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Abstract. We study the X-ray transform I of symmetric tensor fields on a

smooth convex bounded domain Ω ⊂ Rn. The main result is the stability
estimate ‖sf‖L2 ≤ C‖If‖H1/2 , where sf is the solenoidal part of the tensor

field f . The proof is based on a comparison of the Dirichlet integrals for the
exterior and interior Dirichlet problems and on a generalization of the Korn

inequality to symmetric tensor fields of arbitrary rank.

1. Introduction. In the Introduction, we use some basic concepts of analysis of
symmetric tensor fields (the inner derivative d and divergence δ, the solenoidal part
sf of a tensor field f) without giving definitions. If a reader is not familiar with the
concepts, he/she should start with Section 2 and then return to the Introduction
after getting acquaintance with basic definitions. The space of rank m symmetric
tensors on Rn is denoted by SmRn.

Let 〈·, ·〉 be the standard dot-product on Rn and |·|, the corresponding norm. The
family of oriented straight lines in Rn is parameterized by points of the manifold

TSn−1 = {(x, ξ) ∈ Rn × Rn | |ξ| = 1, 〈x, ξ〉 = 0} ⊂ Rn × Rn

that is the tangent bundle of the unit sphere Sn−1. Namely, a point (x, ξ) ∈ TSn−1

determines the line {x+ tξ | t ∈ R}.
Along with spaces Ck(TSn−1) (0 ≤ k ≤ ∞) of differentiable functions, we use the

Schwartz space S(TSn−1). Observe that the space S(E) is well defined for a smooth
vector bundle E → M over a compact manifold M . The Fourier transform F :
S(TSn−1) → S(TSn−1), u 7→ û is defined by (hereafter i stands for the imaginary
unit and y is the Fourier dual variable of x)

û(y, ξ) = (2π)(1−n)/2

∫
ξ⊥

e−i〈y,x〉u(x, ξ) dx,
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where dx is the (n−1)-dimensional Lebesgue measure on ξ⊥ = {x ∈ Rn | 〈x, ξ〉 = 0}.
This is the standard Fourier transform in the (n−1)-dimensional variable x, where ξ
stands as a parameter. The space Hk(TSn−1) is defined for k ∈ R as the completion
of S(TSn−1) with respect to the norm

‖u‖2Hk(TSn−1) =

∫
Sn−1

∫
ξ⊥

(1 + |y|2)k |û(y, ξ)|2 dydξ,

where dξ is the (n− 1)-dimensional volume form on Sn−1 induced by the Euclidean
metric of Rn.

Let Ω ⊂ Rn (n ≥ 2) be an open strictly convex bounded domain with a smooth
boundary ∂Ω, and let Ω be the closure of the domain. We use the term “smooth” as
the synonym of “C∞-smooth”. Strict convexity means that the second quadratic
form of the boundary is positively definite at every point p ∈ ∂Ω. The X-ray
transform is the linear bounded operator

(1) I : C(Ω;SmRn)→ C(TSn−1)

defined as follows: for f = (fi1...im) ∈ C(Ω;SmRn),

(2) (If)(x, ξ) =

∞∫
−∞

fi1...im(x+ tξ) ξi1 . . . ξim dt =

∞∫
−∞

〈f(x+ tξ), ξm〉 dt,

where f is assumed to be extended by zero outside Ω. The Einstein summation
rule is used in (2) as well as in further formulas: the summation from 1 to n is
assumed over every index repeated in lower and upper positions in a monomial.
The integration is actually performed in finite limits because supp(f) ⊂ Ω.

In the case of m = 0 (when f is a function), the X-ray transform is the main
mathematical tool of Computer Tomography. In the case of m = 1 (when f is a
vector field), the operator I is called the Doppler transform and serves as the main
mathematical tool of Doppler Tomography. In the cases of m = 2 and of m = 4,
the operator I and some of its modifications are applied to various problems of
tomography of anisotropic media, see [14, Chapters 6,7] and [8, 17].

From the mathematical viewpoint, the main difference between scalar and tensor
tomography consists of the following: the operator I has a big null-space in the
case of m > 0. A tensor field f ∈ C(Ω;SmRn) is called a potential field if f = dv
for some v ∈ C1(Ω;Sm−1Rn) satisfying the boundary condition v|∂Ω = 0. Any
potential tensor field f satisfies If = 0 as is shown in the next section. Given If ,
we can recover the solenoidal part sf of a tensor field f only.

The following statement is the main result of the present paper.

Main Theorem. Let Ω ⊂ Rn (n ≥ 2) be a smooth strictly convex bounded domain.
For every integer m ≥ 0, the operator (1) uniquely extends to a linear bounded
operator

(3) I : L2(Ω;SmRn)→ H1/2(TSn−1).

The solenoidal part sf of a tensor field f ∈ L2(Ω;SmRn) can be uniquely recovered
from If , and the stability estimate

(4) ‖sf‖L2(Ω) ≤ C‖If‖H1/2(TSn−1)

is valid with a constant C depending on Ω and m but independent of f .
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The first two statements of the theorem (the boundedness of the operator (3)
and the implication (If = 0)⇒ (sf = 0)) are not new, but the estimate (4) is new.
More precisely, the estimate was known before only in the scalar case of m = 0 [10,
Chapter II, Theorem 5.1].

Our Main Theorem gives a partial answer to an important question that remains
open in the general case. Let us briefly discuss the general setting.

A compact Riemannian manifold (M, g) with boundary is called a non-trapping
manifold if (a) the boundary is strictly convex with respect to the metric g and (b)
every geodesic γx,ξ(t) starting at a point x ∈ M in direction 0 6= ξ ∈ TxM reaches
the boundary in a finite time τ(x, ξ). For such a manifold, the family of maximal
geodesics is parameterized by points of the manifold

∂−SM = {(x, ξ) | x ∈ ∂M, ξ ∈ TxM, |ξ| = 1, 〈ξ, ν(x)〉 ≤ 0},

where ν(x) is the unit outer normal vector to the boundary. The space of smooth
symmetric covariant tensor fields is denoted by C∞(M ;Smτ ′M ) (the space of smooth
sections of the mth symmetric power of the cotangent bundle). The geodesic X-ray
transform

(5) I : C∞(M ;Smτ ′M )→ C∞(∂−SM)

is defined by

(6) (If)(x, ξ) =

τ(x,ξ)∫
0

fi1...im
(
γx,ξ(t)

)
γ̇i1(t) . . . γ̇im(t) dt.

This coincides with (2) in the case of the Euclidean metric. The integration limit
τ(x, ξ) is a smooth function on ∂−SM as is proved in [14, Section 4], where the
term “dissipative manifold” is used instead of “non-trapping manifold”. Therefore
If ∈ C∞(∂−SM) for f ∈ C∞(M ;Smτ ′M ). The following statement is proved in
[12], see also [14, Theorem 4.3.3].

