\Refs \ref\no 1 \by Alpay~S., Emelyanov~E., and Gorokhova~S. \paper $o\tau$-Continuous, Lebesgue, $KB$, and Levi operators between vector lattices and topological vector spaces \jour Results in Mathematics \yr 2022 \vol 77 \issue 3 \pages Article no.~117, 25~pp. \endref %DOI: 10.1007/s00025-022-01650-3. \ref\no 2 \by Aliprantis~C.D. and Burkinshaw~O. \book Locally Solid Riesz Spaces with Applications to Economics \bookinfo 2nd Edition \publaddr Providence \publ Amer. Math. Soc. \yr 2003 \finalinfo Mathematical Surveys and Monographs; vol.~105 \endref %doi: 10.1090/surv/105 \ref\no 3 \by Jalili~S.A., Azar~K.H., and Moghimi~M.B.F. \paper Order-to-topology continuous operators \jour Positivity \yr 2021 \vol 25 %\issue 3 \pages 1313--1322 \endref %DOI: 10.1007/s11117-021-00817-6. \ref\no 4 \by Bahramnezhad~A. and Azar~K.H. \paper $KB$-Operators on Banach lattices and their relationships with Dunford--Pettis and order weakly compact operators \jour University Politehnica of Bucharest Scientific Bulletin, Ser.~A: Applied Mathematics and Physics \yr 2018 \vol 80 \issue 2 \pages 91--98 \endref \ref\no 5 \by Alt{\i}n~B. and Machrafi~N. \paper Some characterizations of $KB$-operators on Banach lattices and ordered Banach spaces \jour Turkish~J. Math. \yr 2020 \vol 44 %\issue 3 \pages 1736--1743 \endref % DOI: 10.3906/mat-2004-106. \ref\no 6 \by Turan~B. and Alt{\i}n~B. \paper The relation between $b$-weakly compact operator and $KB$-operator \jour Turkish~J. Math. \yr 2019 \vol 43 %\issue 3 \pages 2818--2820 \endref % DOI: 10.3906/mat-1908-11. \ref\no 7 \by Emelyanov~E. \preprint Algebras of Lebesgue and $KB$ Regular Operators on Banach Lattices\nofrills \yr 2022 \bookinfo arXiv.org/abs/2203.08326v2 [math.FA] \endref \ref\no 8 \by Aliprantis~C.D. and Burkinshaw~O. \book Positive Operators \publaddr Dordrecht \publ Springer \yr 2006 \endref %doi: 10.1007/978-1-4020-5008-4 \endRefs