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We use directed algebraic topology for establishing categorical relationships between two

geometrical models of concurrency, precubical sets and transitional Chu spaces. We

study the universal dicovering functor from the category of precubical sets to the category

of simply diconnected counterparts of precubical sets. We prove that the category of

transitional Chu spaces is equivalent to the category of simply diconnected precubical

sets and show that the openness of morphisms is preserved. Bibliography: 19 titles.

Illustrations: 7 figures.

Introduction

Directed algebraic topology (ditopology) [1] deals with directed toplogical spaces, i.e., spaces

with a distinguished direction (order) and continuous mappings preserving the direction. Di-

rected paths (dipaths), unlike usual paths, cannot be reversible. Many concepts of algebraic

theory have been extended to directed algebraic theory (cf., for example, [1, 2]).

Precubical sets (counterparts of semisymplectic sets in algebraic topology) form a family of

sets of cubes of different dimension that are glued together along common faces. In concurrency

theory, precubical sets are usually referred to as higher dimensional automata (cf. [3, 4]). The

model of higher dimensional automata is the most expressive (cf. [5]) and, at the same time,

the least studied structural model of concurrency. This model seems to be promised since it is

represented via precubical sets and, consequently, tools of ditopology can be used for studying

concurrent computations (cf. [6]). For example, two processes are concurrent if and only if

the dipaths representing these processes are dihomotopic. A homological approach was used in

[7]-[10], where precubical sets were presented as algebraic complexes.

Chu spaces [11, 12] are topological spaces equipped with a set of points, a set of open

sets, and the membership relation. In concurrency theory, Chu spaces are formalized up to an

isomorphism [13] by the so-called configuration structures.

In this paper, we use methods of ditopology for establishing categorical relationships between
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two geometric models of concurrent processes: precubical sets and transitional Chu spaces.

We clarify relationships between the model of higher dimensional automata and configuration

structures and thereby develop concurrency semantics of higher dimensional automata in terms

of configuration structures. In particular, we construct categories of models under consideration

and subcategories of dipaths. We define and study the universal dicovering functor from the

category of precubical sets to the category of their simply diconnected counterparts. This functor

is the right conjugate of the inclusion functor. We also establish that the category of transitional

Chu spaces is equivalent to the category of simply diconnected precubical sets and show that

the openness property of morphisms is preserved.

1 Precubical Sets and Cubical Paths

In this section, we introduce the category PS of precubical sets and the subcategory cP of

cubical paths.

Definition 1. A (nondegenerate) precubical set M is a collection of sets of cubes (Mn)n∈N

such that Mn ∩Mn′ = ∅ (n �= n′) and, together with boundary function Mn

d0i
⇒
d1j

Mn−1 (n ∈ N,

i, j = 1 . . . n) such that |{dmi (x) | i = 1 . . . n}| = n for any m = 0, 1 and x ∈ Mn, satisfy the

commutativity of the following diagram:

for all i < j and k,m = 0, 1.

Definition 2. A (labeled) precubical set (with a labeled point) is a triple M = (M, i0, lL)

where M is a precubical set, i0 ∈ M0 is a labeled point, and lL : M1 → L is a labeling function

from the set of 1-cubes to the set L of actions such that lL(d
0
i (x)) = lL(d

1
i (x)) (i = 1, 2) for all

x ∈M2
1.

As was already mentioned, precubical sets are called higher dimensional automata [3, 4] and

present the most powerful structural model [5] of concurrency theory. Using higher dimensional

automata, it is possible to simulate concurrency in a natural way: the concurrent execution of n

actions is represented by an n-dimensional cube, whereas the sequential execution of the same

actions is represented by the edges of this cube. An example of higher dimensional automata is

represented in Figure 1. The concurrent execution of two actions a and b which is simulated by

the 2-cube x (the grey square) whose boundaries are the 1-cubes (the segments) x1, y2, y1, x2 is

shown at the right in Figure 1. The square boundaries are presented by functions of two types:

the source functions d01, d
0
2 and the target functions d11, d

1
2 (in a certain sense, x2 = d11(x) and

y2 = d12(x) are copies of x1 = d01(x) and y1 = d02(x) respectively). Then the boundary functions

1 The extension of lL to any x ∈ Mn is defined by lL(x) = ∅ for n = 0 and lL(x) := (lL(y1), . . . , lL(yn)) for

n > 1, where yi = d01 ◦ . . . d0i−1 ◦ d0i+1 ◦ . . . ◦ d0n(x) for all 1 � i � n.

833



determine a direction. For example, the 1-cube x1 starts at the 0-cube (the point) d01(x1) = i0
and ends up with the 0-cube d11(x1) = s. The sequential execution of two actions a and b which

is simulated by the higher dimensional automaton constructed from the 1-cubes x1, y2 and y1,

x2 is shown at the left in Figure 1. The processes at the left and right start at a fixed point i0.

Figure 1. An example of the sequential (at the left) and concurrent (at the right) executions of
actions a and b in a higher dimensional automaton.

We introduce the relation ∼�∈ (M1)
2 as the minimal equivalence such that the existence of

y ∈M2 with x1 = dki (y) and x2 = d1−k
i (y) for some i = 1, 2 and k = 0, 1 implies the equivalence

of x1 and x2. Let � x � be the equivalence class ∼�. Informally speaking, all x1 ∈� x �
simulate the same event of a concurrent process.

We introduce the mappings D0, D1 : Mn → M0, n � 0, by D0(x) = d01 ◦ . . . ◦ d0n(x) and

D1(x) = d11 ◦ . . . ◦ d1n(x) respectively for all x ∈Mn.

In what follows, we consider only precubical sets with x1, . . . xn ∈M1 and y ∈Mn satisfying

the following axioms.

A0 If d01(x1) = d01(x2) and x1 ∼� x2, then x1 = x2.

A1 If d11(x1) = d01(x2), d
1
1(x2) = d01(x3), . . ., d

1
1(xn−1) = d01(xn) and xi ∼� d

mi
1

1 ◦ . . . ◦ d
mi

σ(i)−1

σ(i)−1 ◦
d
mi

σ(i)+1

σ(i)+1 ◦ . . . ◦ d
mi

n
n (y) for all 1 � i � n, then there is a unique cube x ∈ Mn such that

xi = d
mi

1
1 ◦ . . . ◦ dm

i
σ(i)−1

σ(i)−1 ◦ d
mi

σ(i)+1

σ(i)+1 ◦ . . . ◦ d
mi

n
n (x) for all 1 � i � n, where σ : {1, . . . , n} →

{1, . . . , n} is a permutation of order n. Here, mi
j = 1 if j = σ(k) and k < i; otherwise,

mi
j = 0 for all 1 � i, j � n.

Definition 3. Let M1 = (M1, i10, l
1
L1) and M2 = (M2, i20, l

2
L2) be precubical sets. A mapping

f = 〈f, α〉, where f = ∪fn, fn : (M1)n → (M2)n, and α : L1 → L2, is called a morphism from

M1 to M2 if the following conditions are satisfied:

(1) f0(i
1
0) = i20, (2) l2L2 ◦ f = α ◦ l1L1 , (3) fn ◦ dmi = dmi ◦ fn+1.

Precubical sets, together with morphisms between precubical sets, form the category PS.