Theorem 1.1. Let (M, g) be a non-trapping Riemannian manifold of non-positive
sectional curvature. For every integer m ≥ 0, the operator (5) uniquely extends to
the linear bounded operator

(7) I : H1(M ;Smτ ′M )→ H1(∂−SM).

The solenoidal part sf of a tensor field f ∈ H1(M ;Smτ ′M ) can be uniquely recovered
from If and the stability estimate

(8) ‖sf‖2L2 ≤ C
(
‖If‖2H1 +m‖f‖H1‖If‖L2

)
holds with a constant C independent of f .

Let us give two remarks on the theorem.
1. The second term on the right-hand side of (8) appeared due to the method of

the proof used in [12]. The following question remains open: Can the second term
on the right-hand side of (8) be omitted? If not, then the problem of recovering sf
from If is conditionally stable in the following sense: for stable recovery, we need
an a priori estimate of ‖f‖H1 . The factor m is written in front of the second term to
emphasize that stable inversion is possible in the case of m = 0. Our Main Theorem
states that the second term can be omitted in the case of the Euclidean metric, i.e.,
stable inversion is possible in the latter case. The question of the validity of the
analogue of (4) remains open in the general case.
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2. Comparing (4) and (8), we see that, most probably, the term ‖If‖2H1 on the
right-hand side of (8) can be replaced with ‖If‖2

H1/2 . This was not done because

Sobolev spaces Hk with non-integer k were not used in [12]. Quite similarly, the
factor ‖f‖H1 can be replaced with ‖f‖H1/2 .

A different stability estimate for the geodesic X-ray transform of second rank
symmetric tensor fields is obtained in [18]. Namely, ‖sf‖L2(M) ≤ C‖I∗If‖H1(M1),
where M1 is a larger manifold such that M ⊂M1 \ ∂M1.

The paper is organized as follows.
Section 2 contains preliminaries. After basic definitions, we present an analogue

of the estimate (4) for tensor fields on the whole of Rn. The latter estimate has
been known before, we will use it in our proof of the Main Theorem. The section is
finished by Proposition 2.5 that reduces the Main Theorem to the case of a smooth
solenoidal field. The reduction is not new, see [14, Lemma 4.3.4], and is presented
for the sake of completeness.

In Section 3, we extend a solenoidal tensor field f ∈ C∞(Ω;SmRn) by zero
outside Ω. For the extension f◦ ∈ L2(Rn;SmRn), we consider the decomposition to
the solenoidal and potential parts: f◦ = sf◦+dw, δ sf◦ = 0. Our proof of the Main
Theorem depends in an essential way on the fact that the potential w is continuous
on Rn.

In Section 4, we recall the Dirichlet principle for the operator δd and formulate
Theorem 4.2 that reduces the Main Theorem to the problem of comparing the
Dirichlet integrals for solutions to the interior and exterior Dirichlet problems with
the same boundary condition.

Theorem 4.2 is proved in Section 5 with the help of Theorem 5.4 (the Korn
inequality for symmetric tensor fields of arbitrary rank). Then the scheme of the
proof of Theorem 5.4 is presented by an analogy with the proof of the classic Korn
inequality.

2. Preliminaries. For an integer m ≥ 0, let SmRn be the complex vector space
of all symmetric R-multilinear maps

(9) f : Rn × · · · × Rn︸ ︷︷ ︸
m

→ C.

The dimension of SmRn is
(
n+m−1

m

)
. Its elements are called rank m symmetric

tensors on Rn. For such a tensor f ∈ SmRn, the complex-valued form f(ξ1, . . . , ξm)
is well defined for vectors ξi ∈ Rn (1 ≤ i ≤ m); the form depends linearly on
each argument and is symmetric with respect to any permutation of arguments. In
particular, S0Rn = C. It is convenient to agree that SmRn = 0 for m < 0.

Now, we briefly discuss the coordinate representation of symmetric tensors. We
use Cartesian coordinates on Rn only. Let (e1, . . . , en) be the coordinate basis of
Rn. Every vector ξ ∈ Rn is uniquely written as ξ = ξiei. Then, for f ∈ SmRn,

f(ξ1, . . . , ξm) = fi1...imξ
i1
1 . . . ξimm .

The coefficients fi1...im = f i1...im of the sum are called the coordinates (or compo-
nents) of the tensor f with respect to the given coordinate system. The coefficients
are symmetric in all indices (i1, . . . , im). To adjust our notations to the Einstein
summation rule, we use both low and upper indices for denoting coordinates of
vectors and tensors. There is no difference between co- and contravariant tensors
because only Cartesian coordinates are used.
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The dot product on SmRn is defined by

(10) 〈f, h〉 = f i1...imhi1...im .

The corresponding norm is denoted by |f |. In particular, S1Rn is identified with
Cn by f(ξ) = 〈f, ξ〉 for f ∈ Cn and ξ ∈ Rn.

We will need some algebraic operations on symmetric tensors. Let ⊗mRn be the
space of all rank m tensors on Rn, i.e., the space of R-multilinear maps

f : Rn × · · · × Rn︸ ︷︷ ︸
m

→ C.

Unlike (9), symmetry is not required here. There is the canonical projection (sym-
metrization) σ : ⊗mRn → SmRn defined by

(σf)(ξ1, . . . , ξm) =
1

m!

∑
π∈Πm

f(ξπ(1), . . . , ξπ(m)),

where the summation is performed over the set Πm of all permutations of the set
{1, . . . ,m}.

Let us recall that, for f ∈ ⊗kRn and h ∈ ⊗mRn, the tensor product f ⊗ h ∈
⊗k+mRn is defined by

(f ⊗ h)(ξ1, . . . , ξk+m) = f(ξ1, . . . , ξk)h(ξk+1, . . . , ξk+m).

Now, for f ∈ SkRn and h ∈ SmRn, the symmetric tensor product fh ∈ Sk+mRn is
defined by fh = σ(f ⊗ h). Being furnished with this product, SRn =

⊕∞
m=0 S

mRn
becomes a commutative graded algebra, the algebra of symmetric tensors, which is
actually isomorphic to the algebra of polynomials in n variables.

For a fixed tensor f ∈ SkRn, we denote by if : SmRn → Sm+kRn the operator
of symmetric multiplication by f , i.e., if (u) = σ(f ⊗ u). The adjoint of if is the
operator jf : Sm+kRn → SmRn of contraction with f which is written in coordinates
as

(jfu)i1...im = f j1...jkuj1...jki1...im .

In particular, the operator jy : SmRn → Sm−1Rn (y ∈ Rn) will participate in many
formulas below.

