Meta-heuristic optimization

Nenad Mladenović,

Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia Department of Mathematics, Brunel University London UK.

- Optimization problems (continuous-discrete, static-dynamic, deterministic-stochastic)
- Exact methods, Heuristics, Simulation (Monte-Carlo)
- Classical heuristics (constructive (greedy add, greedy drop), relaxation based, space reduction, local search, Lagrangian heuristics,...)
- Metaheurestics (Simulated annealing, Tabu search, GRASP, Variable neighborhood search, Genetic search, Evolutionary methods, Particle swarm optimization,)

Optimization problems

A deterministic optimization problem may be formulated as

$$\min\{f(x)|x \in X, X \subseteq \mathcal{S}\},\tag{1}$$

- where S, X, x and f denote the solution space, the feasible set, a feasible solution and a real-valued objective function, respectively.
- If \mathcal{S} is a finite but large set, a combinatorial optimization problem is defined.
- If $S = R^n$, we refer to continuous optimization.
- A solution $x^* \in X$ is optimal if

$$f(x^*) \le f(x), \ \forall x \in X.$$

- An exact algorithm for problem (1), if one exists, finds an optimal solution x^{*}, together with the proof of its optimality, or shows that there is no feasible solution, i.e., X = ∅, or the solution is unbounded.
- For continuous optimization, it is reasonable to allow for some degree of tolerance, i.e., to stop when sufficient convergence is detected.

Metaheuristics

- Local search type
 - Simulated Annealing (Kirpatrick et al (1983);
 - Tabu search (Glover 1990)
 - GRASP (Greedy randomized adaptive search procedure) (Feo, Resende 1992)
 - Variable neighborhood search (Mladenovic 1995)
 - Other (Guided search, Noisy search, Large neighborhood search, Very large neighborhood search, Path relinking, Scatter search, Iterated local search)
- Inspired by nature
 - Genetic Algorithm (Memetic)
 - Ant colony optimization
 - Particle swarm optimization
 - Bee colony optimization, etc.
- Matheuristics
- Hybrids

Variable metric algorithm

Assume that the function f(x) is approximated by its Taylor series

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

$$x_{i+1} - x_i = -H_{i+1}(\nabla f(x_{i+1}) - \nabla f(x_i)).$$

Function VarMetric(x) let $x \in R^n$ be an initial solution $H \leftarrow I$; $g \leftarrow -\nabla f(x)$ for i = 1 to n do

 $\begin{array}{l} \alpha^{*} \leftarrow \arg\min_{\alpha} f(x + \alpha \cdot Hg) \\ x \leftarrow x + \alpha^{*} \cdot Hg \\ g \leftarrow -\nabla f(x) \\ H \leftarrow H + U \\ \textbf{end} \end{array}$

Local search

Function BestImprovement(x) repeat

 $\begin{array}{l} x' \leftarrow x \\ x \leftarrow \arg\min_{y \in N(x)} f(y) \\ \textbf{until} \ (f(x) \geq f(x')); \end{array}$

Function FirstImprovement(x) repeat

 $x' \leftarrow x; i \leftarrow 0$ repeat

$$\begin{split} i &\leftarrow i+1 \\ x &\leftarrow \arg\min\{f(x), f(x_i)\}, \ x_i \in N(x) \\ \texttt{until} \quad (f(x) < f(x_i) \text{ or } i = |N(x)|); \\ \texttt{until} \quad (f(x) \geq f(x')); \end{split}$$

Variable neighborhood search

- Let \mathcal{N}_k , $(k = 1, \ldots, k_{max})$, a finite set of pre-selected neighborhood structures,
- $\mathcal{N}_k(x)$ the set of solutions in the k^{th} neighborhood of x.
- Most local search heuristics use only one neighborhood structure, i.e., $k_{max} = 1$.
- An optimal solution x_{opt} (or global minimum) is a feasible solution where a minimum is reached.
- We call $x' \in X$ a local minimum with respect to \mathcal{N}_k (w.r.t. \mathcal{N}_k for short), if there is no solution $x \in \mathcal{N}_k(x') \subseteq X$ such that f(x) < f(x').
- Metaheuristics (based on local search procedures) try to continue the search by other means after finding the first local minimum. VNS is based on three simple facts:
 - ▷ A local minimum w.r.t. one neighborhood structure is not necessarily so for another;
 - ▷ A global minimum is a local minimum w.r.t. all possible neighborhood structures;
 - ▷ For many problems, local minima w.r.t. one or several \mathcal{N}_k are relatively close to each other.