A cubical path in a precubical set M is a sequence P = p0p1 . . . pk of cubes such that ps−1 =

d0i (ps) or ps = d1j (ps−1) for all s = 1 . . . k and, in addition, p0 = i0. We denote by C P(M)

(C Pu(M)) the set of all cubical paths (ending with a cube u ∈ M) in a precubical set M. Let

C P1(M) be the set of one-dimensional cubical paths, i.e., cubical paths P = p0p1 . . . pk in M

such that pi is either a 0-cube or a 1-cube for any 0 � i � k. A cubical path Q = q0 . . . qn is an

extension of a cubical path P = p0 . . . pk (denoted by P → Q) if n � k and p0 . . . pk = q0 . . . qk.

In particular, we write P
dmi−−→ Q if n = k + 1 and qk = d0i (qk+1) for m = 0 or qk+1 = d1i (qk) for

m = 1. A cubical path P is acyclic if it does not contain the same cubes and precubes.
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On the analogy of the notion of a path homotopy in algebraic topology, the notion of a

dihotomy of cubical paths is introduced with taking into account that cubical sets are always

directed (i.e., there is an order). A dihomotopy (denoted by ∼) is the least equivalence on

cubical paths in a precubical set M such that if cubical paths P and P ′ are s-adjacent (denoted
by P

s↔ P ′), i.e., P ′ can be obtained from P by replacing (for some i < j and m = 0, 1) either
d0i−→ ps

dmj−→ with
dmj−1−→ p′s

d0i−→ (or vice versa) or
dmj−→ ps

d1i−→ with
d1i−→ p′s

dmj−1−→ (or vice versa), then

P and P ′ are equivalent. Furthermore, cubical paths P and P ′ are said to be (s, u, v)-adjacent

(denoted by P
(s,u,v)←→ P ′) if P ′ can be obtained from P = p̂0 . . . p̂k by an s-adjacency replacement

of its segment
dnu−→ p̂s

dlv−→. For every cubical path P we denote by [P ] its dihomotopy class.

We consider a precubical set M in Figure 2. The set M consists of the 3-cube, the 2-cube con-

voluted to a cylinder, and all subcubes obtained under the action of the boundary functions. For

an example of a cubical path we can consider the sequence P = i0p1p2p3p4p5p6p7p8p7. The cubi-

cal paths P and Q = i0p1p2q1q2p5p6p7p8p7 are dihomotopic since P
4↔ (i0p1p2q1p4p5p6p7p8p7)

5↔
Q. The cubical path i0p1p2p3p4p5 is an example of an acyclic cubical path.

Figure 2. An example of a cubical path in a precubical set M.

A cubical path object is a precubical set having shape of an acyclic cubical path. Let cP

denote the full subcategory of the category PS consisting of cubical path objects.

We endow the category PS with a fibred structure. We denote by PSL the subcategory

whose objects are precubical sets with the same set L of actions and morphisms have the

identity second component.

2 Open Morphisms

The notion of an open morphism is important in category theory [14] and, as shown in [15],

can be used for defining bisimulation of models in different categories.

Definition 4. A morphism f : M → N of a category M is P-open if for any morphism

m : P→ Q of a subcategory P and a commutative square

there is a morphism r : Q→ M dividing the diagram into two commutative triangles.

835



We note that the objects of M and P-open morphisms form a subcategory of M since the

identity morphism and compositions of P-open morphisms are P-open morphisms.

Theorem 1. Let M be a precubical set. A morphism f = 〈f, 1L〉 : M → M′ of the cate-

gory PSL is cPL-open if and only if for any cubical path P in M the following conditions are

satisfied:

(1) if f(P ) −→ Q′ in M′, then P −→ P ′ and f(P ′) = Q′ for some cubical path P ′ in M,

(2) if f(P ) ∼ Q′ in M′, then P ∼ P ′ and f(P ′) = Q′ for some cubical path P ′ in M.

Proof. Necessity. Let f = 〈f, 1L〉 : M → M′ be a cPL-open morphism. We prove only

assertion (1) since (2) is proved in a similar way. Let P be a cubical path in M. Without

loss of generality we can assume that f(P )
dli−→ Q′ in M′. We consider a precubical subset P

(Q′) of the shape of a cubical path P (Q′) in M (M′). It is clear that there is a cubical path

object ̂P (̂Q) and the corresponding maximal2 cubical path ̂P ( ̂Q) such that the mapping p (q)

acting by the rule p( ̂P ) = P (q( ̂Q) = Q′) can be extended to a morphism p = 〈p, 1L〉 : ̂P → M

(q = 〈q, 1L〉 : ̂Q → M′) in PSL. We note that the morphism has the form p : ̂P → P ↪→ M

(q : ̂Q→ Q′ ↪→ M′).
Assume that ̂P = p0 . . . pk and ̂Q = q0 . . . qkqk+1. Then we set m(pi) = qi and m(dε1j1 ◦ · · · ◦

dεsjs (pi)) = dε1j1 ◦· · ·◦dεsjs (qi) for all εr = 0, 1, r = 1 . . . s, 1 � j1 < . . . < js � dim pi, 1 � s � dim pi,

and 0 � i � k. It is clear that m = 〈m, 1L〉 : ̂P→ ̂Q is a morphism in cPL. By the definition of

m, we find f ◦ p = q ◦m.

Since f is a cPL-open morphism, there is a morphism r : ̂Q → M such that p = r ◦ m
and q = f ◦ r. Consequently, there exists a cubical path r( ̂Q) in M. It is easy to see that

m( ̂P ) = (q0 . . . qk)
dli−→ (q0 . . . qk+1) = ̂Q in view of the definition of

dli−→. Hence we can write

r(m( ̂P ))
dli−→ r( ̂Q) because r is a morphism in PSL. Since p = r ◦ m and q = f ◦ r, we have

p( ̂P ) = P
dli−→ r( ̂Q) and f(r( ̂Q)) = q( ̂Q) = Q′.

Sufficiency. Let f = 〈f, 1L〉 : M→ M′ be a morphism in PSL, and let the assumptions of the

theorem be satisfied. We show that f is cPL-open.

We introduce additional notions. Let O1 and O2 be cubical path objects. A morphism

ιl(w) = 〈ιl(w), 1L〉 : O1 → O2 is called the l-step (the w-step) if there are maximal cubical paths

O1 and O2 in O1 and O2 respectively such that ιl(O1)
dmi−−→ dmi−−→ O2 (ιw(O1)

(s,u,v)←→ O2).

It is easy to see that any morphism 〈m, 1L〉 of the category cPL is a finite (say, of length n)

composition of an isomorphism, l-steps, and w-steps. By induction on n, it suffices to prove that

f is a cPL-open morphism relative to the isomorphism, l-steps or w-steps. Let, for example,

m = ιw : P → Q be a w-step (the remaining cases are treated in a similar and even simpler

way). Then there are maximal cubical paths P and Q of the cubical path objects P and Q such

that ιw(P )
(s,u,v)←→ Q. We consider arbitrary morphisms p : P → M and q : Q → M′ in PSL

such that f ◦ p = q ◦ ιw. Since q is a morphism, we have q(ιw(P ))
(s,u,v)←→ q(Q) in M′. Since

f(p(P )) = q(ιw(P )), from the assumptions of the theorem it follows that there is a cubical path

2 By the maximal cubical path of a cubical path object we mean any acyclic cubical path such that this cubical

path object has the same shape.
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P ′ in M such that p(P )
(s,u,v)←→ P ′ and f(P ′) = q(Q). We introduce a mapping r by r(Q) = P ′

and extend r in such a way that the pair of mappings 〈r, 1L〉 satisfies the morphism conditions

in PSL. It is obvious that p = r◦ ιw and q = f ◦ r. Consequently, f is a cPL-open morphism.