Now, we briefly discuss symmetric tensor fields. Roughly speaking, a rank m
symmetric tensor field f on a domain Ω ⊂ Rn is a function f : Ω → SmRn, Ω 3
x 7→ f(x) = fx ∈ SmRn. More precisely, let Ω ⊂ Rn be an open domain and let
F(Ω) be a functional space of functions on the domain. By F(Ω;SmRn), we denote
the space of all maps f : Ω → SmRn such that all coordinate functions fi1...im(x)
belong to F(Ω). For most of the spaces F(Ω), the resulting space F(Ω;SmRn)
is independent of the choice of Cartesian coordinates. In particular, the following
spaces are defined by this scheme.

The space Ck(Ω;SmRn) (0 ≤ k ≤ ∞) of rank m symmetric tensor fields whose
partial derivatives of order ≤ k are continuous in Ω.

For k ∈ R the space Hk(Ω;SmRn) consists of the set of functions or dis-
tributions in Ω that can be extended to an element ũ ∈ Hk(Rn;SmRn), and
the norm ‖u‖Hk(Ω) is defined as inf{‖ũ‖Hk(Rn) | ũ = u in Ω}; for the domains
Ω that we consider this definition agrees with other definitions. In particular,
L2(Ω;SmRn) = H0(Ω;SmRn).

The space D′(Ω;SmRn) of tensor field distributions on Ω.
The space S(Rn;SmRn) of smooth fast decaying symmetric tensor fields on Rn.
The space S ′(Rn;SmRn) of tempered tensor field distributions on Rn.
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The space E ′(Rn;SmRn) of compactly supported tensor field distributions on
Rn.

Each of these spaces is furnished with the corresponding topology. The L2-
product on L2(Ω;SmRn) is defined by

(u, v)L2 =

∫
Ω

〈u(x), v(x)〉 dx.

Now, a couple of words on the coordinate representation of symmetric tensor
fields. Let (x1, . . . , xn) = (x1, . . . , xn) be a Cartesian coordinate system on Rn with
the coordinate basis (e1, . . . , en). A tensor field f ∈ C∞(Ω;SmRn) can be consid-
ered as a family of smooth function fi1...im(x1, . . . , xn) on Ω which are symmetric in
all indices. We write this as f = (fi1...im) assuming the choice of coordinates to be
clear from the context. In particular, f ∈ C∞(Ω;S0Rn) is just a smooth function on
Ω. Since S1Rn is identified with Cn, a first rank tensor field f ∈ C∞(Ω;S1Rn) can
be identified with the vector field f = f iei as well as with the one-form f = fidx

i.
Now, we introduce two important first order differential operators. The inner

derivative

d : C∞(Ω;SmRn)→ C∞(Ω;Sm+1Rn)

is defined by

(11) (df)i1...im+1
= σ

(∂fi1...im
∂xim+1

)
,

where σ is the symmetrization in all indices. In the case of m = 0, df = ∂f
∂xi dx

i is
the differential of the function f . In the case of m = 1,

(12) (df)ij =
1

2

( ∂fi
∂xj

+
∂fj
∂xi

)
;

in the case of m = 2,

(df)ijk =
1

3

(∂fij
∂xk

+
∂fik
∂xj

+
∂fjk
∂xi

)
;

and so on.
The divergence

δ : C∞(Ω;Sm+1Rn)→ C∞(Ω;SmRn)

is defined by

(13) (δf)i1...im =
∂fpi1...im
∂xp

.

Formulas (11) and (13) are actually valid in curvilinear coordinates too, but partial
derivatives must be replaced with covariant derivatives in the latter case.

The operators d and −δ are formally adjoint to each other with respect to the
above-introduced L2-product. Moreover, there is a natural Green’s formula for
these operators. Let us reproduce a special case of [14, Theorem 3.3.1].

Proposition 2.1. Let Ω ⊂ Rn be a C1-smooth bounded domain. For tensor fields
u ∈ C1(Ω;SmRn) and v ∈ C1(Ω;Sm+1Rn), the following Green’s formula is valid:

(14)

∫
Ω

(
〈du, v〉+ 〈u, δv〉

)
dx =

∫
∂Ω

〈u, jνv〉 dS,

where ν is the unit outward normal vector to the boundary and dS is the (n − 1)-
dimensional volume form on ∂Ω induced by the Euclidean metric.
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The classical Helmholtz decomposition of a vector field can be generalized to
arbitrary rank symmetric tensor fields as follows.

Proposition 2.2. Let Ω ⊂ Rn be a smooth bounded domain and 0 ≤ k ∈ R. Any
tensor field f ∈ Hk(Ω;SmRn) (m ≥ 0) can be uniquely represented in the form

(15) f = sf + dv, δ sf = 0, v|∂Ω = 0,

where sf ∈ Hk(Ω;SmRn) and v ∈ Hk+1(Ω;Sm−1Rn). The estimates

‖sf‖Hk ≤ C‖f‖Hk , ‖v‖Hk+1 ≤ C‖f‖Hk

are valid with a constant C independent of f . In particular, sf and v are smooth if
f is smooth.

The summands sf and dv of the decomposition are called the solenoidal and
potential parts of the field f respectively.

Proposition 2.2 is proved in [14, Theorem 3.3.2] for an integer k ≥ 0 in the more
general setting of symmetric tensor fields on a Riemannian manifold. The case of a
general k ≥ 0 follows by interpolation.

Now, we briefly discuss symmetric tensor fields on the whole of Rn. The Fourier

transform F : S(Rn;SmRn) → S(Rn;SmRn), f 7→ f̂ is defined componentwise,

i.e., (f̂)i1...im = (fi1...im)∧. Let H1
1 (Rn;SmRn) be the completion of S(Rn;SmRn)

with respect to the norm

‖f‖2H1
1 (Rn;SmRn) =

∫
Rn

|y|2|f̂(y)|2 dy.

We will need the following analogue of Proposition 2.2 which is a special case of
[15, Theorem 3.5].

Proposition 2.3. Any tensor field f ∈ L2(Rn;SmRn) (m ≥ 0) can be uniquely
represented in the form

(16) f = sf + dv, δ sf = 0,

where sf ∈ L2(Rn;SmRn), v ∈ H1
1 (Rn;Sm−1Rn), and dv ∈ L2(Rn;SmRn). The

estimates

‖sf‖L2 ≤ C‖f‖L2 , ‖v‖H1
1
≤ C‖f‖L2 , ‖dv‖L2 ≤ C‖f‖L2

are valid with a constant C independent of f .

