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Abstract—We study equivalences of concurrent processes represented by objects of algebraic
topology. We use methods of category theory and consider precubical sets (analogs of semisimplicial
sets) and precubical spaces (analogs of cell complexes). In particular, we consider categories of these
objects and construct subcategories of path-objects. We define open morphisms with respect to
these subcategories and formulate criteria for a morphism to be open. We prove that the equivalence
of precubical sets (spaces) based on open morphisms coincides with a behavioral equivalence of
concurrent processes.
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1. INTRODUCTION

Notions and methods of algebraic topology and category theory have appeared recently in the con-
currency theory. In [16], Pratt suggested to use precubical sets as a model of concurrent processes.
Such sets are similar to semisimplicial sets of algebraic topology. They represent the cubical structure of
elements of the set in terms of boundary mappings. On the other hand, the structure of such sets allows
us to construct adequate models of concurrent processes. For example, Fajstrup [2, 3] proved that two
processes are concurrent if and only if the paths representing these processes in precubical sets are
homotopic. In the articles by Goubault and Jensen [8], Grandis [9], Fahrenberg [4], and Khusainov [12],
the homological approach is used. The authors represent (pre)cubical sets as algebraic complexes, and
study concurrent processes from the point of view of homologies of (pre)cubical sets. In his thesis [7],
Goubault suggested another geometrical model of concurrency; namely, precubical spaces (topological
spaces endowed with a differential structure that allows us to determine the duration of concurrent
processes).

Various equivalences arise in identification of “similar” concurrent processes. In an attempt to
compare and unify these equivalences, a number of authors developed category theoretical approaches.
In [11], Joyal, Nielsen, and Winskel introduced the abstract notion of equivalence in terms of a special
construction (a span of open morphisms). This approach helped to unify a series of definitions of
behavioral equivalences for various models of concurrency, see [5, 11, 13, 14, 17]. In [10, 18], open
morphisms are introduced and studied for timed extensions of several models of concurrent processes.

In the present article, we represent concurrent processes by objects of algebraic topology and apply
methods of category theory for studying and comparing equivalences of these objects. We consider
precubical sets (analogs of semisimplicial sets) and precubical spaces (analogs of cell complexes).
Using a criterion for a morphism to be open, we prove that the equivalence of precubical sets based
on open morphisms coincides with a behavioral equivalence of concurrent processes. We also construct
and investigate adjoint functors between categories of precubical sets and spaces. These functors allow
us to transfer the criterion for behavioral equivalence (formulated in category theoretical terms of open
morphisms) to precubical spaces.
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48 OSHEVSKAYA

2. PRECUBICAL SETS

2.1. Category pSet. Precubical sets allow us to construct natural models of concurrent processes.
Namely, the concurrent execution of n actions is represented by an n-dimensional cube, while their
mutually exclusive execution is represented by the edges of this cube. For example, consider the pre-
cubical set in Fig. 1. The right-hand 2-cube (filled square) x represents the concurrent execution of a
and b. The boundary of this cube consists of 1-cubes (segments) x1, y2, and y1, x2. Functions of two
types represent this boundary; namely, the (source) boundary mappings d 0

1 and d 0
2 and the (target)

boundary mappings d1
1 and d1

2. In some sense, x2 = d1
1(x) and y2 = d1

2(x) are copies of x1 = d 0
1 (x)

and y1 = d 0
2 (x) respectively. This distinction between the boundary mappings determines the direction.

For example, the 1-cube x1 starts at the 0-cube (point) d 0
1 (x1) = i0 and terminates at the 0-cube

d1
1(x1) = s. The left-hand square represents the mutually exclusive execution of a and b. This situation

is modeled by the precubical set constructed from 1-cubes x1, y2 and y1, x2. Both processes start at
the initial point i0.

a b

ab

x1 y1

x2y2

i0

a b

ab

x1 y1

x2y2

x

i0

s

Fig. 1. Concurrent and mutually exclusive
executions of a and b in a precubical set

We present the formal definition of a precubical set.

Definition 1. A (labeled over a set L of actions) precubical set (with a distinguished point) is
a triple M = (M, i0, l)L, where

• M is a precubical set, i.e., a collection of pairwise distinct sets (Mn)n≥0 and boundary mappings

d 0
λ , d1

μ : Mn+1 → Mn

(
λ, μ = 1 . . . n + 1

)

satisfying the following cubical axioms: For all 1 ≤ λ < μ ≤ n + 2 and α, β ∈ {0, 1}, the diagram

Mn+2
dβ

μ−−−−→ Mn+1

dα
λ

⏐⏐
�

⏐⏐
�dα

λ

Mn+1 −−−−→
dβ

μ−1

Mn

commutes;

• i0 ∈ M0 is a distinguished point, called the initial point;

• l : M1 → L is a labeling function from the set of 1-cubes to the set L of actions such that
l
(
d0

λ(x)
)

= l
(
d1

λ(x)
)

, where λ = 1, 2, for all x ∈ M2.

Remark 1. We introduce the value l(x) for every x ∈ Mn, n ≥ 0, as follows. Put l(x) = ∅ for n = 0
and l(x) =

(
l1(x), . . . , ln(x)

)
for n > 1, where

lλ(x) = l
(
d0
1 ◦ · · · ◦ d0

λ−1 ◦ d0
λ+1 ◦ · · · ◦ d0

n(x)
)

for all 1 ≤ λ ≤ n.
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Let n ≥ 0 and let 0 ≤ j ≤ n. We put

A(j, n) =
{
(γ1, . . . , γj , θ1, . . . , θj)

∣
∣ γ1, . . . , γj ∈ {0, 1}, 1 ≤ θ1 < · · · < θj ≤ n

}
.

For (Γ,Θ) ∈ A(j, n), we define the (n − j)-component of a cube x ∈ Mn as follows:

DΓ
Θ(x) =

{
x if j = 0,
dγ1

θ1
◦ · · · ◦ d

γj

θj
(x) otherwise.

Let A(n) =
⋃

0≤j≤n A(j, n) and let D(x) =
⋃

(Γ,Θ)∈A(n) DΓ
Θ(x).

Fig. 2. Precubical set M

Example 1. We illustrate Definition 1. Consider the precubical set M = (M, i0, l)L with L =
{a, b, c, d} in Fig. 2. The set M contains the 3-cube x and the 2-cube y rolled up into a cylinder.
The boundaries of x and y are defined as follows:

x1 = d1
1(x), x2 = d 0

2 (x), x3 = d1
3(x), y1 = d 0

1 (y), y2 = d 0
2 (y).

The initial point is i0 ∈ M0. The labeling function l is defined as follows: l1(x) = a, l2(x) = b, l3(x) = c,
and l2(y) = d.

By a morphism we will mean a pair of functions taking cubes and actions of a precubical set into
cubes and actions of another precubical set respectively and satisfying some additional requirements.

Definition 2. Let M = (M, i0, l)L and M′ = (M ′, i′0, l
′)L′ be precubical sets. Let f = 〈f, σ〉, where

f =
⋃

fn and fn : Mn → M ′
n and σ : L → L′ are set mappings. We say that f is a morphism from M

to M′ if the following conditions hold:

(1) f0(i0) = i′0,
(2) l′ ◦ fn = σ ◦ l,
(3) fn ◦ dα

λ = dα
λ ◦ fn+1.

By the first condition, morphisms preserve the initial points. By the second condition, the actions are
consistent. By the third condition, the boundaries of the cubes are consistent too.

Precubical sets with morphisms form the category pSet, where the composition of morphisms

f = 〈f, σ〉 : M → M′ and g = 〈g, �〉 : M′ → M′′

is the morphism

g ◦ f = 〈g ◦ f, � ◦ σ〉 : M → M′′

and the identity morphism consists of two identity mappings.
In the sequel, we will need a foliated structure on pSet. Let pSetL denote the subcategory of pSet,

whose objects are precubical sets labeled over a set L of actions and the second components of
morphisms are identity mappings. Similar notation will be used for other categories considered in
the article.
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50 OSHEVSKAYA

2.2. Subcategory P. A cubical path in a precubical set M is a sequence

P = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk

of cubes and boundary mappings such that p0 = i0 and

either ps−1 = dαs
λs

(ps) (if αs = 0)

or ps = dαs
λs

(ps−1) (if αs = 1)

for all 1 ≤ s ≤ k.
Remark 2. Usually we omit boundary mappings in the notation and write P = p0p1 . . . pk−1pk

instead of

P = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk

if there is no ambiguity.

In the sequel, we denote by CP(M)
(
CPpk

(M)
)

the set of all cubical paths (ending with a cube pk) in
a precubical set M.

The following assertion is obvious.

Assertion 1. Let P = p0p1 . . . pk−1pk be a cubical path in a precubical set M = (M, i0, l)L. Then
M′ = (M ′, i0, l′)L, where

M ′
n =

⋃

0≤s≤k

D(ps) ∩ Mn (n ≥ 0) and l′ = l
∣
∣
M ′

1
,

is a precubical set over L and a precubical subset of M. (We will say that M′ has the form of
the cubical path P in M.)

Let

P = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk,

P ′ = p′0
d

β1
μ1−→ p′1 . . . p′n−1

dβn
μn−→ p′n

be cubical paths in a precubical set M. We say that P ′ is an extension of P and P is a restriction of P ′

(in symbols: P → P ′) if n ≥ k and the equalities ps = p′s, αs = βs, and λs = μs hold for all 1 ≤ s ≤ k.

In particular, we write P
dα

λ−→ P ′ if n = k + 1, βk+1 = α, and μk+1 = λ.

Following [6], we introduce the notion of the combinatorial homotopy for cubical paths in a precubical
set M. The homotopy is the least equivalence on the set of cubical paths in M such that P and P ′

are equivalent if P and P ′ are s-adjacent (in symbols: P
s←→ P ′), i.e., P ′ can be obtained from P by

replacing, for λ < μ and α = 0, 1,

either the segment
d 0

λ−→ ps
dα

μ−→ by the segment
dα

μ−1−→ p′s
d 0

λ−→ or vice versa;

or the segment
dα

μ−→ ps
d1

λ−→ by the segment
d1

λ−→ p′s
dα

μ−1−→ or vice versa.

For every P ∈ CP(M), let [P ] denote the homotopy class of P .

Example 2. Recall the precubical set M from Example 1. The sequences

P = i0
d 0
1−→ p1

d1
1−→ p2

d 0
1−→ p3

d 0
1−→ x1

d1
1−→ y2

d 0
2−→ y

d1
1−→ p7

d1
1−→ p8

d 0
1−→ p7

and
Q = i0

d 0
1−→ p1

d1
1−→ p2

d 0
1−→ q1

d1
1−→ q2

d 0
1−→ y2

d 0
2−→ y

d1
1−→ p7

d1
1−→ p8

d 0
1−→ p7
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in Fig. 2 are cubical paths in M. It is clear that P and Q are homotopic because

P
4←→

(
i0

d 0
1−→ p1

d1
1−→ p2

d 0
1−→ q1

d 0
2−→ x1

d1
1−→ y2

d 0
2−→ y

d1
1−→ p7

d1
1−→ p8

d 0
1−→ p7

)
5←→ Q.

