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Abstract. The paper is devoted to the inverse problem of reconstruction, up to a nat-
ural gauge transform, of a smooth simply connected Riemannian surface with nonempty
boundary from its Steklov spectrum. We demonstrate that the problem has two other
equivalent forms: (1) the problem of recovering a positive function on the unit circle from
the eigenvalue spectrum of some operator and (2) the problem of recovering an immer-
sion of the unit disk to the Euclidean plane from the corresponding Steklov spectrum.
The latter problem is a natural generalization of the classical problem of recovering a
planar domain from its Steklov spectrum. We also give qualitative statements on the
Steklov spectrum for two classes of Riemannian surfaces.

1. Introduction

We start with posing the problem in an arbitrary dimension, although the two-
dimensional case is discussed only in the main part of the paper.
Throughout the paper, the term “smooth” is used as a synonym of “C1-smooth”.

Let (M, g) be a compact connected smooth Riemannian manifold of dimension n with the
nonempty boundary @M . The Laplace – Beltrami operator is defined in local coordinates
by

�g = (detg)
�1/2

n
X

i,j=1

@

@xi

✓

(det g)1/2gij
@

@xj

◆

,

where (gij) = (gij)�1 and det g = det(gij). The Dirichlet-to-Neumann operator (the DN
map)

⇤g : C
1(@M)! C1(@M)

is defined by ⇤gf =
@u
@⌫

�

�

@M
, where ⌫ is the unit outward normal to the boundary and u is

the solution to the Dirichlet problem
⇢

�gu = 0
u|@M = f .

As well known, ⇤g is a non-negative self-dual pseudodi↵erential operator of order 1. There-
fore it has a discrete eigenvalue spectrum

S(M,⇤g) = {0 = �0 < �1  �
2

 · · ·  �k !1},
each eigenvalue is repeated according to its multiplicity, which is called the Steklov spec-
trum of (M, g). Steklov [14] introduced the spectrum in the case when M is a domain in
Rn and g is the Euclidean metric.
For isoperimetric inequalities on the Steklov eigenvalues and for bounds on their

multiplicities we refer the reader to the recent papers [2, 4, 6, 8] and references therein.
The inverse problem for the Steklov spectrum is posed as follows:
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“Inverse Problems”. The second author is grateful to both the institutes for the support and hospitality.
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Problem 1.1. To which extent is a compact connected Riemannian manifold (M, g) with
a nonempty boundary determined by the Steklov spectrum S(M,⇤g)?

Isometric Riemannian manifolds have coincident Steklov spectra. This is the first
obvious ambiguity in Problem 1.1: one has to recover a Riemannian manifold up to an
isometry.
Let us use the term “a Riemannian surface” for a two-dimensional Riemannian man-

ifold. The Laplace – Beltrami operator on a Riemannian surface (M, g) possesses the
following conformal invariance: �⇢2g = ⇢�2�g for any function 0 < ⇢ 2 C1(M). This
implies ⇤⇢2g = ⇤g if ⇢|@M = 1. In particular, S(M,⇤⇢2g) = S(M,⇤g) for every function
0 < ⇢ 2 C1(M) satisfying ⇢|@M = 1.
In the present paper, we study Problem 1.1 for a compact connected and simply

connected Riemannian surface (M, g) with a nonempty boundary. Such a surface is dif-
feomorphic to the disc

D = {(x, y) | x2 + y2  1} ⇢ R2 = C.
Without loss of generality, we can assume M = D. For a Riemannian metric g on D, we
abbreviate the notation S(D,⇤g) to S(⇤g), where ⇤g is the pseudodi↵erential operator
on the unit circle

� = @D = {ei✓ | ✓ 2 R}. (1.1)

Given a Riemannian metric g on D and di↵eomorphism � : D ! D, the metric g0 = �⇤g
is defined by g0p(v, w) = g�(p)((dp�)v, (dp�)w) for a point p 2 D and vectors v and w
belonging to the tangent space TpD, where dp� : TpD ! T�(p)D is the di↵erential of �.
The statement “the metrics g and g0 on D are isometric” is equivalent to the statement
“there exists a di↵eomorphism � : D ! D such that g0 = �⇤g”.
We suggest that two mentioned ambiguities, the isometry invariance and conformal

invariance, exhaust the non-uniqueness in Problem 1.1 for simply connected Riemannian
surfaces. In other words, we have the following

Conjecture 1.2. Two Riemannian metrics gj (j = 1, 2) on D satisfy

S(⇤g1) = S(⇤g2) (1.2)

if and only if there exist a di↵eomorphism � : D ! D and function 0 < ⇢ 2 C1(D) such
that ⇢|� = 1 and

g
2

= ⇢2�⇤g
1

. (1.3)

The question becomes much easier if the isospectral hypothesis (1.2) is replaced by
the assumption on intertwining the operators ⇤g1 and ⇤g2 . Let us recall the definition.
For a manifold N , two linear operators Aj : C1(N) ! C1(N) (j = 1, 2) are inter-

twined if there exists a di↵eomorphism ' : N ! N such that A
2

= '⇤ � A
1

� '⇤�1, where
'⇤ : C1(N)! C1(N) is defined by '⇤f = f � '.
Theorem 1.3. For two Riemannian metrics gj (j = 1, 2) on D, the operators ⇤g1 and
⇤g2 are intertwined if and only if there exist a di↵eomorphism � : D ! D and function
0 < ⇢ 2 C1(D) such that ⇢|� = 1 and g2 = ⇢2�⇤g1.
If two linear operators are intertwined, they are isospectral. Is the converse statement

true for some classes of operators? To authors’ knowledge, the question is open even in the
one-dimensional case. Nevertheless, by virtue of Theorem 1.3, Conjecture 1.2 is equivalent
to the statement: For two Riemannian metrics gj (j = 1, 2) on D, the operators ⇤g1 and
⇤g2 are intertwined if S(⇤g1) = S(⇤g2).
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The paper is organized as follows. In Section 2, after recalling some known facts on
the Dirichlet-to-Neumann operator, we prove Theorem 1.3.
In Section 3, we demonstrate that Conjecture 1.2 has an equivalent form in terms

of the problem of recovering a positive function a on the unit circle from the eigenvalue
spectrum of the operator a�1⇤e, where e is the Euclidean metric. We prove an analogous
of Theorem 1.3 for the latter problem.
In Section 4, we consider the problem of recovering an immersion I : D ! R2 from

the Steklov spectrum S(I⇤e). In the particular case of an embedding I, this is equivalent
to the classical problem [3] of recovering a planar domain ⌦ = I(D) from the Steklov
spectrum S(⌦,⇤e). We again give an equivalent version of Conjecture 1.2 in terms of
immersions and prove an analogous of Theorem 1.3.
In Section 5, we recall qualitative properties of the Steklov spectrum and describe the

eigenvalue spectrum of a�1m ⇤e for functions am of the form am(e
i✓) = b

0

+2b
1

cos(m✓). Our
main results are Theorem 5.3 and Corollary 5.4 that describe the eigenvalue spectrum for
the functions a

2

.
In Section 6, we interpret the eigenvalue problem for the operator a�1⇤e as a scalar

Riemann – Hilbert problem in order to prove Theorem 5.3.
The appendix contains proofs of Theorems 5.1 and 5.2 and of Lemma 6.2.

2. The problem of determining a metric on the disc

A Riemannian metric g on the disc D induces the metric g@ on the circle � = @D. The
latter metric can be written in the form g@ = ds2g, where dsg is a smooth one-form on �
which does not vanish at any point. The form is uniquely determined if it is assumed to be
a positive form, i.e., dsg = c(✓) d✓, where 0 < c 2 C1(�) and the cyclic coordinate ✓ on �
is defined by (1.1). We call dsg the arc-length form of the metric g. If, for a di↵eomorphism
� : D ! D, we set ' = �|� : � ! �, then ds

�

⇤g = ±'⇤(dsg), where the sign (+) should
be chosen if � preserves orientation, and (�) otherwise.
As mentioned in the Introduction, ⇤⇢2g = ⇤g for 0 < ⇢ 2 C1(D) if ⇢|� = 1. We will

need the following generalization.

Lemma 2.1. Given a Riemannian metric g on D and function 0 < ⇢ 2 C1(D), let
a = ⇢|� 2 C1(�). Then

⇤⇢2g = a
�1⇤g (2.1)

and

ds⇢2g = a dsg. (2.2)

In particular,

⇤⇢2g = ⇤g and ds⇢2g = dsg for 0 < ⇢ 2 C1(D), ⇢|� = 1.
Proof. Given f 2 C1(�), let u 2 C1(D) be the solution to the Dirichlet problem

�gu = 0 in D, u|� = f.
It also solves the problem

�⇢2gu = 0 in D, u|� = f.
Therefore

⇤gf =
@u

@⌫

�

�

�

�

�

, ⇤⇢2gf =
@u

@⌫ 0

�

�

�

�

�

,
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where ⌫ and ⌫ 0 are unit outward normal vectors to � in metrics g and ⇢2g respectively.
The vectors are related by ⌫ 0 = a�1⌫. Therefore

⇤⇢2gf =
@u

@⌫ 0

�

�

�

�

�

=
@u

@(a�1⌫)

�

�

�

�

�

= a�1
@u

@⌫

�

�

�

�

�

= a�1⇤gf.