The X-ray transform

(17) I : S(Rn;SmRn)→ S(TSn−1)

is defined by the same formula (2). Being initially defined on the Schwartz space,
the X-ray transform then extends to wider spaces of symmetric tensor fields. First
of all we observe that integral (2) converges in the classical sense if a field f ∈
C(Rn;SmRn) decays at infinity so that |f(x)| ≤ C(1 + |x|)−1−ε with some ε > 0.
The most important feature of the X-ray transform is the presence of a big null-
space in the case of m > 0. If a tensor field v ∈ C1(Rn;Sm−1Rn) decays at infinity
so that v(x)→ 0 as |x| → ∞, then I(dv) = 0. Indeed, by the definition of d,

〈(dv)(x+ tξ), ξm〉 = (dv)i1...im(x+ tξ) ξi1 . . . ξim

=
1

m

(∂vi2...im
∂xi1

(x+ tξ) + · · ·+
∂vi1...im−1

∂xim
(x+ tξ)

)
ξi1 . . . ξim

= ξj
∂vi1...im−1

∂xj
(x+ tξ) ξi1 . . . ξim−1 =

d

dt
〈v(x+ tξ), ξm−1〉.
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Using this identity, we derive

(Idv)(x, ξ) =

∞∫
−∞

〈(dv)(x+ tξ), ξm〉 dt =

∞∫
−∞

d

dt
〈v(x+ tξ), ξm−1〉 dt

= lim
T→∞

[
〈v(x+ Tξ), ξm−1〉 − 〈v(x− Tξ), ξm−1〉

]
= 0.

In other words, the X-ray transform vanishes on potential tensor fields. Therefore,
given If , we can hope to recover the solenoidal part of the field f only.

Let H
1/2
1/2 (TSn−1) be the completion of S(TSn−1) with respect to the norm

‖u‖2
H

1/2

1/2
(TSn−1)

=
1

2π

∫
Sn−1

∫
ξ⊥

|y| |û(y, ξ)|2 dydξ.

The following statement is a special case of [15, Corollary 4.3].

Proposition 2.4. The operator (17) uniquely extends to a bounded operator

I : L2(Rn;SmRn)→ H
1/2
1/2 (TSn−1).

Given f ∈ L2(Rn;SmRn), let f = sf + dv be the decomposition into solenoidal and
potential parts in the sense of Proposition 2.3. Then I(dv) = 0, the solenoidal part
sf can be uniquely recovered from If , and the stability estimate

(18) ‖sf‖L2(Rn;SmRn) ≤ C‖If‖H1/2

1/2
(TSn−1)

holds with a constant C independent of f .

Under the hypotheses of Proposition 2.4, there exists a generalization of (18) to
an estimate of ‖sf‖Hk(Rn;SmRn) for any k ∈ R and even of a more general norm
‖sf‖Hk

t (Rn;SmRn) (t > −n/2), see [15].
At first sight, our Main Theorem and Proposition 2.4 are very similar. However,

the proof of Proposition 2.4 is much easier than that of the Main Theorem because
the Fourier transform works more directly for tensor fields on the whole of Rn than
for tensor fields on a bounded domain. Proposition 2.4 will be used in our proof of
the Main Theorem.

Now, we reduce the Main Theorem to the following special case.

Proposition 2.5. Let Ω ⊂ Rn be a strictly convex bounded domain with smooth
boundary. Let f ∈ C∞(Ω;SmRn) (m ≥ 0) be a solenoidal tensor field, i.e.,

(19) δf = 0 in Ω.

The stability estimate

(20) ‖f‖L2(Ω;SmRn) ≤ C‖If‖H1/2(TSn−1)

holds with a constant C independent of f .

Proof of the Main Theorem. We first prove the boundedness of the operator (3).
Given f ∈ L2(Ω;SmRn), let f◦ ∈ L2(Rn;SmRn) be the extension of f by zero
outside Ω. Then If = If◦. By Proposition 2.4, the estimate
(21)
‖If‖

H
1/2

1/2
(TSn−1)

= ‖If◦‖
H

1/2

1/2
(TSn−1)

≤ C ′‖f◦‖L2(Rn;SmRn) = C ′‖f‖L2(Ω;SmRn)

holds with a constant C ′ independent of f . If Ω ⊂ {x ∈ Rn | |x| ≤ A} then If is
supported in the compact set {(x, ξ) ∈ TSn−1 | |x| ≤ A}. By [15, Lemma 2.4], the

Inverse Problems and Imaging Volume 12, No. 5 (2018), X–XX
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norms ‖ · ‖
H

1/2

1/2
(TSn−1)

and ‖ · ‖H1/2(TSn−1) are equivalent on the space of functions

supported in a fixed compact set. Therefore (21) is equivalent to the inequality

‖If‖H1/2(TSn−1) ≤ C ′′‖f‖L2(Ω;SmRn)

which means that the operator (3) is bounded.
Next, we prove estimate (4). There are two differences in hypotheses of Propo-

sition 2.5 as compared with that of the Main Theorem: (1) f is assumed to be a
solenoidal field and (2) f is assumed to be smooth.

We first consider the case of a smooth tensor field f ∈ C∞(Ω;SmRn). Let
sf ∈ C∞(Ω;SmRn) be the solenoidal part of f . Applying (20) to sf , we obtain
estimate (4) for f . Main Theorem is thus proved in the case of a smooth field f .

Next, we approximate a tensor field f ∈ L2(Ω;SmRn) by smooth tensor fields,
i.e., choose a sequence fk ∈ C∞(Ω;SmRn) (k = 1, 2, . . . ) such that

fk → f in L2(Ω;SmRn) as k →∞.
Then, by Proposition 2.2,

sfk → sf in L2(Ω;SmRn) as k →∞
and, by the first statement of the Main Theorem,

Ifk → If in H1/2(TSn−1) as k →∞.
Writing down inequality (4) for fk and passing to the limit as k → ∞, we obtain
(4) for f .

3. Continuity of the potential. Let Ω ⊂ Rn be a bounded domain with smooth
boundary. Given a tensor field f ∈ C∞(Ω;SmRn) satisfying

(22) δf = 0 in Ω,

let f◦ ∈ L2(Rn;SmRn) be the extension of f by zero outside Ω.
Decompose f◦ into solenoidal and potential parts according to Proposition 2.3:

(23) f◦ = sf◦ + dw, δ sf◦ = 0,

where sf◦ ∈ L2(Rn;SmRn), w ∈ H1
1 (Rn;Sm−1Rn) and dw ∈ L2(Rn;Sm−1Rn).

Theorem 3.1. In the setting (22)–(23), the potential w is continuous on Rn and
satisfies |w(x)| → 0 as |x| → ∞.

