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• Optimization problems (continuous-discrete, static-dynamic, deterministic-stochastic)

• Exact methods, Heuristics, Simulation (Monte-Carlo)

• Classical heuristics (constructive (greedy add, greedy drop), relaxation based, space reduction,

local search, Lagrangian heuristics,...)

• Metaheurestics (Simulated annealing, Tabu search, GRASP, Variable neighborhood search,

Genetic search, Evolutionary methods, Particle swarm optimization, ....)
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Optimization problems
A deterministic optimization problem may be formulated as

min{f(x)|x ∈ X,X ⊆ S}, (1)

• where S, X, x and f denote the solution space, the feasible set, a feasible solution and a

real-valued objective function, respectively.

• If S is a finite but large set, a combinatorial optimization problem is defined.

• If S = Rn, we refer to continuous optimization.

• A solution x∗ ∈ X is optimal if

f(x
∗
) ≤ f(x), ∀x ∈ X.

• An exact algorithm for problem (1), if one exists, finds an optimal solution x∗, together with

the proof of its optimality, or shows that there is no feasible solution, i.e., X = ∅, or the

solution is unbounded.

• For continuous optimization, it is reasonable to allow for some degree of tolerance, i.e., to

stop when sufficient convergence is detected.
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Metaheuristics

• Local search type

• Simulated Annealing (Kirpatrick et al (1983);

• Tabu search (Glover 1990)

• GRASP (Greedy randomized adaptive search procedure) (Feo, Resende 1992)

• Variable neighborhood search (Mladenovic 1995)

• Other (Guided search, Noisy search, Large neighborhood search, Very large neighbor-

hood search, Path relinking, Scatter search, Iterated local search)

• Inspired by nature

• Genetic Algorithm (Memetic)

• Ant colony optimization

• Particle swarm optimization

• Bee colony optimization, etc.

• Matheuristics

• Hybrids
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Variable metric algorithm
Assume that the function f(x) is approximated by its Taylor series

f(x) =
1
2
xTAx− bTx

xi+1 − xi = −Hi+1(∇f(xi+1)−∇f(xi)).

Function VarMetric(x)
let x ∈ Rn be an initial solution
H ← I; g ← −∇f(x)
for i = 1 to n do

α∗ ← argminα f(x+α·Hg)
x← x+ α∗ ·Hg
g ← −∇f(x)
H ← H + U

end
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Local search
Function BestImprovement(x)
repeat

x′ ← x
x← argminy∈N(x) f(y)

until (f(x) ≥ f(x′));

Function FirstImprovement(x)
repeat

x′ ← x; i← 0
repeat

i← i+ 1
x← argmin{f(x), f(xi)}, xi ∈ N(x)

until (f(x) < f(xi) or i = |N(x)|);
until (f(x) ≥ f(x′));
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Variable neighborhood search

• Let Nk, (k = 1, . . . , kmax), a finite set of pre-selected neighborhood structures,

• Nk(x) the set of solutions in the kth neighborhood of x.

• Most local search heuristics use only one neighborhood structure, i.e., kmax = 1.

• An optimal solution xopt (or global minimum) is a feasible solution where a minimum is

reached.

• We call x′ ∈ X a local minimum with respect to Nk (w.r.t. Nk for short), if there is no

solution x ∈ Nk(x′) ⊆ X such that f(x) < f(x′).

• Metaheuristics (based on local search procedures) try to continue the search by other means

after finding the first local minimum. VNS is based on three simple facts:

. A local minimum w.r.t. one neighborhood structure is not necessarily so for another;

. A global minimum is a local minimum w.r.t. all possible neighborhood structures;

. For many problems, local minima w.r.t. one or several Nk are relatively close to each
other.
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Variable neighborhood search

• In order to solve optimization problem by using several neighborhoods, facts 1 to 3 can be

used in three different ways:

. (i) deterministic;

. (ii) stochastic;

. (iii) both deterministic and stochastic.

• Some VNS variants

. Variable neighborhood descent (VND) (sequential, nested)

. Reduced VNS (RVNS)

. Basic VNS (BVNS)

. Skewed VNS (SVNS)

. General VNS (GVNS)

. VN Decomposition Search (VNDS)

. Parallel VNS (PVNS)

. Primal Dual VNS (P-D VNS)

. Reactive VNS

. Backward-Forward VNS

. Best improvement VNS

. Exterior point VNS

. VN Simplex Search (VNSS)

Summer School, Mathematical models and methods for decision making, June 21-23, 2013, Novosibirsk, Russia 7



. VN Branching

. VN Pump

. Continuous VNS

. Mixed Nonlinear VNS (RECIPE), etc.
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Neighborhood change
Function NeighbourhoodChange (x, x′, k)
if f(x′) < f(x) then

x← x′; k ← 1 /* Make a move */
else

k ← k + 1 /* Next neighborhood */
end
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Reduced VNS
Function RVNS (x, kmax, tmax)
repeat

k ← 1
repeat

x′ ← Shake(x, k)
NeighborhoodChange (x, x′, k)

until k = kmax;

t← CpuTime()
until t > tmax;

• RVNS is useful in very large instances, for which local search is costly.

