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Strip packing problem
Input:

I = (R1, . . . , RN)— list of rectangles
i-th rectangle:

▶ h(Ri)— height,
▶ w(Ri)—width

ObjecƟve: Find orthogonal packing of I inside a unit
width strip without rotaƟons and intersecƟons so that
the height of packing is minimal.

ApplicaƟons
VLSI design
Cuƫng stock problem
Scheduling of parallel jobs on a cluster
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Packing example
N = 20
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Strip packing: approximaƟon algorithms
Strip packing is NP-hard (1980)

⇒ ApproximaƟon algorithms

ApproximaƟon raƟo

RA = sup
I

{
A(I)

OPT(I)

}
AsymptoƟc approximaƟon raƟo

R∞A = lim
k→∞

sup
I

{
A(I)

OPT(I)
| OPT(I) ≥ k

}
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Strip packing: on-line algorithms.
Worst case analysis
On-line algorithms with asymptoƟc approximaƟon
raƟos

1983 Baker, Schwarz, Shelf algorithms, R∞A ≤ 1.7 + ε

1997 Csirik, Woeginger R∞A ≤ 1.69103

2007 Han, Iwama, Ye, Zhang R∞A ≤ 1.58889

Lower bound
van Vliet R∞A ≥ 1.54
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Average case analysis of algorithms

Standard probabilisƟc model: h(Ri), w(Ri) are
independent random variables uniformly distributed in
[0, 1]

Denote uncovered area of a strip as

S = H−
∑
i

h(Ri)w(Ri)

The goal is to minimize E S
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Best known results in terms of
average-case analysis

1993 E S = O(N1/2)— Off-line algorithm, Coffman, Shor.

1993 E S = O(N2/3)— Closed-end on-line algorithm
(the number of rectangles N is known in advance),
Coffman, Shor.

2010 E S = O(N2/3)— Open-end on-line (an algorithm
does not know the number of rectangles),
Kuzyurin, Pospelov.
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New algorithm for closed-end SP
M. Trushnikov¹ proposed new on-line algorithm for
closed-end strip packing.

Experimentally he showed that

E S = CN1/2

N C
80 000 1.5655

150 000 1.5716
500 000 1.5798

1 000 000 1.5798
4 000 000 1.5878

15 000 000 1.5975
30 000 000 1.5897

100 000 000 1.5934
300 000 000 1.6006
800 000 000 1.5912

1 000 000 000 1.6044
1 500 000 000 1.6027
2 000 000 000 1.5949

¹Proceedings of ISP RAS, 2012, v. 22
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The idea of new algorithm (Trushnikov)

NotaƟons
d =

⌊
N/4√
N

⌋
, δ =

1

d

U =
N/4
d

=
√
N+ O(1).

At the boƩom of the strip we introduce d+ 1 horizontal
areas (called containers) each of height U (see the
picture below).
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Algorithm

U δ
δ

δ

…

δ
δ

δ

d+ 1 horizontal areas
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Algorithm

Each even rectangle we will pack in the first pyramid
and each odd one in the second.

Rectangles which consƟtute the pyramid we will call
containers.

Enumerate containers inside the pyramid by numbers
from 1 up to d such that the i th one has width iδ.
Rectangles inside containers will be packed one by one:
the first at the boƩom, next one above the first and so
on.
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The steps of the Algorithm
Let we obtain as input current rectangle of width w.

Find i, such that (i− 1)δ < w ≤ iδ. We will call this
rectangle be assigned to the i th container.
Then find minimal j such that i ≤ j ≤ d and in the j
th container it is enough room to pack the
rectangle.
If such j esists we pack the rectangle into the j th
container.
If no, then put the rectangle above current packing.

Such rectangles we will call unpacked.
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Theorem (Trushnikov)

Theorem. The expected wasted area of
packing obtained by the Algorithm is

E S = Õ(
√
N) = O(N1/2(logN)3/2)
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Outline of the proof
Let Σ is the square of all N rectangles. Obviously
EΣ = N/4.
The height of the pyramids is

(d+1)U = N/4
(
d+ 1

d

)
= N/4+

N
4⌊N/4√

N ⌋
= N/4+O(N1/2).