In [15], the notion of a “span” of P-open morphisms was introduced for defining a P-

bisimulation on objects of a category M.

Definition 5. Two objects M′ and M′′ of a category M are P-bisimular if there exists a

construction of P-open morphisms M′ f′←− M
f′′−→ M′′.

The notion of a bisimulation plays an important role in concurrency theory. A categorical (in

terms of “spans” of open morphisms) characterization of bisimulation can be found in [15]–[17].

3 Universal Dicover of Precubical Sets

Definition 6. A precubical set M is simply diconnected if for any u ∈ M (1) there is a

cubical path P ∈ C Pu(M) and (2) P ∼ Q for any cubical paths P ,Q ∈ C Pu(M).

Let oPS denote the full subcategory of PS with simply diconnected precubical sets for

objects. It is clear that cP is a subcategory of oPS.

For a cubical path P ∈ C Ppk(M) with dim pk > 0 the i-start d0i (P ) is a cubical path in

C Pd0i (pk)
(M) such that (i) P = d0i (P )pk or (ii) P

m+1←→ P1
m+2←→ . . .

k−2←→ Pk−m−2
k−1←→ d0i (P )pk

for some 0 � m � (k − 2) and the i-end d1i (P ) is a cubical path from C Pd1i (pk)
(M) such that

d1i (P ) = Pd1i (pk).

The following assertion is obtained from [5, p. 280–281].

Lemma 1. For any cubical path P ∈ C Ppk(M) with dim pk > 0 there exists a unique cubical

path dli(P ) ∈ C Pdli(pk)
(M) for any l = 0, 1.

Definition 7. Let M = (M, iM0 , l
M
L ) be a precubical set. A universal dicover of M is a

mapping ρM = 〈ρM , 1L〉 : U (M)→ M such that ρM ([p0 . . . pk]) = pk for all [p0 . . . pk] ∈ A, where
the dicovering U (M) = (A, i0, lL) of M is defined by

An = {[P = p0 . . . pk] | P ∈ C P(M), pk ∈Mn}, n � 0, and ˜dmi ([P ]) = [dmi (P )],

i0 = [iM0 ], and lL([p0 . . . pk]) = lML (pk) for [p0 . . . pk] ∈ A1.

An example of a universal dicover ρM : U (M)→ M is shown in Figure 3.

Figure 3. An example of a universal dicover.
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The cubical paths P = i0x1sx2t1z1t2z2t2z2t2 and Q = i0y1ry2t1z1t2z2t2z2t2 are not dihomo-

topic in M. Hence the 0-cubes [P ] and [Q] do not coincide in U (M), although ρM ([P ]) = t2 =

ρM ([Q]).

Theorem 2. Let M be a precubical set labeled by a set L, and let U (M) be the universal

dicovering of M. Then the following assertions hold.

1. U (M) is an object of the category PS, and ρM = 〈ρM , 1L〉 : U (M) → M is a cPL-open

morphism of the category PSL, i.e., M and U (M) are cPL-bisimular.

2. U (M) is a simply diconnected precubical set.

3. U is the right conjugate of the inclusion functor ι : oPS ↪→ PS, and, consequently, oPS

is a coreflective subcategory of PS.

Proof. 1. We show the commutativity of thediagram in the definition of a precubical set.

The condition concerning an n-cube starting and ending with n different faces is obvious for

U (M). We have ˜dmi (˜dkj ([P ])) = [dmi (dkj (P ))] = [dkj−1(d
m
i (P ))] = ˜dkj−1(

˜dmi ([P ])) for i < j.

We verify Axiom A0 (the case of Axiom A1 is similar). Assume that [p0 . . . pk], [q0 . . . qm] ∈
A1, ˜d01([p0 . . . pk]) =

˜d01([q0 . . . qm]), and [p0 . . . pk] ∼� [q0 . . . qm]. Then d01(pk) = d01(qm) since the

boundary functions are equal and pk ∼� qm by the definition of ∼�. Since Axiom A0 is true for

M, we have pk = qm. Thus, [p0 . . . pk] = [d01(p0 . . . pk)pk] = [d01(q0 . . . qm)pk] = [d01(q0 . . . qm)qm] =

[q0 . . . qm].

We show that ρM is a cPL-open morphism. Since it is a morphism, we can use Theorem 1.

It suffices to verify only the condition (2), since the condition (1) is verified in a similar way. We

consider an arbitrary cubical path O = o0 . . . ok in U (M). Let ρM (O) = p0 . . . pk. By induction

on k, it is easy to show that oi = [p0 . . . pi] for all 0 � i � k. Let ρM (O)
(s,u,v)←→ P ′ for some

cubical path P ′ = p0 . . . p
′
s . . . pk in M. Then we set o′s = [p0 . . . ps−1p

′
s]. By the construction of

U (M), we see that O′ = o0 . . . o
′
s . . . ok is a cubical path in U (M) and O

(s,u,v)←→ O′. It is clear

that ρM (O′) = P ′.

2. The first condition in the definition of simple diconectedness is obviously satisfied, whereas

the second condition follows from Theorem 1 applied to ρM.

3. Suppose that M, N are precubical sets and U (M), U (N) are their universal dicoverings

respectively. For a morphism f = 〈f, α〉 : M→ N we define U (f) = 〈U (f), α〉 : U (M)→ U (N)

by U (f)([P ]) = [f(P )], where P ∈ C P(M). It is clear that U (f) is a morphism of the category

oPS. Hence U is a functor.

We assume that M is an object of the category PS and O is an object of the category oPS.

We need to find a bijection between morphisms f : O → M of the category PS and morphisms

g : O → U (M) of the category oPS and show that this bijection is natural with respect to

O and M as well. For a morphism f = 〈f, α〉 : O → M we define the morphism ϕO,M(f) =

〈ϕO,M(f), α〉 : O → U (M) by ϕO,M(f)(v) = [f(Pv)] for all v ∈ O, where Pv ∈ C Pv(O). For a

morphism g = 〈g, α〉 : O→ U (M) we define the morphism ψO,M(g) = 〈ψO,M(g), α〉 : O→ M by

ψO,M(g) = ρM ◦ g. It is easy to show that ϕO,M and ψO,M are well defined.

Let us prove that ϕO,M is a bijection. We assume that f, f ′ : O→ M are morphisms such that

ϕO,M(f) = ϕO,M(f ′). Then [f(Pv)] = ϕO,M(f)(v) = ϕO,M(f ′)(v) = [f ′(Pv)] for any v ∈ O and

Pv ∈ C Pv(O). Hence f(v) = f ′(v) for any v. Further, we consider a morphism g = 〈g, α〉 : O→
U (M) of the category oPS. We need to show that there exists a morphism f = 〈f, α〉 : O→ M of
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the category PS such that ϕO,M(f) = g. We set f = 〈f, α〉 = ψO,M(g). Indeed, if Pv = p0 . . . (pk =

v), then ϕO,M(f)(v) = [f(Pv)] = [ρM (g(Pv))] = [ρM (g(p0)) . . . ρM (g(pk))] = g(ρO([Pv])) = g(v).