• It has been observed that the best value for the parameter kmax is often 2.

• The maximum number of iterations between two improvements is usually used as a stopping

condition.

• RVNS is akin to a Monte-Carlo method, but is more systematic
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• When applied to the p-Median problem, RVNS gave solutions as good as the Fast Interchange
heuristic of Whitaker while being 20 to 40 times faster.
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VND
Function VND (x, k′max)

repeat

k ← 1

repeat

x′ ← argminy∈N′
k
(x) f(x) /* Find

the best neighbor in Nk(x) */

NeighbourhoodChange (x, x′, k) /*

Change neighbourhood */
until k = k′max;

until no improvement is obtained;
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Sequential VND

Function Seq-VND(x, `max)

`← 1 // Neighborhood counter
repeat

i← 0 // Neighbor counter
repeat

i← i+ 1

x′ ← argmin{f(x), f(xi)}, xi ∈ N`(x) // Compare

until (f(x′) < f(x) or i = |N`(x)|)

`, x← NeighborhoodChange (x, x′, `); // Neighborhood change

until ` = `max

• The final solution of Seq-VND should be a local minimum with respect to all `max
neighborhoods.

• The chances to reach a global minimum are larger than with a single neighborhood structure.

• The total size of Seq-VND is equal to the union of all neighborhoods used.
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• If neighborhoods are disjoint (no common element in any two) then the following holds

|NSeq−VND(x)| =
`max∑
`=1

|N`(x)|, x ∈ X.
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Nested VND
• Assume that we define two neighborhood structures (`max = 2). In the nested VND we in

fact perform local search with respect to the first neighborhood in any point of the second.

• The cardinality of neighborhood obtained with the nested VND is product of cardinalities of

neighborhoods included, i.e.,

|NNest−VND(x)| =
`max∏
`=1

|N`(x)|, x ∈ X.

• The pure Nest-VND neighborhood is much larger than the sequential one.

• The number of local minima w.r.t. Nest-VND will be much smaller than the number of local

minima w.r.t. Seq-VND.
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Nested VND

Function Nest-VND (x, x′, k)

Make an order of all `max ≥ 2 neighborhoods that will be used in the search

Find an initial solution x; let xopt = x, fopt = f(x)

Set ` = `max
repeat

if all solutions from ` neighborhood are visited then ` = `+ 1

if there is any non visited solution x` ∈ N`(x) and ` ≥ 2 then xcur = x`, ` = `− 1

if ` = 1 then

Find objective function value f = f(xcur)

if f < fopt then xopt = xcur, fopt = fcur

until ` = `max + 1 (i.e., until there is no more points in the last neighborhood)
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Mixed nested VND
• After exploring b (a parameter) neighborhoods, we switch from a nested to a sequential

strategy. We can interrupt nesting at some level b (1 ≤ b ≤ `max) and continue with the

list of the remaining neighborhoods in sequential manner.

• If b = 1, we get Seq-VND. If b = `max we get Nest-VND.

• Since nested VND intensifies the search in a deterministic way, boost parameter b may be

seen as a balance between intensification and diversification in deterministic local search with

several neighborhoods.

• Its cardinality is clearly

|NMix−VND(x)| =
`max∑
`=b

|N`(x)|+
b−1∏
`=1

|N`(x)|, x ∈ X.
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Basic VNS
The Basic VNS (BVNS) method [?] combines deterministic and stochastic changes of

neighbourhood. Its steps are given in Algorithm 8.

Function VNS (x, kmax, tmax)

repeat

k ← 1

repeat

x′ ← Shake(x, k) /* Shaking */
x′′ ← FirstImprovement(x′) /* Local search */
NeighbourhoodChange(x, x′′, k) /* Change
neighbourhood */

until k = kmax;

t← CpuTime()
until t > tmax;
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General VNS
Function GVNS (x, k′max, kmax, tmax)

repeat

k ← 1

repeat

x′ ← Shake(x, k)

x′′ ← VND(x′, k′max)

NeighborhoodChange(x, x′′, k)
until k = kmax;

t← CpuTime()
until t > tmax;
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Skewed VNS

Function NeighbourhoodChangeS(x, x′′, k, α)

if f(x′′)− αρ(x, x′′) < f(x) then

x← x′′; k ← 1
else

k ← k + 1
end

Summer School, Mathematical models and methods for decision making, June 21-23, 2013, Novosibirsk, Russia 20



Function SVNS (x, kmax, tmax, α)

repeat

k ← 1; xbest ← x

repeat

x′ ← Shake(x, k)

x′′ ← FirstImprovement(x′)

KeepBest (xbest, x)

NeighbourhoodChangeS(x, x′′, k, α)
until k = kmax;

x← xbest
t← CpuTime()

until t > tmax;
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Extensions
Function BI-VNS (x, kmax, tmax)

repeat

k ← 1 xbest ← x

repeat

x′ ← Shake(x, k)
x′′ ← FirstImprovement(x′)

