ON A NEW FAMILY OF COMPLETE G_2 -HOLONOMY RIEMANNIAN METRICS ON $S^3 \times \mathbb{R}^4$

© O. A. Bogoyavlenskaya

UDC 514.763.3

Abstract: Studying a system of first-order nonlinear ordinary differential equations for the functions determining a deformation of the standard conic metric over $S^3 \times S^3$, we prove the existence of a one-parameter family of complete G_2 -holonomy Riemannian metrics on $S^3 \times \mathbb{R}^4$.

DOI: 10.1134/S0037446613030075

Keywords: special holonomy groups, asymptotically locally conic Riemannian metrics

1. Introduction

This article is a sequel to [1] which studied a special class of Riemannian manifolds with holonomy group G_2 . The main idea is to consider the conic metric over a Riemannian manifold with special geometry and deform it to resolve the singularity at the cone apex. The deformation of the metric is determined by two functions $A_i(t)$ and $B_i(t)$ of a variable changing along the cone element. Thus, when the base is the space $M = S^3 \times S^3$, we can express the deformed metric as

$$d\bar{s}^{2} = dt^{2} + \sum_{i=1}^{3} A_{i}(t)^{2} \left(\eta_{i} + \tilde{\eta}_{i}\right)^{2} + \sum_{i=1}^{3} B_{i}(t)^{2} \left(\eta_{i} - \tilde{\eta}_{i}\right)^{2}, \qquad (*)$$

where η_i and $\tilde{\eta}_i$ constitute the basis for left-invariant 1-forms described in Section 2, while the functions $A_i(t)$ and $B_i(t)$ determine the deformation of the conic metric. The system of differential equations of [2] ensures that the holonomy group of $d\bar{s}^2$ lies in G_2 .

In this article we continue studying this class of metrics, putting $A_2 = A_3$ and $B_2 = B_3$ and considering a different boundary condition from that of [1]; namely, we require that A_i for i = 1, 2, 3vanish at the cone apex. In result, the Riemannian metric $d\bar{s}^2$ becomes defined on $S^3 \times \mathbb{R}^4$. Observe that the authors of [2] (see also [3–5]) imposed the same boundary condition and found one particular solution to this system which determines a G_2 -holonomy metric on $S^3 \times \mathbb{R}^4$, but its asymptotic behavior is different.

Let us state the main result of this article.

Theorem. For each parameter p < 0 there exists a complete G_2 -holonomy Riemannian metric on $S^3 \times \mathbb{R}^4$ of the form (*) such that $p = \frac{12}{B_1^2(0)(A_1''(0) - A_2''(0))}$.

The metrics in this family are approximated however closely as $t \to \infty$ by the direct product $S^1 \times C(S^2 \times S^3)$, where $C(S^2 \times S^3)$ is the cone over the product of spheres.

In Section 3 we give a precise definition of approximation in this class of metrics. For $p = -\frac{1}{5}$ the metric (*) coincides with the metric found in [2]. For $A_1(0) = A_2(0)$ the metric (*) coincides with the metric found in [6] and is asymptotically approximated by the cone $C(S^3 \times S^3)$. We may assume that this case corresponds to the parameter values $p = \pm \infty$.

The author was supported by the Russian Foundation for Basic Research (Grant 12–01–00124–a), the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh–544.2012.1), and the Federal Target Program "Scientific and Scientific-Pedagogical Personnel of Innovative Russia" for 2009–2013 (State Contract 8206 on 06.08.2012).

Novosibirsk. Translated from *Sibirskii Matematicheskii Zhurnal*, Vol. 54, No. 3, pp. 551–562, May–June, 2013. Original article submitted November 6, 2012.

2. A G_2 -Structure on the Cone over $S^3 \times S^3$

Our notation and the main stages of our construction of a G_2 -structure follow [1].

Consider the Lie group G = SU(2) with the standard bi-invariant metric $\langle X, Y \rangle = -\operatorname{tr}(XY)$, where $X, Y \in \operatorname{su}(2)$. Consider on G the three Killing vector fields

$$\xi^{1} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \xi^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \xi^{3} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

On $M = G \times G$ the six Killing fields ξ^i and $\tilde{\xi}^i$ for i = 1, 2, 3 arise, tangent respectively to the first and second factors, as well as six dual 1-forms η_i and $\tilde{\eta}_i$. Equip the cone $\overline{M} = \mathbb{R}_+ \times M$ with the metric

$$d\bar{s}^{2} = dt^{2} + \sum_{i=1}^{3} A_{i}(t)^{2} (\eta_{i} + \tilde{\eta}_{i})^{2} + \sum_{i=1}^{3} B_{i}(t)^{2} (\eta_{i} - \tilde{\eta}_{i})^{2}$$

where $A_i(t)$ and $B_i(t)$ are positive functions defining a deformation of the standard conic metric.

Introducing the orthonormal coframe in the metric $d\bar{s}^2$ as

$$e^{1} = A_{1}(\eta_{1} + \tilde{\eta}_{1}), \quad e^{2} = A_{2}(\eta_{2} + \tilde{\eta}_{2}), \quad e^{3} = A_{3}(\eta_{3} + \tilde{\eta}_{3}),$$

 $e^{4} = B_{1}(\eta_{1} - \tilde{\eta}_{1}), \quad e^{5} = B_{2}(\eta_{2} - \tilde{\eta}_{2}), \quad e^{6} = B_{3}(\eta_{3} - \tilde{\eta}_{3}), \quad e^{7} = dt,$

define the 3-form

$$\Psi = e^{564} + e^{527} + e^{513} + e^{621} + e^{637} + e^{432} + e^{417}$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$. The form Ψ determines a G_2 -structure on \overline{M} which is parallel provided that

$$d\Psi = 0, \quad d*\Psi = 0. \tag{1}$$

In this article we consider the particular case $A_3 = A_2$ and $B_3 = B_2$. The following lemma is straightforward from calculations.