Consequently, ϕO,M is a bijection such that ϕ−1
O,M = ψO,M.

We show that ϕO,M is the natural bijection with respect to O (the case of M is similar). For

this purpose we consider the diagram

for arbitrary objects O, O′ and an arbitrary morphism r : O′ → O of the category oPS.

The mappings r∗ and (r)∗ are defined by r∗(g) = g ◦ r for any morphism g : O → U (M)

and (r)∗(f) = f ◦ r for any morphism f : O → M. The diagram is commutative. Indeed,

(r)∗(ϕ−1
O,M(g)) = (r)∗(ρM ◦ g) = ρM ◦ g ◦ r. On the other hand, ϕ−1

O′,M(r∗(g)) = ϕ−1
O′,M(g ◦ r) =

ρM ◦ g ◦ r. Thus, we conclude that U : PS→ oPS is the right conjugate of the inclusion functor

oPS ↪→ PS (cf. [18]).

4 Transitional Chu Spaces and Paths

In this section, we define the category SCS of transitional Chu spaces and the subcategory

P of paths in Chu spaces. Denote by L (Pfin(E)) the set of all linear orders on finite subsets

of a set E.

Definition 8. A (labeled) transitional Chu space is a triple E = (E, �, lL), where

• E is a set of events,

• � = ⋃

n�0
�n =

⋃

n�0,<∈L (Pfin(E))

�n< ⊆ Pfin(E) ×Pfin(E) is the transition relation, i.e., if

F �n<G, then F ⊆ G, a linear order < acts on the n-element setG\F , and F �m<|H\F
H�n−m

<|G\H
G

for all F ⊆ H ⊆ G, and
• lL : E → L is a labeling mapping from the set of events to the set of actions.

In concurrency theory, such spaces are referred to as structures of events of higher dimension

[19] and form a subclass of configuration structures [13].

We consider Chu spaces satisfying the following axioms.

B0 If F�3 F�4{e} and G �G � {e}, then

F ∩G � (F ∩G) � {e} �k1<1

{

· · · �km<m
F � {e},

· · · �kl
<l G � {e}.

B1 If F � F � {e1} � F � {e1, e2} � · · · � F � {e1, . . . , en} and G �n< G � {e1, . . . , en}, then

F �n< F � {e1, . . . , en}.
3 We omit the super(sub)script in the transitional relation � if no confusion arises.
4 Hereinafter, � denotes the union of disjoint sets.

839



A path in a transitional Chu space E is a sequence F = (∅�k1<1
F1�k2<2

· · ·�kn<n
Fn) in E. Let Π(E)

(ΠFn(E)) denote the set of all paths (ending with a common subset Fn) in a transitional Chu

space E, and let Π1(E) be the set of one-element paths in E, i.e., paths with k1 = · · · = kn = 1.

A dihomotopy on paths in E is a minimal equivalence such that if a path F is obtained from a

path G by eliminating a single set that is neither starting nor ending for the path, then F and

G are equivalent. For every path F we denote by [F ] its dihomotopy class.

In the general case, not all events and not all paris of points connected by the transition

relation can be reached from the set {∅} by the relation �. To avoid such a situation, we

introduce a special subclass of transitional Chu spaces. We say that a transitional Chu space

E = (E, �, lL) is reachable if for every event e ∈ E there is a pair (F, F ) ∈ � such that e ∈ F , for
each pair (F, F ) ∈ � there is a path ending at a subset of F , and all paths ending at the same

subset are dihomotopic. In what follows, we consider only reachable transitional Chu spaces

and call them transitional Chu spaces.

An example of a transitional Chu space E is presented in Figure 4. It consists of the set

E = {e1, . . . , e6}, the transition relation

� = (�3 = {( ∅}, {e1, e2, e3})}) ∪ (�2 = {({e2, e3}, {ei | i = 1 . . . 4}), ({e1}, {e1, e2, e6}),
({e1}, {e1, e3, e6}), ({e1}, {e1, e2, e3}), ({e1, e6},{ei | i = 1 . . .4}),
({e1, e2},{ei | i = 1 . . .4}), ({e1, e3}, {ei | i = 1 . . . 4})} ∪A)
∪ (�1 = {({ei | i = 1 . . . 4}, {ei | i = 1 . . . 5})} ∪B),

where the sets A and B consist of transition subrelations of �3 and �2 ∪ �3 respectively, and the

labeling mapping lL acting by the rule lL(ei) = ai for all 1 � i � 6. For an example of a path we

can consider the sequence F = (∅ �2 {e2, e3} �2 {ei | i = 1 . . . 4} �1 {ei | i = 1 . . . 5}) in Figure 4.

The paths F and G = (∅ �3 {e1, e2, e3} �1 {ei | i = 1 . . . 4} �1 {ei | i = 1 . . . 5}) are dihomotopic

via the path ∅ �2 {e2, e3} �1 {ei | i = 1 . . . 3} �1 {ei | i = 1 . . . 4} �1 {ei | i = 1 . . . 5}.

Figure 4. An example of a path in a transitional Chu space E.

Let E1 = (E1, �1, l1L1) and E2 = (E2, �2, l2L2) be transitional Chu spaces. Amorphism from E1

to E2 is a pair of functions f : E1 → E2 and α : L1 → L2 such that α◦ l1L1 = l2L2 ◦f , F (�1)n<G⇒
f(F )(�2)n≺f(G), ei < ej ⇒ f(ei) ≺ f(ej) for all 1 � i, j � n and F (�1)n<(F � {e1, . . . , en}).

Let SCS denote the category of transitional Chu spaces with the above morphisms.

Since it is not essential what path leads to a prescribed subset of events, it is convenient to

write the equivalence class [F = (∅ �k1<1
F1 �k2<2

· · · �kn<n
Fn)] as [Fn]. Furthermore, for [Fn] in a

transitional Chu space E one can construct a computation Fn, i.e., a transitional Chu subspace
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E equipped with the set of events Fn ⊆ E, the transition relation, and a labeling mapping of E

bounded on events in Fn.

Let P be the full subcategory of the category SCS with computations for objects. We can

consider PL-open morphisms of the category SCSL and PL-bisimulation on objects of SCSL.

5 Equivalence of the Categories oPS and SCS
with Preserving the Openness of Morphisms

We begin by constructing mappings F : SCS→ oPS and G : oPS→ SCS and then prove

that these mappings are functors. Using the functor G , we show that F is a faithful, full, and

dense functor, i.e., the categories oPS and SCS are equivalent (cf., for example, [18]).

Proposition 1. Suppose that a mapping F : SCS→ oPS sends an object E = (E, �, lL) of
the category SCS to an object F (E) = (M, iM0 , l

M
L ) of the category oPS, where

• Mn = {(F,G)< | F,G ∈ Pfin(E), <∈ L (Pfin(E)), F �n< G}, ̂d0i (F,G)< = (F,G \ pri(G \
F ))<|H and ̂d1i (F,G)< = (F � pri(G \ F ), G)<|H , where pri(e1 < · · · < en) = ei and

H = G \ (F � pri(G \ F )),
• i0M = (∅,∅), and lML (F, F � e) = lL(e) for all (F, F � e) ∈ �1;

moreover, F associates a morphism f = 〈f, α〉 : E1 → E2 of the category SCS with a morphism

F (f) = 〈 ̂f, α〉 : F (E1) → F (E2) of the category oPS, where ̂f(F,G)< = (f(F ), f(G))≺ for all

(F,G)< ∈ (M1)n. Then F is a functor.