For a natural number N , we put

�N =

{
{0} if N = 0,{
(t1, . . . , tN )

∣
∣∣ tj ∈

{
0, 1

2 , 1
}}

otherwise.

We partition �N into subsets of the form

�N
n =

{

(t1, . . . , tN ) ∈ �N

∣
∣∣
∣∣

∣
∣
∣∣
{

tj =
1
2

∣∣
∣ 1 ≤ j ≤ N

}∣∣
∣∣ = n

}

, where 0 ≤ n ≤ N.

Assume that (t1, . . . , tN ) ∈ �N
n , 1 ≤ j1 < · · · < jn ≤ N , and tji = 1

2 for all 1 ≤ i ≤ n. We define bound-
ary mappings dα

λ : �N
n → �N

n−1. We put

dα
λ(t1, . . . , tN ) = (t1, . . . , tjλ−1, α, tjλ+1, . . . , tN ),

where α ∈ {0, 1}, 1 ≤ λ ≤ n, and 0 < n ≤ N . It is clear that �N is a precubical set.

We construct a precubical set labeled over L whose initial point is �N. We put

�N =

{(
�0, 0, ∅

)
L

if N = 0,
(
�N , (0, . . . , 0), l�

N)
L

otherwise.

Here, l�
N

is a labeling function from �N
1 to L such that l�

N(
d 0

λ(p)
)

= l�
N(

d1
λ(p)

)
for all λ = 1, 2 and

p ∈ �N
2 .

A cubical path P ∈ CPp

(
�N

)
is consistent with �N if either N = 0 or we have

DΓ
Θ(p) = (1, . . . , 1︸ ︷︷ ︸

N

), where Γ = (1, . . . , 1︸ ︷︷ ︸
dim p

), Θ = (1, . . . ,dim p).

A path-object
−
� is a precubical set having the form of a cubical path P ∈ CP

(
�N

)
, N ≥ 0, that is

consistent with �N . Let P denote the full subcategory of path-objects of the category pSet.

A cubical path P in a path-object
−
� is said to be maximal if

−
� has the form of P . Let CPmax(

−
�)

denote the set of all maximal cubical paths in
−
�.

A morphism m = 〈m, 1L〉 :
−
� →

−
� ′ of the subcategory PL is called an le-step (wi-step) if m(P )

dα
λ−→

Q
(
m(P ) s←→ Q

)
in

−
� ′ for suitable P ∈ CPmax(

−
�) and Q ∈ CPmax(

−
� ′). Notice that every morphism

of the category PL is the composition of le-steps and wi-steps.

In the sequel, we will need the following definitions and facts about cubical paths. For the proof of
the following lemma, see [15, Lemma 4.1].

Lemma 1. Let M be an object of the category pSetL. For every cubical path P in M, there exist

an object
−
�Ṗ of the category PL and a morphism π = 〈π, 1L〉 :

−
�Ṗ → M of the category pSetL

satisfying the equality π(Ṗ ) = P for a suitable Ṗ ∈ CPmax

(−
�Ṗ

)
.

We consider the notions of a λ-beginning and a λ-ending of a cubical path P in a precubical set M.
For the proof of the following fact (see [6, Proposition 2]).
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52 OSHEVSKAYA

Lemma 2. Let P ∈ CP(M) contain either a segment
d 0

λs−→ ps

d1
λs+1−→ , with λs �= λs+1, or a segment

d 0
λs−→ ps

d 0
λs+1−→ , or a segment

d1
λs−→ ps

d1
λs+1−→ . Then there exist a unique cubical path P ′ in M with

P
s←→ P ′.

Let P ∈ CPpk
(M) and let 1 ≤ λ ≤ n, n = dim pk > 0. By a λ-beginning of the cubical path P we

mean a cubical path d 0
λ(P ) ∈ CP(M) such that the diagram

d0
λ(P )

d0
λ

⏐⏐
�

P
s←→ Ps+1

s+1←→ . . .
k−2←→ Pk−1

k−1←→ Pk

commutes for a suitable 1 ≤ s ≤ k. (For s = k, we mean the diagram d 0
λ (P )

d 0
λ−→ P .) By a λ-ending of

the cubical path P we mean a cubical path d1
λ(P ) ∈ CP(M) with P

d1
λ−→ d1

λ(P ).

Lemma 3. Let M be a precubical set, let P ∈ CPpk
(M) be a cubical path, and let 1 ≤ λ ≤ n,

where dim pk = n > 0. Then there exists a unique cubical path dα
λ(P ) ∈ CP(M), α = 0, 1.

Proof. The case in which α = 1 is trivial. Assume that α = 0. Let

P = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk (dim pk = n > 0).

Distinct copies of the same action may occur in P (for example, if this action is concurrent to itself). For
simplicity, we distinguish such actions by adding subscripts. Therefore, without loss of generality, we
may assume that, in P , there is at most one copy of each actions.

It is clear that every segment ps−1

dαs
λs−→ ps in P is either the start of the action lλs(ps) (if αs = 0) or

the termination of the action lλs(ps−1) (if αs = 1). Consider the cube pk in P . It represents simultaneous
execution of n distinct actions l1(pk), . . . , ln(pk). By the definition of a cubical path, there exists

a unique s such that 1 ≤ s ≤ k and the segment ps−1

d 0
λs−→ ps of P represents the start of the action

lλs(ps) = lλ(pk). We consider the segment
d 0

λs−→ ps

d
αs+1
λs+1−→ of P . If αs+1 = 0 then, by Lemma 2, there

exists a unique cubical path Ps+1 in M such that P
s←→ Ps+1. Then Ps+1 contains the segment

d 0

λ
s+1
s+1−→ ps+1

s

d 0

λs+1
s−→ . It is easy to see that lλs(ps) = lλs+1

s
(ps+1) in M. If αs+1 = 1 and λs �= λs+1 then

the arguments are similar. If αs+1 = 1 and λs = λs+1 then the action lλs(ps) starts and terminates
simultaneously. Since lλs(ps) = lλ(pk) ends with pk, we conclude that there is no termination of
the action lλs(ps) = lλ(pk) in P . We arrive at a contradiction. Repeating these arguments, we obtain
a unique sequence of adjacent cubical paths of the form

P
s←→ · · · k−1←→ Pk in M, with lλs(ps) = lλk

s
(pk),

where Pk ends with the segment pk
k−1

d 0

λk
s−→ pk. Since lλ(pk) = lλs(ps) = lλk

s
(pk) and, in P , each action

occurs at most once, we have λ = λk
s . Therefore, there exists a unique cubical path d 0

λ (P ) satisfying

the condition d 0
λ (P )

d 0
λ−→ Pk.

In conclusion, we present the following obvious fact.

Lemma 4. Let f = 〈f, σ〉 : M → M′ be a morphism of pSet. Then, for every cubical path P =

p0

d
α1
λ1−→ · · ·

d
αk
λk−→ pk ∈ CP(M), the following assertions are valid :

(1) f(P ) = f(p0)
d

α1
λ1−→ · · ·

d
αk
λk−→ f(pk) ∈ CP(M′);
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(2) if P
dα

λ−→ P ′ in M then f(P )
dα

λ−→ f(P ′) in M′ ;

(3) if P
s←→ P ′ in M then f(P ) s←→ f(P ′) in M′.

2.3. Open morphisms of the category pSet. Let M be a category and let P be a subcategory of M.
Let I : P ↪→ M denote the embedding functor. We recall the definition of an open morphism.

Definition 3. A morphism f : M → M′ of M is said to be P-open if it possesses the right lifting
property, i.e., for every morphism m : P → Q of the category P and every commutative square of
the category M as shown below

there exists a morphism r : Q → M splitting this square into two commutative triangles.

Remark 3. Consider the definition of a P-open morphism of the category M in terms of the comma
category I ↓ IdM. A morphism f : M → M′ of M is P-open if and only if every morphism

(m, f) : (P, p,M) → (Q, q,M′)

of I ↓ IdM can be represented as the composition of the morphisms (1Q, f)(m, 1M).

As is noticed in [11], using the notion of a P-open morphism, we can define the notion of P-equivalent
objects of M.

Definition 4. Objects X and Y of the category M are P-equivalent if there exists a span of P-open
morphisms

X
f←− Z

f ′
−→ Y.

For a fixed set L, consider the category pSetL and its subcategory PL. We prove the following criterion
for a morphism of pSetL to be PL-open.

Theorem 1. A morphism f = 〈f, 1L〉 : M → M′ of the category pSetL is PL-open if and only if,
for every cubical path P ∈ CP(M), the following conditions hold:

(a) if f(P )
dα

λ−→ Q′ in M′ then P
dα

λ−→ P ′ in M and f(P ′) = Q′ ;

(b) if f(P ) s←→ Q′ in M′ then P
s←→ P ′ in M and f(P ′) = Q′.

Proof. (⇒) Assume that f = 〈f, 1L〉 : M → M′ is a PL-open morphism. We only prove that con-

dition (a) holds. The proof of condition (b) is similar. Let P ∈ CP(M) and let f(P )
dα

λ−→ Q′ in M′. By

Lemma 1, there exist objects
−
�Ṗ and

−
�Q̇′ of the category PL and morphisms π = 〈π, 1L〉 :

−
�Ṗ → M

and π′ = 〈π′, 1L〉 :
−
�Q̇′ → M′ of the category pSetL such that π(Ṗ ) = P and π′(Q̇′) = Q′ for suitable

maximal cubical paths Ṗ = ṗ0 . . . ṗk in
−
�Ṗ and Q̇′ = q̇′0 . . . q̇′k+1 in

−
�Q̇′ . We define a mapping m =

〈m, 1L〉 :
−
�Ṗ →

−
�Q̇′ . We put m(DΓ

Θ

(
ṗs)

)
= DΓ

Θ(q̇′s) for all (Γ,Θ) ∈ A(dim ṗs) and 0 ≤ s ≤ k. It is easy
to see that m is a morphism of the subcategory PL and f ◦ π = π′ ◦ m. Since f is a PL-open morphism,

there exists a morphism r :
−
�Q̇′ → M of the category pSetL such that π = r ◦ m and π′ = f ◦ r. Hence,

there exists a cubical path r(Q̇′) in M. From the definitions of the morphism m and the cubical paths Ṗ

and Q̇′ together with the fact that f(P )
dα

λ−→ Q′ in M′ it follows that m(Ṗ )
dα

λ−→ Q̇′ in
−
�Q̇′ . By Lemma 4, we
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find that r
(
m(Ṗ )

) dα
λ−→ r(Q̇′) in M. Since π = r ◦m and π′ = f ◦ r, we obtain P = π(Ṗ ) = r

(
m(Ṗ )

) dα
λ−→

r(Q̇′) in M and f
(
r(Q̇′)

)
= π′(Q̇′) = Q′.

