Functional Analysis and Its Applications, Vol. 46, No. 3, pp. 232–233, 2012 Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 46, No. 3, pp. 89–91, 2012 Original Russian Text Copyright © by K. V. Storozhuk

Isometries with Dense Windings of the Torus in C(M)

K. V. Storozhuk*

Received October 18, 2010

ABSTRACT. Let C(M) be the space of all continuous functions on $M \subset \mathbb{C}$. We consider the multiplication operator $T: C(M) \to C(M)$ defined by Tf(z) = zf(z) and the torus $O(M) = \{f : M \to \mathbb{C}, \|f\| = \|\frac{1}{f}\| = 1\}$. If M is a Kronecker set, then the T-orbits of the points of the torus $\frac{1}{2}O(M)$ are dense in $\frac{1}{2}O(M)$ and are $\frac{1}{2}$ -dense in the unit ball of C(M).

KEY WORDS: Kronecker set, asymptotically finite-dimensional operator.

Let X be a Banach space, and let $T: X \to X$ be a linear operator such that $||T^n|| \leq C < \infty$ for any $n \in \mathbb{N}$. We set $X_0 = \{x \in X \mid T^n x \to_{n \to \infty} 0\}$. The operator T is said to be asymptotically finite-dimensional if codim $X_0 < \infty$.

Suppose that there exists a compact set $K \subset X$ such that the orbits of the elements of the unit ball approach K in some sense. What conditions on this "some sense" do guarantee the *asymptotically finite dimensionality* of T? Similar questions can also be posed for operator semigroups. Below we list some conditions and results.

1. If $\lim_{n\to\infty} \rho(T^n x, K) = 0$ for any $x \in B_X$, then T is asymptotically finite-dimensional and even *decomposable*, i.e., $X = X_0 \oplus L$, where L is a finite-dimensional T-invariant subspace. This was proved in [1] for Markov semigroups in L_1 , in [2] for positive operators in Banach lattices, and in [3] and [4] for arbitrary X.

2. If $\limsup_{n\to\infty} \rho(T^n x, K) \leq \eta < 1$ for any $x \in B_X$ (i.e., the compact set K "is attracting but, possibly, not strongly"), then T is asymptotically finite-dimensional [5].

3. If $\liminf_{n\to\infty} \rho(T^n x, K) = 0$ for any $x \in B_X$ (i.e., the set K "is attracting only sometimes"), then the operator T is still asymptotically finite-dimensional [6].

 4_{η} . Suppose that $\liminf_{n\to\infty} \rho(T^n x, K) \leq \eta < 1$ for any $x \in B_X$ (i.e., the set K "is attracting only sometimes and not strongly"). In [7, Problem 1.3.33], the question of whether T is asymptotically finite-dimensional in this case was posed. In [8] we gave a positive answer to this question for reflexive X (note that, in this case, T is decomposable).

In this note, we give a negative answer to the question of [7, Problem 1.3.33] in the general case. We show that, for each 0-dimensional compact set M, there exist linear *isometries* of the space C(M) satisfying condition $4_{1/2}$ with an attractive *point* $K = \{p\}$.

Note that the "attraction force" $\eta = 1/2$ cannot be diminished: the operators satisfying 4_{η} with $\eta < 1/2$ are always asymptotically finite-dimensional [9].

Recall that C(M) is the space of continuous functions on a compact set M. In the sequel, we assume that all functions are continuous and M is always a compact set. Let $D \subset \mathbb{C}$ denote the disk of radius 1 and $\Lambda = \partial D$, the unit circle. The unit ball $B_{C(M)} \subset C(M)$ consists of all functions of the form $f: M \to D$. By the *torus* $O(M) \subset C(M)$ we mean the set of all functions $f: M \to \Lambda$.

Lemma 1. Let $M \subset \Lambda$. The torus of radius 1/2 is $(1/2 + \varepsilon)$ -dense in the unit ball $B_{C(M)}$, i.e., for any $\varepsilon > 0$ and $f: M \to D$, there exists a function $\tilde{f}: M \to \Lambda$ such that $||f - \tilde{f}/2|| < 1/2 + \varepsilon$.

Proof. If $f(t) \neq 0$ for any t, then we set $\tilde{f} = f/|f|$; in the general case, we first "move" f away from zero and then normalize (this is not difficult). This completes the proof of the lemma.

Topological remark. If $f, g: \Lambda \to \Lambda$ and ||f - g|| < 2, then the maps f and g are homotopic. Thus, if deg $f \neq \deg g$, then ||f - g|| = 2. Therefore, if the interior of a set $M \subset \mathbb{C}$ is nonempty, then Lemma 1 is false. For example, if M = D, then we have $||\operatorname{id}|_D - f/2|| \ge 3/2$ for every $f: D \to \Lambda$.

^{*}This work was supported by the program "Leading Scientific Schools," grant no. NSh-6613.2010.1.