Proof. We prove that F (E) is a precubical set. We show that the diagram in the definition

of a precubical set is commutative for k = m = 0 (the remaining cases are considered in a similar

way). Assume that (F,G) ∈Mn and G \ F = e1 < · · · < en. For i < j we have

̂d0i (
̂d0j (F,G)) = (F, (G \ prj(G \ F )) \ pri((G \ prj(G \ F )) \ F ))

= (F,G \ (prj(e1 < · · · < en) ∪ pri(e1 < · · · < ej−1 < ej+1 < · · · < en)))

= (F,G \ (ej ∪ ei)) = (F,G \ (pri(e1 < · · · < en)

∪ prj−1(e1 < · · · < ei−1 < ei+1 < · · · < en)))

= (F, (G \ pri(G \ F )) \ prj−1((G \ pri(G \ F )) \ F )) = ̂d0j−1(
̂d0i (F,G)).

We verify Axiom A0 for F (E) (Axiom A1 is verified in a similar way). Assume that (F, F �
e1), (G,G � e2) ∈ M1, ̂d01(F, F � e1) = ̂d01(G,G � e2), and (F, F � e1) ∼� (G,G � e2). Since

the boundary functions are equal, we have F = G. The relation ∼� between 1-cubes implies

e1 = e2. Thus, (F, F � e1) = (G,G � e2).
We show that the second condition of Definition 6 is satisfied by F (E) (the condition (1) is

verified in a similar way). Suppose that ̂P , ̂Q ∈ C P(F,G)<(F (E)), where (F,G)< ∈Mn, n � 0.

Without loss of generality we can assume that

̂P = P ̂d02 ◦ · · · ◦ ̂d0n(F,G)< . . . ̂d0n(F,G)<(F,G)< ,
̂Q = Q̂d02 ◦ · · · ◦ ̂d0n(F,G)< . . . ̂d0n(F,G)<(F,G)< ,
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where P,Q ∈ C P1,(F,F )(F (E)). Suppose that

P = (∅,∅) . . . (Fi, Fi)(Fi, Fi+1)(Fi+1, Fi+1) . . . (F, F ),

Q = (∅,∅) . . . (Gj , Gj)(Gj , Gj+1)(Gj+1, Gj+1) . . . (F, F ).

By the definition of F , there exist the preimages of P and Q:

P1 = (∅ � · · · � Fi � · · · � F ),
Q1 = (∅ � · · · �Gj � · · · � F )

in Π1,F (E). Since the transitional Chu space E is reachable, P1 and Q1 are dihomotopic. It is

easy to verify that, under the action of F , dihomotopic paths in Π1(E) become dihomotopic

cubical paths in C P1(F (E)). Hence P and Q are also dihomotopic. Consequently, ̂P and ̂Q.

are dihomotopic.

The mapping F (f) = 〈 ̂f, α〉 is a morphism of the category oPS since f is a morphism of the

category SCS. Now, It is easy to see that F is a functor.

Lemma 2. Suppose that M is a simply diconnected precubical set and E = {� x �| x ∈
M1}. Let a mapping π : M0 → Pfin(E) be defined as follows: for any point u ∈ M0 we set

π(u) = {� x0 �, . . . ,� xk �} ⊆ E for some cubical path P = (p0x0p1 . . . pkxku) ∈ C P1(M).

Then the mapping π is injective.

Proof. Since M is simply diconnected, it is obvious that π is a mapping.

Let π(u) = π(v) = {� x0 �, . . ., � xk �}. We show that u = v by induction on k. The

case k = −1, i.e., π(u) = π(v) = ∅, is obvious. The case π(u) = π(v) =� x � follows from

Axiom A0 for M. Suppose that π is an injection for k. We show that the same is true for k+1.

We consider the cubical paths P = (p0x0p1 . . . pkxku), Q = (q0y0q1 . . . qkykv) ∈ C P1(M) and

assume that π(u) = π(v). It is clear that� xk �=� yσ(k) �, where σ : {0, . . . , k} → {0, . . . , k}
is a permutation of order k + 1. Without loss of generality we can assume that there exists a

chain of 2-cubes w1, . . . , wl such that xk = d1−ε
i1

(w1), d
ε
i1
(w1) = d1−ε

i2
(w2), . . . , d

ε
is1−1

(ws1−1) =

dεis1
(ws1), . . . , d

1−ε
il−1

(wl−1) = dεil(wl), d
1−ε
il

(wl) = yσ(k) for ε = 0, 1. We assume that ε = 0, i.e.,

there exists a unique s1 ∈ {1, . . . , l} such that d01(ws1−1) = d01(ws1). Since M is a simply

diconnected precubical set, there is a cubical path T = (t0z0t1 . . . tmzmtm+1) ∈ C P1(M) and

tm+1 = d01(d
0
2(ws1)).

Since [Td03−is1−1
(ws1−1) . . . d

0
3−i1

(w1)pk] = [p0x0p1 . . . pk][Td
0
3−is1

(ws1) . . . d
0
3−il

(wl)qσ(k)] =

[q0y0q1 . . . qσ(k)] and π(u) = π(v), we conclude that for any j (σ(k) + 1 � j � k) there is a

number rj (1 � rj � (s1 − 1)) such that � yj �=� d03−irj
(wrj ) �. Using this argument and

Axiom A1 for M, it is easy to prove by induction on n = k − σ(k) that there is a cubical path

Q′ = (q0y0q1 . . . qσ(k)y
′
σ(k)q

′
σ(k)+1 . . . q

′
ky

′
kv) such that Q ∼ Q′ and yσ(k) ∼� y′k. The cubical

paths P = (p0x0p1 . . . pk) and Q = (q0y0q1 . . . qσ(k)y
′
σ(k)q

′
σ(k)+1 . . . q

′
k) satisfy the induction

assumption. Thus, pk = q′k. Furthermore, xk ∼� yσ(k) ∼� y′k. By Axiom A0 for M, we find

xk = y′k, i.e., u = v. Thus, π is injective.

Proposition 2. Suppose that a mapping G : oPS→ SCS sends an object M = (M, iM0 , l
M
L )

of the category oPS to an object G (M) = (E, �, lL) of the category SCS, where
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• E = {� x�| x ∈M1} is a set of events,

• � ⊆Pfin(E)×Pfin(E) is defined as follows: F �n≺G
def⇔ there is a cube x(F,G,≺) ∈Mn such

that F = π(D0(x(F,G,≺))), G = π(D1(x(F,G,≺))), and ≺=<x(F,G,<)
, where (e, ε) ∈<x(F,G,<)

in G \ F def⇔ e =� d01 ◦ · · · ◦ d0i−1 ◦ d0i+1 ◦ · · · ◦ d0n(x(F,G,<))�, ε =� d01 ◦ · · · ◦ d0j−1 ◦ d0j+1 ◦
· · · ◦ d0n(x(F,G,<))� and i < j,

• lL(� x�) = lML (x) for all x ∈M1;

moreover, G associates a morphism g = 〈g, α〉 : M1 → M2 of the category oPS with a morphism

G (g) = 〈ĝ, α〉 : G (M1) → G (M2) of the category SCS, where ĝ(� x�) = � g(x)� for all

� x� ∈ E1. Then G is a functor.

