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Abstract. We consider a mathematical model belonging to the family
of competitive location problems. In the model, there are two compet-
ing parties called Leader and Follower, which open their facilities with
the goal to capture customers and maximize profit. In our model we
assume that Follower is able to open own facilities as well as to close
the Leader’s ones. The model can be written as a pessimistic bilevel
integer programming problem. We show that the problem of Leader’s
profit maximization can be represented as a problem of pseudo–Boolean
function maximization. The number of variables the function depends on
equals to the number of sites available for opening a facility. We suggest
a method of calculation of an upper bound for the optimal value of the
function based on strengthening of a bilevel model with valid inequal-
ities and further relaxation of the model by removing the lower–level
optimization problem.
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1 Introduction

In contrast to the classical location problem [9] models of competitive loca-
tion consider several competing parties [4–6,10]. The parties simultaneously or
sequentially open their facilities with the aim to optimize personal objective func-
tions. The goals of the competitors are associated with the customers capture
and satisfying their demands. There is a number of customer behavior mod-
els resulting from the characteristics of the demand and other factors [13]. We
assume that the customer capture is based on his preferences. They are assumed
to be known for both parties.

In our model, we consider the competition of two sides that open their facili-
ties sequentially. The decision making process can be considered as a Stackelberg
game [15]. The formalization of this kind of games can be done in a natural way
in terms of bilevel programming [8]. According to the game terminology the
party that opens its facilities first will be referred to as Leader. The second
party that opens its facilities knowing Leader’s decision will be referred to as
Follower.

In the present work, we deal with the model of competitive location where
in contrast to models from [4–6] Follower is able to close Leader’s facilities by
using discrediting, black PR and other methods of unfair competition.
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The Leader’s aim in this competition is to open such a set of facilities that
brings maximum profit provided that Follower can close some of Leader’s facil-
ities and capture some customers. Follower’s goal is to maximize profit as well.
Follower decides which Leader’s facilities are to be closed and where to open own
facilities.

First publications considering bilevel location models with opportunity of
closing or destructing of the facilities appeared in 2008. In [14] authors formulate
the model of interdiction median problem with fortification (RIMF), where one
party called a defender commits resources to protect facilities serving customers
from the rational attack of another party. The authors investigate properties of
the model and suggest an enumeration scheme to obtain an optimal defender’s
solution. Further developments of the model can be found in [1,11,16] where sto-
chastic generalizations of the model are considered. Other models of protection
against the rational attack are investigated in [2,3].

An important feature of our model is necessity of a revision of the feasibil-
ity definition. The most common concepts of feasibility for bilevel programming
problems are optimistic and pessimistic solutions. In the present work we focus
on the problem of finding a pessimistic optimal solution. The suggested app-
roach is based on the ideas developed and approved in [4,6]. The first point is
representation of the Leader’s problem in the form of pseudo–Boolean function
maximization. The number of variables the function depends on is equal to the
number of places available for facility opening. The representation allows imple-
menting inexact methods of search in a Boolean cube such as local search and
its modifications. The second important point is calculation of an upper bound
for the values the function takes on subsets specified by partial (0,1)–vectors. It
allows developing an implicit enumeration scheme proved to be effective when
applied to previously studied models.

In this paper, we show that given values of the Leader’s location variables
the problem of finding a pessimistic feasible solution is reduced to mixed–integer
programming problem. This implies that the required pseudo–Boolean function
can be constructed. By using the approach from [4,6] we define a modified system
of evaluating subsets, which allow to formulate sufficient conditions of capturing
the customer by Follower. This conditions written in a form of linear inequalities,
are used as valid inequalities for strengthening the bilevel model. The relaxation
of the strengthened model by removing the lower–level problem provides an
upper bound for the optimal value of the pseudo–Boolean function.

The paper is organized as follows. In Sect. 1 we propose the model of the facil-
ity location in unfair competition in the form of a bilevel integer programming
problem. Section 2 is devoted to the problem of finding a pessimistic feasible
solution of the model. A reduction to a pseudo–Boolean function maximization
problem is discussed as well. In Sect. 3 we construct an estimating problem pro-
viding an upper bound for the optimal value of the pseudo–Boolean function.
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2 Mathematical Model

Let us introduce the necessary notations.