(⇐) Let f = 〈f, 1L〉 : M → M′ be a morphism of the category pSetL such that the conditions of

the theorem hold. We prove that f is PL-open. Assume that there exist morphisms π :
−
� → M and

π′ :
−
� ′ → M′ of the category pSetL and a morphism m :

−
� →

−
� ′ of the subcategory PL such that f ◦π =

π′ ◦m. We show that there exists a morphism r = 〈r, 1L〉 :
−
� ′ → M of the category pSetL such that π =

r ◦m and π′ = f ◦ r. We only consider the case in which m is a wi-step (the case in which m is an le-step

is similar). Since m is a wi-step, there exist P ∈ CPmax(
−
�) and Q ∈ CPmax(

−
� ′) such that m(P ) s←→

Q = q0 . . . qk in
−
� ′. By Lemma 4, we have π′(m(P )

) s←→ π′(Q) in M′. Since f
(
π(P )

)
= π′(m(P )

)
,

we find that π(P ) s←→ P ′ = p0 . . . pk in M and f(P ′) = π′(Q) (cf. the conditions of the theorem). We

define a mapping r = 〈r, 1L〉 :
−
� ′ → M. We put r

(
DΓ

Θ(qs)
)

= DΓ
Θ(ps) for all (Γ,Θ) ∈ A(dim qs) and

0 ≤ s ≤ k. It is easy to see that r is a morphism of the category pSetL such that π = r ◦m and π′ = f ◦ r.
Since every morphism of PL is representable as the composition of le-steps and wi-steps, we use
induction on the number of such steps and obtain the required assertion for an arbitrary morphism.
Thus, f is a PL-open morphism.

2.4. hhp-Bisimulation on precubical sets. We introduce a behavioral equivalence (hhp-bisimulation)
on precubical sets, which is an adaptation of the corresponding definition from [6]. We prove that this
equivalence coincides with the P-equivalence.

Definition 5. Let M′ and M′′ be precubical sets labeled over L.
Cubical paths

P = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk in M′

and

Q = q0
d

β1
μ1−→ q1 . . . qk−1

d
βk
μk−→ qk in M′′

are said to be dl-connected if αs = βs, λs = μs, and l′(ps) = l′′(qs) for all 1 ≤ s ≤ k.

A binary relation R between cubical paths in M′ and M′′ is called an hhp-bisimulation between M′

and M′′ if, for each pair (P,Q) ∈ R, the cubical paths P and Q are dl-connected and the following
conditions hold:

(1) if P
dα

λ−→ P ′ in M′ then Q
dα

λ−→ Q′ in M′′ and (P ′, Q′) ∈ R;

(2) if Q
dα

λ−→ Q′ in M′′ then P
dα

λ−→ P ′ in M′ and (P ′, Q′) ∈ R;

(3) if P ′ dα
λ−→ P in M′ then Q′ dα

λ−→ Q in M′′ and (P ′, Q′) ∈ R;

(4) if Q′ dα
λ−→ Q in M′′ then P ′ dα

λ−→ P in M′ and (P ′, Q′) ∈ R;

(5) if P
s←→ P ′ in M′ then Q

s←→ Q′ in M′′ and (P ′, Q′) ∈ R;

(6) if Q
s←→ Q′ in M′′ then P

s←→ P ′ in M′ and (P ′, Q′) ∈ R.

Precubical sets M′ and M′′ are hhp-bisimilar if there exists an hhp-bisimulation between M′ and M′′

such that the initial points (regarded as cubical paths) are related.

Notice that the relation “to be hhp-bisimilar” for precubical sets is indeed an equivalence relation.

Example 3. To understand better the definition above, we discuss examples of hhp-bisimilar and
non-hhp-bisimilar precubical sets.

We begin with the precubical sets depicted in Fig. 3. The boundary mappings are defined as follows:

d 0
1 (x1) = p1, d1

2(x1) = p3, d 0
1 (x2) = p2, d1

2(x2) = p4
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in the left-hand precubical set and

d 0
1 (y) = q1, d1

2(y) = q2

in the right-hand precubical set. The initial points are s0 and r0. These semicubucal sets are hhp-
bisimilar because the required hhp-bisimulation R can be easily constructed from the set

{
(P1, Q1), (P2, Q2), (P1, Q2), (P2, Q1)

}

with the help of conditions (1)–(6) of Definition 5. The cubical paths P1, P2, Q1, and Q2 have
the following form:

P1 = s0p1s1p3s3p5s5p7s7 and P2 = s0p2s2p4s4p6s6p8s8 in the left-hand precubical set
and

Q1 = r0q1r1q2r2q3r3q4r4 and Q2 = r0q1r1q2r2q5r5q6r4 in the right-hand precubical set.

Fig. 3. hhp-Bisimilar precubical sets

Now we turn to the precubical sets depicted in Fig. 4. The boundary mappings are defined as follows:

d 0
1 (x1) = p1, d1

2(x1) = p5,

d 0
1 (x2) = p1, d1

2(x2) = p2,

d 0
2 (x3) = p4, d1

1(x3) = p3,

d 0
1 (x4) = p5, d 0

2 (x4) = p6

in the left-hand precubical set and

d 0
1 (y1) = q1, d1

2(y1) = q6,

d 0
1 (y2) = q1, d1

2(y2) = q2,

d 0
2 (y3) = q4, d1

1(y3) = q5,

d 0
1 (y4) = q6, d 0

2 (y4) = q7,

d 0
2 (y5) = q2, d1

1(y5) = q3

in the right-hand precubical set.

Assume that there exists an hhp-bisimulation R̃ between these precubical sets such that the initial
points are equivalent with respect to R̃. Then, for the cubical path

Q = r0
d 0
1−→ q1

d 0
1−→ y2

d1
2−→ q2

d1
1−→ r2

d 0
1−→ q3

d1
1−→ r3

in the right-hand precubical set, there exists a cubical path P in the left-hand precubical set such that
(P,Q) ∈ R̃. Since P and Q are dl-connected, the path P has either the form
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Fig. 4. Precubical sets that are not hhp-bisimilar

(1) s0
d 0
1−→ p1

d 0
1−→ x2

d1
2−→ p2

d1
1−→ s2

d 0
1−→ p3

d1
1−→ s3

or the form

(2) s0
d 0
1−→ p1

d 0
1−→ x1

d1
2−→ p5

d1
1−→ s5

d 0
1−→ p7

d1
1−→ s7.

Moreover, for the right-hand precubical set, we have

Q
4←→

(
Q′ = r0

d 0
1−→ q1

d 0
1−→ y2

d1
2−→ q2

d 0
2−→ y5

d1
1−→ q3

d1
1−→ r3

)
.

Hence, in the left-hand precubical set, there exists a cubical path P ′ such that P
4←→ P ′ and (P ′, Q′) ∈

R̃. In case (1), there exist no P ′ with P
4←→ P ′. In case (2), consider the path

P ′ = s0
d 0
1−→ p1

d 0
1−→ x1

d1
2−→ p5

d 0
1−→ x4

d1
2−→ p7

d1
1−→ s7.

We have P
4←→ P ′. However, we have (P ′, Q′) /∈ R̃ because P ′ and Q′ are not dl-connected.

We prove that, for precubical sets labeled over a common set L, the relations “to be hhp-bisimilar”
and “to be PL-equivalent” coincide.

Theorem 2. Let M′ and M′′ be precubical sets labeled over the same set L of actions. Then
the following conditions are equivalent:

(1) M′ and M′′ are hhp-bisimilar;

(2) M′ and M′′ are PL-equivalent.

Proof. (2 ⇒ 1) Assume that M′ and M′′ are PL-equivalent. Then there exists a span M′ f′←− M f′′−→
M′′, where M is an object of pSetL and f ′ = 〈f ′, 1L〉 and f ′′ = 〈f ′′, 1L〉 are PL-open morphisms of pSetL.
It is immediate from Definition 2, Lemma 4, and Theorem 1 that the relation

R =
{(

f ′(P ), f ′′(P )
) ∣∣
∣ P ∈ CP(M)

}

is an hhp-bisimulation between M′ and M′′.

(1 ⇒ 2) Let M′ and M′′ be precubical sets labeled over the same set L of actions and let R be an hhp-

bisimulation between M′ and M′′ with (i′0, i
′′
0) ∈ R. We construct a span M′ f′←− M f′′−→ M′′, where M
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is an object of pSetL and f ′ = 〈f ′, 1L〉 and f ′′ = 〈f ′′, 1L〉 are PL-open morphisms of pSetL. For a pair
(P,Q) ∈ R, we define

〈P,Q〉 =
{

(P ′, Q′)
∣∣
∣ (P = P0)

s1←→ . . .
sm←→ (Pm = P ′),

(Q = Q0)
s1←→ . . .

sm←→ (Qm = Q′),

(Pj , Qj) ∈ R (1 ≤ j ≤ m, m ≥ 0)
}

.

For m = 0, we mean (P,Q) ∈ 〈P,Q〉.
We define a structure 〈M′,M′′〉 = (M, i0, l)L. We put

• Mn =
{
〈P,Q〉

∣∣ (P,Q) ∈ R, P ∈ CPp(M′), dim p = n
}

and d̄α
λ

(
〈P,Q〉

)
= 〈dα

λ(P ), dα
λ(Q)〉 for

all 〈P,Q〉 ∈ Mn (n > 0);
• i0 = 〈i′0, i′′0〉;
• l

(
〈P,Q〉

)
= l′(p) for all 〈P,Q〉 ∈ M1.

We show that 〈M′,M′′〉 is a precubical set.
Let 〈P,Q〉 ∈ Mn+1, where n ≥ 0. We prove that

d̄ 0
λ

(
〈P,Q〉

)
= 〈d 0

λ (P ), d 0
λ (Q)〉 ∈ Mn.

Assume that the cubical path d 0
λ(P ) is obtained according to the relations

(P = Ps)
s←→ Ps+1

s+1←→ · · · k−1←→ Pk and d 0
λ(P )

d 0
λ−→ Pk.

Since (P,Q) ∈ R, we conclude that the cubical paths P and Q are dl-connected; hence, the cubical
path d 0

λ (Q) is obtained according to the relations

(Q = Qs)
s←→ Qs+1

s+1←→ · · · k−1←→ Qk and d 0
λ (Q)

d 0
λ−→ Qk.

On the other hand, if (P,Q) ∈ R then, by condition (5) of Definition 5, there exist cubical paths Q′
s+1,

. . . , Q′
k ∈ CP(M′′) such that

(Q = Qs)
s←→ Q′

s+1
s+1←→ · · · k−1←→ Q′

k and (Pj , Q
′
j) ∈ R

for all (s + 1) ≤ j ≤ k. By Lemma 2, we have Qj = Q′
j for all (s + 1) ≤ j ≤ k; hence, (Pk, Qk) ∈ R. By

condition (3) of Definition 5, we have
(
d 0

λ(P ), d 0
λ (Q)

)
∈ R, i.e., d̄ 0

λ

(
〈P,Q〉

)
∈ Mn. By condition (1) of

Definition 5 for the pair (P,Q) ∈ R, we have d̄1
λ

(
〈P,Q〉

)
∈ Mn.