Equality (2.2) is obvious. ⇤

Remark. Since we will refer to [13] several times, we emphasize the following di↵er-
ence between our notations and that of [13]. We systematically use the equality g0 = ⇢2g
for conformally equivalent metrics while the formula g0 = ⇢g is used in [13]. In particular,
(2.1) and (2.2) take the form ⇤⇢g =

1p
a
⇤g and ds⇢g =

p
a dsg in notations of [13]. Here,

we use the notation ⇢2g just to avoid the appearance of the square root in (2.1) and (2.2).
The arc-length form dsg is uniquely determined by the DN map ⇤g. This follows from

the statement: the full symbol of the operator ⇤g is equal to |⇠|, where ⇠ is the Fourier-
dual variable of the arc-length sg. The statement is proved in [9] and [3]. Taking this fact
into account, Theorem 1.2 of [13] can be stated as follows:

Proposition 2.2. If ⇤g1 = ⇤g2 for two Riemannian metrics on D, then there exist a
di↵eomorphism � : D ! D and function 0 < ⇢ 2 C1(D) such that �|� = I (= the
identity), ⇢|� = 1, and g2 = ⇢2�⇤g1.
Proposition 2.2 di↵ers from [13, Theorem 2.1] by the absence of the hypothesis dsg1 =

dsg2 . But the latter equality follows from ⇤g1 = ⇤g2 as we have just mentioned.

Proof of Theorem 1.3. If ⇢|� = 1, then (1.3) implies
⇤g2 = ⇤�⇤g1 = '

⇤ � ⇤g1 � '⇤�1

for ' = �|�.
Conversely, let two metrics gj (j = 1, 2) on D satisfy

⇤g2 = '
⇤ � ⇤g1 � '⇤�1 (2.3)

for some di↵eomorphism ' : � ! �. Extend ' to a di↵eomorphism � : D ! D and set
eg
2

= �⇤g
1

. (2.4)

Then

⇤eg2 = '
⇤ � ⇤g1 � '⇤�1. (2.5)

Comparing (2.3) and (2.5), we have

⇤eg2 = ⇤g2 .

By Proposition 2.2, there exist a di↵eomorphism  : D ! D and function 0 < ⇢ 2 C1(D)
such that ⇢|� = 1 and

g
2

= ⇢2 ⇤eg
2

. (2.6)

From (2.4) and (2.6),

g
2

= ⇢2 ⇤�⇤g
1

= ⇢2(� � )⇤g
1

.

⇤
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3. The problem of determining a positive function on the circle

For a smooth map ' : � ! �, the derivative d'
d✓
2 C1(�) is defined by '⇤(d✓) = d'

d✓
d✓,

where ✓ is the cyclic coordinate defined by (1.1).
Let e be the Euclidean metric on R2. The following proposition is an extended version

of [13, Theorem 1.3].

Proposition 3.1. Given a Riemannian metric g on D, there exist an orientation pre-
serving di↵eomorphism � : D ! D and two positive functions ⇢, µ 2 C1(D) satisfying

⇢|� = 1, �e(lnµ) = 0

such that

(a) �⇤g = ⇢2µ2e.
(b) There exists a smooth immersion I : D ! R2 such that I⇤e = e⇢2g, where e⇢ =

(⇢���1)�1. In particular, h = e⇢2g is a flat metric, i.e., its Gaussian curvature is identically
equal to zero.

(c) If ' = �|� and a = µ|�, then
'⇤ � ⇤g � '⇤�1 = a�1⇤e (3.1)

and

'⇤(dsg) = a d✓. (3.2)

Only statement (c) is explicitly formulated in [13, Theorem 1.3] although statements
(a) and (b) also participate in the proof. Let us briefly recall our arguments for the proof.

Sketch of the proof of Proposition 3.1. Given a Riemannian metric g on D, we can find a
function 0 < e⇢ 2 C1(D) such that e⇢|� = 1 and h = e⇢2g is a flat metric, see [13, Lemma
2.1]. Extend h to a flat metric on the open disc D" = {(x, y) | x2 + y2 < 1 + "} for some
" > 0 and denote the extension by h again. The flat metric h is locally isometric to the
Euclidean metric e, i.e., for every point p 2 D", there exist a neighborhood U ⇢ D" and
orientation preserving isometric embedding (U, h)! (R2, e) which is defined uniquely up
to the composition of a rotation and parallel translation. Continuing such embeddings
along curves and using the monodromy principle, we obtain an immersion I : D ! R2
such that I⇤e = h. This proves statement (b).
The flat metric h determines the complex structure Ch on D", see [13, Lemma 2.5]. We

consider D as a closed domain in the complex manifold (D", Ch). On the other hand, D is
a closed domain in (C, Ce), where Ce is the standard complex structure. By the Riemann
theorem on the existence of a conformal map between two simply connected domains,
there exists a biholomorphism of closed domains � : (D, Ce|intD) ! (D, Ch|intD). By
statement (iii) of [13, Lemma 2.5], �⇤h = µ2e for some function 0 < µ 2 C1(D) such
that lnµ is an e-harmonic function.
From equalities h = e⇢2g and �⇤h = µ2e, we derive

⇢2µ2e = ⇢2�⇤h = ⇢2�⇤(e⇢2g) = ⇢2(e⇢ � �)2�⇤g = �⇤g
if ⇢ = (e⇢ � �)�1. This proves statement (a).
Set ' = �|�. Repeating the arguments from the beginning of [13, Section 3], we prove

that
'⇤ � ⇤h � '⇤�1 = a�1⇤e, (3.3)

where the function a 2 C1(�) is defined by
'⇤(dsh) = a d✓. (3.4)
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Equalities h = e⇢2g and e⇢|� = 1 imply that ⇤g = ⇤h and dsg = dsh. Together with (3.3)
and (3.4), this gives (3.1) and (3.2). Finally, statement (a) together with the boundary
condition ⇢|� = 1 implies '⇤(dsg) = µ|� d✓. Comparing the last equality with (3.2), we
obtain a = µ|�. ⇤

Statement (c) of Proposition 3.1 relates the inverse problem of recovering a metric on
D to the problem of finding a positive function a 2 C1(�) from the eigenvalue spectrum
S(a�1⇤e) of the operator a�1⇤e.
Statement (b) of Proposition 3.1 has an important corollary. Choosing a biholomor-

phism of (D, Ch|intD) onto the upper half-plane, we can repeat all arguments from the
proof of [3, Theorem 1] to obtain the following:

Proposition 3.2. For a Riemannian metric g on D, let L be the length of � in g and let

S(⇤g) = {0 = �0 < �1  �
2

 · · ·  �k  . . . }
be the Steklov spectrum. Then

�k =
2⇡

L

hk + 1

2

i

+O(k�N) as k !1
for every N > 0, where [x] is the integer part of x. In particular, L is uniquely determined
by S(⇤g).

The same statement is valid for the asymptotics of the spectrum S(a�1⇤e), where
the constant L is defined by L =

R

2⇡

0

a(✓) d✓.

Lemma 3.3. Let � : D ! D be a smooth map such that �(�) ⇢ � and �|
intD : intD ! C

is either a holomorphic or antiholomorphic function. Set ' = �|� : � ! �. Assume the
derivative d'/d✓ does not vanish at any point. Then

⇤e � '⇤ =
�

�

�

�

d'

d✓

�

�

�

�

'⇤ � ⇤e. (3.5)

If two functions 0 < aj 2 C1(�) (j = 1, 2) are related by the equation

a
2

=

�

�

�

�

d'

d✓

�

�

�

�

a
1

� ', (3.6)

then

(a�1
2

⇤e) � '⇤ = '⇤ � (a�1
1

⇤e) (3.7)

and

S(a�1
1

⇤e) ⇢ S(a�1
2

⇤e). (3.8)

Proof. Let, for definiteness, �|intD be a holomorphic function. Given a function f 2
C1(�), let u 2 C1(D) be the solution to the Dirichlet problem

�eu = 0 in D, u|� = f.
The function eu = u � � solves the problem

�eeu = 0 in D, eu|� = '⇤f.
Therefore

⇤ef =
@u

@⌫

�

�

�

�

�

, ⇤e('
⇤f) =

@eu

@⌫

�

�

�

�

�

. (3.9)
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We are going to relate the right-hand sides of (3.9). For z 2 �, let ⌫z be the unit
outward vector normal to � at the point z. Then

@eu

@⌫
(z) = (dz(u � �))⌫z = (d'(z)u � dz�)⌫z. (3.10)

The di↵erential
dz� : TzD = C! C = T�(z)D

is just the multiplication by �0(z). In particular, the di↵erential commutes with the mul-
tiplication by the imaginary unit. Since �(�) ⇢ � and the vector i⌫z is tangent to �, the
vector i(dz�)⌫z is also tangent to �. This implies

(dz�)⌫z = |�0(z)| ⌫�(z) =
�

�

�

�

d'

d✓
(z)

�

�

�

�

⌫'(z).

With the help of this, formula (3.10) becomes

@eu

@⌫
(z) =

�

�

�

�

d'

d✓
(z)

�

�

�

�

(d'(z)u)⌫'(z) =

�

�

�

�

d'

d✓
(z)

�

�

�

�

@u

@⌫
('(z)).

Comparing this with (3.9), we obtain

(⇤e � '⇤)f =
⇣

�

�

�

�

d'

d✓

�

�

�

�

'⇤ � ⇤e
⌘

f.

This proves (3.5).
Let two functions 0 < aj 2 C1(�) (j = 1, 2) satisfy (3.6). Multiply (3.5) by a�1

2

from
the left

(a�1
2

⇤e) � '⇤ = a�1
2

�

�

�

�

d'

d✓

�

�

�

�

'⇤ � (a
1

a�1
1

⇤e) = a
�1
2

�

�

�

�

d'

d✓

�

�

�

�

(a
1

� ')'⇤ � (a�1
1

⇤e) = '
⇤ � (a�1

1

⇤e).