Index sets:
I = {1, . . . ,m} is a set of locations (candidate sites for opening facilities);
J = {1, . . . , n} is a set of customers.

Parameters:
fi is a fixed cost of opening a Leader’s facility i ∈ I;
gi is a fixed cost of opening a Follower’s facility i ∈ I;
Gi is a cost of closing a Leader’s facility i ∈ I;
pij is a profit of Leader’s facility i ∈ I obtained from a customer j ∈ J ;
qij is a profit of Follower’s facility i ∈ I obtained from a customer j ∈ J ;

Variables:

xi =
{

1, if Leader opens facility i
0, otherwise,

zi =
{

1, if Follower opens facility i
0, otherwise,

si =
{

1, if Follower closes Leader’s facility i
0, otherwise,

xij =
{

1, if Leader’s facility i serves the customer j
0, otherwise,

zij =
{

1, if Follower’s facility i serves the customer j
0, otherwise.

We assume that the preferences of a customer j ∈ J are represented with
a linear order �j on the set I. The relation i1 �j i2 shows that either facility
i1 is more preferable for j than i2, or i1 = i2. If i1 �= i2 and i1 �j i2, we use
denotation i1 �j i2.

Given j ∈ J , we denote the greatest element of a nonempty set K ⊆ I
according to the order �j with ij(K). In other words, ij(K) is a i ∈ K such that
i �j k for all k ∈ K. For a nonzero Boolean vector x = (xi), i ∈ I we assume
that ij(x) = ij({i ∈ I|xi = 1}).

It is assumed that a customer is captured by the party that opens the most
preferable facility for him. Moreover, the party is able to serve the captured cus-
tomer only with a facility that is more preferable for him than any competitor’s
facility. If Boolean vectors x and z correspond to Leader’s and Follower’s facili-
ties locations respectively, then Leader’s facility i ∈ I can serve customer j ∈ J
iff i �j ij(z). Similarly, Follower’s facility i ∈ I can serve a customer j ∈ J iff
i �j ij(x).

Now we can formulate the model of facility location in unfair competition in
terms of bilevel integer programming:

max
(xi),(xij)

min
(z̃i),(z̃ij),(s̃i)

⎛
⎝−

∑
i∈I

fixi +
∑
j∈J

∑
i∈I

pijxij

⎞
⎠ , (1)
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z̃i +
∑

k|i�jk

xkj ≤ 1, i ∈ I, j ∈ J ; (2)

xi − s̃i ≥ xij , i ∈ I, j ∈ J ; (3)

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J ; (4)

where (z̃i), (z̃ij), (s̃i) solves (5)

max
(zi),(zij),(si)

{
−

∑
i∈I

Gisi −
∑
i∈I

gizi +
∑
j∈J

∑
i∈I

qijzij

}
, (6)

xi − si + zi ≤ 1, i ∈ I; (7)

xi ≥ si, i ∈ I; (8)

xi − si +
∑

k|i�jk

zkj ≤ 1, i ∈ I, j ∈ J ; (9)

zi ≥ zij , i ∈ I, j ∈ J ; (10)

zi, zij , si ∈ {0, 1}, i ∈ I, j ∈ J. (11)

We denote the upper–level problem (1)–(5) with L and the lower–level prob-
lem (6)–(11) with F . The problem (1)–(11) is denoted by (L,F).

Leader’s objective function (1) expresses the value of his profit and consists of
two components. The first one is the cost of facilities to be opened, and the second
summand represents the income collected by them. We assume that in the cases
when the problem F has several optimal solutions Follower plays against Leader
and chooses the solution that minimizes (1). Constraints (2) ensure that Leader
serves the customer with a facility which is more preferable for the customer than
any Follower’s facility. In addition, these constraints ensure that the customer is
served with no more than one Leader’s facility. Constraints (3) guarantee that
customers are served with open facilities. Follower’s problem F has a similar
form. Additional term in Follower’s objective function (6) equals to the cost of
closing Leader’s facilities. Constraints (7) ensures that Follower’s facility can be
opened only in a location without Leader’s one, and constraints (8) allow to
close only the Leader’s facility which is open.