Proof. Let M be a simply diconnected precubical set. We show that G (M) is a transitional

Chu space. By definition, there exists x(F,G,<) ∈ Mn such that F = π(D0(x(F,G,<))) and

G = π(D1(x(F,G,<))), i.e., F ⊆ G. Let F ⊆ H ⊆ G, and let G \ F = (e1 < . . . < en), where

ei =� d01 ◦ · · · ◦d0i−1 ◦d0i+1 ◦ · · · ◦d0n(x(F,G,<))� for all 1 � i � n, and H \F = (ei1 < . . . < eim).

Then the m-cube d0j1 ◦ . . . ◦ d0jn−m
(x(F,G,<)) corresponds to F �m<|H\F

H and the (n −m)-cube

d1i1 ◦ . . . ◦ d1im(x(F,G,<)) corresponds to H �(n−m)
<|G\H

G, where the ordered sequences (i1, . . . , im) and

(j1, . . . , jn−m) form the ordered sequence (1, . . . , n). We note that x(F,G,<) is a unique cube

corresponding to the transition relation F �n< G in view of Axioms A0 and A1 for M.

Let us show that Axiom B0 is satisfied by G (M). Suppose that F �F �{e} and G �G�{e}.
Without loss of generality we can assume that there exist different z11 , . . . z

1
k1 , z

2
1 , . . . z

2
k2 ∈M2 such

that x(F,F�e) = d1−m
ik1

(z1k1), d
m
ik1

(z1k1) = d1−m
ik1−1

(z1k1−1), . . . , d
m
i1
(z11) = dmj1(z

2
1), . . . , d

1−m
jk2−1

(z2k2−1) =

dmjk2
(z2k2), d

1−m
jk2

(z2k2) = x(G,G�e) for some m = 0, 1. Arguing in the same way as in the proof of

Lemma 2, we verify Axiom B0 by induction on the number of elements of the set (F ∩G) \ S if

m = 0 or the set S \ (F ∩G) if m = 1, where S = π(d01(d
m
i1
(z11))).

Axiom B1 for G (M) follows from Lemma 2 and Axiom A1 for M.

The proof of the reachability property of the transitional Chu space G (M) is reduced to

the proof of the dihomotopy of two paths ending at the same subset of events. We consider

arbitrary paths P1 = (∅ �k1<1
F1 �k2<2

· · · �kn<n
(Fn = F )) and Q1 = (∅ �m1≺1

G1 �m2≺2
· · · �ml≺l

(Gm = F ))

in ΠF (G (M)), where F ∈Pfin(E). Without loss of generality, we can assume that these paths

consist of a single element. By the definition of G , for P1 and Q1 there exist their preimages

P = x(∅,∅) x(∅,F1)x(F1,F1) . . . x(F,F ) and Q = x(∅,∅) x(∅,G1)x(G1,G1) . . . x(F,F ) in C P1,x(F,F )
(M).

Since M is a simply diconnected precubical set, P and Q are dihomotopic. It is easy to verify

that, under the action of G , dihomotopic cubical paths in C P1(M) go to dihomotopic paths in

Π1(G (M)). Hence the paths P1 and Q1 in G (M) are also dihomotopic.

Let g = 〈g, α〉 : M1 → M2 be a morphism of the category oPS. We show that G (g) = 〈ĝ, α〉
is a morphism of the category SCS. Since M1 and M2 are simply diconnected precubical sets

and g is a morphism of oPS, it is easy to show that if an n-cube x(F,G,<) corresponds to the

transition relation F �n< G in G (M1), then the n-cube g(x(F,G,<)) corresponds to the transition

relation ĝ(F ) �n≺ ĝ(G) in G (M2). Now, it is obvious how to verify that G (g) is a morphism of

SCS. Thus, it is obvious that G is a functor.

Theorem 3. The categories SCS and oPS are equivalent.

This assertion follows from Lemmas 3–5 below.
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Lemma 3. F is a faithful functor.

Proof. Let E1, E2 be objects and f1, f2 : E
1 → E2 morphisms of the category SCS. We need

to show that F (f1) = F (f2) implies f1 = f2. By the definition of F , the equality F (f1) = F (f2)

implies the equality of the second components of f1 and f2. Let fi and ̂fi be the first components

of fi and F (fi) respectively (i = 1, 2). Then (f1(F ), f1(G))≺1 = ̂f1(F,G)< = ̂f2(F,G)< =

(f2(F ), f2(G))≺2 for all cubes (F,G)< in F (E1). This means that f1(e) = f2(e) for all e ∈ E
such that there is a set F such that F � (F � e). Since E1 is reachable, we have f1 = f2.

Lemma 4. F is a full functor.

Proof. Let g = 〈g, α〉 : F (E1) → F (E2) be a morphism of the category oPS. We need to

show that there exists a morphism f = 〈f, α〉 : E1 → E2 of the category SCS such that F (f) = g.

For all e ∈ E1 we set f(e) = p2(g(F, F � e)) \ p1(g(F, F � e)), where pi is the projection onto

the ith element of the pair g(F, F � e) (i = 1, 2). We first show that f is a mapping. Suppose

that f(e) = p2(g(F, F � e))\p1(g(F, F � e)) = ε and f(e) = p2(g(G,G� e))\p1(g(G,G� e)) = ε.

We need to show that ε = ε. Since E1 is a transitional Chu space, there exist paths

P = ({∅} �k1<1
F1 �k2<2

· · · �kn<n
(Fn = F ) � F � {e}),

Q = ({∅} �m1≺1
· · · �ml≺l

(F ∩G) � ((F ∩G) � {e}) �ml+1
≺l+1

· · · �mr≺r
(F � {e})).

Without loss of generality we can assume that G ⊆ F . Then

Q = (∅ �m1≺1
· · · �ml≺l

G � (G � {e}) �ml+1
≺l+1

· · · �mr≺r
(F � {e})).

Since the paths P and Q contain {e}, they are dihomotopic. Since E1 is a transitional Chu

space, there are 2-cubes z1, . . . , zn in F (E1) such that

(F, F � e) = dk1i1 (z1), d
3−k1
i1

(z1) = dk2i2 (z2), . . . , d
1−kn
in

(zn) = (G,G � e).

By induction on n and the obvious equalities

p2(g(d
0
s(zi))) \ p1(g(d0s(zi))) = p2(g(d

1
s(zi))) \ p1(g(d1s(zi))), 1 � i � n,

we find

ε = p2(g(F, F � e)) \ p1(g(F, F � e)) = · · · = p2(g(G,G � e)) \ p1(g(G,G � e)) = ε.

We prove that f = 〈f, α〉 is a morphism of the category SCS. We prove condition (2) of

Definition 3. Let F (�1)n<G in E1. Since E1 is a transitional Chu space, there exists a path

{∅ = ε0} �1 {ε1} �1 · · · �1 ({ε1, . . . , εk} = F )(�1)n<G. We have

f(F ) =
⋃

e∈F
f(e) =

k
⋃

j=1

p2(g(ε1 � . . . � εj−1, ε1 � . . . � εj)) \ p1(g(ε1 � . . . � εj−1, ε1 � . . . � εj))

= p2(g(ε1 � . . . � εk−1, F )) = p1(g(F,G)<).