Lemma 1. Equations (1) are equivalent to the system of ordinary differential equations

$$\frac{dA_1}{dt} = \frac{1}{2} \left(\frac{A_1^2}{A_2^2} - \frac{A_1^2}{B_2^2} \right), \quad \frac{dA_2}{dt} = \frac{1}{2} \left(\frac{B_2^2 - A_2^2 + B_1^2}{B_1 B_2} - \frac{A_1}{A_2} \right), \\
\frac{dB_1}{dt} = \frac{A_2^2 + B_2^2 - B_1^2}{A_2 B_2}, \quad \frac{dB_2}{dt} = \frac{1}{2} \left(\frac{A_2^2 - B_2^2 + B_1^2}{A_2 B_1} + \frac{A_1}{B_2} \right).$$
(2)

PROOF. Using the relations

$$d\eta_i = -2\eta_{i+1} \wedge \eta_{i+2}, \quad d\tilde{\eta}_i = -2\tilde{\eta}_{i+1} \wedge \tilde{\eta}_{i+2}$$

in [7], where the indices i = 1, 2, 3 are reduced modulo 3, we can calculate $d\Psi$:

432

(We include only a part of the full expression for $d\Psi$ which is bulky.) Then the equation $d\Psi = 0$ leads to four independent first-order ordinary differential equations on $A_i(t)$ and $B_i(t)$ for i = 1, 2, 3. Putting here $A_3 = A_2$ and $B_3 = B_2$, we obtain three differential equations on $A_i(t)$ and $B_i(t)$ for i = 1, 2:

$$-4B_2A_2 + (B_2)^2 \frac{dB_1}{dt} + 2B_1B_2 \frac{dB_2}{dt} + 2B_1A_2 \frac{dA_2}{dt} + (A_2)^2 \frac{dB_1}{dt} = 0,$$

$$4B_1A_1 - 2(B_2)^2 \frac{dB_1}{dt} - 4B_1B_2 \frac{dB_2}{dt} + 4B_1A_2 \frac{dA_2}{dt} + 2(A_2)^2 \frac{dB_1}{dt} = 0,$$

$$4B_1A_1 - 4B_2A_2 \frac{dA_1}{dt} - 4B_2A_1 \frac{dA_2}{dt} - 4A_1A_2 \frac{dB_2}{dt} = 0.$$

Considering the form $*\Psi$ and its exterior derivative similarly, we obtain two differential equations on $A_i(t)$ and $B_i(t)$ for i = 1, 2:

$$-4A_1A_2^2 - 8A_2B_1B_2 + 4A_1B_2^2 + 8A_2B_2^2\frac{dA_2}{dt} + 8A_2^2B_2\frac{dB_2}{dt} = 0,$$

$$4A_1A_2^2 - 4A_2B_1B_2\frac{dA_1}{dt} - 4A_1B_1B_2\frac{dA_2}{dt} - 4A_1A_2B_2\frac{dB_1}{dt}$$

$$-4A_1A_2B_1\frac{dB_2}{dt} + 4A_1B_2^2 = 0.$$

Solving this system of five linear equations for the derivatives of the unknown functions $A_i(t)$ and $B_i(t)$ for i = 1, 2, we obtain

$$\begin{split} \frac{dA_1}{dt} &= \frac{1}{2} \left(\frac{A_1^2}{A_2^2} - \frac{A_1^2}{B_2^2} \right), \quad \frac{dA_2}{dt} &= \frac{1}{2} \left(\frac{B_2^2 - A_2^2 + B_1^2}{B_1 B_2} - \frac{A_1}{A_2} \right), \\ \frac{dB_1}{dt} &= \frac{A_2^2 + B_2^2 - B_1^2}{A_2 B_2}, \quad \frac{dB_2}{dt} &= \frac{1}{2} \left(\frac{A_2^2 - B_2^2 + B_1^2}{A_2 B_1} + \frac{A_1}{B_2} \right). \end{split}$$

The proof of the lemma is complete.

We can resolve the conic singularity of \overline{M} for t = 0 by choosing initial values for A_i and B_i as follows. TYPE 1. $B_1(0) = 0$, $B_2(0) \neq 0$, and $A_i(0) \neq 0$. We studied this case in detail in [1].

TYPE 2. $A_i(0) = 0$ and $B_i(0) \neq 0$. In this case the integral three-dimensional spheres generated by the vector fields $\xi^i + \tilde{\xi}^i$ collapse. These spheres are the orbits of the free action of $SU(2) = S^3$ on Mdefined as

$$h = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in SU(2) : (U,V) \mapsto \left(\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} U, \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} V \right), \ |a|^2 + |b|^2 = 1.$$

The diffeomorphism

$$\phi: M \to M: (U, V) \mapsto (V^{-1}U, V)$$

transforms the above action of SU(2) into the action

$$h \in SU(2) : (U, V) \mapsto \left(U, \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} V \right).$$