This proves (3.7). Inclusion (3.8) obviously follows from (3.7). ⇤
Definition 3.4. Two functions 0 < aj 2 C1(�) (j = 1, 2) are said to be e-conformally
equivalent if there exists an e-conformal (or e-anticonformal) transformation � : D ! D
such that (3.6) holds for ' = �|�.
Theorem 3.5. Two functions 0 < aj 2 C1(�) (j = 1, 2) are e-conformally equivalent if
and only if the operators a�1

1

⇤e and a
�1
2

⇤e are intertwined.

Proof. The “only if” statement follows from Lemma 3.3. Indeed, in our case '⇤ is invertible
and (3.7) can be written as

a�1
2

⇤e = '
⇤ � a�1

1

⇤e � '⇤�1,
i.e., ' intertwines a�1

1

⇤e and a
�1
2

⇤e.
Conversely, let two functions 0 < aj 2 C1(�) (j = 1, 2) be such that the operators

a�1
1

⇤e and a
�1
2

⇤e are intertwined, i.e.,

a�1
2

⇤e =  
⇤ � a�1

1

⇤e �  ⇤�1 (3.11)

for some di↵eomorphism  : � ! �. For each j = 1, 2, we extend aj to a function
0 < ⇢j 2 C1(D),

⇢j|� = aj
and define the metric gj on D by

gj = ⇢
2

je. (3.12)

Hence,
dsj = aj d✓. (3.13)
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By Lemma 2.1,

⇤gj = a
�1
j ⇤e. (3.14)

From (3.11) and (3.14),

⇤g2 =  
⇤ � ⇤g1 �  ⇤�1. (3.15)

By Theorem 1.3, (3.15) implies the existence of a di↵eomorphism � : D ! D and of
a function 0 < ⇢ 2 C1(D) such that ⇢|� = 1 and

g
2

= ⇢2�⇤g
1

. (3.16)

Hence

dsg2 = ±'⇤(dsg1), where ' = �|�. (3.17)

From (3.12) and (3.16),

⇢2
2

e = g
2

= ⇢2�⇤g
1

= ⇢2�⇤(⇢2
1

e) = ⇢2(⇢
1

� �)2�⇤e,
i.e.,

�⇤e =

✓

⇢
2

⇢(⇢
1

� �)
◆

2

e.

This means that � is an e-conformal (or e-anticonformal) transformation of the disc D.
Using (3.13) and (3.17), we obtain

a
2

d✓ = dsg2 = ±'⇤(dsg1) = ±'⇤(a1 d✓) = (a1 � ')
�

�

�

�

d'

d✓

�

�

�

�

d✓,

i.e.,

a
2

= (a
1

� ')
�

�

�

�

d'

d✓

�

�

�

�

. (3.18)

Since � is an e-conformal (or e-anticonformal) transformation and ' = �|�, (3.18) means
the e-conformal equivalence of a

1

and a
2

. ⇤
Conjecture 1.2 has the following form in terms of e-conformally equivalent functions.

Conjecture 3.6. For two functions 0 < aj 2 C1(�) (j = 1, 2), the equality
S(a�1

1

⇤e) = S(a
�1
2

⇤e)

holds if and only if these functions are e-conformally equivalent.

A wrong version of the conjecture was supposed in [13, Problem 3.2].

Proof of the equivalence of Conjectures 1.2 and 3.6. First of all, the “if” statement of Con-
jecture 3.6 follows from Theorem 3.5 since intertwined operators have coincident spectra.
The implication Conjecture 1.2 �! Conjecture 3.6 is proved by the same arguments we
have used in the proof of Theorem 3.5. The reverse implication is a little bit more tricky.
Let Riemannian metrics gj (j = 1, 2) on D satisfy (1.2). Applying Proposition 3.1 to

each of the metrics, we find an orientation preserving di↵eomorphism �j : D ! D and
positive functions ⇢j, µj 2 C1(D) such that ⇢j|� = 1, �e(lnµj) = 0,

�⇤jgj = ⇢
2

jµ
2

je, (3.19)

and for 'j = �j|�, aj = µj|�,
'⇤j � ⇤gj � '⇤�1j = a�1j ⇤e. (3.20)
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From (1.2) and (3.20), S(a�1
1

⇤e) = S(a
�1
2

⇤e). Assuming Conjecture 3.6 to be true,
we find an e-conformal (or e-anticonformal) transformation � such that

a
2

= (a
1

� ')
�

�

�

�

d'

d✓

�

�

�

�

, where ' = �|�. (3.21)

We remember also that
�⇤e = |�0|2e, (3.22)

where �0 = d�/dz (�0 = d�/dz̄) for the holomorphic (antiholomorphic) function �.
From (3.19) and (3.22), we derive

g
2

= �⇤�1
2

(⇢2
2

µ2
2

e) = �⇤�1
2

(⇢2
2

µ2
2

|�0|�2�⇤e).
Substitute the value e = ⇢�2

1

µ�2
1

�⇤
1

g
1

, that follows from (3.19), into the right-hand side of
the latter formula

g
2

= �⇤�1
2

⇣

⇢2
2

µ2
2

|�0|�2�⇤(⇢�2
1

µ�2
1

�⇤
1

g
1

)
⌘

= �⇤�1
2

⇣

⇢2
2

µ2
2

|�0|�2(⇢
1

� �)�2(µ
1

� �)�2�⇤�⇤
1

g
1

⌘

.

Rewrite this in the form

g
2

= �⇤�1
2

(

✓

⇢
2

⇢
1

� �
◆

2



µ
2

(µ
1

� �)|�0|
�

2

�⇤�⇤
1

g
1

)

. (3.23)

Let us demonstrate that the function in brackets on the right-hand side of (3.23) is
identically unit, i.e.,

µ
2

= (µ
1

� �)|�0|. (3.24)

Indeed, both
lnµ

2

and ln(µ
1

� �) + ln |�0|
are e-harmonic functions in D. Therefore, to prove (3.24), it su�ces to show that this
equality holds on �. But on �, (3.24) coincides with (3.21) since µj|� = aj and |�0|� =
|d'/d✓|.
By (3.24), formula (3.23) simplifies to the following one:

g
2

= �⇤�1
2

(e⇢2�⇤�⇤
1

g
1

) = (e⇢ � ��1
2

)2�⇤�1
2

�⇤�⇤
1

g
1

,

where e⇢ = ⇢
2

/⇢
1

� �. Setting ⇢ = e⇢ � ��1
2

and  = �
1

� � � ��1
2

, we obtain

g
2

= ⇢2 ⇤g
1

, ⇢|� = 1.
⇤

Theorem 3.5 can be generalized. We first generalize Definition 3.4 as follows.

Definition 3.7. Let g be a Riemannian metric on D. Two functions 0 < aj 2 C1(�) (j =
1, 2) are said to be g-conformally equivalent if there exists a g-conformal (or g-anticon-
formal) transformation

� : D ! D, �⇤g = �2g

such that

a
2

= c (a
1

� ')
for ' = �|� and c = �|�.
Theorem 3.8. Let g be a Riemannian metric on D. Two functions 0 < aj 2 C1(�) (j =
1, 2) are g-conformally equivalent if and only if the operators a�1

1

⇤g and a
�1
2

⇤g are inter-
twined.
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Proof. The proof of the “if” statement repeats, with obvious changes, the corresponding
part of the proof of Theorem 3.5. So, we present the proof of the statement “only if”.
Assume functions 0 < aj 2 C1(�) to be such that the operators a�1

1

⇤g and a
�1
2

⇤g are
intertwined. On using Proposition 3.1, we find an orientation preserving di↵eomorphism
� : D ! D and two functions 0 < ⇢, µ 2 C1(D) such that

�⇤g = ⇢2µ2e, ⇢|� = 1, �e(lnµ) = 0 (3.25)

and
'⇤ � ⇤g � '⇤�1 = a�1⇤e (3.26)

for a = µ|� and ' = �|�.
We set

bj = a (aj � ') (j = 1, 2). (3.27)

From this, we derive with the help of (3.26)

b�1j ⇤e = (aj � ')�1a�1⇤e = (aj � ')�1'⇤ � ⇤g � '⇤�1 = '⇤ � a�1j ⇤g � '⇤�1.
This means that the operators b�1j ⇤e and a

�1
j ⇤g are intertwined. Since a

�1
1

⇤g and a
�1
2

⇤g
are assumed to be intertwined, we conclude: b�1

1

⇤e and b
�1
2

⇤e are intertwined.
By Theorem 3.5, b

1

and b
2

are e-conformally equivalent, i.e., there exists an e-
conformal (or e-anticonformal)  : D ! D such that

b
2

=

�

�

�

�

d 

d✓

�

�

�

�

b
1

�  for  =  |�. (3.28)

From (3.27) and (3.28), we find the relationship between a
1

and a
2

a
2

� ' = a�1b
2

= a�1
�

�

�

�

d 

d✓

�

�

�

�

b
1

�  = a�1
�

�

�

�

d 

d✓

�

�

�

�

(a a
1

� ') �  = a�1
�

�

�

�

d 

d✓

�

�

�

�

(a �  )(a
1

� ' �  ),
i.e.,

a
2

=
a �  � '�1
a � '�1

�

�

�

�

d 

d✓
� '�1

�

�

�

�

(a
1

� ' �  � '�1).
Introducing the notations

e = � � � ��1, e = e |�,
we write the result as

a
2

=
a �  � '�1
a � '�1

�

�

�

�

d 

d✓
� '�1

�

�

�

�

(a
1

� e ). (3.29)

Let us demonstrate that e is a g-conformal (or g-anticonformal) transformation.
Indeed, by twice usage of (3.25), we deduce

e ⇤g = �⇤�1 ⇤�⇤g = �⇤�1 ⇤(⇢2µ2e)

= (⇢ � � ��1)2(µ � � ��1)2�⇤�1 ⇤e
= (⇢ � � ��1)2(µ � � ��1)2�⇤�1(| 0|2e)
= (⇢ � � ��1)2(µ � � ��1)2| 0 � ��1|2�⇤�1e
= (⇢ � � ��1)2(µ � � ��1)2| 0 � ��1|2�⇤�1(⇢�2µ�2�⇤g)

=
⇣⇢ � � ��1

⇢ � ��1
⌘

2

⇣µ � � ��1
µ � ��1

⌘

2| 0 � ��1|2g.
We write the result in the form

e ⇤g = e�2g, (3.30)
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where

e� =
⇢ � � ��1
⇢ � ��1

µ � � ��1
µ � ��1 | 

0 � ��1|.