Variable neighborhood search

- In order to solve optimization problem by using several neighborhoods, facts 1 to 3 can be used in three different ways:
 - \triangleright (i) deterministic;
 - ▷ (ii) stochastic;
 - \triangleright (iii) both deterministic and stochastic.
- Some VNS variants
 - ▷ Variable neighborhood descent (VND) (sequential, nested)
 - \triangleright Reduced VNS (RVNS)
 - ▷ Basic VNS (BVNS)
 - \triangleright Skewed VNS (SVNS)
 - \triangleright General VNS (GVNS)
 - \triangleright VN Decomposition Search (VNDS)
 - \triangleright Parallel VNS (PVNS)
 - ▶ Primal Dual VNS (P-D VNS)
 - \triangleright Reactive VNS
 - ▶ Backward-Forward VNS
 - \triangleright Best improvement VNS
 - \triangleright Exterior point VNS
 - \triangleright VN Simplex Search (VNSS)

- ▶ VN Branching
- ▶ VN Pump
- ▶ Continuous VNS
- \triangleright Mixed Nonlinear VNS (RECIPE), etc.

Neighborhood change

Function NeighbourhoodChange (x, x', k) if f(x') < f(x) then

 $x \leftarrow x'; \ k \leftarrow 1 \ /*$ Make a move */ else

 $k \leftarrow k+1 \ / \texttt{*}$ Next neighborhood */ end

Reduced VNS

Function RVNS (x, k_{max}, t_{max}) repeat

 $k \leftarrow 1$ repeat

```
x' \leftarrow \text{Shake}(x,k)
NeighborhoodChange (x,x',k)
until k = k_{max};
```

 $t \leftarrow \texttt{CpuTime()}$ until $t > t_{max}$;

- RVNS is useful in very large instances, for which local search is costly.
- It has been observed that the best value for the parameter k_{max} is often 2.
- The maximum number of iterations between two improvements is usually used as a stopping condition.
- RVNS is akin to a Monte-Carlo method, but is more systematic

• When applied to the *p*-Median problem, RVNS gave solutions as good as the Fast Interchange heuristic of Whitaker while being 20 to 40 times faster.

VND

Function VND (x, k'_{max}) repeat

 $k \leftarrow 1$

repeat

 $x' \leftarrow arg \min_{y \in \mathcal{N}'_k(x)} f(x) /*$ Find the best neighbor in $\mathcal{N}_k(x) */$ NeighbourhoodChange (x, x', k) /*Change neighbourhood */ until $k = k'_{max}$; until no improvement is obtained;

Sequential VND

 $\begin{array}{l} \textbf{Function Seq-VND}(x, \ell_{max}) \\ \ell \leftarrow 1 & // \text{ Neighborhood counter} \\ \textbf{repeat} \\ \hline i \leftarrow 0 & // \text{ Neighbor counter} \\ \textbf{repeat} \\ \hline i \leftarrow i+1 \\ x' \leftarrow arg\min\{f(x), f(x_i)\}, x_i \in N_\ell(x) // \text{ Compare} \\ \textbf{until } (f(x') < f(x) \text{ or } i = |N_\ell(x)|) \\ \ell, x \leftarrow \text{NeighborhoodChange } (x, x', \ell); // \text{ Neighborhood change} \\ \textbf{until } \ell = \ell_{max} \end{array}$

- The final solution of Seq-VND should be a local minimum with respect to all ℓ_m neighborhoods.
- The chances to reach a global minimum are larger than with a single neighborhood structu
- The total size of Seq-VND is equal to the union of all neighborhoods used.

• If neighborhoods are disjoint (no common element in any two) then the following holds

$$|\mathcal{N}_{ ext{Seq-VND}}(x)| = \sum_{\ell=1}^{\ell_{max}} |\mathcal{N}_\ell(x)|, \ x \in X.$$

Nested VND

- Assume that we define two neighborhood structures ($\ell_{max} = 2$). In the nested VND we fact perform local search with respect to the first neighborhood in any point of the second
- The cardinality of neighborhood obtained with the nested VND is product of cardinalities neighborhoods included, i.e.,

$$|\mathcal{N}_{ extsf{Nest-VND}}(x)| = \prod_{\ell=1}^{\ell_{max}} |\mathcal{N}_\ell(x)|, \; x \in X$$

- The pure Nest-VND neighborhood is much larger than the sequential one.
- The number of local minima w.r.t. Nest-VND will be much smaller than the number of loc minima w.r.t. Seq-VND.