3 Pessimistic Feasible Solutions

A pair (X, Z̃) is called a feasible solution of the problem (L,F) if X = ((xi), (xij))
is a feasible solution of the problem L with given z̃ = (z̃i), s̃ = (s̃i), and Z̃ =
((z̃i), (z̃ij), (s̃i)) is an optimal solution of the problem F with given x = (xi).

Denote the value of objective function (6) on a feasible solution Z of the
problem F with F (Z) and the value of objective function (1) on a feasible
solution (X, Z̃) of the problem (L,F) with L(X, Z̃).

Given values of variables x = (xi), i ∈ I, let us select “good” Leader’s
solutions among all feasible solutions (X, Z̃) of the problem (L,F). We call
a feasible solution (X̃, Z̃), X̃ = ((xi), (x̃ij)) strong if L(X̃, Z̃) ≥ L(X, Z̃) for
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every feasible solution (X, Z̃), where X = ((xi), (xij)). It is clear that a feasible
solution (X̃, Z̃), X̃ = ((xi), (x̃ij)) is strong if for all j ∈ J holds

∑
i∈I

pij x̃ij = max
k|k�jij(z̃)

pkj(xk − s̃k),

where maximum over an empty set is assumed to be equal to zero.
We say that a strong feasible solution (X̄, Z̄) of the problem (L,F), where

X̄ = ((xi), (x̄ij)), is pessimistic, if L(X̄, Z̄) ≤ L(X̃, Z̃) for each strong feasible
solution (X̃, Z̃), X̃ = ((xi), (x̃ij)). A pessimistic feasible solution (X∗, Z∗) of the
problem (L,F) is called a pessimistic optimal solution if L(X∗, Z∗) ≥ L(X̄, Z̄)
for each pessimistic feasible solution (X̄, Z̄).

Given a Boolean vector x = (xi), i ∈ I, consider the problem of finding a
pessimistic feasible solution (X̄, Z̄), X̄ = ((xi), (x̄ij)) of the problem (L,F). This
solution can be computed in two steps.

At the first step given a vector x solve the problem F and get an optimal
value F ∗ of its objective function. At the second step solve the following auxiliary
problem. To formulate it we introduce new variables uj , j ∈ J . The variable uj

takes the value of the maximum profit Leader gets from serving the customer j.
The aforementioned problem is formulated as follows:

min
(zi),(zij),(si),(uj)

∑
j∈J

uj (12)

xi − si + zi ≤ 1, i ∈ I; (13)

xi ≥ si, i ∈ I; (14)

xi − si +
∑

k|i�jk

zkj ≤ 1, i ∈ I, j ∈ J ; (15)

zi ≥ zij , i ∈ I, j ∈ J ; (16)

uj ≥ pij(xi − si −
∑

k|k�ji

zk), i ∈ I, j ∈ J ; (17)

−
∑
i∈I

Gisi −
∑
i∈I

gizi +
∑
j∈J

∑
i∈I

qijzij ≥ F ∗; (18)

zi, zij , si ∈ {0, 1}, i ∈ I, j ∈ J ; (19)

ui ≥ 0, j ∈ J. (20)

Let (Z̄, Ū), Z̄ = ((z̄i), (z̄ij), (s̄i)), Ū = (ūj) be an optimal solution of the
problem (12)–(20), and let z̄ = (z̄i). Notice that for solution (Z̄, Ū) the following
equality holds for each j ∈ J :

ūj = max
i|i�jij(z̄)

{
pij(xi − s̄i)

}
.



330 V. Beresnev and A. Melnikov

Now we are able to construct a strong feasible solution (X̄, Z̄), X̄ =
((xi), (x̄ij)) of the problem (L,F) corresponding to (Z̄, Ū). For j ∈ J such that
ūj > 0 let us denote by ij the index i ∈ I for which the constraint (17) is active.
Then for i ∈ I, j ∈ J we set

x̄ij =
{

1, if ūj > 0 and i = ij
0 otherwise .

Notice that (X̄, Z̄) is a strong feasible solution of the problem (L,F). In
addition, observe that ūj =

∑
i∈I

pij x̄ij , j ∈ J .