Observe that δf◦ is a tensor field distribution supported in ∂Ω. It can be easily
found [16, Lemma 5.2]:

(24) δf◦ = −j̃νf dS,
where the distribution dS ∈ E ′(Rn) is defined by 〈dS |ϕ〉 =

∫
∂Ω
ϕ(x) dS for a test

function ϕ ∈ C∞(Rn) (we use the brackets 〈· | ·〉 to denote the action of a distribution

on a test function) and j̃νf ∈ C∞(Rn;Sm−1Rn) is an arbitrary smooth extension
of the tensor field jνf ∈ C∞(∂Ω;Sm−1Rn) (ν being the unit outer normal vector
to ∂Ω); the right-hand side of (24) is independent of the choice of such extension.
Observe also that

(25)

∫
∂Ω

(jνf) dS = 0,

i.e., every component of the tensor field jνf integrates to zero over ∂Ω. This easily
follows from (22) with the help of the divergence theorem.
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Applying the operator δ in distribution sense to (23) we obtain

(26) δf◦ = δdw.

The next lemma lists a number of properties of so-called simple layer potentials
that are well known from potential theory. We present the proof because we do not
know a paper where all statement of the lemma are presented together.

Lemma 3.2. Let h ∈ E ′(Rn) (n ≥ 2) be a continuous density on a smooth compact
hypersurface S ⊂ Rn. Assume that h has mean zero, in other words, 〈h |ϕ〉 = 0 for
all ϕ ∈ C∞(Rn) that are constant in some neighborhood of S. Let E ∈ L1

loc(Rn) and

assume that its Fourier transform Ê(y) is smooth outside the origin and (positively)
homogeneous of degree −2. Then the convolution E ∗h is continuous everywhere in
Rn and E ∗ h(x) tends to zero as |x| tends to infinity.

Proof. Note first that if n ≥ 3, then Ê(y) is locally integrable and defines a homo-
geneous distribution in S ′(Rn), hence E(x) must be smooth outside the origin and

homogeneous of degree 2−n. If n = 2, then Ê(y) is not a homogeneous distribution

in R2 unless the mean
∫
|y|=1

Ê(y) dS is equal to zero (see [5, Section 3.2]). But the

assumption implies that E(x) must satisfy an estimate

(27) |E(x)| ≤ C(1 +
∣∣ log |x|

∣∣), if n = 2.

One way to see this is to choose a constant c so that F (y) = Ê(y)− c|y|−2 satisfies∫
|y|=1

F (y) dS = 0, which implies that F defines a homogeneous distribution in R2

and hence that the inverse Fourier transform of F must be homogeneous of degree
zero and smooth outside the origin and therefore bounded. And the inverse Fourier
transform of |y|−2 is of course known to be equal to a constant times log |x|, the
fundamental solution of the Laplace operator in dimension 2.

We next prove that E∗h is continuous. Since E is smooth outside the origin, it is
clear that f = E ∗ h is smooth in the complement of the hypersurface S. Therefore
it is enough to prove that f is continuous at an arbitrary point x0 ∈ S. Write
E = E0 + E1, where E0 is compactly supported and E1 is smooth everywhere.
Then E1 ∗ h ∈ C∞, so it is enough to prove that E0 ∗ h is continuous at x0. Let V
be a neighborhood of x0 ∈ S. Decompose h, h = h0 +h1, such that h0 is supported
in V , h1 vanishes in some smaller neighborhood of x0, and both h0 and h1 are
continuous densities on S. Then E0 ∗ h1 is smooth in a neighborhood of x0, so it is
enough to prove that E0 ∗ h0 is continuous at x0. If V is sufficiently small we can
choose coordinates, writing x = (x′, xn), so that S can be written xn = ψ(x′) near
x0. Then the distribution h0 can be written

h0(x′, xn) = g(x′)δ0(xn − ψ(x′))

for some compactly supported continuous function g(x′). This gives

E0 ∗ h0(x′, xn) =

∫
Rn−1

E0

(
x′ − y′, xn − ψ(y′)

)
g(y′) dy′.

To see that the integral exists observe that

|E0(x′ − y′, xn − ψ(y′))| ≤ C|x′ − y′|2−n if n ≥ 3 and

|E0(x′ − y′, xn − ψ(y′))| ≤ C(1 +
∣∣ log |x′ − y′|

∣∣) if n = 2,

which is integrable over bounded regions in Rn−1. Set f0 = E0 ∗ h0. To see
that E0 ∗ h0 is continuous it is now enough to observe that the function x 7→
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E0

(
x′ − y′, xn − ψ(y′)

)
is smooth for y′ 6= x′ and that we can make∣∣∣ ∫

|y′−x′|<δ
E0

(
x′ − y′,xn − ψ(y′)

)
g(y′) dy′

∣∣∣
≤ sup |g|

∫
|y′−x′|<δ

∣∣E0

(
x′ − y′, xn − ψ(y′)

)∣∣dy′
as small as we wish by choosing δ sufficiently small.

If n ≥ 3, the fact that E(x) tends to zero at infinity immediately implies that
E ∗ h(x) tends to zero at infinity. If n = 2 we have to use the assumption that the
mean of h is zero and the fact that the gradient of E(x) tends to zero at infinity. To

prove the latter fact we note that ∂̂jE(y) = i yjÊ(y) is a homogeneous distribution
in R2 of degree −1. Therefore ∂jE(x) must also be homogeneous of degree −1, and
since E(x) is smooth outside the origin, this proves the claim.

If we denote the total mass of the measure h by ‖h‖M and the diameter of Ω by
diam(Ω) we can now write for large |x|

|f(x)| =
∣∣∣∣∫

R2

E(x− y)h(y) dy

∣∣∣∣ =

∣∣∣∣∫
R2

(
E(x− y)− E(x)

)
h(y) dy

∣∣∣∣
≤ ‖h‖M sup

|y|≤d

∣∣E(x− y)− E(x)
∣∣ ≤ ‖h‖M diam(Ω) sup

0<t<1
|∇E(x− ty)| ≤ C/|x|

for some C, which completes the proof.

Proof of Theorem 3.1. To study the solution w to equation (26) we shall use Lemma
3.2. Note that δd is a second order partial differential operator with constant
coefficients that operates on C∞(Rn;SmRn). Hence δd is a convolution operator,
δdw = K ∗ w, where K is a distribution supported at the origin with values in
the space of linear operators on SmRn. The Fourier transform of δdw = K ∗ w is
−jyiyŵ(y) = (2π)n/2K̂(y)ŵ(y). In other words, the characteristic polynomial, or

symbol, of δd is equal to the operator valued function (2π)n/2K̂(y) = −jyiy. Note
that the operator jyiy can be represented by a matrix of second order homogeneous
polynomials with respect to some basis for SmRn, for instance the basis induced in
SmRn by the standard basis of Rn. Actually we need only know that the operator
jyiy on SmRn is invertible for every fixed y 6= 0, because that implies that its inverse
can be represented by a matrix whose every entry is a homogeneous function of y
of degree −2 that is smooth outside the origin. But more precisely, it is known that
the inverse of jyiy can be written [16, Lemma 7.6]

(28) (jyiy)−1 =
1

|y|2
m−1∑
k=0

(−1)k
(

m

k + 1

)
ikyj

k
y

|y|2k
on Sm−1Rn.