Taking the quotient by the action of SU(2) on the second factor, we obtain $S^3 \times \{*\}$. Upon contracting the orbits of this action on the ambient space $[0, \infty) \times G$ to a point for t = 0, we obtain the product $S^3 \times \mathbb{R}^4$, where the punctured $\mathbb{R}^4 \setminus \{0\}$ is a bundle over the open ray $(0, \infty)$ with fibers the concentric spheres S^3 . Thus, the metric $d\bar{s}^2$ on \overline{M} extends to a space homeomorphic to $S^3 \times \mathbb{R}^4$, which we denote by \mathcal{M} . **Lemma 2.** The following conditions are necessary and sufficient for the metric $d\bar{s}^2$ to extend to a smooth metric on \mathcal{M} :

(1) $A_1(0) = A_2(0) = 0$ and $|A'_1(0)| = |A'_2(0)| = \frac{1}{2};$

(2) $B_1(0) = B_2(0) \neq 0$ and $B'_1(0) = B'_2(0) = 0;$

(3) A_i and B_i keep sign on $(0, \infty)$.

The proof is almost identical to that of Lemma 4 of [7]. Indeed, [7] deals with the cone over a 3-Sasakian manifold M having the structure of a bundle over a 4-manifold (orbifold) with fiber S^3 . Smoothing out the cone amounts to contracting the fiber of this bundle at t = 0 to a point. We have the cone over $S^3 \times S^3$ fibered over S^3 with fiber S^3 and the same type of smoothing out the singularity. The dimension and particulars of the base of the bundle play no role in the proof. Thus, the function B of Lemma 4 of [7] controls the diameter of the base as t varies, while here the pair of functions B_1 and B_2 play this role; our conditions (2) and (3) correspond to (2) and (3) of Lemma 4 of [7]. Furthermore, the condition of collapse of a sphere to a point in Lemma 4 of [7] is $A_i(0) = 0$ for i = 1, 2, 3, which fully agrees with our conditions $A_1(0) = A_2(0) = 0$. It remains to relate the conditions on the derivatives. In [7] the fiber S^3 is the sphere of radius 1, and the conditions on the derivative of A_i at t = 0 amount to the conditions of the smoothness of the metric expressed in the spherical coordinate system on \mathbb{R}^4 . In our situation the fields ξ^i have norms equal to $\sqrt{2}$. In addition, the spherical fiber in $S^3 \times S^3$ lies diagonally, that is, we have to multiply the size of the sphere S^3 by $\sqrt{2}$. In result, the unit frame on the spherical fiber in question looks as $\frac{\eta_i + \tilde{\eta}_i}{2}$; hence, the functions $2A_i$ for i = 1, 2 correspond to the sphere of unit size, and their derivatives at zero must be equal to 1, which explains why (1) is equivalent to condition (1) of Lemma 4 of [7]. \Box

The exact solution for (2) found in [2] is of the form (the remaining solutions of the family found in [2] are homothetic to this one)

$$A_{1}(r) = \sqrt{\frac{(r-9/4)(r+9/4)}{(r-3/4)(r+3/4)}}, \quad A_{2}(r) = \frac{1}{\sqrt{3}}\sqrt{(r+3/4)(r-9/4)},$$

$$B_{1}(r) = 2r/3, \quad B_{2}(r) = \frac{1}{\sqrt{3}}\sqrt{(r-3/4)(r+9/4)},$$
(3)

where $r \ge 9/4$, and r is related to t by the change of variables

$$dt = \frac{dr}{A_1(r)}, \quad t|_{r=\frac{9}{4}} = 0$$

The metric (3) is a complete G_2 -holonomy metric on $S^3 \times \mathbb{R}^4$. In the case $A_1 = A_2 = A_3 = A$ and $B_1 = B_2 = B_3 = B$ we can integrate (2) in elementary functions and obtain another complete G_2 -holonomy metric on $S^3 \times \mathbb{R}^4$:

$$d\bar{s}^{2} = \frac{dr^{2}}{1 - \frac{1}{r^{3}}} + \frac{r^{2}}{9} \left(1 - \frac{1}{r^{3}}\right) \sum_{i=1}^{3} \left(\eta_{i} + \tilde{\eta}_{i}\right)^{2} + \frac{r^{2}}{3} \sum_{i=1}^{3} \left(\eta_{i} - \tilde{\eta}_{i}\right)^{2}.$$
(4)

This metric was constructed for the first time in [6] (also see [8]). The metrics (3) and (4) exhaust the list of available explicit solutions to (2) corresponding to complete G_2 -holonomy Riemannian metrics.

Making the formal substitution $r \to -r$ into (4), we obtain the following solution to (2):

$$d\bar{s}^{2} = \frac{dr^{2}}{1 + \frac{1}{r^{3}}} + \frac{r^{2}}{9} \left(1 + \frac{1}{r^{3}}\right) \sum_{i=1}^{3} \left(\eta_{i} + \tilde{\eta}_{i}\right)^{2} + \frac{r^{2}}{3} \sum_{i=1}^{3} \left(\eta_{i} - \tilde{\eta}_{i}\right)^{2}.$$
(5)

This solution is defined for $0 < r < \infty$, but fails to determine a complete smooth Riemannian metric since it has a singularity at r = 0.

