\Refs \ref\no 1 \by Lorentz~G.G. \book Bernstein Polynomials \publaddr Toronto \publ University of Toronto \yr 1953 \endref \ref\no 2 \by DeVore R.A. and Lorentz~G.G. \book Constructive Approximation \publaddr Berlin, Heidelberg, and New York \publ Springer \yr 1993 \endref \ref\no 3 \by Videnskii~V.S. \book Bernstein Polynomials \bookinfo Textbook for the Special Course \publ Leningrad Ped. Inst. \publaddr Leningrad \yr 1990 \lamg Russian \endref %Виденский~В.~С. %LSPI n.~a. A.~I.~Herzen \ref\no 4 \by Bustamante~J. \book Bernstein Operators and Their Properties \publ Birkh\"auser \publaddr Basel \yr 2017 \endref \ref\no 5 \by Tikhonov~I.V., Sherstyukov~V.B., and Petrosova~M.~A. \paper Bernstein polynomials: The old and the new \inbook Math. Forum. Vol.~8. Part~1. Studies on Mathematical Analysis \lang Russian \publaddr Vladikavkaz \publ SMI VSC RAS and RNO-A \yr 2014 \pages 126--175 \finalinfo Results of Science. The South of Russia \endref \ref\no 6 \by Tikhonov~I.V. and Sherstyukov~V.B. \paper Approximation of the module function with Bernstein polynomials \jour Bulletin of Chelyabinsk State University. Mathematics. Mechanics. Informatics \yr 2012 \vol 15 \issue 26 \pages 6--40 \endref \ref\no 7 \by Tikhonov~I.V. and Sherstyukov~V.B. \paper Approximation of the module function with Bernstein polynomials: New advances and possible generalizations \inbook Modern Problems of the Theory of Functions and Their Applications: Materials of the 20th International Saratov Winter School \lang Russian \publaddr Saratov \publ Nauchnaya Kniga \yr 2020 \pages 409--414 \endref \ref\no 8 \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper Generalized Popoviciu expansions for Bernstein polynomials of a~rational module \inbook Proceedings of the Voronezh Winter Mathematical School ``Modern Methods of Function Theory and Related Problems'' (January 28--February 2, 2019) \lang Russian \publaddr Voronezh \publ Voronezh University \yr 2019 \pages 71--117 \finalinfo Part 1, Progress in Science and Technology. Contemporary Mathematics and Its Applications. Thematic Surveys; vol.~170 \endref \ref\no 9 \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper Comparative analysis of two-sided estimates of the central binomial coefficient \jour Chelyabinsk Phys. Math.~J. \yr 2020 \vol 5 \issue 1 \pages 70--95 \endref \ref\no 10 \by Popov~A.Yu. \paper Two-sided estimates of the central binomial coefficient \jour Chelyabinsk Phys. Math.~J. \yr 2020 \vol 5 \issue 1 \pages 56--69 \endref \ref\no 11 \by Popov~A.Yu. \paper The upper bound of the remainder of power series with positive coefficients of a~special class \jour Chelyabinsk Phys. Math.~J. \yr 2017 \vol 2 \issue 2 \pages 192--197 \endref \ref\no 12 \by Graham~R.L., Knuth~D.E., and Patashnik~O. \book Concrete Mathematics: A~Foundation for Computer Science \publ Addison-Wesley \publaddr Reading \yr 1994 \endref \ref\no 13 \by Telyakovskii~S.A. \paper On the approximation of differentiable functions by Bernstein polynomials and Kantorovich polynomials \jour Proc. Steklov Inst. Math. \yr 2008 \vol 260 %\issue 1 \pages 289--296 \endref \ref\no 14 \by Kantorovi\^c~L.V. \paper Sur la Convergence de la Suite des Polyn\^omes de S. Bernstein en Dehors de l'Intervalle Fondamental \jour Bulletin de l'Acad\'emie des Sciences de l'URSS. Classe des sciences math\'ematiques et nat \yr 2031 \vol 8 %\issue 1 \pages 1103--1115 \endref \ref\no 15 \by Gal~S.~G. \book Approximation by Complex Bernstein and Convolution Type Operators \publ World Sci. \publaddr New Jersey, London, and Singapore \yr 2009 \endref \ref\no 16 \by Tikhonov~I.V., Tsvetkovich~D.G., and Sherstyukov~V.B. \paper Computer analysis of the attractors of zeros for classical Bernstein polynomials \jour Proc. Steklov Inst. Math. \yr 2020 \vol 245 \issue 2 \pages 217--233 \endref \ref\no 17 \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper How do attractors of zeros for classical Bernstein polynomials look like \jour Differential Equations and Control Processes \yr 2017 \vol 2 %\issue 1 \pages 59--73 \endref \ref\no 18 \by Tikhonov~I.V., Sherstyukov~V.B., and Tsvetkovich~D.G. \paper On some method for finding the convergence domain of Bernstein polynomials in the complex plane \inbook Some Actual Problems of Modern Mathematics and Mathematical Education. Herzen Readings--2018 \lang Russian \publaddr St. Petersburg \publ RSPU n.a. A.I.~Herzen \yr 2018 \pages 145--153 \endref \ref\no 19 \by Tsvetkovich~D.G. \paper Detailed atlas of attractors of zeros for the classical Bernstein polynomials \jour Chelyabinsk Phys. Math.~J. \yr 2018 \vol 3 \issue 1 \pages 58--89 \endref \endRefs