Since jyiy/|y|2 is homogeneous of degree zero, this formula confirms that (jyiy)−1

is homogenous of degree −2 and smooth outside the origin. It now follows that
a solution w of the equation (26) can be given by a fundamental solution E(x)

defined by (2π)n/2Ê(y) = −(jyiy)−1, where each entry of the matrix E(x) has a
Fourier transform that is homogeneous of degree −2 and is smooth outside the
origin. Applying Lemma 3.2 to every component of the tensor field w now finishes
the proof of Theorem 3.1.
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12 Jan Boman and Vladimir Sharafutdinov

4. Comparison of Dirichlet integrals. The second order differential operator

δd : C∞(Ω;SmRn)→ C∞(Ω;SmRn)

can be called the Laplacian on symmetric tensor fields. It is very similar to the
classical Laplacian ∆ (and coincides with ∆ in the case of m = 0). In particular,
for a smooth bounded domain Ω ⊂ Rn and for a tensor field h ∈ C(∂Ω;SmRn), the
interior Dirichlet problem

(29) δdv = 0 in Ω, v|∂Ω = h

has a unique solution v ∈ C(Ω;SmRn) ∩ C∞(Ω;SmRn) which satisfies the same
estimates as a solution to the classical Dirichlet problem, see the proof of Theorem
3.3.2 of [14].

The classical Dirichlet principle for the Laplacian ∆ states that the solution v to
the Dirichlet problem

∆v = 0 in Ω, v|∂Ω = h

minimizes the Dirichlet integral
∫

Ω
|dw(x)|2 dx on the set of functions w ∈ H1(Ω)

satisfying the boundary condition w|∂Ω = h. The following statement is proved
with the help of the Green formula (14) by repeating, almost word by word, the
proof of the classical Dirichlet principle as presented in [9].

Proposition 4.1 (The Dirichlet principle for tensor fields). Let Ω ⊂ Rn be a
smooth bounded domain. For any h ∈ C(∂Ω;SmRn), the solution v to the Dirichlet
problem (29) minimizes the Dirichlet integral

∫
Ω
|dw(x)|2 dx on the set of tensor

fields w ∈ H1(Ω;SmRn) satisfying the boundary condition w|∂Ω = h.

Let Ω{ = Rn \Ω. Under the same hypotheses on Ω and h, the exterior Dirichlet
problem is posed, in the case of n ≥ 3, by

(30) δdu = 0 in Ω{, u|∂Ω = h, |u(x)| → 0 as |x| → ∞.

In the case of n = 2, this should be replaced with

(31) δdu = 0 in Ω{, u|∂Ω = h, |u(x)| is bounded in Ω{.

Theorem 4.2. Let Ω ⊂ Rn be a smooth convex bounded domain. Given a ten-
sor field h ∈ C(∂Ω;SmRn), let v ∈ C∞(Ω;SmRn) be the solution to the interior

Dirichlet problem (29) and let u ∈ C∞(Ω{;SmRn) be the solution to the exterior
Dirichlet problem (30)–(31). The inequality

(32)

∫
Ω

|dv(x)|2 dx ≤ C
∫
Ω{

|du(x)|2 dx

holds with some constant C that depends on (Ω,m, n) but is independent of h.

This theorem will be proved at the end of the current section for m = 0, and
in the next section for an arbitrary m. Now, we are going to demonstrate that
Proposition 2.5 (and hence the Main Theorem) follows from Theorem 4.2.

Proof of Proposition 2.5. Let Ω ⊂ Rn be a smooth strictly convex bounded domain.
Given a tensor field f ∈ C∞(Ω;SmRn) satisfying (19), we again extend it by zero
outside Ω and let f◦ ∈ L2(Rn;SmRn) be the extension. Let (23) be the decompo-
sition of f◦ into solenoidal and potential parts according to Proposition 2.3. Recall
that sf◦ ∈ L2(Rn;SmRn), w ∈ H1

1 (Rn;Sm−1Rn) and dw ∈ L2(Rn;SmRn).
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By Proposition 2.4,

‖sf◦‖L2(Rn;SmRn) ≤ C‖If◦‖H1/2

1/2
(TSn−1)

.

Repeating our arguments after formula (21) (the support of If is a subset of a fixed
compact) and using If = If◦, we write this estimate in the form

(33) ‖sf◦‖L2(Rn;SmRn) ≤ C‖If‖H1/2(TSn−1)

with a constant C independent of f . In particular,∫
Ω{

|sf◦(x)|2 dx ≤ C‖If‖2H1/2(TSn−1).

Since f◦|Ω{ = 0, equation (23) implies that sf◦|Ω{ = dw|Ω{ . Therefore the latter
estimate can be written as

(34)

∫
Ω{

|dw(x)|2 dx ≤ C‖If‖2H1/2(TSn−1).

Applying the operator δ to equation (23), we obtain

(35) δdw = δf◦.

By Theorem 3.1, w is continuous in Rn. Set h = w|∂Ω ∈ C(∂Ω;Sm−1Rn). Since

δf◦ = 0 in Ω and f◦ ≡ 0 in Ω{, equation (35) means that w solves both the interior
and exterior Dirichlet problems with the boundary condition w|∂Ω = h. Assuming
the validity of Theorem 4.2 for rank m− 1 tensor fields, we obtain the estimate

(36)

∫
Ω

|dw(x)|2 dx ≤ C1

∫
Ω{

|dw(x)|2 dx

with a constant C1 independent of f . Together with (34), this gives

(37) ‖dw‖2L2(Rn;SmRn) ≤ (C1 + 1)C‖If‖2H1/2(TSn−1).

Finally, we derive from (23)

‖f‖2L2(Ω;SmRn) = ‖f◦‖2L2(Rn;SmRn) ≤ 2‖sf◦‖2L2(Rn;SmRn) + 2‖dw‖2L2(Rn;SmRn)

and use estimates (33) and (37) to obtain

‖f‖2L2(Ω;SmRn) ≤ (2C2 + 2(C1 + 1)C)‖If‖2H1/2(TSn−1).

We have thus proved (20).

We finish the Section by proving Theorem 4.2 for m = 0 and getting some
progress for m > 0.