3. A Family of New Solutions

By analogy with [7], consider the standard space \mathbb{R}^4 and denote by $R(t) \in \mathbb{R}^4$ the vector consisting of $A_1(t)$, $A_2(t)$, $B_1(t)$, and $B_2(t)$. Look at the function $V : \mathbb{R}^4 \to \mathbb{R}^4$ of R defined by the right-hand side of (1) (certainly, it is defined only on the domain with $A_i, B_i \neq 0$). Thus, (1) becomes

$$\frac{dR}{dt} = V(R).$$

Using the invariance of V under the homothety of \mathbb{R}^4 , insert R(t) = f(t)S(t) with f(t) = |R(t)| and |S(t)| = 1, where $S(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t), \alpha_4(t))$. Our system splits into the radial and tangential parts:

$$\frac{dS}{du} = V(S) - \langle V(S), S \rangle S = W(S), \tag{6}$$

$$\frac{1}{f}\frac{df}{du} = \langle V(S), S \rangle, \quad dt = f \, du. \tag{7}$$

Consequently, we have to solve firstly the autonomous system (6) on the three-dimensional sphere $S^3 = \{(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \mid \sum_{i=1}^4 \alpha_i^2 = 1\}$, and then find the solutions to (2) by the usual integration of (7).

Lemma 3. The systems (2) and (6) admit the symmetries

$$(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) \mapsto (-\alpha_{1}, \alpha_{4}, \alpha_{3}, \alpha_{2}),$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (-\alpha_{1}(-u), \alpha_{2}(-u), \alpha_{3}(-u), -\alpha_{4}(-u)))$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (-\alpha_{1}(-u), -\alpha_{2}(-u), \alpha_{3}(-u), \alpha_{4}(-u)))$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (\alpha_{1}(u), \alpha_{2}(u), -\alpha_{3}(u), -\alpha_{4}(u)),$$

$$((\alpha_{1}(u), \alpha_{2}(u), \alpha_{3}(u), \alpha_{4}(u)) \mapsto (\alpha_{1}(u), -\alpha_{2}(u), -\alpha_{3}(u), \alpha_{4}(u)).$$

By Lemma 2, to construct a regular metric on \mathcal{M} , we need a trajectory of (6) emanating from the point $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. The remaining solutions result from the case we considered once we apply the symmetries of (6).

To construct a smooth metric on \mathcal{M} , blow up the sphere S^3 at $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. The blowup operation looks as follows. Choose local coordinates $(\alpha_1, \alpha_2, \alpha_3 - \frac{1}{\sqrt{2}})$ on a neighborhood of S_0 and take the ball $B = \{(\alpha_1, \alpha_2, \alpha_3 - \frac{1}{\sqrt{2}}) \mid \alpha_1^2 + \alpha_2^2 + (\alpha_3 - \frac{1}{\sqrt{2}})^2 \leq \varepsilon^2\}$ of radius ε . Its intersection with the plane $\alpha_3 = \frac{1}{\sqrt{2}}$ is the disk $U = \{(\alpha_1, \alpha_2) \mid \sum_{i=1}^2 \alpha_i^2 \leq \varepsilon^2\}$ of radius ε .

Introduce the geodesic coordinate system on U; that is, consider the radial coordinate $-\varepsilon < r < \varepsilon$ and the tangential coordinate $s \in S^1$, where $S^1 = \{(\alpha_1, \alpha_2) \mid \sum_{i=1}^2 \alpha_i^2 = 1\}$. Thus, $(\alpha_1, \alpha_2) = rs$. Consider the product $(-\varepsilon, \varepsilon) \times S^1$ with the action $(r, s) \mapsto (-r, -s)$ of the group \mathbb{Z}_2 . The action is clearly free, and we obtain the quotient space $\widetilde{U} = (-\varepsilon, \varepsilon) \times S^1/\mathbb{Z}_2$ amounting to the Möbius band. The assignment $\pm(r, s) \mapsto rs$ determines a smooth mapping $\widetilde{U} \to U$, which is obviously a diffeomorphism $\widetilde{U} \setminus P \to U \setminus S_0$, where $P = \{(r, s) \mid r = 0\}$ is a projective line embedded into \widetilde{U} .

Remove the point S_0 from the neighborhood U and glue in \tilde{U} using the diffeomorphism just constructed. The resulting manifold is said to be the *blowup of* S^3 at S_0 .

Denote by \tilde{S} the sphere S^3 blown up at S_0 (we can represent \tilde{S} as the connected sum of the sphere S^3 and the real projective space $\mathbb{R}P^3$). We need local coordinates on a neighborhood of P. Consider $U_i = \{\pm(r,s) \mid \alpha_i \neq 0\}, i = 1, 2$. On U_i put

$$\alpha_i^i = \alpha_i, \quad \alpha_j^i = \frac{\alpha_j}{\alpha_i} \text{ for } i \neq j.$$

This defines local coordinates α_1^i, α_2^i on \widetilde{U} in the neighborhood $U_i, i = 1, 2$. Extend \widetilde{U} to a threedimensional neighborhood of the point S_0 by putting $\alpha_3^i = \alpha_3$ for i = 1, 2. **Lemma 4.** There exists a one-parameter family of trajectories of (6) emanating from the point $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and entering into the domain $\alpha_2 \ge \alpha_1 > 0$.

PROOF. Carry the system (6) over to \tilde{S} , and then the projections of the trajectories onto S^3 yield the required solutions. By the previous arguments and Lemma 2, we must study the trajectories of (6) on \tilde{S} emanating from the point $\alpha_1^2 = 1$, $\alpha_2^2 = 0$, $\alpha_3^2 = \frac{1}{\sqrt{2}}$. Express the field W on U_2 in the new coordinates. For simplicity, put $x = \alpha_1^2$, $y = \alpha_2^2$, and $z = \alpha_3^2$. Then (6) is equivalent to

$$\frac{dx}{dv} = W_1(xy, y, z) - xW_2(xy, y, z) = \widetilde{W}_1(x, y, z),$$

$$\frac{dy}{dv} = yW_2(xy, y, z) = \widetilde{W}_2(x, y, z),$$

$$\frac{dz}{dv} = yW_3(xy, y, z) = \widetilde{W}_3(x, y, z),$$
(8)

where $du = y \, dv$.