We will consider only one of the two pyramids and only
⌊N/2⌋ rectangles packed into this pyramid.
Let us enumerate these ⌊N/2⌋ rectangles by numbers
from 1 up to ⌊N/2⌋ in the order of arriving rectangles.
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LetM{n1, n2} be the expectaƟon of
the number of unpacked rectangles
when the Algorithm packs rectangles
with numbers from the interval [n1, n2]

It is sufficient to prove that
M {1, ⌊N/2⌋} = O(N1/2(logN)3/2).
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Main results
Define two numbers k0 and k1:

k0 = ⌊N/2⌋ − ⌊N3/4
√
logN⌋, k1 = ⌊N/2⌋ − ⌊N1/2⌋.

Obviously

M {1, ⌊N/2⌋} = M {1, k0}+M {k0 + 1, k1}+

M {k1 + 1, ⌊N/2⌋}
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Main results

Lemma 1.M {k1 + 1, ⌊N/2⌋} = O(N1/2).

Lemma 2.M {1, k0} → 0, N → ∞,

Lemma 3.M {k0 + 1, k1} = O(N1/2(logN)3/2)
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Open quesƟons

Process. The are n enumerated urns, each can
contain at most n balls and there are n2 balls.

At the beginning all urns are empty.

At the current step the current ball goes to any
urn with probability n−1.
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Process. If the urn is not full (contains less than
n balls), the ball will be packed into this urn.

In opposite case it moves to the urn with
number less by 1. If it is not full the ball will be
packed into this urn, else it moves to the next
urn with number less by 1.
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Problem

If the ball was moved to the urn with
number 1 and the urn is full, the ball is
unpacked.

QuesƟon: Is it true that the
expectaƟon of the unpacked balls is
O(n)?
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Generalized mulƟple-strip packing

MSP: MulƟple strip packing problem

there areM strips of unit width instead of
one.

Generalized MSP (IniƟally addressed by Zhuk, 2006):
There areM strips of widths w1, . . . ,wM.

w1 ≥ w2 ≥ . . . ≥ wM
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Generalized mulƟple-strip packing

There are examples of inputs for
Generalized MSP such that very
natural heurisƟcs give

R∞A → ∞
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Generalized mulƟple-strip packing
Zhuk proved (2007) for generalized MSP that

there is an on-line algorithm A

R∞A ≤ 2e

For any on-line algorithm A:

R∞A ≥ e
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NotaƟons.

Define A(T) as a vector y = (y1, . . . , ym), where yk is the
sum of squares of rectangles from T packed by
algorithm A into the k th strip.

h(T) efficiently computable funcƟon

h(T) is the lower bound of the height of opƟmal packing

OPT(T) ≥ h(T)
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An idea of balancing. Concrete rule: Let a set of
rectangles T was packed and
Ar(T) = (y1, . . . , ym). Next rectangle R will be packed as
follows:

...1 Compute h = h(T+ {R}).

...2 Find k, such that

k = max i : w(R) ≤ wi and
yi
wi

≤ eh.

If such k exists we pack R into the k th strip.
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DirecƟons for future work

Special cases: all strips have equal widths
(MSP)

strips have widths of special form (say, powers
of 2)

strips have constant number of different
widths
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MSP: on-line vs off-line
Off-line

AFPTAS, 2009, Bougeret, Dutot, Jansen, OƩe,
Trystam
RA ≤ 2 2009, Bougeret, Dutot, Jansen, OƩe,
Trystam

On-line
RA ≤ 3 + δm, Ye, Han, Zhang, 2009
RA ≤ 2.7 + δm, Ye, Han, Zhang, 2009
randomized on-line algorithm

δm → 0, m → ∞
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MulƟple Strip Packing: average case

MSP – all strips have equal widths

Our results on average case analysis for MSP

Modified T-algorithm: every new rectangle we
place on the empƟest strip and then use
Trushnikov’s algorithm.
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Theorem
E Smax = Õ(N1/2) forM = const.