Nested VND

Function Nest-VND (x, x', k)Make an order of all $\ell_{max} \ge 2$ neighborhoods that will be used in the search Find an initial solution x; let $x_{opt} = x$, $f_{opt} = f(x)$ Set $\ell = \ell_{max}$ repeat

if all solutions from ℓ neighborhood are visited then $\ell = \ell + 1$ if there is any non visited solution $x_{\ell} \in N_{\ell}(x)$ and $\ell \geq 2$ then $x_{cur} = x_{\ell}, \ \ell = \ell - 1$ if $\ell = 1$ then

Find objective function value $f = f(x_{cur})$ if $f < f_{opt}$ then $x_{opt} = x_{cur}$, $f_{opt} = f_{cur}$

until $\ell = \ell_{max} + 1$ (i.e., until there is no more points in the last neighborhood)

Mixed nested VND

- After exploring b (a parameter) neighborhoods, we switch from a nested to a sequent strategy. We can interrupt nesting at some level b (1 ≤ b ≤ ℓ_{max}) and continue with t list of the remaining neighborhoods in sequential manner.
- If b = 1, we get Seq-VND. If $b = \ell_{max}$ we get Nest-VND.
- Since nested VND intensifies the search in a deterministic way, boost parameter b may seen as a balance between intensification and diversification in deterministic local search wi several neighborhoods.
- Its cardinality is clearly

$$|\mathcal{N}_{\texttt{Mix}-\texttt{VND}}(x)| = \sum_{\ell=b}^{\ell_{max}} |\mathcal{N}_\ell(x)| + \prod_{\ell=1}^{b-1} |\mathcal{N}_\ell(x)|, \ x \in X.$$

Basic VNS

The Basic VNS (BVNS) method [?] combines deterministic and stochastic changes of neighbourhood. Its steps are given in Algorithm 8.

```
Function VNS (x, k_{max}, t_{max}) repeat
```

 $k \leftarrow 1$ repeat $x' \leftarrow \text{Shake}(x, k) /* \text{Shaking }*/$ $x'' \leftarrow \text{FirstImprovement}(x') /* \text{Local search }*/$ NeighbourhoodChange(x, x'', k) /* Change neighbourhood */until $k = k_{max}$; $t \leftarrow \text{CpuTime}()$

```
until t > t_{max};
```

General VNS

Function GVNS $(x, k'_{max}, k_{max}, t_{max})$ repeat

 $k \leftarrow 1$ repeat

$$x' \leftarrow \text{Shake}(x, k)$$

 $x'' \leftarrow \text{VND}(x', k'_{max})$
NeighborhoodChange (x, x'', k)
until $k = k_{max}$;

 $t \leftarrow \texttt{CpuTime()}$ until $t > t_{max}$;

Skewed VNS

Function NeighbourhoodChangeS (x, x'', k, α) if $f(x'') - \alpha \rho(x, x'') < f(x)$ then

 $x \leftarrow x''; k \leftarrow 1$ else

 $\substack{k \leftarrow k+1}{\mathsf{end}}$

Function SVNS $(x, k_{max}, t_{max}, \alpha)$ repeat

$$k \leftarrow 1; x_{best} \leftarrow x$$

repeat

```
x' \leftarrow \text{Shake}(x, k)

x'' \leftarrow \text{FirstImprovement}(x')

KeepBest (x_{best}, x)

NeighbourhoodChangeS(x, x'', k, \alpha)

until k = k_{max};
```

```
x \leftarrow x_{best}
t \leftarrow \text{CpuTime()}
until t > t_{max};
```

Extensions

Function BI-VNS (x, k_{max}, t_{max}) repeat

$$k \leftarrow 1 \ x_{best} \leftarrow x$$

repeat

$$x' \leftarrow \text{Shake}(x, k)$$

 $x'' \leftarrow \text{FirstImprovement}(x')$
 $KeepBest(x_{best}, x'')$
 $k \leftarrow k + 1$
until $k = k_{max}$;

 $x \leftarrow x_{best}$ $t \leftarrow \text{CpuTime()}$ until $t > t_{max}$;

Extensions

Function FH-VNS (x, k_{max}, t_{max}) repeat

 $k \leftarrow 1$

repeat

```
for \ell = 1 to k do

x' \leftarrow \text{Shake}(x, k)

x'' \leftarrow \text{FirstImprovement}(x')

KeepBest(x, x'')

end

NeighbourhoodChange(x, x'', k)

until k = k_{max};

t \leftarrow \text{CpuTime}()
```

```
until t > t_{max};
```