We can verify directly that the vector field \widetilde{W} vanishes at $p = (1, 0, \frac{1}{\sqrt{2}})$. Consider the linearization of (8) in a neighborhood of this point:

$$\frac{dx}{dv} = x, \quad \frac{dy}{dv} = \frac{1}{2}y, \quad \frac{dz}{dv} = -3z.$$

Thus, in a neighborhood of the point $p = (1, 0, \frac{1}{\sqrt{2}})$ we have the surface swept by the trajectories of (8) emanating from p exponentially in v. Furthermore, this surface is tangent at $p = (1, 0, \frac{1}{\sqrt{2}})$ to the two-dimensional plane spanned by the first two eigenvectors $e_1 = \{1, 0, 0\}$ and $e_2 = \{0, 1, 0\}$. Namely, in the phase plane with coordinates $\tilde{x} = x - 1$ and $\tilde{y} = y$ our trajectories amount to the parabolas $\tilde{y}^2 = 2p\tilde{x}$ emanating parallel to the chosen direction e_2 . Each of these parabolas is the parametrized curve $\gamma(v) = (\alpha e^v, \beta e^{\frac{v}{2}})$ or $\gamma(u) = (\frac{\alpha u^2}{\beta \beta^2}, \frac{u}{2})$, and so $\frac{d\gamma}{du} = (\frac{\alpha u}{2\beta^2}, \frac{1}{2})$ is its velocity vector and $\frac{d^2\gamma}{du^2} = (\frac{\alpha}{2\beta^2}, 0)$ is its acceleration vector. Hence, $\frac{\alpha}{2\beta^2} = \frac{d^2x}{du^2}$.

It is not difficult to calculate that

$$\frac{d^2x}{du^2} = f \frac{d}{dt} \left(f \frac{d}{dt} \left(\frac{A_1}{A_2} \right) \right) \Big|_{t=0} = \frac{1}{8} b_0^2 (a_1 - a_2),$$

where $b_0 = B_1(0) = B_2(0)$, $a_1 = \frac{A_1''(0)}{6}$, and $a_2 = \frac{A_2''(0)}{6}$. Then we find the focal parameter of the parabola p from the condition $2p = \frac{\beta^2}{\alpha}$, which yields

$$p = \frac{12}{B_1^2(0)(A_1^{\prime\prime\prime}(0) - A_2^{\prime\prime\prime}(0))}.$$

Observe that it determines our trajectory uniquely (up to homothety). Furthermore, the trajectory enters into the domain $\alpha_1 < \alpha_2$ when p < 0, and into the domain $\alpha_1 > \alpha_2$ when p > 0. It is worth noting that the previously available particular solutions (3) and (4) to (1) at the initial time are also tangent to the vector e_2 ; moreover, (4) amounts to the straight line $\tilde{x} = 0$ (we may assume that this solution corresponds to the limit values $p = \pm \infty$), while (3) lies in the family of parabolas $\tilde{y}^2 = 2p\tilde{x}$ and corresponds to p = -1/5.

REMARK. Our arguments show that there exists a family of solutions for p > 0, but in this article we do not address the global behavior of the corresponding trajectories.

Thus, in a neighborhood of the point $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ we have a one-parameter family of trajectories of (6) emanating from S_0 in finite time with respect to the variable u; furthermore, this family is tangent at S_0 to the plane parallel to the coordinate plane $O\alpha_1\alpha_2$, and the tangent vector at the initial time is of the form $\{\alpha_1, \alpha_2, 0, 0\}$ with $\alpha_1 < \alpha_2$. \Box

The next lemma is established in [1].

Lemma 5. The stationary solutions to (6) on S^3 are exhausted by the following list of zeros of the vector field W up to the symmetries of Lemma 3:

$$\left(\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}\right), \quad \left(0, \frac{\sqrt{3}}{\sqrt{10}}, \frac{\sqrt{2}}{\sqrt{5}}, \frac{\sqrt{3}}{\sqrt{10}}\right)$$

DEFINITION. Refer to a point $S \in S^3$ at which the field W is undefined as conditionally stationary whenever there exists a real-analytic curve $\gamma(u)$ on S^3 for $u \in (-\varepsilon, \varepsilon)$ with $\gamma(0) = S$, such that W is defined at all points $\gamma(u)$ for $u \in (-\varepsilon, \varepsilon)$ with $u \neq 0$, extends continuously to the whole curve $\gamma(u)$, and $\lim_{u\to 0} W(\gamma(u)) = 0$.

The next lemma is also established in [7].

Lemma 6. The system (6) lacks conditionally stationary solutions on S^3 .

DEFINITION. A metric $d\bar{s}^2$ is called *asymptotically locally conic* whenever there exist functions $\tilde{A}_i(t)$ and $\tilde{B}_i(t)$ linear in t up to translations such that

$$\left|1-rac{A_i}{\widetilde{A}_i}
ight|
ightarrow 0, \ \left|1-rac{B_i}{\widetilde{B}_i}
ight|
ightarrow 0 \ \ ext{as} \ \ t
ightarrow \infty.$$

The metric defined by $\widetilde{A}_i(t)$ and $\widetilde{B}_i(t)$ is called *locally conic*.