Similarly, f(G) = p2(g(F,G)<). Since g is a morphism of the category PS, the dimension of the

cube g(F,G)< in F (E2) is equal to n. Thus, g(F,G)< ∈ (�2)n≺. Consequently, f(F )(�2)n≺f(G)
in E2. Conditions (1) and (3) of Definition 3 are obviously satisfied.
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Finally we show that F (f) = g. By the definition of F and f, the second components of F (f)

and g coincide. Let us prove that their first components ̂f and g are also equal. For an arbitrary

cube (F,G)< in F (E1) we have ̂f(F,G)< = (f(F ), f(G))≺ = (p1(g(F,G)), p2(g(F,G)))≺ =

g(F,G)<.

Lemma 5. F is a dense functor.

Proof. Let M be an object of the category oPS. We construct an object E of the category

SCS such that M is isomorphic to F (E).

We set E = G (M) and consider a simply diconnected precubical set F (G (M)). By the con-

struction of F and G , the cube (F,G)< belongs to F (G (M)) if and only if there exists a unique

cube x(F,G,<) in M such that F = π(D0(x(F,G,<))), G = π(D1(x(F,G,<))), and <=<x(F,G,<)
.

We set ξM (x) = (π(D0(x)), π(D1(x)))<x for all cubes x in M and ηM ((F,G)<) = x(F,G,<)

for all cubes (F,G)< in F (G (M)). It is clear that ξM = 〈ξM , id〉 : M → F (G (M)) and

ηM = 〈ηM , id〉 : F (G (M)) → M are morphisms of the category PS. We show that these mor-

phisms are mutually invertible. Indeed,

ξM (ηM ((F,G)<)) = ξM (x(F,G,<)) = (π(D0(x(F,G,<))), π(D
1(x(F,G,<))))<x(F,G,<)

= (F,G)< ,

ηM (ξM (x)) = ηM ((π(D0(x)), π(D1(x)))<x) = x
(π(D0(x)),π(D1(x)),<x)

= x.

The lemma is proved.

Further, we show that PL-open morphisms are mapped by the functor F : SCS → oPS

into cPL-open morphisms and vice versa. In the sequel, we need the following facts. The

isomorphisms ξM = 〈ξM , id〉 : M → F (G (M)), where M is an object of the category oPS

given in the proof of Lemma 5, and the isomorphisms ςE = 〈ςE , id〉 : E → G (F (E)), given by

ςE(e) =� (F, F � e)� for all e ∈ E, can be extended to the natural isomorphisms ξ : 1oPS →
F ◦ G and ς : 1SCS → G ◦F . Indeed, we have

ξM2 ◦ f = F (G (f)) ◦ ξM1 (1)

for an arbitrary morphism f : M1 → M2 of the category oPS and

ςE2 ◦ g = G (F (g)) ◦ ςE1 (2)

for an arbitrary morphism g : E1 → E2 of the category SCS.

Proposition 3. Suppose that E1 is an object of the category PL, E2 is an object of the

category SCSL, f = 〈f, id〉 : E1 → E2 is a morphism of the category SCSL, and g = 〈g, id〉 :
F (E1)→ F (E2) is a morphism of the category oPSL. Then f and g are injections.

Proof. We prove that f is an injection by contradiction, opposing a path ending at a set of

events E1 to its image under the action f . Since the functor F is full, we conclude that g is an

injection.

A cubical computation in a simply diconnected precubical set M is a simply diconnected

precubical set V such that G (V) is a computation in the transitional Chu space G (M).
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Corollary 1. Suppose that E1 and E2 are objects of the category SCSL, F (f) = 〈 ̂f, id〉 :
F (E1)→ F (E2) is a morphism of the category oPSL, and V is a cubical computation in F (E1).

Then the first component of the restriction F (f) |V: V→ F (E2) is an injection.

Proof. Since G (V) is an object of PL and F is a full functor, from Proposition 3 it follows

that the first component of F (f)V ◦ ηV : F (G (V)) → V → F (E2) is an injection. Since ηV is

the inverse of ξV, the first component of F (f)V is also an injection.

Theorem 4. A morphism f = 〈f, id〉 : E1 → E2 of the category SCSL is PL-open if and

only if F (f) is cPL-open.

Figure 5. Diagrams for the morphisms F (f) and f of the categories oPSL and SCSL respectively.

Proof. Necessity. Assume that m : P→ Q is a morphism of the category cPL and p : P→
F (E1), q : Q→ F (E2) are morphisms of the category oPSL such that the diagram at the left

in Figure 5 is commutative. Applying the functor G and using formula (2), we see that the

diagram at the right in Figure 5 is also commutative, where υEi : G (F (Ei))→ Ei is the inverse

of ςEi given by υEi(� (F, F � e) �) = e for all events � (F, F � e) � in G (F (Ei)) (i = 1, 2).

Since G (P), G (Q) are objects of PL, and f is PL-open, there is a morphism r : G (Q) → E1 of

SCSL such that υE1 ◦ G (p) = r ◦ G (m) and υE2 ◦ G (q) = f ◦ r. Applying the functor F to the

diagram at the right in Figure 5 and using formula (1), we obtain the following commutative

diagram:

We consider the equality F (υE1) ◦F (G (p)) = F (r) ◦F (G (m)). By formula (1), we have

F (υE1) ◦ ξF (E1) ◦ p ◦ ηP = F (r) ◦F (G (m)), (3)

where ηP : F (G (P))→ P is the inverse isomorphism of ξP. Since F is a faithful full functor, we

have ξF (E1) = F (ςE1). Thus, multiplying (3) by ξP from the left and using the commutativity

of the left square of the diagram, we find p = F (r) ◦ ξQ ◦m. Similarly, q = F (f) ◦F (r) ◦ ξQ.
Consequently, F (r) ◦ ξQ : Q→ F (E1) satisfies the required equalities, i.e., F (f) is cPL-open.

Sufficiency. Suppose that m = 〈m, id〉 : ̂P → ̂Q is a morphism of the category PL and

p = 〈p, id〉 : ̂P → E1, q = 〈q, id〉 : ̂Q → E2 are morphisms of the category SCSL such that the

diagram at the left in Figure 6 is commutative. Hence the diagram at the right in Figure 6 is

also commutative.
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Figure 6. Diagrams for the morphisms f and F (f) of the categories SCSL and oPSL respectively.

Figure 7. The extended diagram for the morphism F (f) of the category oPSL.

Let {Pk}k�nP and {Ql}l�nQ be collections of objects of the category cPL such that ιk :

Pk → F (̂P) and ι′l : Ql → F (̂Q) are natural morphisms of inclusion and ( ̂Q, ̂Q) = ι′l(tl), where
tl is a finite point5 in Ql. For all k � nP and l � nQ we choose maximal cubical paths Pk

and Q1 for Pk and Ql respectively. Let S = {(k, l) | ∃F (m)|k,l : Pk → Ql, k � nP , l � nQ},
where F (m)|k,l : Pk → Ql is the restriction of the morphism F (m) onto Pk from the range

of Ql. We consider arbitrary (k, l) ∈ S. Then the left inner square of the diagram in Figure

7 is commutative. Since the outer square of the same diagram is also commtative, we have

F (f) ◦ (F (p) ◦ ιk) = (F (q) ◦ ι′l) ◦ F (m)|k,l. Since F (f) is a cPL-open morphism, there is a

morphism rk,l : Ql → F (E1) such that F (p) ◦ ιk = rk,l ◦F (m)|k,l and F (q) ◦ ι′l = F (f) ◦ rk,l.
As a rule, such a morphism is not unique, which is asserted by the following lemma.