We prove that 〈M′,M′′〉 satisfies the cubical axioms, i.e., if 〈P,Q〉 ∈ Mn+2 with n ≥ 0, 1 ≤ λ < μ ≤
(n + 2), and α, β = 0, 1 then we have

d̄α
λ

(
d̄β

μ

(
〈P,Q〉

))
= d̄β

μ−1

(
d̄α

λ

(
〈P,Q〉

))
.

We only consider the case in which α = 0 and β = 1. The remaining cases are similar. Assume that

the cubical path d 0
λ (P ) is obtained according to the relations P

s←→ · · · k−1←→ Pk and d 0
λ (P )

d 0
λ−→ Pk.

Since the last cube pk in P satisfies the cubical axioms, we obtain the diagram depicted in Fig. 5.
On the other hand, d1

μ(P ) is an extension of the cubical path P , i.e., d 0
λ

(
d1

μ(P )
)

is obtained according to
the relations

d1
μ(P ) s←→ · · · k←→ Pk+1 and d 0

λ

(
d1

μ(P )
) d 0

λ−→ Pk+1.

By Lemma 2, this sequence of adjacent cubical paths coincides with the lower sequence in Fig. 5,
i.e., Pk+1 = P̄k+1. Hence, d 0

λ

(
d1

μ(P )
)

= d1
μ−1

(
d 0

λ(P )
)

. Similar arguments prove that d 0
λ

(
d1

μ(Q)
)

=
d1

μ−1

(
d 0

λ(Q)
)

. We conclude that

d̄ 0
λ

(
d̄1

μ

(
〈P,Q〉

))
= d̄1

μ−1

(
d̄ 0

λ

(
〈P,Q〉

))
.
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Fig. 5. Cubical paths in M′

Therefore, 〈M′,M′′〉 is a precubical set.
We define mappings

〈pr1, 1L〉 : 〈M′,M′′〉 → M′ and 〈pr2, 1L〉 : 〈M′,M′′〉 → M′′.

We put

pr1

(
〈P,Q〉

)
= p, pr2

(
〈P,Q〉

)
= q

for all 〈P,Q〉 ∈ M with P ∈ CPp(M′) and Q ∈ CPq(M′′). It is easy to verify that 〈pr1, 1L〉 and 〈pr2, 1L〉
are morphisms of pSetL. We use Theorem 1 and prove that 〈pr1, 1L〉 is a PL-open morphism

(
for

the morphism 〈pr2, 1L〉, the proof is similar
)
.

We consider an arbitrary cubical path O = o0 . . . ok ∈ CP
(
〈M′,M′′〉

)
. By Lemma 4, we have

pr1(O) ∈ CP(M′) and pr2(O) ∈ CP(M′′). Let

pr1(O) = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk,

pr2(O) = q0

d
α1
λ1−→ q1 . . . qk−1

d
αk
λk−→ qk.

Using induction on the number of cubes in the cubical path O, it is easy to show that

os =

〈

p0

d
α1
λ1−→ p1 . . . ps−1

dαs
λs−→ ps, q0

d
α1
λ1−→ q1 . . . qs−1

dαs
λs−→ qs

〉

for all 0 ≤ s ≤ k. By the construction of 〈M′,M′′〉, we have
(
pr1(O), pr2(O)

)
∈ R. We show that

condition (a) of Theorem 1 holds for the morphism 〈pr1, 1L〉 (similar arguments prove that condition (b)

holds too). Assume that pr1(O)
d

αk+1
λk+1−−−−→ P ′ for some P ′ ∈ CP(M′). By condition (1) of Definition 5, there

exists a cubical path Q′ ∈ CP(M′′) such that pr2(O)
d

αk+1
λk+1−−−−→ Q′ and (P ′, Q′) ∈ R. Put ok+1 = 〈P ′, Q′〉.

By the construction of 〈M′,M′′〉, we obtain

O′ = o0

d
α1
λ1−→ o1 . . . ok−1

d
αk
λk−→ ok

d
αk+1
λk+1−−−−→ ok+1 ∈ CP

(
〈M′,M′′〉

)
and O

d
αk+1
λk+1−−−−→ O′.

It is clear that pr1(O′) = P ′.

3. PRECUBICAL SPACES

3.1. Category Space≤. Precubical spaces were introduced in [7] as topological spaces endowed with
a differential structure. This structure is determined by cubes that are realized in the space and a family
of norms on the tangent bundle. For the formal definition of a precubical space, we need some notions
and notation.

Consider the unit cube of dimension n ≥ 0 in R
n, i.e., let

�n =

{
{0} if n = 0,
{
(t1, . . . , tn) ∈ Rn

∣
∣ 0 ≤ ti ≤ 1, 1 ≤ i ≤ n

}
otherwise.
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Let
◦
�n denote the topological interior of �n. We assume that

◦
�0 = {0}.

By boundary mappings

δα
λ : �n → �n+1

(
λ ∈ {1, . . . , n + 1}, α ∈ {0, 1}, n ≥ 0,

)

we mean continuous mappings with

δα
λ (t1, . . . , tn) = (t1, . . . , tλ−1, α, tλ, . . . , tn).

Such mappings satisfy the cubical axioms, i.e., we have δα
λ ◦ δβ

μ = δβ
μ+1 ◦ δα

λ for λ ≤ μ.

Consider a compactly generated Hausdorff space X. Recall that a topological space X is compactly
generated if, for every U ⊂ X, the subset U is closed provided that the intersection U ∩ K is closed
for every compact subset K ⊂ X. By a cube we mean a continuous mapping x : �n → X inducing

a homomorphism from
◦
�n. The mapping x endows the set x

( ◦
�n

)
with a trivial structure of a dif-

ferentiable manifold (see [1]). The definition of local coordinates on x
( ◦
�n

)
, n > 0, is standard, i.e.,

we have
(
x(t1, . . . , tn)

)
i
= ti, i = 1, . . . , n. The definition of the boundary of a cube is well-defined if

the collection of cubes is closed with respect to boundary mappings. We require that, for every cube
x : �n → X, n ≥ 1, and all λ ∈ {1, . . . , n} and α ∈ {0, 1}, the mapping x ◦ δα

λ : �n−1 → X be a cube
too. As an example, consider the square �2, the segment �1, and the torus T depicted in Fig. 6.

The mapping x2 is a continuous mapping from �2 onto T ; moreover, x2

( ◦
�2

)
is a torus without the small

circle x2(0, t), 0 ≤ t ≤ 1, and the big circle x2(t, 0), 0 ≤ t ≤ 1. The mapping x1 is a continuous mapping

from �1 onto the small circle of T such that x1

( ◦
�1

)
is the small circle without the intersection point of

the circles. We have x1 = x2 ◦ δ0
1 .

Fig. 6. Boundary of a cube

Let Xn, n ≥ 0, denote the set of cubes whose domain is �n. We require that the space X be

covered by its cubes. Namely, let X be equal to the disjoint union
⊔

x∈Xn, n≥0 x
( ◦
�n

)
. Finally, we define

norms ‖ · ‖u on the tangent spaces TuX =def Tux
( ◦
�n

)
, where u ∈ x

( ◦
�n

)
, for each point u ∈ X. Put

F (u, u̇) = ‖u̇‖u. This norm is consistent with the space if it is a continuous mapping from the tangent
bundle TX to the half-line R

+. We define a topology on TX in a standard way. Let BX be a base of
the topology on X. We define BTX as follows:

V ∈ BTX ⇔ V =
⊔

x∈XU
n , n≥0

ξ−1
x (Wx, Bx).

Here U ∈ BX , XU
n =

{
x ∈ Xn

∣
∣ U ∩ x

( ◦
�n

)
�= ∅

}
, ξx : Tx

( ◦
�n

)
→

◦
�n × R

n is the natural bijection

defined for all x ∈ Xn with n ≥ 0, Wx = x−1
(
U ∩ x

( ◦
�n

))
, Bx is an open ball in R

n such that Bx =
prλBx̄ for all x̄ ∈ XU

n+1 with x = x̄ ◦ δα
λ , and the projection prλ : R

n+1 → R
n is defined by the rule

prλ(t1, . . . , tn+1) =
(
t1, . . . , t̂λ, . . . , tn+1

)
for all (t1, . . . , tn+1) ∈ R

n+1.
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It is easy to verify that the set BTX forms a base of the topology TX and is independent of the choice
of BX .

We present the formal definition of a precubical space.

Definition 6. By a (labeled over a set L of actions) precubical space (with a distinguished
point) we mean a tuple X =

(
X, i0, l, ‖ · ‖

)
L

, where

• X is a compactly generated Hausdorff space together with its representation by cubes; namely,
we have

X =
⊔

x∈Xn, n≥0

x
( ◦
�n

)
,

where Xn consists of continuous mappings x : �n → X inducing homomorphisms from
◦
�n such

that x ◦ δα
λ ∈ Xn−1 for all α = 0, 1, 1 ≤ λ ≤ n, and n > 0;

• i0 is a distinguished point of X (called the initial point) and i0 = x(0) for a suitable x ∈ X0 ;
• l : X1 → L is a labeling function from the set of 1-cubes of X to the set L of actions such that

l
(
x ◦ δ0

λ

)
= l

(
x ◦ δ1

λ

)
for all λ = 1, 2 and x ∈ X2 ;

• X is endowed with a family of norms ‖ · ‖u on each tangent space TuX =def Tux
( ◦
�n

)
, u ∈

x
( ◦
�n

)
, such that the formula F (u, u̇) = ‖u̇‖u defines a continuous mapping from the tangent

bundle TX (with the topology introduced above) to the half-line R
+ (with the topology induced

by the topology of R).

Remark 4. We introduce the value l(x) for every x ∈ Mn, n ≥ 0, as follows:

l(x) =

{
∅ if n = 0,
(
l1(x), . . . , ln(x)

)
if n > 1.

Here

lλ(x) = l
(
x ◦ δ0

n ◦ · · · ◦ δ0
λ+1 ◦ δ0

λ−1 ◦ · · · ◦ δ0
1(x)

)
for all 1 ≤ λ ≤ n.

Let n ≥ 0 and let 0 ≤ j ≤ n. For each (Γ,Θ) ∈ A(j, n), we define the (n − j)-component of a cube
x ∈ Xn as follows:

x ◦ ΔΓ
Θ =

{
x if j = 0,
x ◦ δ

γj

θj
◦ · · · ◦ δγ1

θ1
otherwise.

Let

x ◦ Δ =
⋃

(Γ,Θ)∈A(n)

x ◦ ΔΓ
Θ.