The next lemma is established in [7].

Lemma 7. Associated to the stationary solutions to (6) there are locally conic metrics on \overline{M} , while associated to the trajectories of (6) tending asymptotically to the stationary solutions there are asymptotically locally conic metrics on \overline{M} .

The next lemma follows from a straightforward inspection of (2) and (6).

Lemma 8. If $S = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ is a solution to (6) then

$$\frac{d}{dt} \left(2A_1 A_2 B_2 - B_1 \left(B_2^2 - A_2^2 \right) \right) = 0, \tag{9}$$

$$\frac{d}{du} \left(\frac{\alpha_1 \alpha_2 \alpha_4}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)} \right) = \frac{\alpha_1 \alpha_3}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)},\tag{10}$$

$$\frac{d}{du} \left(\log \frac{\alpha_3((\alpha_4)^2 - (\alpha_2)^2)}{\alpha_1 \alpha_2 \alpha_4} \right) = \frac{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3((\alpha_4)^2 - (\alpha_2)^2)}{2\alpha_2 \alpha_4((\alpha_4)^2 - (\alpha_2)^2)},\tag{11}$$

$$\frac{d}{du}\log\frac{\alpha_2}{\alpha_4} = -\frac{\alpha_1}{(\alpha_4)^2} \quad \text{for } \alpha_2 = \alpha_4, \tag{12}$$

$$\frac{d}{du}\left(\frac{\alpha_3}{\alpha_4}\right) = \frac{3}{2\alpha_4}\left(\frac{2}{\sqrt{3}} + \frac{\alpha_3}{\alpha_4}\right)\left(\frac{2}{\sqrt{3}} - \frac{\alpha_3}{\alpha_4}\right) \quad \text{for } \alpha_1 = 0, \ \alpha_2 = \alpha_4.$$
(13)

PROOF. Let us verify (10) and (12) for instance. We have

=

$$\begin{aligned} \frac{d}{du} \left(\frac{\alpha_1 \alpha_2 \alpha_4}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)} \right) &= \frac{d}{du} \left(\frac{A_1 A_2 B_2}{2A_1 A_2 B_2 - B_1 \left((B_2)^2 - (A_2)^2 \right)} \right) \\ &= f \frac{d}{dt} \left(\frac{A_1 A_2 B_2}{2A_1 A_2 B_2 - B_1 \left((B_2)^2 - (A_2)^2 \right)} \right) = f \frac{A_1 B_1}{2A_1 A_2 B_2 - B_1 \left((B_2)^2 - (A_2)^2 \right)} \\ &= \frac{\alpha_1 \alpha_3}{2\alpha_1 \alpha_2 \alpha_4 - \alpha_3 \left((\alpha_4)^2 - (\alpha_2)^2 \right)}, \\ &\frac{d}{du} \log \left(\frac{\alpha_2}{\alpha_4} \right) = \frac{d}{du} \log \left(\frac{A_2}{B_2} \right) = f \frac{d}{dt} \log \left(\frac{A_2}{B_2} \right) \\ f \left(\frac{1}{2} \frac{2A_2 B_2 \left((B_2)^2 - (A_2)^2 \right) - A_1 B_1 \left((A_2)^2 + (B_2)^2 \right)}{(A_2)^2 B_1 (B_2)^2} \right) \Big|_{A_2 = B_2} = f \left(-\frac{A_1}{(B_2)^2} \right) = -\frac{\alpha_1}{(\alpha_4)^2}. \end{aligned}$$

REMARK. The function $F(t) = 2A_1A_2B_2 - B_1(B_2^2 - A_2^2)$ is an integral of (2).

Lemma 9. The trajectory of (6) determined by the initial point $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ tends as $u \to \infty$ to the stationary point $S_{\infty} = (0, \frac{\sqrt{3}}{\sqrt{10}}, \frac{\sqrt{2}}{\sqrt{5}}, \frac{\sqrt{3}}{\sqrt{10}}).$

PROOF. Demonstration is similar to that in [7], but for the sake of rigor of our exposition we present it in full. Label the following points of S^3 :

$$O = (0, 0, 1, 0), \quad A = (0, 0, 0, 1), \quad B = (1, 0, 0, 0), \quad C = \left(0, \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right).$$

Consider the domain $\Pi \subset S^3$ defined by the inequalities

$$\Pi: lpha_4 \geq lpha_2 \geq 0, \,\, lpha_1 \geq 0, \,\, lpha_3 \geq 0.$$

It is not difficult to verify that Π is a spherical tetrahedron (*OABC*). The boundary of the domain is the union of the sets

$$\Pi_{1} = (OAB) = \{\alpha_{4} \ge 0, \alpha_{2} = 0, \alpha_{1} \ge 0, \alpha_{3} \ge 0\},$$

$$\Pi_{2} = (OBC) = \{\alpha_{2} = \alpha_{4}, \alpha_{2} \ge 0, \alpha_{1} \ge 0, \alpha_{3} \ge 0\},$$

$$\Pi_{3} = (OAC) = \{\alpha_{4} - \alpha_{2} \ge 0, \alpha_{2} \ge 0, \alpha_{1} = 0, \alpha_{3} \ge 0\},$$

$$\Pi_{4} = (ABC) = \{\alpha_{4} - \alpha_{2} \ge 0, \alpha_{2} \ge 0, \alpha_{1} \ge 0, \alpha_{3} = 0\}.$$

The initial point $S_0 = (0, 0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ belongs to (OA). For small u the trajectory of (6) determined by the initial point S_0 lies in Π .