Lemma 6. For a fixed (k, l) ∈ S there exists a set of morphisms {rVk,l : Ql → F (E1)}V∈Ak

such that rVk,l(Ql) ⊆ V, where

Ak = {V ∈ A | F (p)(ιk(Pk)) ⊆ V},
A = {V is a cubical computation in F (E1) | ̂f(tV ) = q̂( ̂Q, ̂Q), tV is a finite point in V}.

Furthermore, F (p) ◦ ιk = rVk,l ◦F (m)|k,l and F (q) ◦ ι′l = F (f) ◦ rVk,l.

Proof. Indeed, for fixed (k, l) ∈ S the existence of at least one rWk,l ∈ {rVk,l}V∈Ak
follows from

the cPL-openness of the morphism F (f). If |Ak| > 1, then we consider an element U ∈ Ak such

that U �= W. It is clear that there is a cubical path PtU in U that ends up with a finite point

tU of the cubical computation U. Since ̂f(tU ) = q̂( ̂Q, ̂Q) = ̂f(rWk,l(tl)) and F (E2) is a simply

diconnected precubical set, we have ̂f(PtU )
(s1,u1,v1)←→ · · · (sb,ub,vb)←→ ̂f(rWk,l(Ql)). Since F (f) is a

cPL-open morphism, we can apply Theorem 1 b times to conclude that there exists a cubical

path P ′
U such that PtU

(s1,u1,v1)←→ · · · (sb,ub,vb)←→ P ′
U , i.e., P

′
U belongs to U and ̂f(P ′

U ) =
̂f(rWk,l(Ql)).

5 A point u in a precubical set M is said to be finite if there are no v ∈ M1 such that u = d01(v).
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It is clear that the mapping rUk,l defined by rUk,l(Ql) = P ′
U can be extended to a morphism

of the category oPSL with the help of the equality ̂f(rUk,l(Ql)) = ̂f(rWk,l(Ql)) = q̂(ι′l(Ql)). This

equality also implies the commutativity of the lower inner square of the diagram in Figure 7 for

rUk,l. Hence F (f)◦rUk,l◦F (m)|k,l = F (q)◦ι′l◦F (m)|k,l. Consequently, by the commutativity of the

left inner square and the outer square, we have F (f)|U ◦rUk,l ◦F (m)|k,l = F (f)|U ◦F (p)◦ ιk since

rUk,l(F (m)|k,l(Pk)),F (p)(ιk(Pk)) ⊆ U. By Corollary 1, the upper inner square in the diagram in

Figure 7 for rUk,l is also commutative.

We consider the diagram

where I is an object of the category oPS consisting of a single cube of zero dimension. It is

clear that there exist morphisms of inclusion ιI,k : I ↪→ Pk and ιI,i : I ↪→ Pi. Since I ∈ {Pk}k�nP ,

there exist morphisms {rVI,l}V∈AI
for all l � nQ. Such morphisms are denoted by rVl = rVI,l. We

note that AI = A.

Lemma 7. Let V ∈ A. If yl ∈MQl
and yj ∈MQj

are such that ι′l(y
l) = ι′j(y

j) = y ∈MF (̂Q)
,

then rVl (y
l) = rVj (y

j).

Proof. Since F (̂Q) is a simply diconnected precubical set, from the definition of Ql and

Qj we conclude that ι′l(Ql) and ι′j(Qj) are dihomotopic. Hence it suffices to consider the case

ι′l(Ql)
(s,u,v)←→ ι′j(Qj). Let, for example, ι′l(Ql) ⊆ ι′j(Qj). Then there exists a morphism of inclusion

ι′l,j : Ql → Qj. It is clear that ι′l = ι′j ◦ ι′l,j. By the commutativity of the lower interior squares

of the diagram in Figure 7 for rVl and rVj , we find F (f) ◦ rVj ◦ ι′l,j = F (f) ◦ rVl . Since rVl (Ql),

rVj (ι
′
l,j(Ql)) ⊆ V, the required assertion becomes obvious by Corollary 1.

Since for every y ∈ MF (̂Q)
there exists l � nQ such that y = ι′l(y

l), where yl ∈ MQl
, we

conclude that, in view of Lemma 7, the equality rV ◦ ι′l = rVl for all l � nQ yields a mapping

rV = 〈rV , idL〉 : F (̂Q)→ F (E1) which is a morphism of the category oPS.

We consider arbitrary Pk such that ιk(τk) = ( ̂P , ̂P ), where τk is a finite point of Pk. For k we

choose a number l such that (k, l) ∈ S. Since F (f) is a cPL-open morphism, there is a morphism

rV0
k,l (with some V0 ∈ Ak) such that rV0

k,l ◦ F (m)|k,l = F (p) ◦ ιk and F (q) ◦ ι′l = F (f) ◦ rV0
k,l .

Then V0 ∈ Ai for all i � nP . Indeed, we extend the cubical path ιi(Pi) to a cubical path

P that is contained in F (̂P) and ends up with the point ( ̂P , ̂P ). Since P ∼ ιk(Pk) and,
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consequently, p̂(P ) ∼ p̂(ιk(Pk)), and the cubical path p̂(ιk(Pk)) = rV0
k,l(m̂|k,l(Pk)) lies in the

cubical computation V0, we conclude that the cubical path p̂(P ), together with p̂(ιi(Pi)), lies in

the cubical computation V0. Consequently, F (p)(ιi(Pi)) ⊆ V0. Thus, there exists a morphism

rV0
i,j for all i, j such that (i, j) ∈ S.

It is clear that rV0
k,l = rV0

l . Indeed, by the commutativity of lower inner squares of the diagram

in Figure 7 for rV0
k,l and rV0

l , we have F (f) ◦ rV0
k,l = F (f) ◦ rV0

l . Since rV0
k,l (Ql), r

V0
l (Ql) ⊆ V0, we

obtain the required result in view of Corollary 1.

By the above, we have rV0 ◦F (m) = F (p) and F (f) ◦ rV0 = F (q). By formula (2), the

required morphism υE1 ◦ G (rV0) ◦ ς
̂Q
: ̂Q→ E1 satisfies the equalities p = υE1 ◦ G (F (p)) ◦ ς

̂P
=

υE1 ◦ G (rV0) ◦ G (F (m)) ◦ ς
̂P
= υE1 ◦ G (rV0) ◦ ς

̂Q
◦m and, similarly, q = f ◦ υE1 ◦ G (rV0) ◦ ς

̂Q
.

To conclude the paper, we formulate an important consequence of Theorems 2, 3, 4 and

Assertion 3 in [15].

Theorem 5. Two precubical sets labeled by the same set L of actions are cP-bisimular if

and only if their universal dicoverings represented as transitional Chu spaces, are P-bisimular.
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