Experiments show that
E Smax = O(N1/2) even for
M = N1/3

E Smax = CN1/2

M N C
21 10 000 1.663
34 40 000 1.6415
54 160 000 1.6937
86 640 000 1.7065

136 2 560 000 1.7238
273 20 480 000 1.5822
434 81 920 000 1.6312
547 163 840 000 1.7506
689 327 680 000 1.7396
868 655 360 000 1.6455

1000 1 000 000 000 1.5631
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Experiments (average case) for MSP
ForM = N1/2 average waste grows faster than N1/2

M N C
200 40 000 3.0043
400 160 000 3.7113
800 640 000 4.8146

1131 1 280 000 5.1267
1600 2 560 000 4.7967
2262 5 120 000 3.9807
3200 10 240 000 5.321
4525 20 480 000 5.4551
6400 40 960 000 7.5701
9050 81 920 000 8.067

12800 163 840 000 9.3379
18101 327 680 000 7.6747
31623 1 000 000 000 16.4354 31/62



Resume and future work

New closed-end on-line algorithm for strip packing

It is shown experimentally that E S = O(N1/2).

It is proved that the algorithm provides
E S = Õ(N1/2)

Future work: improve analysis of new algorithm
(E S = O(N1/2)) and adapt it to MSP.
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Social networks

Facebook, TwiƩer, VKontakte, etc.

J. Ugander, B. Karrer, L. Bachstrom, C. Marlow,
The anatomy of the Facebook social graph
Conell Univ. Library, arXiv.org>cs>arXiv:
1111.4503
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Social networks models

Social networks are sparce random
graphs, rapidly growing and rapidly
changing

Classical Erdos-Renyi model Gn,p (1959)
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Erdos-Renyi model

Random graph Gn,p

n nodes of a graph
p probability that edge (v, u) exists
∀u, v
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EvoluƟon: p is oŌen a funcƟon of n

’evoluƟon’ of random graphs: the
study for what funcƟons p = p(n) the
graph change its properƟes.

If p = c
n then component structure

depends on the value of c:
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.

.. ..

.

.

If c < 1⇒ all components have size
O(log n)
.

.. ..

.

.

If c ≥ 1 there is one giant component
of size θ(n), and all other componets
have size O(log n).
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Erdos and Renyi model is inappropriate
for real-life

do not saƟsfy power law: the
number of nodes of degree i is
proporƟonal to i−β
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Barabasi-Albert model (1999)

starƟng withm0 of verƟces
at every step:

▶ add a vertex vnew withm edges
▶ P(vnew connected vi) depend on degree(vi)

AŌer t steps we have t +m0

verƟces andmt edges.
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Three types of models

1. HeirsƟcal (preferenƟal aƩachments, forest
fire, kronecker graph products, )

2. Bollobas-Riordan - fixed parameter β = 3

and some generalizaƟons (2.1 ≤ β ≤ 3)

3. Models with arbitrary β (Chung-Lu,
Luczak-Janson)
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New random models (generators)

Random walk (2003)
Nearest Neighbor (2003)
Forest Fire (2005)
ModificaƟons (2010)
KronFit (2007)
DK-2 (2006)
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G(w)model Chung-Lu (2006): if average
degree d > 1 then almost surely (a.s) G has a
unique giant component,
the second largest component a.s. has size
O(log n)

Janson, Luczak, Norros (2009): if 0 < β < 3 the
largest clique a.s. has size O(nc(β)),
if β > 3 then largest clique has size in {2, 3}
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k-core: maximal induced subgraph with
minimum degree k.

G(w)model Chung-Lu

Fernholz-Ramachandran (2004): for every
k ≥ 3 a random G a.s has a giant k-core if
2 < β < 3,

a.s. has no giant 3-core if β > 3
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Two popular opƟmizaƟon problems in
social networks:

influence maximizaƟon (IM)
finding communiƟes
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InformaƟon diffusion in social
networks

Social network as a directed graph G = (V, E)
.
Informally..

.. ..

.

.

StarƟng from few seed nodes informaƟon can
stochasƟcally propagate to new nodes.
Goal: find small subset of nodes that could maximize
the spread of influence (influence maximizaƟon IM).