In the two-dimensional case, the Dirichlet integral of a scalar function is invariant
under a conformal transformation of a domain, this is well known. This fact is not
true in dimensions n > 2. Nevertheless, the rule for transformation of the Dirichlet
integral under a conformal transformation of a domain can be easily found and
looks as follows.

Lemma 4.3. Let ϕ : Ω→ Ω′ be a conformal diffeomorphism between two domains
in Rn and ψ = ϕ−1. For every function u ∈ C1(Ω′), if w = u ◦ ϕ ∈ C1(Ω), then

(38)

∫
Ω

|∇w(x)|2 dx =

∫
Ω′

|detψ′(y)|
n−2
n |∇u(y)|2 dy,

Inverse Problems and Imaging Volume 12, No. 5 (2018), X–XX



14 Jan Boman and Vladimir Sharafutdinov

where ψ′(y) is the Jacobi matrix of the map ψ.

We omit the easy proof of this statement.
Now, we are going to apply (38) to the case when ϕ is the inversion with respect

to a sphere. Fix r ∈ (0, 1) and set

Br = {x ∈ Rn | |x| < r}, B{
1/r = {y ∈ Rn | |y| > 1/r}.

Define the conformal diffeomorphism

ϕ : Br \ {0} → Int(B{
1/r), ϕ(x) =

1

|x|2
x.

Then
∂ϕi(x)

∂xj
=

1

|x|2
(
δij − 2

xixj
|x|2

)
.

One can easily see that x is the eigenvector of the matrix in parentheses on the right-
hand side associated to the eigenvalue −1, while x⊥ is the eigenspace of the matrix
associated to the eigenvalue +1. Therefore detϕ′(x) = −|x|−2n and |detψ′(y)| =

|y|−2n for ψ = ϕ−1. Applying (38), we obtain for a function u ∈ C1(B{
1/r) and

w = u ◦ ϕ ∈ C1(Br \ {0})∫
Br

|∇w(x)|2 dx =

∫
B{

1/r

|y|−2(n−2) |∇u(y)|2 dy.

This implies

(39)

∫
Br

|∇w(x)|2 dx ≤ r−2(n−2)

∫
B{

1/r

|∇u(y)|2 dy.

Proof of Theorem 4.2 in the case of m = 0. Let Ω ⊂ Rn be a smooth convex boun-
ded domain. Without loss of generality, we can assume that 0 ∈ Ω. Choose 0 <

r < 1 such that Br ⊂ Ω and B{
1/r ⊂ Ω{. There exists a diffeomorphism ϕ :

Ω \ {0} → Ω{ such that ϕ|∂Ω = Id and ϕ(x) = 1
|x|2x for x ∈ Br. We omit the easy

proof of the latter statement. (More generally, such a diffeomorphism exists if Ω is
diffeomorphic to a ball, although the proof is more complicated. Otherwise, if Ω is
not homeomorphic to a ball, there can be a topological obstruction for the existence
of such ϕ.) Fix such a diffeomorphism. Now, let h be a continuous function on ∂Ω.
Let u be the solution to the exterior Dirichlet problem (30) (or (31) in the case of
n = 2) and let v be the solution to the interior Dirichlet problem (29). Set

(40) w = u ◦ ϕ.

Since v is a harmonic function in Ω and v|∂Ω = w|∂Ω, by the Dirichlet principle,∫
Ω

|∇v(x)|2 dx ≤
∫
Ω

|∇w(x)|2 dx.

It remains to prove that∫
Ω

|∇w(x)|2 dx ≤ C
∫
Ω{

|∇u(y)|2 dy
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with a constant C independent of u. Let us rewrite this inequality in the form
(41)∫
Br

|∇w(x)|2 dx+

∫
Ω\Br

|∇w(x)|2 dx ≤ C
( ∫
B{

1/r

|∇u(y)|2 dy +

∫
Ω{\B{

1/r

|∇u(y)|2 dy
)
.

By (39), the first integral on the left-hand side of (41) is not more than the first
integral on the right-hand side times r−2(n−2). It remains to prove that∫

Ω\Br

|∇w(x)|2 dx ≤ C
∫

Ω{\B{
1/r

|∇u(y)|2 dy.

Since Ω \Br and Ω{ \B{
1/r are compact domains, the latter inequality must hold

for some constant C independent of u.1

Finally, let us discuss the case of an arbitrary m in Theorem 4.2. For a rank
m symmetric tensor field v let ∇v be the (not symmetric) tensor field of rank
m+ 1 defined in Cartesian coordinates by (∇v)ji1...im = ∂vi1...im/∂x

j . Thus, dv is
obtained from ∇v by symmetrization. In particular, |dv|2 ≤ c|∇v|2 with a constant
c depending on (m,n) only.

Let again v and u be solutions to the interior and exterior Dirichlet problems
respectively with the same boundary value h ∈ C(∂Ω;SmRn). Unlike (32), the
estimate

(42)

∫
Ω

|dv(x)|2 dx ≤ C
∫
Ω{

|∇u(x)|2 dx

can be easily proved by the same arguments as in the above-presented proof for
m = 0. Indeed, replacing definition (40) with

wi1...im = ui1...im ◦ ϕ

and repeating the same arguments for every component of u and w, we obtain

(43)

∫
Ω

|dw(x)|2 dx ≤ c
∫
Ω

|∇w(x)|2 dx ≤ C
∫
Ω{

|∇u(x)|2 dx.

By Proposition 4.1,

(44)

∫
Ω

|dv(x)|2 dx ≤ C ′
∫
Ω

|dw(x)|2 dx.

Inequalities (43) and (44) imply (42).
Comparing (32) with (42), we see that the proof of Theorem 4.2 is reduced to

proving the estimate

(45)

∫
Ω{

|∇u(x)|2 dx ≤ C ′′
∫
Ω{

|du(x)|2 dx.

This is the subject of the next section.

1The idea of using the Dirichlet principle in this way was suggested by Björn Gustafsson (private
communication). The authors are grateful to Björn Gustafsson for the idea.
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5. The Korn inequality. The (second) Korn inequality is of a great importance
in elasticity theory. Korn’s original proof [7] is very complicated and hard to un-
derstand. Several other proofs are known under different assumptions on the reg-
ularity of a domain [2, 3, 4, 11, 13, 19]. All these papers consider vector fields
(i.e., the case of m = 1 in our terminology) on a bounded domain. In [6], the
Korn inequality is proved for some unbounded domains. In particular, [6, Theorem
3, Section 3] implies (45) (and hence proves Theorem 4.2) in the case of m = 1.
At the same time, some examples of unbounded domains are presented in [6] for
which the Korn inequality is not true (the simplest of such examples is the slab
{x ∈ Rn | 0 < xn < 1}).

