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1. INTRODUCTION

Let T : X → X be a linear operator on a complex Banach space. We denote its spectrum and
resolvent by σ(T ) and R(λ, T ), respectively.

Assume that σ(T ) is not connected and that F and σ \ F are open-closed parts of the spectrum. Let
us surround F by a contour γ. The range [F ] and the null space [σ \F ] of the spectral projection operator
P = (1/(2πi))

´
γ R(λ, T ) dλ are invariant subspaces, and σ(T |[F ]) = F .

Assume that the spectrum is connected. Then, when cutting away a subset F of the spectrum by a
contour γ, one should multiply the resolvent by a weight function g that is small in a neighborhood of
the intersection γ ∩ F ,

f(T ) =
1

2πi

ˆ

γ
R(λ, T )g(λ) dλ.

In this way one can construct spectral subspaces under conditions on the resolvent growth (see [1]
and [2]) which are necessarily satisfied if the powers T±n have tempered growth. For example, the
nonquasianalyticity condition

∞∑

n=−∞

ln ‖T n‖
1 + n2

< ∞

guarantees that the spectrum is separable [3].
Now let T : X → X, and let X be real. The spectral projection corresponding to a symmetric

component of the spectrum of the complexified operator TC : XC → XC gives a symmetric invariant
subspace LC. Its real part L ⊂ X is T -invariant; e.g., see [4, Theorem 5.3].

However, even if the spectrum TC is connected, one can readily obtain a symmetric TC-subspace by
the method outlined above. Namely, one must integrate over an R-symmetric contour with a symmetric
function g. The “real part” of the range f(TC) will then be a T -invariant subspace of X. In what follows,
we present the “realification” of one spectral method in more detail. By way of application, we obtain a
theorem whose complex counterpart is proved in [5]. The last assertion of the theorem is often used in
the complex case and goes back to Theorem J in [6].

Theorem 1. Let X be a real Banach space, and let T : X → X be an invertible linear operator
such that ‖T n‖ = O(|n|k), k < ∞, as n → ±∞. If dim X > 2, then T has an invariant subspace. In
particular, a linear isometry T : X → X of a real space has an invariant subspace if dim X > 2.
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The results in [4] are closest in spirit to the present paper. Note that, in contrast to Wermer’s and
Godement’s results, the Aronszajn–Smith and Lomonosov theorems on invariant subspaces of compact
operators were generalized to the real case earlier; see [7] and references therein.

Needless to say, not all invariant subspaces can be obtained by spectral methods. There exist
operators of Volterra type whose restriction to the invariant subspaces has the same spectrum as the
original operator, σ(T |L) = σ(T ) = [0, 1]; see [8]. Generally speaking, if TC has invariant subspaces, it is
not known whether there exist symmetric invariant subspaces; the assertion that they exist is equivalent
to Conjecture 3 in [7].

2. DETAILED DEFINITIONS AND PROOF OF THEOREM 1

An invariant subspace is a proper closed subspace of X taken to itself by the operator T : X → X.
Let X be a complex Banach space, and let x ∈ X. The mapping λ �→ R(λ, T )x is a holomorphic

function defined outside σ(T ) and ranging in X. If this mapping admits a maximal single-valued analytic
continuation to some set ρ(x), then the set σ(x) := C \ ρ(x) ⊂ σ(T ) is called the local spectrum of x,
and the continuation itself is called the local resolvent of x.

Now let X be real. The complexification of X is the space XC whose elements have the form
z = (x + iy); the vectors x, y ∈ X are naturally called the real part (Re(z)) and the imaginary part
(Im(z)) of z. The space XC is equipped with the conjugation J , J(x + iy) = (x − iy). The norm on
XC is as follows:

‖z‖2 = max{‖Re(λz)‖2 + ‖Im(λz)‖2 | λ ∈ C, |λ| = 1}.
This norm is equivalent to the direct sum norm on X ⊕ X. An operator T : X → X is complexified as
follows: TC(x + iy) = (Tx + iTy). Clearly, (T n)C = T n

C
.

A subset F ⊂ C is said to be symmetric if it is symmetric with respect to the real axis, i.e., if F = F .
Likewise, a subset Z ⊂ XC is said to be symmetric if J(Z) = Z. It is easily seen that if Z ⊂ XC is a
symmetric subspace, then Z = LC, where L = ReZ = Im Z.

Lemma. Let TC : XC → XC be the complexification of an operator T : X → X. Then the spectrum
σ(TC) ⊂ C is symmetric. If the operator TC has a local resolvent, then σ(J(z)) = σ(z) for each
z ∈ XC.

Proof. One can readily verify that R(λ, TC) = J ◦ R(λ, TC) ◦ J , and hence the spectrum of TC is
symmetric. (This is Lemma 4.1 in [4].) Next, if z ∈ XC and f is an analytic continuation of the resolvent
R(λ, T )z, then the function

λ �→ J ◦ (f(λ))(J(z))

is an analytic continuation of the resolvent R(λ, TC)z. Hence the maximal continuations coincide, and
σ(J(z)) = σ(z). The proof of the lemma is complete.

Proof of Theorem 1. Let F be a symmetric circular arc containing part of the spectrum of the
operator TC, and let [F ] ⊂ XC be the subspace formed by the vectors whose local spectrum is contained
in F . Since the spectrum of TC is separable [3], it follows that [F ] is TC-invariant. Now the lemma
implies that this subspace is symmetric. It is easily seen that Re[F ] ⊂ X is a T -invariant subspace.

It may happen that the spectrum TC contains at most two points η, η ∈ Λ, and so there does not exist
a symmetric arc F containing part of the spectrum. In this case, the separability of the spectrum and the
restriction on the growth of ‖T±n‖ permit one to use the Gelfand–Hille theorem [10], [9] (cf. the proof
of [5, Theorem 3]) and readily conclude that

((TC − η)(TC − η))k+1 = 0;

hence the closure of the range of the operator

T 2
C − aTC + bI = (TC − η)(TC − η)
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does not coincide with the entire space XC. The coefficients a and b are real, and consequently the
closure of the range of the operator T 2 − aT + bI does not coincide with the entire space X; therefore,
X is either an invariant subspace or zero. In the latter case, each nonzero vector x ∈ X generates at
most a two-differential invariant subspace.

Consider the case of an isometry T . If it is bijective, then ‖T±n‖ = 1 for each n ∈ N and the proof is
complete. If, on the contrary, TX �= X, then TX is the desired closed invariant subspace. The proof of
Theorem 1 is complete.

Remark 1. Although we have used the rather general results from [3], the separability of the spectral
space [F ] under the assumptions of our theorem could be proved by reference to Leaf’s paper [2] or even
to Dunford’s original results [1] (see also [11, Chap. XVI, Sec. 5, Corollary 8]).

Remark 2. It is mentioned at the end of [3] that Werner established the existence of invariant subspaces
“of course provided that the spectrum contains more than one point” (translated from the Russian). This
is not completely true. The one-point case is separately studied in the proof of Theorem 3 in [5], and it is
this argument that we have used in the proof of Theorem 1 for the case of a two-point spectrum. If the
spectrum of TC is separable (for example, the operator is nonquasianalytic) but the powers ‖T n‖ grow
faster than polynomially, then three points of the spectrum are needed to obtain a symmetric invariant
subspace by our method.
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