Theorem 1. Given (0,1)–vector x = (xi), i ∈ I, if (Z̄, Ū), Z̄ =
((z̄i), (z̄ij), (s̄i)), Ū = (ūj) is an optimal solution of the problem (12)–(20), then
the solution (X̄, Z̄), X̄ = ((xi), (x̄ij)) of the problem (L,F), corresponding to
(Z̄, Ū) is a pessimistic feasible solution of the problem (L,F).

Proof. Let (X̃, Z̃), X̃ = ((xi), (x̃ij)), Z̃ = ((z̃i), (z̃ij), (s̃i)) be a strong feasible
solution of the problem (L,F). Set z̃ = (z̃i) and

ũj =
∑
i∈I

pij x̃ij , j ∈ J.

Since (X̃, Z̃) is a strong feasible solution, then

ũj = max
i|i�jij(z̃)

pij(xi − s̃i), j ∈ J.

Consequently, (Z̃, Ũ), Ũ = (ũi) is a feasible solution of the problem (12)–(20).
We get ∑

j∈J

∑
i∈I

pij x̃ij =
∑
j∈J

ũj ≥
∑
j∈J

ūj =
∑
j∈J

∑
i∈I

pij x̄ij .

It follows that L(X̄, Z̄) ≤ L(X̃, Z̃), and the Theorem 1 is proved.

Since any (0,1)–vector x defines the value of objective function (1) on the corre-
sponding pessimistic feasible solution, then the problem (L,F) can be considered
as a pseudo–Boolean function maximization problem. This function f depends
on m Boolean variables and for every vector of Leader’s locations gives the value
of Leader’s profit.

4 Upper Bound

Consider the problem of computing an upper bound for values of the afore-
mentioned pseudo–Boolean function f(x), x ∈ {0, 1}m. Our goal is to modify
the approach from [4,6] and apply it to the problem under investigation. The
method consists in strengthening of the initial bilevel problem with some addi-
tional constraints satisfied by all pessimistic feasible solutions. The relaxation
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of the strengthened model by removing the lower–level problem provides a valid
upper bound.

Valid inequalities for the problem (L,F) utilize a specially constructed sys-
tem of subsets {Ij}, j ∈ J . Our goal is to form a nontrivial subset Ij for each
j ∈ J such that in the case, when the most preferable for j0 ∈ J Leader’s facil-
ity is not in Ij0 , then j0 does not bring profit to Leader. Given j0 ∈ J , let us
formulate the rule to determine if an arbitrary i ∈ I is in the subset Ij0 or not.

Consider the set N(i) = {k ∈ I | k �j0 i} of facilities more preferable for j0
than i and its superset N̄(i) = N(i) ∪ {i}. The set

J(i) = {j ∈ J | i = ij(I\N(i))}

contains customers for which all the facilities that are more preferable than i are
contained in N(i). Since j0 ∈ J(i), then J(i) �= ∅.

For each k ∈ N(i) denote the subset of J(i) that can be captured by k by

J1(i, k) = {j ∈ J(i) | k = ij((I\N(i)) ∪ {k})},

and for each k ∈ N̄(i) the subset of J(i) that can be captured by k after closing
the facility i by

J2(i, k) = {j ∈ J(i) | k = ij((I\N̄(i)) ∪ {k})}.

Suppose that i /∈ Ij0 if there exists k ∈ N(i) such that
∑

j∈J1(i,k)

qkj ≥ gk,

or if there exists k ∈ N̄(i) such that
∑

j∈J2(i,k)

qkj ≥ gk +Gi. Otherwise we assume

that i ∈ Ij0 .

Lemma 1. Let (X̄, Z̄), X̄ = ((x̄i), (x̄ij)), Z̄ = ((z̄i), (z̄ij), (s̄i)) be a pessimistic
feasible solution of the problem (L,F) and {Ij} be a system of estimating subsets.
For each j0 ∈ J the following holds: if ij0({i ∈ I|x̄i − s̄i = 1}) /∈ Ij0 , then∑
i∈I

pij0 x̄ij0 = 0.

