. \paper Structure in real Banach spaces. Parts~I and~II \jour Ann. of Math. \yr 1972 \vol 96 %\issue 1 \pages 98--173 \endref \by Friedman Y. and Russo B. \paper Affine structure of facially symmetric spaces \jour Math. Proc. Camb. Phil. Soc. \yr 1989 \vol 106 \issue 1 \pages 107--124 \endref \by Ayupov~Sh.A. and Yadgorov~N.Zh. \paper Geometry of the state space of modular Jordan algebras. \jour Russian Acad. Sci. Izv. Math. \yr 1994 \vol 43 \issue 3 \pages 581--592 \endref \by Yadgorov~M., Ibragimov~M., and Kudaybergenov~K.K. \paper Geometric characterization of $L^1$-spaces \jour Studia Math. \yr 2013 \vol 219 \issue 2 \pages 97--107 \endref \by Zakirov~B.S. and Chilin~V.I. \paper Positive isometries of Orlicz--Kantorovich spaces \jour Vladikavkaz Math.~J. \yr 2023 \vol 25 \issue 2 \pages 103--116 \endref