Since x is continuous, for every topological space X satisfying the first condition of Definition 6,
the following assertion holds: If U is open in X then x−1(U) is open in �n for every x ∈ Xn and n ≥ 0,
where the topology on �n ⊆ R

n is induced by the standard topology on R
n.

We say that X is a �-topological space if its topology is defined as follows:

U is open in X if and only if x−1(U) is open in �n for all x ∈ Xn and n ≥ 0.

Precubical sets allow us to construct models of concurrent processes. Precubical spaces additionally
allow us to estimate the duration of a computation in the space X by using the norms on the tangent
bundle TX. In fact, the tangent space consists of possible “directions” at a point u and the norms
characterize infinitesimal lengths of computations at this point.

By a path (representing computation) in a precubical space we will mean a curve connecting two
points in X. We present the formal definition. A continuous mapping γ : [0, 1] → X is a path in
a precubical space X if there exist open intervals Ij = (τj−1, τj) and cubes xj ∈ Xnj , 1 ≤ j ≤ m, such
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that τ0 = 0, τm = 1, and, for each 1 ≤ j ≤ m, the following conditions hold: The mapping γ : Ij →
xj

( ◦
�nj

)
is nondecreasing with respect to each coordinate of the cube xj and the mapping x−1

j ◦ γ :

Ij →
◦
�nj is differentiable for each nj > 0. The lenght of a path γ (the duration of a computation) is

defined in the natural way, i.e., length(γ) =
∫ 1
0

∥
∥γ̇(s)

∥
∥

γ(s)
ds.

Fig. 7. Precubical space X

Example 4. The precubical space

X =
(
X = x(�3) ∪ x1(�1) ∪ x0(�1), i0, l, ‖ · ‖

)

L

is labeled over the set L = {a, b, c, d} (see Fig. 7). This space is generated by the following cubes:

the 3-cube x(t1, t2, t3) = (4t1, 2t2, 3t3)
(
(t1, t2, t3) ∈ �3

)
,

the 1-cube x1(t) = (4 + 2t, 2, 3) (t ∈ �1),

the 1-cube x0(t) =
(
6 − sin(2πt), 2, 2 + cos(2πt)

)
(t ∈ �1).

These cubes are depicted in Fig. 7 as the cube, the segment, and the circle respectively. The initial point
is i0 = (0, 0, 0). The labeling function is defined by the formulas

l1(x) = a, l2(x) = b, l3(x) = c, l(x1) = d, l(x0) = b.

The norm ‖ · ‖u, u ∈ X, is induced by the Euclidean norm in R
3. Notice that the interior of the cube

is the union of all paths (computations) such that the actions a, b, and c are executed simultaneously.
The length of the path along the unidimensional boundary of the 3-cube with action a is equal to 4. For
the actions b and c, the corresponding lengths are equal to 2 and 3 respectively. Therefore, the lengths of
paths in the cube starting with (0, 0, 0) and ending with (4, 2, 3) vary from

√
42 + 22 + 32 to 4 + 2 + 3.

A morphism establishes a correspondence between a topological space and the set of actions of one
precubical space and a topological space and the set of actions of another precubical space and satisfies
some additional requirements.

Definition 7. Let

X =
(
X, iX0 , lX, ‖ · ‖X

)
LX and Y =

(
Y, iY0 , lY, ‖ · ‖Y)LY

be precubical spaces. A mapping f = 〈f, σ〉, where f : X → Y is a continuous mapping and σ : LX →
LY is a set mapping, is called a morphism from X to Y if the following conditions hold:

(1) f(iX0 ) = iY0 ;

(2) for every mapping x ∈ Xn with n ≥ 0, there exists a mapping y ∈ Yn such that

(a) the diagram in Fig. 8 commutes,
(b) lY(y) = σ

(
lX(x)

)
;

(3)
∥∥duf(u̇)

∥∥Y

f(u)
≤ ‖u̇‖X

u for all u̇ ∈ TuX and u ∈ X.
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Fig. 8. Diagram relating a cube x ∈ Xn to a cube y ∈ Yn via f

Remark 5. Since the diagram in Fig. 8 commutes, the differential df : TX → TY of the mapping f

is described as follows: For u ∈ x
( ◦
�n

)
, f(u) ∈ y

( ◦
�n

)
, and u̇ ∈ TuX, we have

duf(u̇) = ξ−1
y ◦ d(y−1 ◦ f ◦ x) ◦ ξx(u, u̇) = ξ−1

y ◦ ξx(u, u̇).

Condition (1) of Definition 7 means that each morphism takes the initial point into the initial point.
Condition (2) means that each morphism takes an n-cube in X into an n-cube in Y; hence, the actions
of the cubes are consistent. Condition (3) means that df is a nonexpanding mapping, i.e., the length of
the image of a path in X does not exceed the length of this path. If the equality

∥∥duf(u̇)
∥∥

f(u)
= ‖u̇‖u

holds for all u̇ ∈ TuX and u ∈ X then df is an isometry, i.e., it preserves the length of each path.
Precubical spaces and morphisms between them form the category Space≤, where the composition

of morphisms f = 〈f, σ〉 : X → Y and g = 〈g, �〉 : Y → Z is the morphism g ◦ f = 〈g ◦ f , � ◦ σ〉 : X → Z
and the identity morphism is the pair of identity mappings.

We consider an auxiliary property of mappings between topological spaces.

Lemma 5. Let X and Y be topological spaces satisfying condition (1) of Definition 6. Let f :
X → Y be a mapping satisfying condition (2) (a) of Definition 7. If X is a �-topological space
then f : X → Y is a continuous mapping ; moreover, df : TX → TY is continuous too.

Proof. We first show that the mapping f : X → Y is continuous. Consider an open set V in Y . Since
each mapping y : �n → Y is continuous, the set y−1(V ) is open in �n for each y ∈ Yn with n ≥ 0. In
particular, the set x−1 ◦ f−1(V ) is open in �n for each x ∈ Xn with n ≥ 0. Since X is a �-topological
space, the set f−1(V ) is open in X.

Now we prove that the mapping df : TX → TY is continuous. Let BX and BY be bases of
the topologies on X and Y respectively. Consider an arbitrary set Ṽ in the base BTY of the topology
on TY , i.e., let

Ṽ =
⊔

y∈Y V
n , n≥0

ξ−1
y (Wy, By),

where V ∈ BY , Y V
n =

{
y ∈ Yn | V ∩ y

( ◦
�n

)
�= ∅

}
, ξy : Ty

( ◦
�n

)
→

◦
�n × R

n is the natural bijection,

Wy = y−1
(
V ∩ y

( ◦
�n

))
, and By is an open ball in R

n; moreover, assume that y = ȳ ◦ δm
k implies

By = prkBȳ.

We need to show that (df)−1(Ṽ ) is an open set in TX. We have

(df)−1(Ṽ ) =
⊔

y∈Y V
n , n≥0

(df)−1
(
ξ−1
y (Wy, By)

)
=

⊔

x∈{x|f◦x∈Y V
n },

n≥0

ξ−1
x (Wf◦x, Bf◦x).

Since f : X → Y is continuous and V ∈ BY , we conclude that f−1(V ) is an open set in X, i.e., we have
f−1(V ) =

⋃
α Uα, where Uα ∈ BX . It is easy to verify that (df)−1(Ṽ ) =

⋃
α Ũα, where

Ũα =
⊔

xα∈XUα
n , n≥0

ξ−1
xα

(
x−1

α

(
Uα ∩ xα

( ◦
�n

))
, B(f◦xα)

)
∈ BTX .

Thus, (df)−1(Ṽ ) is an open set in TX.
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3.2. Connections between pSet and Space≤. We construct mappings between the categories pSet
and Space≤. These mappings will allow us to transfer the results of Theorems 1 and 2 (see Subsec-
tions 2.3 and 2.4) to precubical spaces.

In his thesis [7], Goubault mentioned adjoint functors

T : pSet → Space and Ft : Space → pSet

between the categories pSet and Space. The objects of Space are precubical spaces (see Definition 6)
and the morphisms of Space are mappings satisfying conditions (1) and (2) of Definition 7. We consider
these functors in connection with the categories pSet and Space≤.

Proposition 1. 1. We define a mapping T : pSet → Space≤. For an object (M, iM0 , lM)L, we put

T
(
(M, iM0 , lM)L

)
=

(
X, iX0 , lX, ‖ · ‖X

)
L
,

where
• X =

⊔
x∈Mn, n≥0(x,�n) / ≡ is endowed with the topology of the quotient space induced by

the topology of the direct sum on the space
⊔

x∈Mn, n≥0(x,�n), where each (x,�n) inherits
the standard topology of R

n and ≡ is defined as follows :
(
dα

λ(x),�n−1
)
≡

(
x, δα

λ (�n−1)
))

;

we denote

Xn =
{
(x, ·) : �n → X

∣∣ x ∈ Mn

}
;

• iX0 = (iM0 ,�0);

• lX(x, ·) = lM(x) for all (x, ·) ∈ X1 ;

• ‖ṫ‖(x,t) = max1≤i≤n |ṫi| for all ṫ = (ṫ1, . . . , ṫn) ∈ R
n = T(x,t)

(
x,

◦
�n) and all (x, t) ∈ X (recall

that this norm is called a Chebyshev norm).

For a morphism 〈f, σ〉 : M → M′, we put

T
(
〈f, σ〉

)
= 〈f̄ , σ〉,

where f̄(x, t) =
(
f(x), t

)
for all points (x, t) in T (M). Then T is a functor (usually called the geo-

metric realization functor).
2. We define a mapping Ft : Space≤ → pSet. For an object

(
X, iX0 , lX, ‖ · ‖X

)
L

, we put

Ft
((

X, iX0 , lX, ‖ · ‖X
)
L

)
=

(
M, iM0 , lM

)
L
,

where
• Mn = Xn for n ≥ 0 and dm

i (x) = x ◦ δm
i for all x ∈ Xn and n ≥ 1;

• iM0 = x0, where x0(0) = iX0 ;

• lM = lX.
For a morphism 〈f, σ〉 : X → X′, we put

Ft
(
〈f, σ〉

)
= 〈f̌ , σ〉,

where f̌(x) = f ◦ x for all cubes x in Ft(X). Then Ft is a functor (usually called the forgetful
functor).

Proof. A morphism of the category Space≤ is a morphism of the category Space additionally satis-
fying condition (3) of Definition 7. Hence, it suffices to prove that this condition holds for the mapping
〈f̄ , σ〉 = T

(
〈f, σ〉

)
, where 〈f, σ〉 is a morphism of the category pSet. It is clear that the inequality∥

∥d(x,t)f̄(ṫ)
∥
∥

f̄(x,t)
≤ ‖ṫ‖(x,t) becomes an identity because the vectors are the same and the norms are

Chebyshev norms.
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We mention a difference from the article [7]. Namely, the functors T and Ft between the cate-
gories pSet and Space≤ need not be adjoint. Indeed, the requirements on the norms of the precubical
space in the image of T are too strong and need not agree with condition (3) of Definition 7. We weaken
this requirement. We construct functors between the comma category IdpSet ↓ Ft and the category of
morphisms

−→
Space≤ = Id

Space≤ ↓ Id
Space≤ ,

which allows us to prove analogs of Theorems 1 and 2 for precubical spaces.