In particular, (3.30) means that e is a g-conformal (or g-anticonformal) transformation.
Restricting the last formula to � and using ⇢|� = 1, µ|� = a, and  0|� = d /d✓, we get

e�|� = a �  � '
�1

a � '�1
�

�

�

�

d 

d✓
� '�1

�

�

�

�

.

With the help of this, formula (3.29) takes the form

a
2

= e�|�(a1 � e ). (3.31)

Formulas (3.30) and (3.31) mean that a
1

and a
2

are g-conformally equivalent. ⇤
Finally, Conjecture 3.6 is equivalent to the following more general statement. The

equivalence is proved by the same arguments as we have used in the proof of Theorem
3.8.

Conjecture 3.9. Let g be a Riemannian metric on D. For two functions 0 < aj 2 C1(�),
the equality

S(a�1
1

⇤g) = S(a
�1
2

⇤g)

holds if and only if these functions are g-conformally equivalent.

4. The problem of recovering a planar domain

Let ⌦ ⇢ R2 be a simply connected domain bounded by a smooth closed curve. How far
is such a domain determined by the Steklov spectrum S(⌦,⇤e), where e is the Euclidean
metric? The problem was considered in [3]. We are going to generalize the problem a little
bit by involving multisheet domains. A typical example of such a domain is shown on the
picture.

Figure 1

How can one define rigorously a (smooth simply connected) multisheet domain? One
of possible definitions is as follows: this is a domain di↵eomorphic to the disc D and
situated on the Riemann surface of a multivalued analytic function. However, the following
definition is more appropriate for our purposes.

Definition 4.1. Let I be the set of all smooth immersions I : D ! R2. Introduce the
equivalence relation on I as follows: I

1

⇠ I
2

if there exists a di↵eomorphism � : D ! D
such that I

2

= I
1

��. Elements of the factor-set I/⇠ are called (smooth, closed, bounded,
simply connected) multisheet domains in R2.
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At first sight, the definition can seem too complicated. Nevertheless, in our opinion,
every reasonable definition of a multisheet domain should be equivalent to this one. In
particular, if an immersion I : D ! R2 is injective, then its equivalence class is uniquely
determined by the image ⌦ = I(D).
The natural conjecture is that a smooth bounded simply connected domain ⌦ ⇢ R2 is

determined by the Steklov spectrum S(⌦,⇤e) uniquely up to an isometry. For multisheet
domains, the conjecture sounds as follows:

Conjecture 4.2. For two smooth immersions Ij : D ! R2 (j = 1, 2), the equality
S(⇤I⇤1e) = S(⇤I⇤2e) (4.1)

holds if and only if there exist a di↵eomorphism � : D ! D and isometry I : (R2, e) !
(R2, e) such that

I
2

= I � I
1

� �. (4.2)

We are going to demonstrate the conjecture is equivalent to our previous Conjectures
1.2 and 3.6. But first we will prove the following:

Theorem 4.3. For two smooth immersions Ij : D ! R2 (j = 1, 2), the operators ⇤I⇤1e
and ⇤I⇤2e are intertwined if and only if there exist a di↵eomorphism � : D ! D and
isometry I : (R2, e)! (R2, e) such that I

2

= I � I
1

� �.
Proof. The “if” statement is obvious. Indeed, since I⇤e = e, (4.2) implies I⇤

2

e = �⇤(I⇤
1

e)
and the operators ⇤I⇤1e and ⇤I⇤2e are intertwined by ' = �|�.
Now, we prove the statement “only if”. Let the operators ⇤I⇤1e and ⇤I⇤2e be intertwined.

By Theorem 1.3, there exist a di↵eomorphism � : D ! D and function 0 < ⇢ 2 C1(D)
such that

I⇤
2

e = ⇢2�⇤I⇤
1

e, ⇢|� = 1.
We rewrite this in the form

h
2

= ⇢2h
1

, where h
1

= �⇤I⇤
1

e, h
2

= I⇤
2

e.

Both h
1

and h
2

are flat metrics. For flat metrics, equality h
2

= ⇢2h
1

holds if and only if
�h1(ln ⇢) = 0. Together with the boundary condition ⇢|� = 1, this gives ⇢ ⌘ 1. Thus,

I⇤
2

e = (I
1

� �)⇤e. (4.3)

Two immersions eI
1

= I
1

� � and I
2

satisfy eI⇤
1

e = I⇤
2

e if and only if I
2

= I � eI
1

for
some isometry I : (R2, e)! (R2, e). Therefore (4.3) implies (4.2). ⇤
Proof of the equivalence of Conjectures 1.2 and 4.2. The implication Conjecture 1.2 �!
Conjecture 4.2 is proved by the same arguments as we have used in the proof of Theorem
4.3. Let us prove the reverse implication.
Assume metrics gj (j = 1, 2) on D to satisfy (1.2). By Proposition 3.1, there exist a

function 0 < ⇢j 2 C1(D), ⇢j|� = 1, and immersion Ij : D ! R2 such that
hj = ⇢

2

jgj = I
⇤
je.

Hence,
S(⇤I⇤j e) = S(⇤gj).

Together with (1.2), this gives (4.1). Assuming Conjecture 4.2 to be true, we obtain (4.2).
From (4.2),

h
2

= I⇤
2

e = (I � I
1

� �)⇤e = �⇤I⇤
1

I⇤e = �⇤I⇤
1

e = �⇤h
1

,

i.e.,
h
2

= �⇤h
1

.
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Now,

g
2

= ⇢�2
2

h
2

= ⇢�2
2

�⇤h
1

= ⇢�2
2

�⇤(⇢2
1

g
1

) =
⇣⇢
1

� �
⇢
2

⌘

2

�⇤g
1

.

Setting ⇢ = ⇢
1

� �/⇢
2

, we have

g
2

= ⇢2�⇤g
1

, ⇢|� = 1.
This is the statement of Conjecture 1.2. ⇤
The following statement was proved by Weinstock [16]:
If S(⌦,⇤e) = {0 = �

0

< �
1

 . . . } is the Steklov spectrum of a smooth bounded
simply connected domain ⌦ ⇢ R2 and L is the length of @⌦, then

�
1

 2⇡
L

(4.4)

and the equality holds if and only if ⌦ is a disc.
Weinstock’s proof works for multisheet domains as well and the statement can be

presented in the form:

Proposition 4.4. For a smooth immersion I : D ! R2, let S(⇤I⇤e) = {0 = �
0

< �
1


. . . } be the Steklov spectrum of the metric I⇤e and L be the length of � in the metric.
Then (4.4) is valid. The equality in (4.4) holds if and only if there exist a di↵eomorphism

� : D ! D and isometry I : (R2, e)! (R2, e) such that I = I �IL��, where IL(z) = L
2⇡
z.

On using the equivalence of Conjecture 4.2 to Conjectures 1.2 and 3.6, the latter
statement can be transformed to two other forms.

Proposition 4.5. For a function 0 < a 2 C1(�), let S(a�1⇤e) = {0 = �
0

< �
1

 . . . }
and L =

R

2⇡

0

a(✓) d✓. Then (4.4) is valid. The equality in (4.4) holds if and only if the
function a is e-conformally equivalent to the constant L/2⇡.

Proposition 4.6. For a Riemannian metric g on D, let S(⇤g) = {0 = �
0

< �
1

 . . . }
be the Steklov spectrum and L be the length of � in the metric g. Then (4.4) is valid. The
equality in (4.4) holds if and only if there exist a di↵eomorphism � : D ! D and function
0 < ⇢ 2 C1(D) such that ⇢|� = 1 and g = ( L

2⇡
⇢)2�⇤e.

5. Two classes of Riemannian metrics

In the rest of the text we use the following notations. L2(�) is the space of square
integrable complex functions on � with the norm and scalar product defined by

hf, gi = 1
2⇡

Z

2⇡

0

f(ei✓)ḡ(ei✓) d✓, kfk2 = hf, fi.
For f 2 L2(�), we denote by fn the n-th Fourier coe�cient,

fn =
1

2⇡

Z

2⇡

0

f(ei✓)e�in✓d✓.

For 1  m 2 N, we denote by Hm(�) the Hilbert space
Hm(�) =

n

f 2 L2(�) |
X

n2Z
|n|2m|fn|2 <1

o

endowed with the scalar product defined by

hf, giHm =
X

n2Z
(1 + n2)mfnḡn for f, g 2 Hm(�).
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Then ⇤e(ein✓) = |n|ein✓ for n 2 Z, and S(⇤e) = N where 0 is a simple eigenvalue while
others eigenvalues are double. We will denote by en the function en(ei✓) = ein✓ for n 2 Z.
5.1. General statements on the eigenvalue spectrum. Given a function 0 < a 2
C1(�), observe that a�1⇤e = a�

1
2 (a�

1
2⇤ea�

1
2 )a

1
2 , where a�

1
2⇤ea�

1
2 : H1(�) ! L2(�) is a

positive self-adjoint operator, i.e., ha� 12⇤ea� 12u, ui � 0 for u 2 H1(�). Then S(a�1⇤e) =
S(a�

1
2⇤ea�

1
2 ) consists of an increasing sequence of eigenvalues �n (n = 0, 1, 2, . . . ) counted

with multiplicities, where �
0

= 0 is a simple eigenvalue and every �n is of a finite mul-
tiplicity. The multiplicity of �

1

is not greater than 2, see [6, 8]. The fact that �
0

= 0 is
simple follows from the equality ⇤e1 = 0 and ka�1⇤euk � k⇤euk

max a
� ku�u0k

max a
for u 2 H1(�).

