\Refs \ref\no 1 \by Mophou~G.M. \paper Optimal control of fractional diffusion equation \jour Comput. Appl. Math. \yr 2010 \vol 61 \issue 1 \pages 68--78 \endref % DOI: 10.1016/j.camwa.2010.10.030. \ref\no 2 \by Tang~Q. and Ma~Q. \paper Variational formulation and optimal control of fractional diffusion equations with Caputo derivatives \jour Adv. Difference Equ. \yr 2015 \vol Article no.~283 %\issue \endref % DOI: 10.1186/s13662-015-0593-5. \ref\no 3 \by Zhou~Z. and Gong~W. \paper Finite element approximation of optimal control problems governed by time fractional diffusion equation \jour Comput. Appl. Math. \yr 2016 \vol 71 \issue 1 \pages 301--318 \endref % DOI: 10.1016/j.camwa.2015.11.014. \ref\no 4 \by Kilbas~A.A., Srivastava~H.M., and Trujillo~J.J. \book Theory and Applications of Fractional Differential Equations \publaddr Amsterdam, Boston, and Heidelberg \publ Elsevier \yr 2006 \endref \ref\no 5 \by Butkovskii~A.G. \book Distributed Control Systems \publaddr New York \publ Elsevier \yr 1969 \endref \ref\no 6 \by Sandev~T. and Tomovski~Z. \paper The general time fractional wave equation for a vibrating string \jour J.~Phys.~A: Math. Theoret. \yr 2010 \vol 43 \issue 5 \pages Paper ID~055204 \endref % DOI: 10.1088/1751-8113/43/5/055204. \ref\no 7 \by Agrawal~O.P. \paper Fractional variational calculus in terms of Riesz fractional derivatives \jour J.~Phys.~A: Math. Theoret. \yr 2007 \vol 40 \issue 24 \pages 6287--6303 \endref % DOI: 10.1088/1751-8113/40/24/003. \ref\no 8 \by Kubyshkin~V.A. and Postnov~S.S. \paper Time-optimal boundary control for systems defined by a~fractional order diffusion equation \jour Automation and Remote Control \yr 2018 \vol 79 \issue 5 \pages 884--896 \endref % DOI: 10.1134/S0005117918050090. \endRefs