Proposition 2. 1. We define a mapping

G : IdpSet ↓ Ft →
−→

Space
≤ .

For objects, put

G
(
M, f = 〈f, σ〉,Y

)
= f̂ = 〈f̂ , σ〉 : Tf,Y(M) → Y,

where f̂(x, t) = f(x)(t) for all points (x, t) in Tf,Y(M) and the structure

Tf,Y(M) =
(
X, iX0 , lX, ‖ · ‖X

)
L

consists of X, iX0 , and lX as defined in condition (1) of Assertion 1 and the norm defined by the rule

‖ · ‖X
(x,t) =

∥
∥d(x,t)f̂(·)

∥
∥Y
bf(x,t)

for all (x, t) ∈ X. For morphisms, put

G
((

g = 〈g, σg〉,h = 〈h, σh〉
)

: (M, f,Y) → (M′, f ′,Y′)
)

=
(
ḡ = 〈ḡ, σg〉,h = 〈h, σh〉

)
: f̂ → f̂ ′,

where ḡ(x, t) =
(
g(x), t

)
for all points (x, t) ∈ X. Then G is a functor.

2. The functor Ft induces a mapping

F :
−→

Space
≤ → IdpSet ↓ Ft.

For objects, we have

F(f : X → Y) =
(
Ft(X),Ft(f), Y

)
.

For morphisms, we have

F(g,h) =
(
Ft(g),h

)
.

Then F is a functor.

Proof. We prove the first assertion only. The second assertion is obvious. We show that X is a �-
topological space. Consider a mapping (x, ·) : �n → X in Xn. It is clear that it can be represented as
φ ◦ ιx ◦ σx, where

σx : �n → (x,�n) is the identity mapping,
ιx : (x,�n) →

⊔

x∈Mn, n≥0
(x,�n) is the inclusion mapping,

φ :
⊔

x∈Mn, n≥0
(x,�n) → X is the quotient mapping.

By the definitions of the corresponding topologies, we have

U is open in X ⇔ φ−1(U) is open in
⊔

x∈Mn, n≥0

(x,�n)

⇔ ι−1
x

(
φ−1(U)

)
is open in (x,�n) ∀x ∈ Mn (n ≥ 0)
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⇔ σ−1
x

(
ι−1
x

(
φ−1(U)

))
is open in �n ∀x ∈ Mn (n ≥ 0),

i.e., we have

(x, ·)−1(U) is open in �n ∀(x, ·) ∈ Xn (n ≥ 0).

We conclude that X is a �-topological space. In view of the definition of f̂ , condition (2) (a) of
Definition 7 holds. By Lemma 5, the mapping f̂ is continuous. It is clear that the mapping

〈
f̂ , σ

〉
: Tf,Y(M) → Y

satisfies the remaining conditions of Definition 7. We need to prove that Tf,Y(M) is a precubical space

(hence,
〈
f̂ , σ

〉
is an object of the category

−→
Space). By Assertion 1 (1), it suffices to prove that the norm

‖ · ‖X is continuous on TX. By the construction of Tf,Y(M), we have ‖ · ‖X = ‖ · ‖Y ◦ df̂ . By Lemma 5,

the mapping df̂ is continuous. Since Y is a precubical space, the norm ‖ · ‖Y is continuous. The norm
‖ · ‖X is the composition of two continuous mappings; hence, it is continuous too. We have proven
that Tf,Y(M) is an object of the category Space≤ ; hence, f̂ = 〈f̂ , σ〉 : Tf,Y(M) → Y is an object of

the category
−→

Space≤.
Let (g,h) : (M, f,Y) → (M′, f ′,Y′) be a morphism of the category IdpSet ↓ Ft, i.e., let the equality

f ′ ◦ g = h ◦ f hold. Then f̂ ′ ◦ ḡ = h ◦ f̂ . It is easy to see that ḡ is a morphism of Space≤ and (ḡ,h) is

a morphism of
−→

Space≤ .

Proposition 3. The functors F and G are adjoint. Moreover, the counit of adjunction ε : FG →
IdIdpSet↓Ft is the natural isomorphism.

Proof. For an arbitrary object (M, f,Y) of the category

IdpSet ↓ Ft,

the counit of adjunction ε is defined as follows:

ε(M,f,Y) =
(〈

ε(M,f,Y ), 1L

〉
, 1Y

)
:
(
Ft

(
Tf,Y(M)

)
,Ft(̂f), Y

)
→ (M, f,Y),

where ε(M,f,Y )(x, ·) = x for all cubes (x, ·) in Ft
(
Tf,Y(M)

)
. Consider the morphism

ε−1
(M,f,Y) =

(〈
ε−1
(M,f,Y ), 1L

〉
, 1Y

)

of the category IdpSet ↓ Ft such that ε−1
(M,f,Y )(x) = (x, ·) for all x ∈ M . This morphism turns ε into

the natural isomorphism.

For an arbitrary object f : X → Y of the category
−→

Space≤, the unit of adjunction η : Id −→
Space≤

→ GF
is defined as follows:

ηf =
(
〈ηf , 1L〉, 1Y

)
: (f : X → Y) →

(
F̂t(f) : TFt(f),Y

(
Ft(X)

)
→ Y

)
,

where ηf

(
x(t)

)
= (x, t) for all x(t) ∈ X.

3.3. Subcategory P≤. The functor Ft allows us to forget that cubes in a precubical space X
are continuous mappings and regard them as elements of a discrete set. The definitions of a cubical
path, an extension and a restriction of a cubical path, the s-adjointness, the homotopy, and the dl-
connectedness are easily reformulated for (continuous) precubical spaces. Indeed, for a cube p, it suffices
to replace each expression of the form dα

λ(p) by an expression of the form p ◦ δα
λ . If P is a cubical path

in a precubical space X, then PFt denotes the corresponding cubical path in the precubical set Ft(X).
Let CP(X)

(
CPp(X)

)
denote the set of all cubical paths (ending with a cube p) in a precubical space X.

A point u in a precubical space X is said to be reachable if there exists a cubical path P ∈ CPp(X) such

that u ∈ p
( ◦
�n

)
and p ∈ Xn.

The following assertion is obvious.
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Assertion 2. Let P = p0p1 . . . pk−1pk be a cubical path in a precubical space X =
(
X, i0, l, ‖·‖

)
L

.
Let

X′ =
(
X ′, i0, l

∣∣
X′

1
,
(
‖ · ‖

)∣∣
X′

)

L
,

where

X ′ =
⊔

x∈X′
n, n≥0

x
( ◦
�n

)
⊆ X

⎛

⎝X ′
n =

⋃

0≤s≤k

(
(ps ◦ Δ) ∩ Xn

)
⎞

⎠

is endowed with the topology of a subset. Then X′, is a precubical space labeled over L.
Moreover, X′ is a precubical subspace of the precubical space X. (We will say that X′ has the form
of the cubical path P in X.)

For a natural N , we put

�N =

{(
{0}, (0), ∅, ‖ · ‖ ≡ 0

)
L

if N = 0,
(
�N , (0, . . . , 0), l, ‖ · ‖

)
L

otherwise.

The topology of the space

�N =
⊔

ΔΓ
Θ∈�N

n , 0≤n≤N

ΔΓ
Θ

( ◦
�n

)
⎛

⎝�N
n =

⋃

(Γ,Θ)∈A(N−n,N)

ΔΓ
Θ

⎞

⎠

is induced by the standard topology of R
N , l is a labeling function satisfying the equality l(x ◦ δ0

λ) =
l(x ◦ δ1

λ) for all 1 ≤ λ ≤ 2 and x ∈ �N
2 , and ‖ · ‖ is a continuous norm on the tangent bundle T�N . Then

�N is a precubical space.

A cubical path P ∈ CPp(�N) is consistent with �N if either N = 0 or the equality

p ◦ ΔΓ
Θ

( ◦
�0

)
= (1, . . . , 1)

holds, where Γ = (1, . . . , 1) and Θ = (1, . . . ,dim p).

A path-object is a precubical space
∼
� having the form of a suitable cubical path P ∈ CP(�N), N ≥

0, that is consistent with �N . Let P≤ denote the full subcategory of path-objects of the category Space≤.

We present a series of obvious facts.

Lemma 6. Let N ≥ 0. Then �N is a �-topological space.

Lemma 7. Let f = 〈f, σ〉 : X → Y be a morphism of the category Space≤. For every cubical path

P = p0

δ
α1
λ1−→ · · ·

δ
αk
λk−→ pk ∈ CP(X), the following assertions hold:

(1) f(P ) = (f ◦ p0)
δ
α1
λ1−→ · · ·

δ
αk
λk−→ (f ◦ pk) ∈ CP(Y);

(2) if P
δ
αk+1
λk+1−−−−→ P ′ in X then f(P )

δ
αk+1
λk+1−−−−→ f(P ′) in Y ;

(3) if P
s←→ P ′ in X then f(P ) s←→ f(P ′) in Y.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 24 No. 1 2014



PRECUBICAL SETS AND SPACES 67

3.4. Connections between P and P≤. We consider several connections between objects of the sub-
categories P and P≤.

Lemma 8. Let
∼
� be an объект of P≤. Then there exists an object

�

� of P such that the mapping

χ∼
�

:
�

� → Ft(
∼
�) is an isomorphism of pSet.

Proof. Let
∼
� have the form of a cubical path

P̃ = p̃0

δ
α1
λ1−−→ p̃1 . . . p̃k−1

δ
αk
λk−−→ p̃k

in the precubical space �N labeled over L. Each cube in �N has the form ΔΓ
Θ, where (Γ,Θ) ∈ A(N).

We may assume that (Γs,Θs) corresponds to p̃s and dim p̃s = ns for 0 ≤ s ≤ k. In �N , we consider
the cubes

ps = DΓs
Θs

(
1
2
, . . . ,

1
2

)
(0 ≤ s ≤ k).

Let
�

� denote the precubical set having the form of the cubical path

P = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk

in the precubical set �N labeled over L.
(
If P̃ is consistent with �N then P is consistent with �N . Hence,

the labeling function l�
N

is completely determined by the cubes ps, i.e., we have l�
N
(ps) = l

∼
�(p̃s) for all

1 ≤ s ≤ k
)
. Thus,

�

� is an object of P.

We construct a mapping χ∼
�

=
〈
χ∼

�
, 1L

〉
:

�

� → Ft(
∼
�) and its inverse χ−1

∼
�

=
〈
χ−1
∼
�

, 1L

〉
. We put

χ∼
�
(
DΓ

Θ(ps)
)

= p̃s ◦ ΔΓ
Θ and χ−1

∼
�

(
p̃s ◦ ΔΓ

Θ

)
= DΓ

Θ(ps)

for all (Γ,Θ) ∈ A(ns) and 0 ≤ s ≤ k. It is clear that these mappings are isomorphisms of pSet.