We need the Korn inequality for an unbounded domain and for an arbitrary m.
The following version of the Korn inequality is sufficient for us.

Proposition 5.1. Let Ω ⊂ Rn be a connected unbounded domain such that the
boundary ∂Ω is a compact smooth hypersurface in Rn. Assume a tensor field u ∈
C1(Ω;SmRn) to be such that the Dirichlet integral

∫
Ω
|du(x)|2 dx is finite and

(46) |u(x)| → 0 as |x| → ∞,

then u ∈ H1(Ω;SmRn) and the estimate

(47) ‖u‖2H1(Ω;SmRn) ≤ C‖du‖
2
L2(Ω;Sm+1Rn)

holds with a constant C independent of u.

Theorem 4.2 follows from Proposition 5.1.

Proof of Theorem 4.2. Let Ω ⊂ Rn be a smooth convex bounded open domain.
Given h ∈ C(∂Ω;SmRn), let u ∈ C∞(Ω;SmRn) be the solution to the exte-
rior Dirichlet problem (30)–(31). We can assume without loss of generality that∫

Ω{ |du(x)|2 dx < ∞, otherwise there is nothing to prove. The unbounded domain

Ω̃ = Ω{ and u satisfy the hypotheses of Proposition 5.1. Applying statement (47)

to (Ω̃, u), we obtain estimate (45). As has been shown at the end of the previous
section, (45) finishes the proof of Theorem 4.2.

Our proof of Proposition 5.1 follows the approach proposed by Duvaut and Lions
[1, Chapter III, Section 3] in their proof of the classical Korn inequality. We present
a short scheme of the proof referring to [1] for details.

The following statement is the main step in the proof of Proposition 5.1.

Proposition 5.2. Let Ω ⊂ Rn be an open (either bounded or unbounded) domain
such that the boundary ∂Ω is a compact smooth hypersurface in Rn. Fix non-
negative integers k and ` satisfying k ≤ `. If a function u ∈ H−k(Ω) is such that

(48) Dαu ∈ H−k(Ω) for every α satisfying |α| = `,

then u ∈ H`−k(Ω).

In the case of k = ` = 1 and of a bounded domain Ω, this statement is proved in
[1, Chapter III, Theorem 3.2]. Our proof is a slight modification of the latter proof
and is thus omitted. By the way, there is a remark in [1, Chapter III, Section 8] on
the validity of the proposition for arbitrary integers k and `.

Corollary 5.3. Let a domain Ω ⊂ Rn be as in Proposition 5.2. If a tensor field
u ∈ L2(Ω;SmRn) is such that du ∈ L2(Ω;Sm+1Rn), then u ∈ H1(Ω;SmRn).
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Proof. Set v = du ∈ L2(Ω;Sm+1Rn) and consider the equality

(49) du = v

as an equation with unknown u and a given v. Being written in Cartesian coor-
dinates, (49) is a linear system of first order PDEs. The following property of the
system is well known: after m-multiple differentiation, the system can be solved
with respect to all (m + 1)st derivatives of u. Let us reproduce the explicit for-
mula from [14, Section 2.4]. To this end we introduce the short notation for partial
derivatives

ui1...im ; j1...jm+1 =
∂m+1ui1...im
∂xj1 . . . ∂xjm+1

.

Then (49) implies

ui1...im ; j1...jm+1 = σ(i1 . . . im)σ(j1 . . . jm+1)

m∑
p=0

(−1)p
(
m+ 1

p+ 1

)
×

× vi1...im−pj1...jp+1 ; jp+2...jm+1im−p+1...im ,

(50)

where σ(i1 . . . im) is the symmetrization in the indices (i1, . . . , im). The right-hand
side of (50) is a linear combination with constant coefficients ofmth order derivatives
of v. Therefore the right-hand side of (50) belongs to H−m(Ω). Now, (50) implies
the statement: Dαu ∈ H−m(Ω;SmRn) for every α satisfying |α| = m + 1. By
Proposition 5.2, u ∈ H1(Ω;SmRn).

Now, we repeat arguments from the proof of [1, Chapter III, Theorem 3.1] and
obtain the following

Theorem 5.4. (The second Korn inequality). Let a domain Ω ⊂ Rn be as in
Proposition 5.2. For every tensor field u ∈ H1(Ω;SmRn), the inequality

(51) ‖u‖2H1(Ω;SmRn) ≤ C
(
‖du‖2L2(Ω;Sm+1Rn) + ‖u‖2L2(Ω;SmRn)

)
holds with some constant C independent of u.

The second term on the right-hand side of (51) cannot be omitted in the general
case. Nevertheless, the term can be omitted under some additional assumptions
on the tensor field u. For example, Theorem 3.3 of [1, Chapter III] states that the
second term can be omitted if u vanishes on a part of the boundary ∂Ω. Here, we
are interested in the case when Ω is an unbounded domain and u decays at infinity.
Let us discuss this case in more details.

A tensor field-distribution w ∈ D′(Ω;SmRn) is called a Killing tensor field if
dw = 0. As is seen from (50), such a field satisfies in Cartesian coordinates

Dαwi1...im = 0 for |α| > m.

Therefore every coordinate wi1...im(x) is a polynomial of degree ≤ m in x. In
particular, w ∈ C∞(Ω;SmRn). If Ω is a connected domain, every Killing tensor
field on the domain is uniquely determined by the values Dαw(x0) (|α| ≤ m) at an
arbitrary point x0 ∈ Ω. In particular, the space of rank m Killing tensor fields on
a connected domain has a finite dimension.

Repeating arguments from the proof of [1, Chapter III, Theorem 3.4], we prove
the following statement. Alternatively we can recall the well known fact that the
inequality (51) holds without the last term on the right hand side if and only if the
operator is injective, and apply this fact to the operator modulo its null-space.
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Theorem 5.5. Let Ω ⊂ Rn be an open (either bounded or unbounded) connected
domain such that the boundary ∂Ω is a compact smooth hypersurface in Rn. For
every integer m ≥ 0, there exists a constant C such that the following statement
is valid. If a symmetric tensor field-distribution u ∈ D′(Ω;SmRn) is such that
du ∈ L2(Ω;Sm+1Rn), then there exists a Killing tensor field w ∈ C∞(Ω;SmRn)
such that u− w ∈ H1(Ω;SmRn) and the following inequality holds:

(52) ‖u− w‖2H1(Ω;SmRn) ≤ C‖du‖
2
L2(Ω;Sm+1Rn).

Proof of Proposition 5.1. Let Ω and u satisfy the hypotheses of Proposition 5.1.
Under assumption (46), the Killing tensor field w on the left-hand side of (52) must
be identically equal to zero, since a non-vanishing polynomial cannot tend to zero
at infinity. Therefore (52) coincides with (47).
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