\bibitem{KPL2} E. Kaniuth, A. T-M. Lau and J. Pym, \textit{On character amenability of Banach algebras}, J. Math. Anal. Appl. \textbf{344} (2008), 942-955. %------------------------------------------------------------------------------------------------------------------------------------ \bibitem{KPL1} E. Kaniuth, A. T-M. Lau and J. Pym, \textit{On $\phi$-amenability of Banach algebras}, Math. Proc. Camb. Phil. Soc. \textbf{144} (2008), 85-96. %------------------------------------------------------------------------------------------------------------------------------------ \bibitem{Lau-Zhang} A. T-M. Lau and Y. Zhang, \textit{Amenability properties and fixed point properties of affine representations of semigroups}, Proc. Amer. Math. Soc. \textbf{149} (2021), 4815-4823. %--------------------------------------------------------------------------------------------------------------- \bibitem{Studia} R. Nasr-Isfahani and S. Soltani Renani, \textit{Character contractibility of Banach algebras and homological properties of Banach modules}, Studia Math. \textbf{202} (2011), 205-225. %----------------------------------------------------------------------------------------------------------- \bibitem{alaghmandan} M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, \textit{On ${\phi}$-contractibility of the Lebesgueâ_"Fourier algebra of a locally compact group}, Arch. Math. \textbf{95} (2010), 373-379. %------------------------------------------------------------------------------------------------ \bibitem{Monfared} M. Sangani Monfared, \textit{Character amenability of Banach algebras}, Math. Proc. Camb. Phil. Soc. \textbf{144} (2008), 697-706. %------------------------------------------------------------------------------------------------------------- \bibitem{Hu-Monfared-Traynor} Z. Hu, M. Sangani Monfared and T. Traynor, \textit{On character amenable {B}anach algebras}, Studia Math. \textbf{193} (2009), 53-78. %----------------------------------------------------------------------------------------------------------- \bibitem{Neufang-Convolution} Z. Hu, M. Neufang and Zh-J. Ruan, \textit{Convolution of trace class operators over locally compact quantum groups}, Canad. J. Math. \textbf{65} (2013) 1043-1072. %----------------------------------------------------------------------------------------------------------- \bibitem{Kalantar-Neufang} M. Kalantar and M. Neufang, \textit{Duality, cohomology, and geometry of locally compact quantum groups}, J. Math. Anal. Appl. \textbf{406} (2013), 22-33. %------------------------------------------------------------------------------------------------------------------------------------ \bibitem{Crann1} J. Crann and M. Neufang, \textit{Amenability and covariant injectivity of locally compact quantum groups}, Trans. Amer. Math. Soc. \textbf{368} (2016), 495-513. %------------------------------------------------------------------------------------------------------ \bibitem{Crann2} J. Crann, \textit{Amenability and covariant injectivity of locally compact quantum groups II}, Canad. J. Math. \textbf{69} (2017), 1064-1086. %------------------------------------------------------------------------------------------------------ \bibitem{Arens} Z. Hu, M. Neufang and Zh-J. Ruan, \textit{Arens irregularity of the trace class convolution algebra}, Bull. London Math. Soc. \textbf{45} (2013), 351-362. %------------------------------------------------------------------------------------------------------ \bibitem{Kustermans1} J. Kustermans and S. Vaes, \textit{Locally compact quantum groups}, Ann. Sci. l'Ecole Norm. Sup. (4) \textbf{33} (2000), 837-934. %------------------------------------------------------------------------------------------------------------------------------------ \bibitem{Kustermans2} J. Kustermans and S. Vaes, \textit{Locally compact quantum groups in the von Neumann algebraic setting}, Math. Scand. \textbf{92} (2003), 68-92. %----------------------------------------------------------------------------------------------------------- \bibitem{Van-Daele} A. Van Daele, \textit{Locally compact quantum groups. A von Neumann algebra approach}, SIGMA Symmetry Integr. Geom. Methods Appl. \textbf{10} (2014), 082, 41 pages. %------------------------------------------------------------------------------------------------------ \bibitem{Neu} M. Neufang, \textit{Abstrakte harmonische Analyse und Modulhomomorphismen uber von Neumann-Algebren}, Ph.D. thesis, Saarbrucken, 2000. %------------------------------------------------------------------------------------------------------------ \bibitem{Lau-ancient} A. T-M. Lau, \textit{Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups}, Fund. Math. \textbf{118} (1983), 161-175. %----------------------------------------------------------------------------------------------------------- \bibitem{Bedos} E. B\'{e}dos and L. Tuset, \textit{Amenability and co-amenability for locally compact quantum groups}, Internat. J. Math. \textbf{14} (2003), 865-884. %--------------------------------------------------------------------------------------------------------- \bibitem{Pir} A. Yu. Pirkovskii, \textit{Biprojectivity and bi flatness for convolution algebras of nuclear operators}, Canad. Math. Bull. \textbf{47} (2004), 445-455. %------------------------------------------------------------------------------------------------------------- \bibitem{Aristov} O. Y. Aristov, \textit{Amenability and compact type for Hopf-von Neumann algebras from the homological point of view}, Contemp. Math. \textbf{363} (2004), 15-37. \enddocument