Контрольная работа 2.1

- 1. В задаче о максимальном разрезе задан граф G=(V, E) и требуется разбить множество вершин графа V, на два непересекающихся множества (две доли) V_1 и V_2 так, чтобы максимизировать число ребер соединяющих вершины разных множеств. Рассмотрим следующий алгоритм локального поиска для задачи о максимальном разрезе.
 - Выбрать произвольное разбиение множества вершин V.
 - Если существует вершина $v \in V$ такая, что число ее соседей в доле, которой она принадлежит больше, чем число ее соседей в другой доле, то переместить эту вершину из одной доли в другую.
 - Если таких вершин нет выдать полученное разбиение.

Докажите, что алгоритм остановится через конечное число шагов и решение найденное алгоритмом будет содержать по крайней мере половину всех ребер графа G.

2. Рассмотрим следующий алгоритм для задачи $P2||C_{max}$ для фиксированного $\epsilon > 0$.

Input
$$(J=\{1,...,n\}, p: J \to \mathbf{Z}^+)$$

- 1) Определим $\mathbf{Big} = \{ j \in J | p_j \ge \varepsilon L \}$ и $\mathbf{Small} = \{ j \in J | p_j < \varepsilon L \}$ 2) Определим области $\boldsymbol{\Phi}^{(1)}, \boldsymbol{\Phi}^{(2)}, \dots, \boldsymbol{\Phi}^{(h)}$ согласно назначению больших работ по
- 3) Выберем область $\Phi^{(l)}$, в которой достигается минимум величины max $\{B_{1l}, B_{2l}\}$, где \mathbf{B}_{il} загрузка *i*-ой машины большими работами в назначении $\boldsymbol{\Phi}^{(l)}$.
- 4) Добавим маленькие работы одну за другой на машину с меньшей нагрузкой. Назовем полученное расписание σ_l .

Output (σ_i)

Показать, что полученный алгоритм является приближенной схемой.

- 3. Предположим, что в примере задачи о максимальной выполнимости нет одноэлементных дизъюнкций и в каждой дизъюнкции из двух элементов, по крайней мере один элемент входит без отрицания. Рассмотрим для таких примеров следующий алгоритм. Независимо для каждого $i: x_i \leftarrow 1$ с вероятностью p и $x_i \leftarrow 0$, иначе. Подберите значение параметра p, так чтобы максимизировать стоимость математического ожидания получаемых решений в худшем случае.
- 4. Пусть $\sigma(C_1) \circ ... \circ \sigma(C_k)$ решение, найденное алгоритмом СУПЕРСТРОКА. Доказать, что если в каждом цикле есть представитель, длина которого не превосходит вес цикла, то стоимость решения не превосходит 2ОРТ.