\begin{thebibliography}{99} \bibitem{Swe69} M. Sweedler, Hopf algebras, W.A. Benjamin, Inc., New York, 1969. \bibitem{Michael80} W. Michaelis, Lie coalgebras, Adv. Math., 38 (1980), 1--54. \bibitem{AnqCortMon94} J. Anquella, T. Cortes, F. Montaner, Nonassociative coalgebras, Comm. Algebra, 22:12 (1994), 4693--4716. \bibitem{Zhel95} V. N. Zhelyabin, Structurable coalgebras, Algebra Logic 35:5 (1996), 296--304, Algebra i Logika, 35:5 (1996), 529--542. \bibitem{Slinko95} A. M. Slinko, Local finiteness of coalgebraic Lie coalgebras, Comm. Algebra. 23:5 (1995), 1165--1170. \bibitem{Zhel07} V. N. Zhelyabin, Embedding of Jordan copairs into Lie coalgebras, Comm. Algebra, 35:2 (2007), 561--576. \bibitem{SantMurShest21} G. Santos Filho, L. Murakami, I. Shestakov, Locally finite coalgebras and the locally nilpotent radical I, Linear Algebra and its Applications, 621 (2021),235--253. \bibitem{Zhel03} V. N. Zhelyabin, Jordan (super)coalgebras and Lie (super)coalgebras, Siberian Math. J. 44:1 (2003), 73--92. %T. =. ö¬ûð¸°ä, ºþøïèäþêv (¸ºà¬ø)·þèûº¬¸øv ° (¸ºà¬ø)·þèûº¬¸øv T°, T°¸. ¹èú. áºøä., 44:1 (2003), 87--111. \bibitem{Kozybaev2022} D. Kozybaev, U. Umirbaev, V. Zhelyabin, Some examples of nonassociative coalgebras and supercoalgebras, Linear Algebra and its Applications {\bf 643 } (2022), 235--257. \bibitem{GelDor79} I. M. Gelfand, I. Ya. Dorfman, Hamilton operators and associated algebraic structures, Funct. Anal. Appl. 13 (1979), 13--30. % L. ö. +¬û¹ÿèäï, L. -. -þøÿ¹èä, +è¹°û¹úþäþêv þà¬øèúþøv ° ¸êðâèääv¬ ¸ ä°¹° èûº¬¸øè°ò¬¸·°¬ ¸úøº·úºøv. Lºä·ñ. èäèû°â ° ¬ºþ àø°û., 13(4) (1979), 13--30. \bibitem{KingMcC92CommAlg} D. King, K. McCrimmon, The Kantor construction of Jordan superalgebras, Comm. Algebra. 20:1 (1992), 109--126. \bibitem{KingMcC92JA} K. McCrimmon, Speciality and nonspeciality of two Jordan superalgebras, J. of Algebra. 149:2 (1992), 326--351. \bibitem{Michael90} W. Michaelis, An example of a non-zero Lie coalgebra M for which Loc(M) = 0, J. Pure Appl. Algebra. 68 (1990), 341--348. \bibitem{Zhel05} V. N. Zhelyabin, Dual coalgebras of Jordan bialgebras and superalgebras, Siberian Math. J., 46:6 (2005), 1050--1061. %T. =. ö¬ûð¸°ä, -ºèû¹äv¬ ·þèûº¬¸øv ùþøïèäþêvì ¸°èûº¬¸ø ° ¸ºà¬øèûº¬¸ø, T°¸. ¹èú. áºøä., 46:5 (2005), 1302--1315. \bibitem{Nichols90} W. D. Nichols, The structure of the dual Lie coalgebra of the Witt algebra, J. Pure Appl. Algebra 68 (1990), 359--364. \bibitem{Nichols1993} W. D. Nichols, On Lie and associative duals, J. Pure Appl. Algebra 87 (1993), 313--320. \bibitem{ZhelKol} V. N. Zhelyabin, P. S. Kolesnikov, Dual coalgebra of the differential polynomial algebra in one variable and related coalgebras, Siberian Electronic Mathematical Reports 19:2 (2022) 792--803. %DOI: 10.33048/semi.2022.19.06 \bibitem{KozUm} D. Kozybaev, U. Umirbaev, Identities of the left-symmetric Witt algebras, Int. J. Algebra Comput. 26:2 (2016), 435--450. \bibitem{Zhel96} V. N. Zhelyabin, The Kantor--Koecher--Tits construction for Jordan coalgebras, Algebra and Logic 35:2 (1996), 96--104. %T. =. ö¬ûð¸°ä, öþä¸úøº·ñ°ð öèäúþøè~--- ö¬ì¬øè~--- T°ú¸è ïûð ùþøïèäþêvì ·þèûº¬¸ø, Lûº¬¸øè ° ûþº°·è. 35:2 (1996), 173--189. \bibitem{GonZh12} M. E. Goncharov, V. N. Zhelyabin, Mikheev's construction for Mal'tsev coalgebras, Algebra Logic 51:5 (2012), 445--447. % ö. +. +þäòèøþê, T. =. ö¬ûð¸°ä, öþä¸úøº·ñ°ð ö°ì¬¬êè ïûð ·þèûº¬¸ø öèû¹ñ¬êè, Lûº¬¸øè ° ûþº°·è, 51:5 (2012), 668--671. \bibitem{GonZh13} M. E. Goncharov, V. N. Zhelyabin, Embedding of Mal'tsev coalgebras into Lie coalgebras with triality, Algebra Logic 52:1 (2013), 24--40. % ö. +. +þäòèøþê, T. =. ö¬ûð¸°ä, Tûþá¬ä°¬ ·þèûº¬¸ø öèû¹ñ¬êè ê ·þèûº¬¸øv T° ¸ úøþù¸úê¬ääþ¸ú¹ö, Lûº¬¸øè ° ûþº°·è, 52:1 (2013), 34--56. \bibitem{Filippov1985} V. T. Filippov, $n$-Lie algebras (Russian), Sibirsk. Mat. Zh. 26:6 (1985), 126--140. % T. T. L°û°ààþê, $n$-T°¬êv èûº¬¸øv, T°¸. ¹èú. áºøä. 26:6 (1985), 126--140. \bibitem{Filippov1988} V. T. Filippov, On the $n$-Lie algebra of Jacobians, Siberian Math. J. 39:3 (1998), 573--581. % T. T. L°û°ààþê, +¸ $n$-û°¬êþù èûº¬¸ø¬ ð·þ¸°èäè, T°¸. ¹èú. áºøä. 39:3 (1998), 660--669. \end{thebibliography}