Every eigenspace ker(a�1⇤e��n) consists of smooth functions and can be spanned by
real-valued functions. Indeed, if u 2 C1(�) is an eigenvector for a�1⇤e, then the complex
conjugate function ū is also an eigenvector, and a�1⇤e(<u) = �<u and a�1⇤e(=u) = �=u.
The spectrum of a�1⇤e is generically simple (see [1, 15]) which means, in particular,

that there exists a dense subset S of {0 < a 2 C1(�)} endowed with its usual topology
such that all eigenvalues of a�1⇤e are simple for any a 2 S.
We will now describe the eigenvalue spectrum of a�1⇤e for two classes of functions

a, first when a(ei✓) = a
0

+ 2a
1

cos ✓ for (a
0

, a
1

) 2 R2, 0 < 2|a
1

| < a
0

, and then when
a(ei✓)�1 = b

0

+ 2b
1

cos(m✓) for (b
0

, b
1

,m) 2 R2 ⇥ N, 0 < 2|b
1

| < b
0

and m � 2.
When a(ei✓)�1 = b

0

+2b
1

cos ✓ for (b
0

, b
1

) 2 R2, 0 < 2|b
1

| < b
0

, then a is e-conformally
equivalent to the constant-valued function a

0

:

a
0

�

�

�

�

d'

d✓

�

�

�

�

= a, (5.1)

where '(ei✓) = exp
⇣

ia�1
0

R ✓

0

a(eis)ds
⌘

= z�r
1�rz

�

�

z=ei✓
and r 2 (�1, 1) is a root of the

polynomial b
1

X2 + b
0

X + b
1

(see also [12, Remark 3]). Hence in that case S(a�1⇤e) =
S(a�1

0

N) = a�1
0

N, where 0 is a simple eigenvalue and all others are double eigenvalues.

5.2. Simple eigenvalues. First we exhibit an example of a class of functions a that
belongs to S defined above. We have the following result.
Theorem 5.1. All eigenvalues of a�1⇤e are simple when a(ei✓) = a0 + 2a1 cos ✓ for
(a
0

, a
1

) 2 R2, 0 < 2|a
1

| < a
0

.

The proof of Theorem 5.1 is given in the appendix. It is based on the following
reformulation of the eigenvalue problem for the operator a�1⇤e. For � 2 (0,+1) and
u 2 C1(�), the equation ⇤eu = �au holds if and only if the Fourier coe�cients (un)n2Z
of the functions u satisfy the following linear second order recurrence with non-constant
coe�cients

�a
1

un+1 + (
|n|
�
� a

0

)un � a1un�1 = 0 for n 2 Z.
We introduce some notations before studying the second class of functions a. Given

0 < a 2 C1(�) and 2  m 2 N, define the holomorphic function �(z) = zm on intD and
set ' = �|�. Then |�0|

�

�

�
= m and Lemma 3.3 implies

(a � ')�1⇤e'⇤f = m'⇤
�

a�1⇤ef
�

for f 2 C1(�). (5.2)

Let tm(a) denote a � '. For j = 0, . . . ,m � 1, we denote by Vj,m (resp. Ṽj,m) the closure
in H1(�) (resp. L2(�)) of the vector space spanned by the vectors ej+km (k 2 Z). For
j = 1, . . . , [m

2

], we denote by Wj,m (resp. W̃j,m) the vector space Vj,m
L

Vm�j,m (resp.
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Ṽj,m
L

Ṽm�j,m). Note that Wj,m is invariant under the complex conjugation. If m is even,
then Wm

2 ,m
= Vm

2 ,m
.

Given a bounded linear operator B : H1(�) ! L2(�), we denote by B|Vj,m (resp.
B|Wj,m) the restriction of B to Vj,m (resp. Wj,m) for every 0  j  m�1. The operator ⇤e
maps Vj,m to Ṽj,m and the multiplication operators tm(a)�

1
2 and tm(a)

1
2 map Vj,m to Vj,m.

Therefore ⇤e|Vj,m , tm(a)�
1
2⇤etm(a)�

1
2 |Vj,m , and tm(a)�1⇤e|Vj,m define unbounded operators

in Ṽj,m where their domain is Vj,m. The same statement is valid when Vj,m and Ṽj,m are
replaced by Wj,m and W̃j,m respectively. We also have

S((tm(a))
�1⇤e) =

m�1
[

j=0

S((tm(a))
�1⇤e|Vj,m)

= S((tm(a))
�1⇤e|V0,m)

[

m
2 ]
[

j=1

S((tm(a))
�1⇤e|Wj,m).

The following statement is proved along the same lines as Theorem 5.1. The proof is
presented in the appendix.

Theorem 5.2. Given integers m � 2 and 1  j  m� 1, let a(ei✓) := (b
0

+ 2b
1

cos ✓)�1

for some (b
0

, b
1

) 2 R2 satisfying b
0

> 2|b
1

| > 0. All eigenvalues of (tm(a))�1⇤e|Vj,m are
simple.

On using the invariance of tm(a)�1⇤e with respect to the complex conjugation, we
obtain the corollary: in notations of Theorem 5.2, positive eigenvalues of the opera-
tor (tm(a))�1⇤e|Wj,m (1  j < m/2) are double, and these eigenvalues of the operator
(tm(a))�1⇤e are at least double.

5.3. Double eigenvalues.

Theorem 5.3. For (b
0

, b
1

) 2 R2 satisfying b
0

> 2|b
1

| > 0, let a(ei✓) := (b
0

+ 2b
1

cos ✓)�1.
Then

(1) S((tm(a))�1⇤e|V0,m) = ma�10 N for every integer m � 2.
(2) For integers m � 2 and k > 0, mka�1

0

is a double eigenvalue of the operator

(tm(a))�1⇤e.

The first statement of the theorem follows immediately from (5.2) and (5.1). The
second statement will be proved in Section 6.2. The proof is based on the reformulation
of the eigenvalue problem for the operator (tm(a))�1⇤e as a scalar Riemann – Hilbert
problem, see Section 6.
In the case of m = 2, we have the following more precise statement:

Corollary 5.4. In notations of Theorem 5.3,

S((t
2

(a))�1⇤e) =
1
[

k=1

{�k,�,�k,+}
[

(2a�1
0

N).

For k > 0, 2ka�1
0

is a double eigenvalue while �k,� and �k,+ are simple eigenvalues of the
operator (t

2

(a))�1⇤e. The following inequalities hold

(2k � 2)a�1
0

< �k,� < �k,+ < 2ka
�1
0

for k > 0. (5.3)
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Corollary 5.4 follows from Theorems 5.2 and 5.3 taking into account the continuity
of eigenvalues with respect to a continuous perturbation of (t

2

(a))�1⇤e, see [7]. More
precisely, let a(", ei✓) = a

0

p

b2
0

� 4"2b2
1

(b
0

+2"b
1

cos(2✓))�1 for " 2 (0, 1]. Then a
0

(", .) = a
0

and eigenvalues of (a(", .)�1⇤e)|V1,2 are simple by Theorem 5.2. Let {�±,",k | k 2 N} be the
set of positive eigenvalues of the latter operator ordered so that ��,",k < �+,",k < ��,",k+1.
Then, by continuity of eigenvalues with respect to ", we have �±,",k ! (2k + 1)a�1

0

as
"! 0+. With the help of Theorem 5.3, this implies (5.3).
Quite similarly, for an integer m � 3, we can prove: mka�1

0

is a double eigenvalue of
the operator (tm(a))�1⇤e for every 0 < k 2 N and

S((tm(a))
�1⇤e) \ (ma�1

0

N) =
1
[

k=1

2m
[

j=1

{�k,j}, where ma�1
0

(k � 1) < �k,j < ma�1
0

k.

We also mention a possible direction for a generalization of Corollary 5.4 at the end
of Section 6.3.

To authors’ knowledge, no bounded simply connected domain is known with a Steklov
eigenvalue of multiplicity greater than 2.

5.4. The Hilbert transform and an integral equation. Observe that (see for exam-
ple [11])

⇤e =

r

� d
2

d✓2
= H � d

d✓
=
d

d✓
�H,

where H is the Hilbert transform on L2(�) defined by

(Hu)(ei✓) = i�1
X

n2Z, n6=0
sgn(n)une

in✓ = (2⇡)�1p.v.