Consider firstly the possibility that the trajectory reaches the boundary of Π in finite time. Consider also Π_1 and define the function F_1 on S^3 as

$$F_1(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \frac{\alpha_1 \alpha_2 \alpha_4}{F(\alpha_1, \alpha_2, \alpha_3, \alpha_4)}.$$

At the initial moment $F_1(S_0) = 0$. Since $F(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = f(t)^{-3}F(S_0) < 0$, we infer from (10) that the derivative of F_1 is negative, and so the function strictly decreases along the trajectories of (2) inside Π . On $\Pi_1 \setminus ((AB) \cup (OB))$ we have $F_1(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 0$; consequently, the trajectory cannot return and intersect this wall, with the possible exception of the arcs $(AB) = \{\alpha_3 = 0\}$ and $(OB) = \{\alpha_4 = 0\}$. Furthermore, on Π_2 we have

$$\frac{d(\alpha_4 - \alpha_2)}{du} = \frac{\alpha_1}{\alpha_2} > 0$$

for $\alpha_1 \neq 0$, that is, the trajectory cannot intersect some neighborhood of Π_2 in finite time nor even approach sufficiently close, with the exception of the arc $(OC) = \{\alpha_1 = 0\}$. The same reasons also exclude a neighborhood of the arc (OB). Finally, on Π_4 the derivative of $\alpha_3(u)$ is strictly positive and separated from zero:

$$\begin{aligned} \frac{d\alpha_3}{du} &= \frac{d}{du} \left(\frac{B_1}{f} \right) = f \frac{d}{dt} \left(\frac{B_1}{f} \right) \Big|_{B_1 = 0} = \frac{2A_1^2 \left(A_2^2 + B_2^2 \right) + 3A_2^4 + 2A_2^2 B_2^2 + 3B_2^4}{2A_2 B_2 \left(A_1^2 + A_2^2 + B_2^2 \right)} \\ &= \frac{2\alpha_1^2 \left(\alpha_2^2 + \alpha_4^2 \right) + 3\alpha_2^4 + 2\alpha_2^2 \alpha_4^2 + 3\alpha_4^4}{2\alpha_2 \alpha_4 \left(\alpha_1^2 + \alpha_2^2 + \alpha_4^2 \right)}; \end{aligned}$$

thus, the trajectory is disjoint from Π_4 and some neighborhood of the latter (this also excludes the remaining possibility of approach to the arc (AB)). Since Π_3 is an invariant subset for (6), the trajectory cannot intersect Π_3 in finite time (including the arc (OC)).

Suppose that C is the limit set of the trajectory under consideration. Then it may contain the following points.

(1) The stationary or conditionally stationary points of (2) (by Lemmas 5 and 6, the only two possibilities are open: the points S_{∞} and $S_1 = \left(\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{3}}{2\sqrt{2}}\right)$. (2) The points lying on a critical level of the function F_1 .

(3) Finally, suppose that $p \in C$ is not of type 1 and 2. If $p \in \operatorname{Int} \Pi$ then the trajectory has nonzero velocity at p, and since F_1 decreases, it can never again return to some neighborhood of p; this contradicts the assumption that p is a limit point. Thus, $p \in \partial \Pi$. Similar reasoning shows that p lies on the minimal level of F_1 .

In the same fashion, consider the function

$$F_2(lpha_1, lpha_2, lpha_3, lpha_4) = \log rac{lpha_3 \left(lpha_4^2 - lpha_2^2
ight)}{lpha_1 lpha_2 lpha_4}$$

It follows from (11) that F_2 decreases along the trajectories, and so the set $C \cap \partial \Pi$ lies on the minimal level of F_2 in Π . Observe that the minimal level of F_2 in Π is the set $\Pi_2 \cup \Pi_4$. We ruled out above the approach to a neighborhood of Π_4 ; consequently, only the case $C \cap \partial \Pi \subset \Pi_2$ is possible.

Furthermore, by (12) the function $F_3 = \log \frac{\alpha_2}{\alpha_4}$ decreases along the trajectories (for sufficiently large u) to the minimal values of Π_2 , attained at $\alpha_1 = 0$. Thus, our trajectory tends as $u \to \infty$ to the onedimensional invariant set $\Pi_2 \cap \Pi_3 = (OC)$. By (13), in a neighborhood of (OC) the function $F_4 = \frac{\alpha_3}{\alpha_4}$ increases when $F_4 \leq \frac{2}{\sqrt{3}}$ and decreases when $F_4 \geq \frac{2}{\sqrt{3}}$; consequently, $C \cap \partial \Pi$ can contain only the point S_{∞} determined by the condition $F_4 = \frac{2}{\sqrt{3}}$.

Thus, we conclude that the trajectory under consideration tends to either S_1 or S_{∞} . To complete the proof of the lemma, it remains to verify the lack of convergence to S_1 .