KeepBest(xbest, x
′′)

k ← k + 1
until k = kmax;

x← xbest
t← CpuTime()

until t > tmax;
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Extensions

Function FH-VNS (x, kmax, tmax)

repeat

k ← 1

repeat

for ` = 1 to k do

x′ ← Shake(x, k)
x′′ ← FirstImprovement(x′)

KeepBest(x, x′′)
end

NeighbourhoodChange(x, x′′, k)
until k = kmax;

t← CpuTime()
until t > tmax;
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(%) dev
Test Objective function value GVNS vs. Size Time (sec)
Instance |V | |T | |W | B&C TS GVNS TS B&C B&C GVNS B&C GVNS
kroA100 25 1 75 2356.96 2321.32 2356.92 -1.53 0.00 9 9 1622.75 83.09
kroA100 25 6 75 2588.61 2576.96 2588.57 -0.45 0.00 10 10 137.82 82.80
kroA100 25 12 75 2725.51 2723.86 2725.48 -0.06 0.00 16 16 42.80 8.72
kroA100 25 18 75 2879.15 2877.97 2879.10 -0.04 0.00 20 20 135.96 1.73
kroA150 37 1 113 3516.82 3490.45 3516.94 -0.76 0.00 8 8 3867.79 241.33
kroA150 37 9 113 3882.45 3853.74 3882.40 -0.74 0.00 14 14 75.73 34.36
kroA150 37 18 113 4166.33 4166.33 4166.28 0.00 0.00 20 20 8.05 6.60
kroA150 37 27 113 4268.36 4268.37 4268.31 0.00 0.00 30 30 16.58 3.67
kroA200 50 1 150 3775.93 3636.83 3781.07 -3.97 -0.14 9 10 7200.73 68.17
kroA200 50 12 150 3938.36 3910.39 3938.29 -0.71 0.00 17 17 868.07 20.44
kroA200 50 25 150 4545.32 4545.33 4545.28 0.00 0.00 28 28 321.16 5.71
kroA200 50 37 150 4914.69 4849.82 4914.63 -1.34 0.00 38 38 1.67 0.90
kroB100 25 1 75 2444.09 2442.18 2444.05 -0.08 0.00 8 8 48.29 46.97
kroB100 25 6 75 2392.91 2392.91 2392.88 0.00 0.00 11 11 8.70 42.56
kroB100 25 12 75 2507.47 2507.46 2507.43 0.00 0.00 15 15 2.32 37.22
kroB100 25 18 75 2599.72 2599.71 2599.68 0.00 0.00 20 20 18.85 34.42
kroB150 37 1 113 3005.74 2948.05 3013.83 -2.23 -0.27 8 9 7235.95 25.87
kroB150 37 9 113 3282.67 3272.50 3282.61 -0.31 0.00 15 15 41.91 19.46
kroB150 37 18 113 3525.58 3525.57 3525.53 0.00 0.00 22 22 18.24 10.97
kroB150 37 27 113 3700.56 3700.55 3700.50 0.00 0.00 29 29 3.45 2.60
kroB200 50 1 150 3561.77 3515.09 3561.76 -1.33 0.00 10 10 3877.27 40.86
kroB200 50 12 150 3537.64 3528.10 3537.58 -0.27 0.00 20 20 252.72 68.24
kroB200 50 25 150 4209.81 4209.40 4209.76 -0.01 0.00 30 30 163.37 17.72
kroB200 50 37 150 4597.73 4597.72 4597.69 0.00 0.00 38 38 10.33 3.40
kroC100 25 1 75 2114.74 2039.45 2114.70 -3.69 0.00 8 8 166.30 45.98
kroC100 25 6 75 2287.62 2234.55 2287.60 -2.37 0.00 10 10 53.78 25.73
kroC100 25 12 75 2303.61 2303.60 2303.57 0.00 0.00 15 15 7.81 6.78
kroC100 25 18 75 2524.54 2491.42 2524.49 -1.33 0.00 18 18 0.26 2.60
kroD100 25 1 75 2335.90 2306.69 2335.86 -1.26 0.00 8 8 158.82 76.47
kroD100 25 6 75 2435.53 2422.13 2435.51 -0.55 0.00 12 12 40.72 123.76
kroD100 25 12 75 2522.18 2494.43 2522.16 -1.11 0.00 15 15 0.47 8.88
kroD100 25 18 75 2642.83 2642.82 2642.78 0.00 0.00 19 19 1.13 3.86
kroE100 25 1 75 2618.70 2526.25 2618.66 -3.66 0.00 7 7 10.73 26.55
kroE100 25 6 75 2561.25 2492.11 2561.22 -2.77 0.00 10 10 1.74 11.49
kroE100 25 12 75 2659.51 2651.28 2659.50 -0.31 0.00 16 16 1.08 9.84
kroE100 25 18 75 2766.33 2766.34 2766.30 0.00 0.00 22 22 10.00 10.22

Average 3130.47 3106.44 3130.80 -0.86 -0.01 16.81 16.86 734.26 35.00

Table 1: Computational results on extended AtTSP instances
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Thank you for your attention!

nenad.mladenovic@brunel.ac.uk
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