Z

2⇡

0

1 + cos(✓ � t)
sin(✓ � t) u(e

it) dt. (5.4)

In particular, H(�✓)(eit) =
1

⇡
(� ln) ���sin � ✓�t

2

�|/| sin � t
2

�

�

�

�

for (t, ✓) 2 R ⇥ (0, 2⇡), where
�✓(eit) = 1 for t 2 (0, ✓) and �✓(eit) = 0 for t 2 [✓, 2⇡]. Hence the eigenvalue problem for
a�1⇤e can be transformed into an integral equation as follows:

�

a�1⇤eu = �u
�, u(ei✓) = u(1) + �

⇡

Z

2⇡

0

(� ln)
 

�

�

�

�

�

sin
�

✓�t
2

�

sin
�

t
2

�

�

�

�

�

�

!

a(eit)u(eit) dt

for u 2 C1(�) and � 2 (0,+1). We do not use the integral equation in the rest of the text.
However, the Fredholm determinant of the square of the self-adjoint compact operator in
L2([0, 2⇡]) with the nonnegative integral kernel a1/2(ei✓)

�� ln � ���sin � ✓�t
2

�

�

�

�

a1/2(eit) may
be of some interest for the Steklov inverse spectral problem.
It is also of some interest to mention that the Steklov eigenvalues asymptotics pre-

sented in Proposition 3.2 can be derived from Proposition 3.1 on using the following fact:
the commutator [H, b] = Hb� bH is a smoothing operator for any b 2 C1(�). Indeed, as
follows from (5.4), the kernel of [H, b] is the smooth function K on � ⇥ � defined by

K(ei✓, eit) = (2⇡)�1 cot �✓ � t
2

�

(b(eit)� b(ei✓)) for (✓, t) 2 [0, 2⇡]⇥ [0, 2⇡].
Hence

(a�1/2⇤ea
�1/2)2 = �

⇣

a�1/2
d

d✓
a�1
d

d✓
a�1/2

⌘

+ a�1/2
d

d✓
[H, a�1]⇤ea

�1/2 (5.5)

and a�1/2 d
d✓
[H, a�1]⇤ea�1/2 is a smoothing operator.
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Using (5.5) and the min-max principle, one obtains the following asymptotics for
eigenvalues and eigenvectors of a�1/2⇤ea�1/2. Define

v±,n(e
i✓) =

⇣a(ei✓)

a
0

⌘

1/2

exp

✓

±i


n+ 1

2

�

Z ✓

0

a(eis)

a
0

ds

◆

and let (un)n2N be an orthonormal basis of L2(S1) such that a�1/2⇤ea�1/2un = �nun. Then

�n = a
�1
0



n+ 1

2

�

+O(n�N) as n! +1,
un � hun, v+,niv+,n � hun, v�,niv�,n = O(n�N) as n! +1

for every N > 0. The multiplicity of the eigenvalue �n is at most 2 for n large enough,
see [8, Proposition 1.4.2].
In the case of a

0

= 1, the operator a�1/2⇤ea�1/2�h⇤⇤e(h�1)⇤ is a smoothing operator,
where the di↵eomorphism h : � ! � is defined by h(ei✓) = exp

⇣

i
R ✓

0

a(eis) ds
⌘

, see [3].

In the next section, we relate the eigenvalue problem for a�1⇤e to a scalar Riemann –
Hilbert problem. The relationship will be used in our proof of Theorem 5.3, but it is also
of some independent interest. We also refer the reader to [10, pp. 182] for a connection
between Fredholm operators and Riemann – Hilbert problems.

6. A scalar Riemann – Hilbert problem

6.1. Preliminaries. In this paragraph we obtain equivalent formulations of the eigen-
value problem for a�1⇤e as a scalar Riemann-Hilbert problem.
Let H(O) be the space of holomorphic functions on an open set O ⇢ C. Given

u 2 C1(�), define the functions u
+

2 H(intD)\C1(D) and u� 2 H(C\D)\C1(C\intD)
by u

+

(z) = u
0

/2 +
P

+1
n=1 unz

n and u�(z) = u0/2 +
P

+1
n=1 u�nz

�n respectively. Then, for
z = ei✓, u(z) = u

+

(z) + u�(z) and

⇤eu(z) = z
d(u

+

� u�)
dz

(z) = i�1
du
+

d✓
(ei✓)� i�1du�

d✓
(ei✓). (6.1)

If u is a real function, then un = ū�n and u�(z) = u+(z̄�1).
On using (6.1) and the complex conjugation invariance of a�1⇤e, we obtain for a real

valued function u 2 C1(�) and � 2 R
�

⇤eu = �au
�,

✓

<
✓

z
du
+

dz
(z)� �a(z)u

+

(z)

◆

= 0 for z 2 �
◆

. (6.2)

Remark 6.1. Statement (6.2) can be written in two other equivalent forms. First, for a
complex function u 2 C1(�),
�

⇤eu = �au
�,

✓

z
du
+

dz
(z)� �a(z)u

+

(z) = z
du�
dz
(z) + �a(z)u�(z) for z 2 �

◆

.

Second, given a complex function u 2 C1(�), let v± be the 2⇡-periodic and bounded
function on the closed half-plane {x+iy | ±y � 0} defined by v±(z) = u0/2+

P

+1
n=1 u±ne

inz
.

Then

�

⇤eu = �au
�,

✓

dv
+

dx
(x)� i�a(x)v

+

(x) =
dv�
dx
(x) + i�a(x)v�(x) for x 2 R

◆

.
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6.2. The case of a rational function a. We are going to reformulate (6.2) when a is
a rational function of z 2 �. We will need the following
Lemma 6.2. Let f 2 H(intD) \ C(D) and n > 0. Then <(f(z)/zn) = 0 for all z 2 �
if and only if there exists a sequence (↵

0

, . . . ,↵n) 2 R ⇥ Cn such that f(z) = i↵0zn +
Pn
j=1(↵jz

n+j � ↵̄jzn�j) for z 2 D.
For the sake of consistency, the proof of Lemma 6.2 is postponed to the appendix.
Let (⇣

1

, . . . , ⇣M) and (⌘1, . . . , ⌘N) be two sequences of points from intD\{0} such that
⇣j 6= ⌘l for all j and l. Define functions p and q on C\{0} by
p(z) = c

1

z�M⇧Mj=1(z � ⇣j)(z � ⇣̄j�1), q(z) = c2z�N⇧Nj=1(z � ⌘j)(z � ⌘̄j�1), (6.3)

where the constants ck 6= 0 (k = 1, 2) are such that c̄1 = c1⇧Mj=1(⇣j/⇣̄j) and c̄2 =
c
2

⇧Nj=1(⌘j/⌘̄j). Then p(z̄
�1) = p(z) and q(z̄�1) = q(z) for z 2 C\{0}. The functions p

and q are real-valued on � and do not vanish at any point of �. Next, set

a(z) =
p(z)

q(z)
for z 2 C\(Z [ {0}), (6.4)

where Z is the set of zeros of q. For so chosen a, (6.2) takes the form

�

⇤eu = �au
�,

✓

<
✓

zq(z)
d

dz
u
+

(z)� �p(z)u
+

(z)

◆

= 0 for z 2 �
◆

.

With the help of Lemma 6.2, this implies the statement: � is an eigenvalue of a�1⇤e if and
only if there exist a function u

+

2 H(intD)\C1(D) and sequence (↵
0

, . . . ,↵s) 2 R⇥Cs
such that

zq(z)
du
+

dz
(z)� �p(z)u

+

(z) = i↵
0

+
s
X

j=1

(↵jz
j � ↵̄jz�j) for z 2 D\{0}, (6.5)

where s = max(M,N � 1). This is a linear first order di↵erential equation with rational
coe�cients and rational right-hand side. Therefore the solution u

+

admits a holomorphic
continuation to C\Z�, where Z� denotes the set of zeros of q which are outside D. If
u
+

2 H(C\Z�) solves equation (6.5) and c is a real constant, then u++ ic solves a similar
equation that di↵ers from (6.5) by values of parameters (↵

0

, . . . ,↵s) 2 R⇥Cs only. Since
the integral p

0

= (2⇡�1)
R

2⇡

0

p(ei✓) d✓ is real and nonzero, we can choose the constant c
such that ↵

0

= 0 in the corresponding equation. We have thus proved

Lemma 6.3. Let the function a 2 C1(�) be defined by (6.3) and (6.4). A real func-
tion u 2 C1(�) is an eigenvector of a�1⇤e with eigenvalue � if and only if there exists
(↵
1

, . . . ,↵s) 2 Cs such that

zq(z)
du
+

dz
(z)� �p(z)u

+

(z) =
s
X

j=1

(↵jz
j � ↵̄jz�j) for z 2 C\

�

Z� [ {0}
�

, (6.6)

where s = max(M,N � 1) and Z� is the set of zeros of q which are outside D.
Remark 6.4. If N = 0, then q is a nonzero constant function, Z� = ;, and u+ in (6.6)
is an entire function. If s = 0, then the right-hand side of (6.6) is zero.
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6.3. Proof of Theorem 5.3. Let a(ei✓) = (b
0

+ 2b
1

cos(m✓))�1 for some (b
0

, b
1

) 2 R2
satisfying b

0

> 2|b
1

| > 0 and m 2 N. We can set b
0

= 1 and replace b
1

by some b 2 (0, 1
2

)
without loss of generality. Then a admits a holomorphic continuation given by

a(z) =
zm

b+ zm + bz2m
for z 2 C\Zm, (6.7)

where Zm := {!ei 2j⇡m , !̄�1ei 2j⇡m | 1  j  m} and ! is a root in D of the polynomial
b+Xm + bX2m.
Formula (6.7) is the partial case of (6.4) for p(z) = 1 and q(z) = bz�m+1+ bzm. We

denote by Zm,� the set {!̄�1ei 2j⇡m | 1  j  m}. Lemma 6.3 implies: a real u 2 C1(�)
satisfies a�1⇤eu = �u if and only if there exists (↵1, . . . ,↵m�1) 2 Cm�1 such that

(b+ zm + bz2m)
du
+

dz
(z)� �zm�1u

+

(z) =
m�1
X

l=1

(↵lz
m�1+l � ↵̄lzm�1�l) for z 2 C\Zm,�.