Consider the linearization of (6) in a neighborhood of the stationary point S_1 in the local coordinates $(\alpha_1, \alpha_2, \alpha_3)$. Straightforward calculations show that the linearized system has the three eigenvalues of multiplicity 1:

$$\lambda_1 = -2\sqrt{2}, \quad \lambda_2 = -\frac{7}{3}\sqrt{2} - \frac{1}{3}\sqrt{290}, \quad \lambda_3 = -\frac{7}{3}\sqrt{2} + \frac{1}{3}\sqrt{290}.$$

Thus, in a neighborhood of S_1 there exists a (locally defined) surface swept by the trajectories entering S_1 ; furthermore, this surface is tangent at S_1 to the two-dimensional plane spanned by the first two eigenvectors e_1 and e_2 . The remaining trajectories in a neighborhood of S_1 emanate from S_1 . Furthermore, the first eigenvector e_1 has in \mathbb{R}^4 the coordinates $(-\sqrt{3}, -\sqrt{3}, 1, 1)$ and is tangent to the trajectory defined as $\alpha_1 = \alpha_2$ and $\alpha_3 = \alpha_4$. It is not difficult to see that the eigenvalue λ_1 corresponds precisely to the solutions (4) and (5) (the trajectories enter S_1 from the opposite sides; (4) corresponds to F < 0, and (5) to F > 0). Since $|\lambda_2| > |\lambda_1|$, the remaining trajectories entering S_1 , except one, are tangent at S_1 to the trajectory (4) or (5). The unique trajectory not tangent to either (4) or (5) corresponds to the eigenvalue λ_2 , and we can verify directly that it lies on the invariant surface F = 0, and consequently, cannot coincide with our trajectory.

Consider the two functions $G_1 = \alpha_2 \alpha_4 - \alpha_1 \alpha_3$ and $G_2 = \alpha_1 \alpha_4 - \alpha_2 \alpha_3$. The initial point S_0 and the stationary point S_1 lie in the domain $\{G_1 = 0, G_2 = 0\}$. Straightforward calculations show that the vector e_2 is directed inside the domain $\{G_1 > 0, G_2 > 0\}$ or $\{G_1 < 0, G_2 < 0\}$ depending on the choice of the direction of e_2 :

$$e_2 = \pm \left\{ -\frac{1}{2} + \frac{\sqrt{145}}{10}, 1, -\frac{11\sqrt{3}}{6} - \frac{\sqrt{3}\sqrt{145}}{6}, \frac{5}{\sqrt{3}} + \frac{2\sqrt{145}}{5\sqrt{3}} \right\}.$$

It is easy to verify that $\frac{d}{du}G_1 = -\frac{2}{\alpha_2}G_2$ at those points where $G_1 = 0$, and $\frac{d}{du}G_2 = -\frac{2}{\alpha_2}G_1$ at those points where $G_2 = 0$. Hence, the trajectory can reach S_1 only from the domain $\{G_1 > 0, G_2 > 0\}$. If it crosses into one of the domains $\{G_1 > 0, G_2 < 0\}$ or $\{G_1 < 0, G_2 > 0\}$ then it will be unable to leave them (observe that S_{∞} lies in $\{G_1 > 0, G_2 < 0\}$). This reason determines the direction of e_2 : it is directed inside the domain $\{G_1 > 0, G_2 > 0\}$.

On the other hand, at the initial time the tangent vector to our trajectory is of the form $\{\alpha_1, \alpha_2, 0, 0\}$ with $\alpha_1 \ge 0$ and $\alpha_2 \ge 0$; thus, it is directed into one of the domains $\{G_1 > 0, G_2 < 0\}$ or $\{G_1 < 0, G_2 > 0\}$ depending on the sign of $(\alpha_2 - \alpha_1)$. It only remains to recall that $\alpha_2 > \alpha_1$ (see the proof of Lemma 4), and so the trajectory belongs to the domain $\{G_1 > 0, G_2 < 0\}$, where the unique limit point is S_{∞} . \Box

The main theorem follows from Lemmas 4 and 9. The initial point of the trajectory determines the topological structure of the space carrying our metric, whose holonomy group obviously coincides with the whole of G_2 . The limit point S_{∞} means that at infinity the function A_1 is approximated by a constant, while the remaining functions defining the metric, by nonconstant linear functions.

References

- 1. Bazaĭkin Ya. V. and Bogoyavlenskaya O. A., "Complete G_2 -holonomy Riemannian metrics on cone deformations over $S^3 \times S^3$," Math. Notes (to be published).
- 2. Brandhuber A., Gomis J., Gubser S. S., and Gukov S., "Gauge theory at large N and new G₂ holonomy metrics," Nucl. Phys. B, **611**, No. 1–3, 179–204 (2001).
- 3. Brandhuber A., "G₂ holonomy spaces from invariant three-forms," Nucl. Phys. B, **629**, No. 1–3, 393–416 (2002).
- Cvetic M., Gibbons G. W., Lu H., and Pope C. N., "A G₂ unification of the deformed and resolved conifolds," Phys. Lett. B, 534, No. 1–4, 172–180 (2002).
- Chong Z. W., Cvetic M., Gibbons G. W., Lu H., Pope C. N., and Wagner P., "General metrics of G₂ holonomy and contraction limits," Nucl. Phys. B, 638, No. 3, 459–482 (2002).
- Bryant R. L. and Salamon S. L., "On the construction of some complete metrics with exceptional holonomy," Duke Math. J., 58, No. 3, 829–850 (1989).
- Bazaikin Ya. V., "On the new examples of complete noncompact Spin(7)-holonomy metrics," Siberian Math. J., 48, No. 1, 8–25 (2007).
- Gibbons G. W., Page D. N., and Pope C. N., "Einstein metrics on S³, R³, and R⁴ bundles," Comm. Math. Phys., 127, No. 3, 529–553 (1990).

O. A. BOGOYAVLENSKAYA

NOVOSIBIRSK STATE UNIVERSITY, NOVOSIBIRSK, RUSSIA *E-mail address:* olga.bogoyavlenskaya@gmail.com