							(%)	dev				
Test				Objective function value			ĠVŃS vs.		Size		Time (sec)	
Instance	V	T	W	B&C	TS	GVNS	TS	B&C	B&C	GVNS	B&C	GVNS
kroA100	25	1	75	2356.96	2321.32	2356.92	-1.53	0.00	9	9	1622.75	83.09
kroA100	25	6	75	2588.61	2576.96	2588.57	-0.45	0.00	10	10	137.82	82.80
kroA100	25	12	75	2725.51	2723.86	2725.48	-0.06	0.00	16	16	42.80	8.72
kroA100	25	18	75	2879.15	2877.97	2879.10	-0.04	0.00	20	20	135.96	1.73
kroA150	37	1	113	3516.82	3490.45	3516.94	-0.76	0.00	8	8	3867.79	241.33
kroA150	37	9	113	3882.45	3853.74	3882.40	-0.74	0.00	14	14	75.73	34.36
kroA150	37	18	113	4166.33	4166.33	4166.28	0.00	0.00	20	20	8.05	6.60
kroA150	37	27	113	4268.36	4268.37	4268.31	0.00	0.00	30	30	16.58	3.67
kroA200	50	1	150	3775.93	3636.83	3781.07	-3.97	-0.14	9	10	7200.73	68.17
kroA200	50	12	150	3938.36	3910.39	3938.29	-0.71	0.00	1/	11	868.07	20.44
kroA200	50	25	150	4545.32	4545.33	4545.28	0.00	0.00	28	28	321.16	5.71
kroA200	50	31	150	4914.69	4849.82	4914.63	-1.34	0.00	38	38	1.67	0.90
kroB100	25	I	(5	2444.09	2442.18	2444.05	-0.08	0.00		8	48.29	40.97
kroB100	25	10	15	2392.91	2392.91	2392.88	0.00	0.00		11	8.70	42.50
KroB100	25	12	15 75		2507.40	2507.43	0.00	0.00	15	15	2.32	31.22
Krodiuu	20		112	2099.72	2099.71	2012.00		0.00	20	20		34.4Z
KroD130) C	L L	112	2002.14	2940.00	0010.00 2000 61	-2.23	-0.27	0 15	9 15	1200.90	20.07
kroB150	27	10	112	3625 50	2525 57	2525 52	-0.51	0.00	10	22	41.91 10 04	19.40
kroB150	27	27	112	3700 56	3700 55	3700 50		0.00	22	22	10.24	2 60
kroB200	50	1	150	3561 77	3515 00	3561 76	1 33	0.00	10	10	3877 27	10.86
kroB200	50	12	150	3537 64	3528 10	3537 58	-1.55	0.00	20	20	252 72	68 24
kroB200	50	25	150	4200 81	4200 40	4200 76	_0 01	0.00	30	30	163 37	17 72
kroB200	50	37	150	4597 73	4597 72	4597 69	0.01	0.00	38	38	10.33	3 40
kroC100	25	1	75	2114 74	2039 45	2114 70	-3 69	0.00	8	8	166.30	45 98
kroC100	25	6	75	2287.62	2234.55	2287.60	-2.37	0.00	10	10	53.78	25.73
kroC100	25	12	75	2303.61	2303.60	2303.57	0.00	0.00	15	15	7.81	6.78
kroC100	25	18	75	2524.54	2491.42	2524.49	-1.33	0.00	18	18	0.26	2.60
kroD100	25	1	75	2335.90	2306.69	2335.86	-1.26	0.00	8	8	158.82	76.47
kroD100	25	6	75	2435.53	2422.13	2435.51	-0.55	0.00	12	12	40.72	123.76
kroD100	25	12	75	2522.18	2494.43	2522.16	-1.11	0.00	15	15	0.47	8.88
kroD100	25	18	75	2642.83	2642.82	2642.78	0.00	0.00	19	19	1.13	3.86
kroE100	25	1	75	2618.70	2526.25	2618.66	-3.66	0.00	7	7	10.73	26.55
kroE100	25	6	75	2561.25	2492.11	2561.22	-2.77	0.00	10	10	1.74	11.49
kroE100	25	12	75	2659.51	2651.28	2659.50	-0.31	0.00	16	16	1.08	9.84
kroE100	25	18	75	2766.33	2766.34	2766.30	0.00	0.00	22	22	10.00	10.22
Average				3130.47	3106.44	3130.80	-0.86	-0.01	16.81	16.86	/34.26	35.00

Summer School, Mathematical models and methods for decision making, June 21-23, 2013, Novosibirsk, Russia Table 1: Computational results on extended AtTSP instances

Thank you for your attention!

nenad.mladenovic@brunel.ac.uk