(6.8)

Remark 6.5. Since Wj,m (1  j < m/2) is spanned by e±j+nm for n 2 Z, we obtain: if
� is an eigenvalue for a�1⇤e|Wj,m, we can set ↵l = 0 for l 62 {j,m� j} on the right-hand
side of (6.8). If � is an eigenvalue for a�1⇤e|Wm/2,m and m is even, we can set ↵l = 0 for
l 6= m/2 on the right-hand side of (6.8).
Let r 2 (�1, 0) be a root of the polynomial b + X + bX2 (we recall that a�1

0

=
(1 � 4b2)1/2). When m = 1 and � = ka�1

0

for some positive integer k, equation (6.8)

becomes du
+

(z)/dz � k�a
0

b(z � r)(z � r�1)��1u
+

(z) = 0 or

1

i

d

d✓
u
+

(ei✓)� k

a
0

(1 + 2b cos ✓)
u
+

(ei✓) = 0.

Integrating the equation and using
�

a
0

b(z � r)(z � r�1)��1 = (z � r)�1 � (z � r�1)�1, we
obtain

u
+

(z) = C

✓

z � r
1� rz

◆k

for z 6= r�1, u
+

(ei✓) = C exp
⇣ ik

a
0

Z ✓

0

ds

1 + 2b cos s

⌘

with a complex constant C. This implies for u being a real eigenfunction of a�1⇤e|V0,m
related to mka�1

0

u
+

(z) = C

✓

zm � r
zm � r�1

◆k

for z 2 C\Zm,�. (6.9)

Given (↵
1

, . . . ,↵m�1) 2 Cm�1, let us consider the first order di↵erential equation

(b+ zm + bz2m)
dv
+

dz
(z)� kma�1

0

zm�1v
+

(z) =
m�1
X

j=1

(↵jz
m�1+j � ↵̄jzm�1�j), z 2 C\Zm,�.

(6.10)
We are going to prove that the existence of a holomorphic solution v

+

on C\Zm,� implies
that ↵l = 0 (1  l  m � 1). Together with (6.9), this will give us the statement of
Theorem 5.3.
Assume the existence of a solution v

+

2 H(C\Zm,�) to equation (6.10). We use the
variation of constants. Define the function C by

C(z) = u
+

(z)�1v
+

(z) =

✓

zm � r�1
zm � r

◆k

v
+

(z) for z 2 C\Zm, (6.11)
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where u
+

(z) =
�

zm�r
zm�r�1

�k
. The function C is holomorphic on C\Zm. Hence using (6.10)

and (6.11) we obtain

(b+ zm + bz2m)u
+

(z)
d

dz
C(z) =

m�1
X

j=1

(↵jz
m�1+j � ↵̄jzm�1�j) for z 2 C\Zm. (6.12)

We set

R(z) =
d

dz
C(z) = b�1

(zm � r�1)k�1
(zm � r)k+1

m�1
X

j=1

(↵jz
m�1+j � ↵̄jzm�1�j) for z 2 C\Zm. (6.13)

As follows from (6.13), there exists a constant � such that |R(z)|  �|z|�2 for z 2 C,
|z| � 2(�r)1/m.
Since the rational function R is the complex derivative of a holomorphic function on

C\Zm, the residue of R at each point of Zm is equal to zero. Therefore R integrates to
zero over the curve �l : R ! C (0  l  m � 1) defined by �l(t) = �tei 2⇡lm for t  0 and
�l(t) = te

i2⇡(l+1)
m for t > 0:

Z

+1

0

R
�

tei
2⇡l
m

�

dt� ei 2⇡m
Z

+1

0

R
�

tei
2⇡(l+1)
m

�

dt = 0. (6.14)

We remind that �r > 0 and zm� r 6= 0 for any point z of �l. As is seen from (6.13), R is
integrable on �l and ⇢

R

2⇡

0

R(⇢ei✓)d✓ = O(⇢�1) as ⇢! +1.
Using (6.12) and (6.14), we obtain the following linear system of equation on (↵

1

, . . . ,
↵m�1):

m�1
X

j=1

⇣

↵je
i
2⇡l(j�1)
m (1� ei 2⇡jm )Im�1+j(�r)� ↵̄jei

2⇡l(�j�1)
m (1� e�i 2⇡jm )Im�1�j(�r)

⌘

= 0 (6.15)

for 0  l  m� 1, where

Il0(�) =

Z

+1

0

(�tm + 1)k�1

(tm + �)k+1
tl
0
dt for (�, l0) 2 (0, 1)⇥ N, 0  l0  2m� 2. (6.16)

From (6.15) we obtain

m�1
X

j=1

(�l(j�1) � �lj) (↵jIm�1+j(�r)� ↵̄m�jIj�1(�r)) = 0 for 0  l  m� 1,

where � = ei
2⇡
m . Since the Van der Monde matrix (�j(l�1))

1jm,1lm is invertible, we
obtain ↵jIm�1+j(�r)� ↵̄m�jIj�1(�r) = 0 for j = 1 . . .m� 1. In other words,

↵j
�

Im�1+j(�r)I2m�j�1(�r)� Ij�1(�r)Im�j�1(�r)
�

= 0 for 1  j  m� 1. (6.17)

We use the following

Lemma 6.6. For (�, l) 2 (0, 1) ⇥ N satisfying 1  l  m � 1, the inequalities 0 <
I
2m�l�1(�) < Il�1(�) hold.

By Lemma 6.6, Im�1+j(�r)I2m�j�1(�r)�Ij�1(�r)Im�j�1(�r) < 0 for 1  j  m�1.
Therefore (6.17) implies ↵j = 0 for j = 1 . . .m � 1. This finishes the proof of Theorem
5.3. ⇤
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Proof of Lemma 6.6. Given � 2 (0, 1) and l 2 N satisfying 1  l  m � 1, we set
↵ = l/m 2 (0, 1). We change the integration variable s = tm on (6.16) to obtain

I
2m�l�1(�) =

1

m

Z

+1

0

(�s+ 1)k�1

(s+ �)k+1
s1�↵ ds, Il�1(�) =

1

m

Z

+1

0

(�s+ 1)k�1

(s+ �)k+1
s↵�1 ds.

The integration variable change s := s�1 gives

Z

+1

1

(�s+ 1)k�1

(s+ �)k+1
s1�↵ ds =

Z

1

0

(� + s)k�1

(1 + �s)k+1
s↵�1 ds.

Therefore

I
2m�l�1(�) =

1

m

Z

1

0

✓

(�s+ 1)k�1

(s+ �)k+1
s1�↵ +

(� + s)k�1

(1 + �s)k+1
s↵�1

◆

ds,

Il�1(�) =
1

m

Z

1

0

✓

(�s+ 1)k�1

(s+ �)k+1
s↵�1 +

(� + s)k�1

(1 + �s)k+1
s1�↵

◆

ds.

Two last formulas imply

m(Il�1(�)� I2m�l�1(�)) =
Z

1

0

s↵�1(1� s2(1�↵))
✓

(�s+ 1)k�1

(s+ �)k+1
� (� + s)

k�1

(1 + �s)k+1

◆

ds. (6.18)

Then note that

(�s+ 1)k�1

(s+ �)k+1
>
(� + s)k�1

(1 + �s)k+1
and (1� s2(1�↵)) > 0 for s 2 (0, 1) since ↵ 2 (0, 1).

Thus the integrand on the right-hand side of (6.18) is positive and the inequality Il�1(�)�
I
2m�l�1(�) > 0 holds. ⇤

We indicate a possible direction for a generalization of Corollary 5.4. Let (�, u) 2
(0,+1) ⇥ C1(�) and 1  j  [m/2] so that u 2 Wj,m. Hence u0 = 0 and u+(0) = 0,
where u

+

is defined at the beginning of Section 6. Assume � 62 ma�1
0

N and a�1⇤eu = �u
for a(ei✓) = (1 + 2b cos(m✓))�1. Then, using Remark 6.5, we see that u

+

2 H(C\Zm,�)
and

(b+ zm+ bz2m)
d

dz
u
+

(z)��zm�1u
+

(z) = ↵m�jz
2m�1�j+↵jz

m�1+j� ↵̄m�jzj�1� ↵̄jzm�1�j

for z 2 C\Zm,� with some (↵j,↵m�j) 2 C2. Integrate the equation to obtain

u
+

(z) = za
0

Z

1

0

✓

(tz)m � r�1
(tz)m � r

◆

�a0
m ⇣ 1

(tz)m � r�1 �
1

(tz)m � r
⌘

⇥
⇣

↵m�j(tz)
2m�1�j + ↵j(tz)

m�1+j � ↵̄m�j(tz)j�1 � ↵̄j(tz)m�1�j
⌘

dt

(6.19)

for z 2 C\K, where K =
m
S

l=1

⇣

ei⇡/m+2⇡(l�1)/m
h

(�r)1/m, (�r)�1/m
i⌘

. In (6.19), we have

actually used the following branch of the logarithm: ln(z) = ln |z| + i arg z for z 2
C\(�1, 0] and arg z 2 (�⇡, ⇡). As is seen from (6.19), u

+

2 H(C\K). The condition



22 ALEXANDRE JOLLIVET AND VLADIMIR SHARAFUTDINOV

u
+

2 H(C\Zm,�) gives
0 = u

+

(s
1
m!le

i0+)� u
+

(s
1
m!le

i0�)

=
2

�
sin

✓

�a
0

⇡

m

◆✓

s� 1
r�2 � s

◆

�a0
m h

↵m�j!
m�j
l ck(1� j

m
, µ)

+ ↵j!
j
l ck(
j

m
, µ)� ↵̄m�j!j�ml ck(

j

m
� 1, µ)� ↵̄j!�jl ck(�

j

m
, µ)
i

(6.20)

for s 2 (1, r�2) and for 0  l  m� 1, where !l = ei⇡/m+i2⇡l/m(�r)1/m, k = [�a0/m], and
µ = ��ma�1

0

k. The function ck is smooth on (�1, 1)⇥ (0, 1) and

c
0

(↵, µ) = r�2µ + ↵

Z

1

0

✓

⇣r�2 � t
1� t

⌘µ � r�2µ
◆

t↵�1dt, (↵, µ) 2 (�1, 1)⇥ (0, 1).