Lemma 9. Let
−
� be an object of P and let π = 〈π, σ〉 :

−
�→ Ft(X) be a morphism of pSet. Then

there exists an object


� of P≤ such that the mapping ζ−

�
:


� → Tπ,X(

−
�) is an isomorphism

of Space≤.

Proof. Let
−
� have the form of a cubical path

P = p0

d
α1
λ1−→ p1 . . . pk−1

d
αk
λk−→ pk

in the precubical set �N labeled over L. Let ps = DΓs
Θs

(
1
2 , . . . , 1

2

)
for a suitable (Γs,Θs) ∈ A(N) and let

dim ps = ns for 0 ≤ s ≤ k. In �N , we consider the cubes

p̃s = ΔΓs
Θs

(0 ≤ s ≤ k).

We define a structure


� =

(

�, (0, . . . , 0), l



�, ‖ · ‖



�
)

L
, where

•


� =

⊔

x∈


�n, 0≤n≤N

x
( ◦
�n

)
(



�n =

(
⋃

0≤s≤k

p̃s ◦ Δ
)
∩ �N

n

)

;

• l



�(p̃s) = l

−
�(ps) for all 1 ≤ s ≤ k;

SIBERIAN ADVANCES IN MATHEMATICS Vol. 24 No. 1 2014



68 OSHEVSKAYA

• ‖ · ‖


�
u =

∥
∥duζ−

�
(·)

∥
∥Tπ,X(

−
�)

ζ−
�

(u)
, where ζ−

�
(u) = ζ−

�

(
p̃s

(
ΔΓ

Θ(t)
))

=
(
DΓ

Θ(ps), t
)

for some t ∈
◦
�n with

u = p̃s

(
ΔΓ

Θ(t)
)

and all u ∈


�.

Repeating the proof of Assertion 2 (1) and taking into account Lemma 6, we conclude that


� is

a precubical space. Moreover, the cubical path P̃ = p̃0

δ
α1
λ1−→ p̃1 . . . p̃k−1

δ
αk
λk−→ p̃k is consistent with �N

and


� has the form of P̃ in the precubical space �N labeled over L. Notice that the labeling function l�

N

is completely determined by the function l



�. For ‖ · ‖�N

, we may take an arbitrary continuous extension

of ‖ · ‖


� to the tangent bundle T�N . Therefore,



� is an object of the category P≤.

The inverse of the mapping ζ−
�

= 〈ζ−
�
, 1L〉 is defined by the formula

ζ−1
−
�

(
DΓ

Θ(ps), t
)

= p̃s

(
ΔΓ

Θ(t)
)

for all (DΓ
Θ(ps), t) in Tπ,X(

−
�).

It is clear that both mappings are isomorphisms of the category Space≤.

The embedding functors

I : P ↪→ pSet and IT : P≤ ↪→ Space≤

induce the embedding functors

I ↓ Ft ↪→ IdpSet ↓ Ft and IT ↓ Id
Space≤ ↪→

−→
Space

≤.

The following assertion is immediate from Lemmas refTcP-cP and 9.

Proposition 4. 1. We define a mapping G̃ : I ↓ Ft → IT ↓ Id
Space≤ . For objects, put

G̃
(−
�, π,X

)
=

(

�, π̂ ◦ ζ−

�
,X

)
.

For morphisms, put

G̃
(
(m, f) :

( −
�, π,X

)
→

( −
� ′, π′,Y

))
=

(
ζ−
�′

, 1Y

)−1
G(m, f)

(
ζ−
�
, 1X

)
.

Then G̃ is a functor.

2. We define a mapping F̃ : IT ↓ Id
Space≤ → I ↓ Ft. For objects, put

F̃(
∼
�, π,X) = (

�

�,Ft(π) ◦ χ∼
�
,X).

For morphisms, put

F̃
(
(m, f) :

(∼
�, π,X

)
→

(∼
�′, π′,Y

))
=

(
χ∼

�′
, 1Y

)−1F(m, f)
(
χ∼

�
, 1X

)
.

Then F̃ is a functor.

Proposition 5. The functors F̃ and G̃ are adjoint. Moreover, the counit of adjunction ε̃ : F̃G̃ →
IdI↓Ft is the natural isomorphism.
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Proof. Consider an arbitrary object
(−
�, π,X

)
of I ↓Ft. Since the precubical spaces

−∼−
� and

−
�

coincide, the counit of adjunction ε̃ is determined by the equality

ε̃
(
−
�,π,X)

=
(〈

1−
�
, 1L

〉
, 1X

)
:
(−∼−
�,Ft

(
π̂ ◦ ζ−

�

)
◦ χ


�
,X

)
→

( −
�, π,X

)
.

Since

π ◦
〈
1−

�
, 1L

〉
= Ft

(
π̂ ◦ ζ−

�

)
◦ χ


�
◦ 1Ft(X),

the mapping ε̃
(
−
�,π,X)

is a morphism of I ↓ Ft. It is clear that the identity transformation ε̃ is the natural

isomorphism.

Consider an arbitrary object
(∼
�, π,X

)
of IT ↓ Id

Space≤ . Since the precubical spaces
∼
� and

∼−∼
� differ

by their norms only, the unit of adjunction η̃ : IdIT ↓Id
Space≤

→ G̃F̃ is determined by the equality

η̃
(
∼
�,π,X)

=
(〈

η
(
∼
�,π,X)

, 1L

〉
, 1X

)
:
(∼
�, π,X

)
→

(∼−∼
�, ̂Ft(π) ◦ χ∼

�
◦ ζ�

�
,X

)
,

where η̃
(
∼
�,π,X)

(u) = u for all u ∈
∼
�. In view of the equality

̂Ft(π) ◦ χ∼
�
◦ ζ�

�
◦ η̃

(
∼
�,π,X)

= π ◦ 1X,

the mapping
〈
η̃
(
∼
�,π,X)

, 1L

〉
is a morphism of P≤ and the mapping η̃

(
∼
�,π,X)

is a morphism of IT ↓
Id

Space≤ .

3.5. Open morphisms of the category Space≤. We consider the categories Space
≤
L and P

≤
L and

define P
≤
L -open morphisms and the P

≤
L -equvalence between objects of Space

≤
L . We prove a criterion

for a morphism of Space
≤
L to be open. In the proof, we use the following facts about open morphisms.

Proposition 6. 1. A morphism f : X → Y of Space
≤
L is P

≤
L -open if and only if Ft(f) is a PL-

open morphism of pSetL and duf is an isometry for every reachable point u ∈ X.
2. If a morphism f : M → Ft(Y) of pSetL is PL-open then the morphism G(M, f,Y) of Space

≤
L is

P
≤
L -open.

Fig. 9. Diagrams for the morphism Ft(f) of pSetL and the morphism f of Space
≤
L

Proof. We prove the first assertion.
(⇒) Assume that the left-hand diagram in Fig. 9 commutes, i.e.,

(
m,Ft(f)

)
:
( −

�, π,Ft(X)
)
→

( −
� ′, π′,Ft(Y)

)

is a morphism of (I ↓ IdpSet)L. In (I ↓ Ft)L, this morphism assumes the form

(m, f) :
( −

�, π,X
)
→

( −
� ′, π′,Y

)
.
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By Assertion 4, the formula

G̃(m, f) =
(
ζ−1
−
�′

m̄ζ−
�
, f
)

defines a morphism of
(
IT ↓ Id

Space≤
)
L

. Since f is a P
≤
L -open morphism of Space

≤
L , we conclude that

G̃(m, f) =
(
1


�′
, f
)(

ζ−1
−
�′

m̄ζ−
�
, 1X

)
,

see Remark 3. By Assertion 5, the counit of adjunction ε̃ : F̃G̃ → IdI↓Ft is the natural isomorphism;
moreover, this is the identity mapping in view of the construction. We conclude that

(m, f) = F̃G̃(m, f) = F̃
(
1


�′
, f
)
F̃
(
ζ−1
−
�′

m̄ζ−
�
, 1X

)

=
(
1−∼−�′

, f
)(

χ−1


�′

F
(
ζ−1
−
�′

m̄ζ−
�

)
χ


�
, 1X

)

=
(
1∼

�′
, f
)(

m, 1X

)

in the category (I ↓ Ft)L. Thus, in
(
I ↓ IdpSet

)
L

, we have

(
m,Ft(f)

)
=

(
1∼

�′
,Ft(f)

)(
m, 1Ft(X)

)
,

i.e., Ft(f) is a PL-open morphism.

If u ∈ X is a reachable point then u = r(v) for a suitable morphism r = 〈r, 1L〉 :


�′ → X from

the right-hand diagram in Fig. 9 and a suitable point v ∈


�′. Then, for every vector u̇ ∈ TuX, there

exists a vector v̇ ∈ Tv



�′ such that u̇ = dvr(v̇). Therefore, we have

‖u̇‖X
u =

∥
∥dvr(v̇)

∥
∥X

r(v)
≤

∥
∥v̇

∥
∥


�′

v

=
∥
∥∥dv

(
π̂′ ◦ ζ−

�′

)
(v̇)

∥
∥∥

Y

bπ′ (ζ−
�′

(v) )

=
∥
∥dv(f ◦ r)(v̇)

∥
∥Y

f(r(v)) ≤
∥
∥dvr(v̇)

∥
∥X

r(v)
= ‖u̇‖X

u .

Thus, duf is an isometry.

(⇐) The proof is similar to the reasoning above. Existence of the unit of adjunction

η̃ : IdIT ↓Id
Space≤

→ G̃F̃

is used in the proof.

The proof of the second assertion is similar to the reasoning above. We use the facts that the counit
of adjunction

ε : FG → IdIdpSet↓Ft

is the natural isomorphism (see Assertion 3) and the unit of adjunction

η̃ : IdIT ↓Id
Space≤

→ G̃F̃

exists.

The following theorem provides us with a criterion for a morphism of Space
≤
L to be P

≤
L -open.
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Theorem 3. A morphism

f = 〈f, 1L〉 : X → Y

of the category Space
≤
L is P

≤
L -open if and only if, for every cubical path P ∈ CP(X), the following

conditions hold:

(1) if f(P )
δα
λ−→ Q′ in Y then P

δα
λ−→ P ′ in X and f(P ′) = Q′ ;

(2) if f(P ) s←→ Q′ in Y then P
s←→ P ′ in X and f(P ′) = Q′ ;

(3) duf is an isometry for every reachable point u ∈ X.

The proof is immediate from Theorem 1 and Assertion 6 (1). �

3.6. thhp-Bisimulation on precubical spaces. We introduce an analog of the notion of an hhp-
bisimulation for precubical spaces. Using the notion of the P-equivalence, we characterize the arising
equivalence.

We introduce the notion of a thhp-bisimulation.