Analogies: Epidemies, physics, sociology, ecomics (viral markeƟng,
word-of-mouth effect)
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InformaƟon diffusion in social
networks

2001 Domingos and Richardson: first study of IM as an
algorithmic problem.

2003 Kempe, Kleinberg, Tardos — first results for
stochasƟc cascade model:

▶ IM is NP-hard
▶ Greedy is (1-1/e)-approximate algorithm
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Basic Diffusion Models

Three basic models (Kempe et al,
2003):
IC Independent cascade model
LT Linear threshold model

WC Weight cascade model
GeneralizaƟons
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Independent cascade (IC) model

...1 Start with iniƟal set of nodes (seed)

...2 Runs unƟl no more acƟvaƟons are
possible:

▶ if node v becomes acƟve at step t then
⋆ at step t+ 1 (only!)
⋆ it can acƟvate each neighbor w of v
⋆ independently with probability p(v,w)
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Problem formulaƟon

Given
▶ G = (V, E),
▶ number k
▶ p(u, v) for all edges (u, v) ∈ E

Find k nodes maximizing expected
number of nodes influenced by
these k nodes.
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Complexity
Kempe at al (2003):
For both models the problem is
NP-hard (worst case).

ApproximaƟon algorithms
Greedy: (1− 1/e)-approximaƟon
for any input
(1− 1

e − ε)-approximaƟon is
NP-hard for any ε > 0 (Chen et al,
2010) 50/62



ApproximaƟon algorithms: Greedy
I ⊆ V subset of nodes G = (V, E)
f(I) the expectaƟon of the size of
influenced nodes (this funcƟon is
submodular)

.
Greedy..

.. ..

.

.

Set I := ∅
At each step choose v such that f(I ∪ v)
is maximum and set I := I ∪ v unƟl
|I| = k 51/62



DifficulƟes with Greedy. Finding v such that
f(I ∪ v) is maximum is #P-hard (2010)
.
Experiments..

.. ..

.

.

To find next node with maximum expectaƟon
of addiƟonal influence it is necessary to do
about 10000 random iteraƟons (smaller values
decrease the quality of soluƟon).

As a consequence the classical greedy
algorithm is too slow for relaƟvely large
networks (hundreds thousands of nodes or
more) 52/62



Fast heurisƟcs:
Random
Single discount
Degree
Dedgree discount
Centrality
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General observaƟons

1. The basic Greedy heurisƟcs is the best among known
algorithms with respect to quality (experimental results)
(Kempe at al., 2003, Chen et al., 2009).
But! Such algorithms can not be used for large enough
networks

2. Different fast heurisƟcs (say, Random, Single discount,
Degree, Dedgree discount) are fast enough for large
networks but cannot achieve the quality of soluƟon
obtained by Greedy
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New problem formulaƟon

Given
▶ G = (V, E),
▶ number k
▶ p(u, v) for all edges (u, v) ∈ E
▶ subset H ⊆ V of nodes

Find k nodes maximizing expected
number of nodes in H influenced by
these k nodes.

Analogy: spanning tree vs Steiner tree
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CommuniƟes: definiƟons

Graph G = (V, E)

k-clique— complete subgraph on k nodes
a-near-k-clique (or a-dense k-subgraph)
— subgraph S on k nodes with
2|E(S)|/(k(k− 1) ≥ a

subset of nodes S: |E(S)| > |E(S,V \ S)|
subset of nodes S: |E(S,V \ S)|/|E(S)| ≤ a
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ComputaƟonal hardness

The most formulaƟons of communiƟes
problems (maximum clique, densest
subgraph of given size, etc.) are
NP-hard.
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ComputaƟonal hardness

Maximum Clique is hard to approximate within
|V|1−δ (Hastad, 1996)

This problem is difficult even in random graphs
(Gn,p Erdos-Renyi model) — (Karp, 1976)

Finding large hidden clique in Gn,p is hard
(Alon, Krivelevich, Sudakov, 1994)
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(k, γ)-community

Subset S ⊆ V, |V| = k is a
(k, γ)-community if

|E(S,V \ S)|/|E(S)| ≤ γ
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Given G = (V, E) and k find S ⊆ V of size k
minimizing γ such that

|E(S,V \ S)|/|E(S)| ≤ γ

The problem is NP-hard. Moreover it cannot
be approximated under UGC (Uniques games
conjecture): disƟngwish between γ ≤ δ and
γ ≥ 1− δ

Raghavendra-Steurer, STOC-2010, Graph
expansion and the Unique Games Conjecture
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Problems
ProperƟes of random graphs in power law
models

Achieve quality of Greedy for IM by more
efficient heurisƟcs

ApproximaƟon algorithm for IM with objecƟve
set of nodes H ⊆ V

Algorithms for finding (k, γ)-communiƟes in
random power law graphs
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