Let us define an operator $T: C(M) \to C(M)$ by the formula $(Tf)(t) = tf(t), t \in M$.

A compact set $M \subset \Lambda$ is called a *Kronecker set* if every continuous function $f: M \to \Lambda$ can be uniformly approximated by characters of Λ (i.e., by functions of the form $t \to t^n$, $n \in \mathbb{Z}$; it suffices to take $n \in \mathbb{N}$). It is convenient for us to reformulate this definition as follows.

Lemma 2. A compact set M is a Kronecker set if and only if the orbit $\{f, Tf, T^2f, ...\}$ is dense in O(M) for every $f \in O(M)$.

Proof. The operator T is an isometry. Hence it suffices to prove the lemma under the assumption $f \equiv 1 \in O(M)$. In this case, $T^n f(t) = t^n$. The rest is obvious.

Clearly, T can be replaced by T^{-1} in Lemma 2.

Theorem 1. Suppose that $M \subset \mathbb{C}$ and $T: C(M) \to C(M)$ is the operator of multiplication by t, that is, (Tf)(t) = tf(t). If $M \subset \Lambda$ is a Kronecker set, then, for every $f \in B_{C(M)}$ and every $\tilde{f} \in O(M)$, there is a sequence of powers $m_k \to \infty$ such that $\liminf_{k\to\infty} ||T^{m_k}f - \tilde{f}/2|| \leq 1/2$.

Proof. The theorem is an easy consequence of Lemmas 1 and 2. It should only be noted that $||T^{m_k}f - \frac{\tilde{f}}{2}|| = ||f - T^{-m_k}\frac{\tilde{f}}{2}||.$

Theorem 2. Let M be a zero-dimensional compact set. Then there is a homeomorphism $g: M \to g(M) \subset \Lambda$ such that g(M) is a Kronecker set and, for the multiplication operator $T: C(M) \to C(M), (Tf)t = g(t)f(t)$, the assertion of Theorem 1 is true; moreover, Sp(T) = g(M).

Proof. Any zero-dimensional metric compact set M is homeomorphic to a subset of any perfect set, for example, of a perfect Kronecker set (such sets exist; see, e.g., [10]). But closed subsets of a Kronecker set are always Kronecker. The rest is easy.

Example. Let c be the Banach space of convergent sequences. Suppose that $\lambda_n \in \mathbb{C}$, $\lambda_n \to \lambda$. We can identify c with C(M) for $M = \{\lambda, \lambda_1, \lambda_2, \dots\}$ by considering convergent sequences $(f_n) \in c$ as functions $f \in C(M)$, $f(\lambda_n) = f_n$; we have $f(\lambda) = \lim f_n$. Consider the operator $T : c \to c$ defined by $(Tf)_n = \lambda_n f_n$. If $\{\lambda, \lambda_1, \lambda_2, \dots\}$ is a Kronecker set, then T is an isometry satisfying condition $4_{1/2}$ for any singleton $K \in \frac{O(M)}{2}$.

Note that, although the operators from c to c of the form $(Tf)_n = \lambda_n f_n$, $\lambda_n \to \lambda \neq 0$, have no complete system of finite-dimensional subspaces, all of them are nevertheless scalarly almost periodic [11].

References

- [1] A. Lasota, T.-Y. Li, and J. A. Yorke, Trans. Amer. Math. Soc., 286:2 (1984), 751–764.
- [2] W. Bartoszek, Studia Math., **91**:3 (1988), 179–188.
- [3] Vu Quoc Phong, Ukrain. Mat. Zh., **38** (1986), 688–692.
- [4] R. Sine, Rocky Mountain J. Math., **21**:4 (1991), 1373–1383.
- [5] E. Yu. Emel'yanov and M. Wolff, Studia Math., 144:2 (2001), 169–179.
- [6] K. V. Storozhuk, J. Math. Anal. Appl., **332**:2 (2007), 1365–1370.
- [7] E. Yu. Emel'yanov, Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups., Operator Theory Advances and Applications, vol. 173, Birkhauser, Basel, 2007.
- [8] K. V. Storozhuk, Sibirsk. Mat. Zh., 50:4 (2009), 928–932; English transl.: Siberian Math. J., 50:4 (2009), 737–740.
- [9] K. V. Storozhuk, Sibirsk. Mat. Zh., 52:6 (2011), 1389–1393; English transl.: Siberian Math. J., 52:6 (2011), 1104–1107.
- [10] I. P. Kornfeld, Ya. G. Sinai, and S. V. Fomin, Ergodic Theory [in Russian], Nauka, Moscow, 1980.
- [11] Ju. I. Lubich, Uspekhi Mat. Nauk, **18**:1 (109) (1963), 165–171.

SOBOLEV INSTITUTE OF MATHEMATICS SB RAS NOVOSIBIRSK STATE UNIVERSITY e-mail: stork@math.nsc.ru