We also define for (↵, µ) 2 (0, 1
2

]⇥ (0, 1)
Fk(↵, µ) = ck(↵� 1, µ)ck(�↵, µ)� r2ck(1� ↵, µ)ck(↵, µ).

For fixed k 2 N and µ 2 (0, 1), the linear system of equations (6.20) has a nontrivial
solution (↵j,↵m�j) 2 C2 if and only if Fk(↵, µ) = 0. We therefore obtain, for µ 2 (0, 1)
and (j, k) 2 N2 (1  j  [m/2]),

mka�1
0

+ µ 2 S(a�1⇤e|Wj,m), Fk(
j

m
, µ) = 0.

Finally, studying growth properties of functions Fk(., µ) at fixed µ 2 (0, 1), one may
get some knowledge of multiplicities of eigenvalues of a�1⇤e which belong to the interval
(mka�1

0

,m(k + 1)a�1
0

). More precisely, if the inequality @F0
@↵
(↵, µ) > 0 was proved, then

one would obtain the statement: the eigenvalues of a�1⇤e|Wj,m (1  j < m/2) belonging
to (0,ma�1

0

) are double eigenvalues of the operator a�1⇤e; and for even m, the eigenvalues
of a�1⇤e|Wm

2 ,m
belonging (0,ma�1

0

) are simple eigenvalues of a�1⇤e.

Appendix A. Proofs of Theorems 5.1 and 5.2 and of Lemma 6.2

To prove Theorem 5.1, we need the following lemma that will be proved at the end
of the section.

Lemma A.1. Given (�, a
0

, a
1

) 2 (0,+1)2 ⇥ C satisfying |a
1

| > 0, let G� denote the
two-dimensional complex vector space of complex-valued sequences (vn)n2N satisfying

��a
1

vk+1 + (k � �a0)vk � �a1vk�1 = 0 (A.1)

for k � 1. Let also G̃� be the subspace of G� consisting of sequences satisfying
P

+1
k=0(1 +

k2)|vk|2 <1. Then the dimension of the vector space G̃� is at most one.
Proof of Theorem 5.1. We remind that 0 is a simple eigenvalue of a�1⇤e. If v 2 C1(�)
solves the equation ⇤ev = �av with � > 0, Fourier coe�cients of v satisfy (A.1) for all
k 2 Z. Hence vk�1 = ��1a�1

1

(��a
1

vk+1 + (k � �a0)vk) (k  1); and v ⌘ 0 if vn = 0 for all
n � 1. We have thus the embedding f : ker(a�1⇤e � �)! G̃� defined by f(v) = (vn)n2N.
This implies with the help of Lemma A.1 dimC(ker(a�1⇤e � �))  dimC(G̃�)  1. ⇤

To prove Theorem 5.2, we need the following lemma that will be proved at the end
of the section.
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Lemma A.2. Let (�, b
0

, b
1

,m) 2 [0,+1) ⇥ (0,+1) ⇥ C ⇥ N satisfy m � 2 and b
0

>
2|b
1

| > 0. We denote by F�,j (1  j  m � 1) the two-dimensional complex vector space
of complex-valued sequences (un)n2N satisfying

(mk +m+ j)b
1

uk+1 + ((mk + j)b0 � �)uk + (mk �m+ j)b1uk�1 = 0 (A.2)

for k � 1. Let also S�,j be the subspace of F�,j consisting of sequences satisfying
P

+1
k=0(1+

k2)|uk|2 <1. Then the dimension of the complex vector space S�,j is at most one.
Proof of Theorem 5.2. We mimic the proof of Theorem 5.1. If u 2 C1(�) solves the
equation ⇤eu = �tm(a)u and u 2 Vj,m, then the Fourier coe�cients (umk+j)k2Z of u satisfy
(A.2) for every k 2 Z. Hence umk�m+j = �((mk�m+ j)b1)�1((mk+m+ j)b1umk+m+j +
((mk + j)b

0

� �)umk+j) (k  1); and u ⌘ 0 if umn+j = 0 for all n � 1. We have thus
the embedding f : ker((tm(a))�1⇤e|Vj,m � �) ! S�,j defined by f(u) = (umn+j)n2N. This
implies with the help of Lemma A.2 dimC(ker((tm(a))�1⇤e|Vj,m � �))  1. ⇤

Proof of Lemma A.1. For (un)n2N 2 G�,
✓

uk
uk+1

◆

= M̃k

✓

uk�1
uk

◆

for k � 1,

where M̃k is the invertible 2⇥ 2-matrix

M̃k =

✓

0 1
�1 k��a0

�a1

◆

. (A.3)

Let k̃� � 2 be such that
k � �a

0

� 2�|a
1

| for k � k̃�. (A.4)

Then using (A.3) we have for any (un)n2Z
✓

u
˜k��1
u
˜k�

◆

= ⇧
˜k��1
i=1 M̃i

✓

u
0

u
1

◆

.

Since ⇧
˜k��1
i=1 M̃i is invertible, we can consider the sequence (vn)n2N 2 G� such that

(v
˜k��1, v˜k�) = (0, 1). We will prove that

|vk| � |vk�1| � 1 for k � k̃�. (A.5)

This will prove that
P1
k=0 |vk|2 = 1, and hence (vn)n2N 62 G̃�. Therefore we will obtain

G̃� 6= G�. Since G̃� ⇢ G� and G� is two-dimensional, we will obtain that G̃� is at most
one-dimensional. This will prove Lemma A.1.
We prove (A.5) by induction. The inequalities (A.5) are trivially satisfied for k = k̃�.

Assume (A.5) to hold for some k � k̃�. Then from (A.1)

|vk+1| � |k � a0�|
�|a

1

| |vk|� |vk�1|.

Using the induction hypothesis (A.5) and (A.4), we obtain

|vk+1| � |k � �a0|� �|a1|
�|a

1

| |vk| � |vk| � 1

and the induction step is done. ⇤
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Remark A.3. The solution (vk)k2N of (A.1) used in the proof of Lemma A.1 grows at a
rate faster than the exponential one. Indeed, taking (A.1) and (A.5) into account,

k � �a
0

� �|a
1

|
�|a

1

|  |vk+1||vk| 
k � �a

0

+ �|a
1

|
�|a

1

| for k � k̃�
and

k � �a
0

� �|a
1

|
�|a

1

| ! +1 as k ! +1,

where k̃� is defined by (A.4).

Proof of Lemma 6.2. First we reduce the question to the case of n = 0. Indeed, given
f 2 H(intD) \ C(D), let ↵n�j = 1

j!
dj

dzj
f(0) (0  j  n � 1) for some n > 0. Since

<(
Pn
j=1(↵jz

n�j�↵̄jzn+j)
zn

) = 0 for z 2 �, we have (<f̃)|� = 0, where the function f̃(z) =
f(z)�

Pn
j=1(↵jz

n�j�↵̄jzn+j)
zn

is continuous inD and holomorphic in intD. The condition (<f̃)|� =
0 is equivalent to f̃ |D = i↵0 for some ↵0 2 R, which proves the Lemma modulo the case
of n = 0.
Now, assume f to satisfy f |D = i↵0 for some ↵0 2 R. Then obviously <(f(z)) = 0

for z 2 �. Conversely assume that <(f)|� = 0. This implies, by maximum principle,
<f |D = 0 since <f is a harmonic function in intD. Since f̃ is holomorphic in D, it must
be identically equal to some pure imaginary constant. ⇤
Proof of Lemma A.2. For (un)n2N 2 F�,j,

✓

uk
uk+1

◆

=Mk

✓

uk�1
uk

◆

for k � 1,

where Mk is the invertible 2⇥ 2-matrix

Mk =

✓

0 1
�mk�m+j
mk+m+j

� (mk+j)b0��
(mk+m+j)b1

◆

. (A.6)

Let k� � 2 be such that
b
0

(mk + j)� � � 2(mk +m+ j)|b
1

| for k � k� (A.7)

(such a k� exists since b0 > 2|b1| > 0). Then using (A.6) we have for any (un)n2Z
✓

uk��1
uk�

◆

= ⇧k��1i=1 Mi

✓

u
0

u
1

◆

.

Since ⇧k��1i=1 Mi is invertible, we can consider the sequence (vn)n2N 2 F�,j such that
(vk��1, vk�) = (0, 1). We are going to demonstrate that

|vk| � |vk�1| � 1, for k � k�. (A.8)

This will prove
P1
k=0 |vk|2 = 1, and hence (vn)n2N 62 S�,j. Therefore we will obtain

S�,j 6= F�,j. Since S�,j ⇢ F�,j and F�,j is two-dimensional, we will obtain that S�,j is at
most one-dimensional. This will prove Lemma A.2.
We prove (A.8) by induction. The inequalities (A.8) are trivially satisfied for k = k�.

Assume (A.8) to hold for some k � k�. Then from (A.2),

|vk+1| � |(mk + j)b0 � �|
(mk +m+ j)|b

1

| |vk|�
mk �m+ j
mk +m+ j

|vk�1|.
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Using the induction hypothesis (A.8) and (A.7), we obtain

|vk+1| � |(mk + j)b0 � �|� (mk �m+ j)|b1|
(mk +m+ j)|b

1

| |vk| � |vk| � 1
and the induction step is done. ⇤
Note that similarly to Remark A.3 the solution (vk)k2N of (A.2) has an exponential

increase.
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