Definition 8. Let X and Y be precubical spaces labeled over a set L. Cubical paths P = p0 . . . pk

in X and Q = q0 . . . qk in Y are said to be isometric if, for every s with 1 ≤ s ≤ k, we have
∥∥dtps(ṫ)

∥∥X

ps(t)
=

∥∥dtqs(ṫ)
∥∥Y

qs(t)

for all ṫ ∈ Tt

( ◦
�ns

)
and t ∈

( ◦
�ns

)
, where ns = dim ps.

A binary relation R between cubical paths in X and Y is called a thhp-bisimulation between X
and Y if, for every pair (P,Q) ∈ R, the cubical paths P and Q are dl-connected and isometric and
the following conditions hold:

(1) if P
δα
λ−→ P ′ in X then Q

δα
λ−→ Q′ in Y and (P ′, Q′) ∈ R;

(2) if Q
δα
λ−→ Q′ in Y then P

δα
λ−→ P ′ in X and (P ′, Q′) ∈ R;

(3) if P ′ δα
λ−→ P in X then Q′ δα

λ−→ Q in Y and (P ′, Q′) ∈ R;

(4) if Q′ δα
λ−→ Q in Y then P ′ δα

λ−→ P in X and (P ′, Q′) ∈ R;

(5) if P
s←→ P ′ in X then Q

s←→ Q′ in Y and (P ′, Q′) ∈ R;

(6) if Q
s←→ Q′ in Y then P

s←→ P ′ in X and (P ′, Q′) ∈ R.

We say that precubical spaces X and Y are thhp-bisimilar if there exists a thhp-bisimulation
between them such that the initial points (regarded as cubical paths) are related.

It is clear that the relation “to be thhp-bisimilar” is an equivalence relation. We show how to
construct a thhp-bisimulation from an hhp-bisimulation.

Lemma 10. A relation R is a thhp-bisimulation between precubical spaces X and Y if and only
if the relation

RFt =
{
(PFt, QFt)

∣∣ (P,Q) ∈ R
}

is an hhp-bisimulation between the precubical sets Ft(X) and Ft(Y) and, for each pair (P,Q) ∈
R, the cubical paths P and Q are isometric.

The proof is obvious. �
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Example 5. Let X be the precubical space depicted in the left-hand picture of Fig. 3. We have

X =
(
X = x1(�2) ∪ x2(�2) ∪ p5(�1) ∪ p6(�1) ∪ p7(�1) ∪ p8(�1), iX0 , lX, ‖ · ‖X

)

L
.

This precubical space is labeled over the set L = {a, b, c} of actions. The space X is generated by the 2-
cubes

x1(t1, t2) = (−t1, t2), x2(t1, t2) = (t1, t2)
(
(t1, t2) ∈ �2

)

and the 1-cubes
p5(t) = (−1, 1 + t), p7(t) = (−1 − t, 2),

p6(t) = (1, 1 + t), p8(t) = (1 + t, 2) (t ∈ �1)

and is endowed with the topology of a subspace of R
2. The initial point is iX0 = s0 = (0, 0). The labeling

function lX is determined by the equalities

lX2 (x1) = a, lX1 (x1) = b, lX2 (x2) = a,

lX(p5) = lX(p6) = lX(p7) = lX(p8) = c.

The norm ‖ · ‖X
u , u ∈ X, is induced by the Euclidean norm on R

2. For every ε with 1 ≤ ε ≤ 2, let Yε

denote the precubical space

Yε =
(
Yε = y(�2) ∪ q3(�1) ∪ q4(�1) ∪ q5(�1) ∪ q6(�1), iYε

0 , lYε , ‖ · ‖Yε

)

L

depicted in the right-hand picture of Fig. 3. The space Yε is generated by the 2-cube

y(t1, t2) = (t1, εt2)
(
(t1, t2) ∈ �2

)

and the 1-cubes
q3(t) = (1, ε + t), q4(t) = (1 + t, 1 + ε),

q5(t) = (1 + t, ε), q6(t) = (2, ε + t) (t ∈ �1)

and is endowed with the topology of a subspace of R
2. The initial point is iYε

0 = r0 = (0, 0). The labeling
function lYε is determined by the equalities

lYε
2 (y) = a, lYε

1 (y) = b,

lYε(q3) = lYε(q4) = lYε(q5) = lYε(q6) = c.

The norm ‖ · ‖Yε
v , v ∈ Yε, is induced by the Euclidean norm on R

2.
It is easy to see that the precubical spaces X and Y1 are thhp-bisimilar. Indeed, consider the rela-

tion R̂ with R̂Ft = R, where R is the hhp-bisimulation from Example 3. By the definition of the norm
‖ · ‖Y1 , the cubical paths related by R̂ are isometric. By Lemma 10, we conclude that R̂ is a thhp-
bisimulation.

We show that, for 1 < ε ≤ 2, the precubical spaces X and Yε are not thhp-bisimilar. Assume that
there exists a thhp-bisimulation R̃ between X and Yε relating their initial points. Consider the cubical
path P = s0px1 in X. There exists a cubical path Q in Yε such that (P,Q) ∈ R̃. Since P and Q are dl-
connected, we find that Q is of the form r0qy. However, the cubical paths P and Q are not isometric
because

∥∥dtp(ṫ)
∥∥

p(t)
= ‖ṫ‖t �= ε‖ṫ‖t =

∥∥dtq(ṫ)
∥∥

q(t)
if 1 < ε ≤ 2.

In conclusion, we formulate an analog of Theorem 2 for precubical spaces.

Theorem 4. Let X and Y be precubical spaces labeled over the same set L of actions. Then
the following conditions are equivalent:

(1) X and Y are thhp-bisimilar;

(2) X are Y are P
≤
L -equivalent.
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Proof. (2 ⇒ 1) Assume that X and Y are P
≤
L -equivalent. Then there exists a span X fX←− Z fY−→

Y, where Z is an object of Space
≤
L and fX = 〈fX , 1L〉 and fY = 〈fY , 1L〉 are P

≤
L -open morphisms

of Space
≤
L . It is immediate from Definition 7, Theorem 3, and Lemma 7 that the relation

R =
{(

fX(P ), fY (P )
) ∣
∣ P ∈ CP(M)

}

is a thhp-bisimulation between X and Y relating their initial points.
(1 ⇒ 2) Assume that X and Y are precubical spaces labeled over a set L of actions and R is a thhp-

bisimulation between X and Y relating their initial points. We present a span X fX←− Z fY−→ Y, where Z
is an object of Space

≤
L and fX = 〈fX , 1L〉 and fY = 〈fY , 1L〉 are P

≤
L -open morphisms of Space

≤
L . By

Lemma 10, we find that RFt is an hhp-bisimulation between the precubical sets Ft(X) and Ft(Y)
relating their initial points. Following the arguments from the proof of Theorem 2, we find a span

Ft(X)
pr1←− M

pr2−→ Ft(Y),

where M =
〈
Ft(X),Ft(Y)

〉
is an object of pSetL and pr1 = 〈pr1, 1L〉 and pr2 = 〈pr2, 1L〉 are PL-open

morphisms of pSetL. By Assertion 6 (2), the mappings

G(M,pr1,X) : Tpr1,X(M) → X and G(M,pr2,Y) : Tpr2,Y(M) → Y

are P
≤
L -open morphisms of Space

≤
L .

We show that Tpr1,X(M) = Tpr2,Y(M). It suffices to prove that the norms ‖ · ‖1 and ‖ · ‖2 of these
precubical spaces coincide. Let Z be the common topological space of the precubical spaces Tpr1,X(M)
and Tpr2,Y(M). By Theorem 3, the PL-open morphisms G(M,pr1,X) and G(M,pr2,Y) are isometric.
The cubical paths P and Q are isometric too. By the construction of M, for all points

w =
(
〈PFt, QFt〉, t

)
∈ Z

(
P ∈ CPpk

(X), Q ∈ CPqk
(Y), dim pk = dim qk = n, (P,Q) ∈ R, t ∈

◦
�n

)

and all vectors ṫ ∈ TwZ, we have

‖ṫ‖1
w =

∥∥dwp̂r1(ṫ)
∥∥X

bpr1(w)
=

∥∥dtpk(ṫ)
∥∥X

pk(t)

=
∥∥dtqk(ṫ)

∥∥Y

qk(t)
=

∥∥dwp̂r2(ṫ)
∥∥Y

bpr2(w)
= ‖ṫ‖2

w.

Remark 6. Notice that the results of the article remain valid if we replace the category Space≤ by
either the category Space or the category Space= whose objects are precubical spaces and morphisms
are mappings from Definition 7, where the first components are isometries.
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8. E. Goubault and T. P. Jensen, “Homology of higher-dimensional automata,” in CONCUR ’92, Lecture Notes

in Comput. Sci. 630 (Springer, Berlin, 1992), pp. 254–268.
9. M. Grandis, “Directed combinatorial homology and noncommutative tori (the breaking of symmetries in

algebraic topology),” Math. Proc. Cambridge Phil. Soc. 138 (2), 233–262 (2005).
10. T. Hune and M. Nielsen, “Timed bisimulation and open maps,” in Mathematical Foundations of Computer

Science (Brno, 1998), Lecture Notes in Comput. Sci. 1450 (Springer, Berlin, 1998), pp. 378–387.
11. A. Joyal, M. Nielsen, and G. Winskel, “Bisimulation from open maps,” Inform. and Comput. 127 (2), 164–

185 (1996).
12. A. A. Khusainov, “Homology groups of semicubical sets,” Siberian Math. J. 49 (1), 180–190, (2008) [Sibirsk.

Mat. Zh. 49 (1), 224–237 (2008)].
13. M. Nielsen and A. Cheng, “Observing behavior categorically,” Foundations of Software Technology and

Theoretical Computer Science (Bangalore, 1995), Lecture Notes in Comput. Sci. 1026 (Springer, Berlin,
1995), pp. 263–278.

14. M. Nielsen and G. Winskel, “Petri nets and bisimulation,” Theoret. Comput. Sci. 153 (1–2), 211–
244 (1996).

15. E. Oshevskaya, I. Virbitskaite, and E. Best, “Unifying equivalences for higher dimensional automata,”
Fundam. Inform. 119 (3–4), 357–372 (2012).

16. V. R. Pratt, “Modeling Concurrency with Geometry,” in Proc. 18th ACM Symposium on Principles of
Programming Languages (ACM Press, New York, 1991), pp. 311–322.

17. G. L. Cattani and V. Sassone, “Higher-dimensional transition systems,” in 11th Annual IEEE Symposium
on Logic in Computer Science (New Brunswick, NJ, 1996), (IEEE Computer Society Press, Los Alamitos,
CA, 1996), pp. 55-62.

18. I. B. Virbitskaite and N. S. Gribovskaya, “Open maps and observational equivalences for timed partial order
models,” Fundam. Inform. 60 (1–4), 383–399 (2004).

SIBERIAN ADVANCES IN MATHEMATICS Vol. 24 No. 1 2014