Proof. Consider (0,1)–vectors x̄ − s̄ = (x̄i − s̄i), i ∈ I and z̄ = (z̄i), i ∈ I. If
x̄ − s̄ = 0, then from (3) we obtain the required. Otherwise, set ix = ij0(x̄ − s̄).
Assume that ix /∈ Ij0 and consider the set N(ix) = {i ∈ I|i �j0 ix}. If N(ix) �= ∅
and

∑
i∈N(ix)

z̄i > 0, then from (2) and (3) we get
∑
i∈I

x̄ij0 = 0.

Otherwise, consider the set J(ix) = {j ∈ J |ix = ij(I\N(ix))}. Since (x̄i −
s̄i) = z̄i = 0 for all i ∈ N(ix), then ij(x̄ − s̄) �j ij(z̄) for each j ∈ J(ix). From
ix /∈ Ij0 we get two possibilities:

(1) there exists k ∈ N(ix) such that for J1(ix, k) we have
∑

j∈J1(ix,k)

qkj ≥ gk;
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(2) there exists k ∈ N̄(ix) such that for J2(ix, k) we have
∑

j∈J2(ix,k)

qkj ≥ gk+Gix .

In the first case we can construct a new feasible solution Z = ((zi), (zij), (si))
of the problem F which differs from the optimal solution Z̄ only in that zk = 1
and zkj = 1 for j ∈ J1(ix, k).

For solutions Z and Z̄ the following inequality holds:

F (Z) − F (Z̄) = −gk +
∑

j∈J1(ix,k)

qkj ≥ 0.

If this inequality is strict we have a contradiction with optimality of Z̄. If∑
i∈I

pij0 x̄ij0 > 0 the replacement of the optimal solution Z̄ of the problem F
with a feasible solution Z does not reduce the objective function of the lower–
level problem but reduces the upper–level one. It contradicts with the fact that
(X̄, Z̄) is a pessimistic feasible solution.

In the second case we construct a feasible solution Z = ((zi), (zij), (si)) of the
problem F , which differs from Z̄ only in that zk = 1, zkj = 1 for j ∈ J2(ix, k),
and six = 1. For the lower–level objective function, we have:

F (Z) − F (Z̄) = −gk − Gix +
∑

j∈J2(k,ix)

qkj ≥ 0.

By repeating the argument for the first case we get the Lemma 1 proved.

Corollary 1. Let (X̄, Z̄) be a pessimistic feasible solution of the problem (L,F)
and {Ij} is a system of estimating subsets. There exists a pessimistic feasible
solution (X,Z), X = ((xi), (xij)), Z = ((zi), (zij), (si)) of the problem (L,F)
such that L(X,Z) = L(X̄, Z̄) and for each j ∈ J the following inequality holds:

∑
i∈I

xij ≤
∑
i∈Ij

xi. (21)

Proof. Set (X,Z) to be equal to (X̄, Z̄). If the right hand side of (21) is positive,
then (21) results from the constraints (2).

If for some j ∈ J we have xi = 0 for all i ∈ Ij then Lemma 1 can be applied.
Indeed, in this case ij({i ∈ I|xi − si = 1}) �∈ Ij and thus

∑
i∈I

pijxij = 0. By

setting xij = 0 for all i ∈ I we get the required.

Consider the following problem, which we refer to as estimating problem for
(L,F). It is obtained from the problem (L,F) by adding the constraints (21)
and removing the lower–level objective function. From Corollary 1 we conclude
that the first modification does not change the optimal value of the objective
function. The second modification increases the feasible region by relaxing the
constraints on the lower–level variables to get values from the set of optimal
solutions. Obviously, after this relaxation all lower–level variables can be set to
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be equal to zero. This allows us to remove them as well. Finally, the estimating
problem is written as follows:

max
(xi),(xij)

{
−

∑
i∈I

fixi +
∑
j∈J

∑
i∈I

pijxij

}
,

∑
i∈I

xij ≤ 1, j ∈ J ;

xij ≤ xi, i ∈ I, j ∈ J ;∑
i∈I

xij ≤
∑
i∈Ij

xi, j ∈ J ;

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J.

Denote the value of its objective function on the feasible solution X =
((xi), (xij)) with B(X). Let X0 = ((x0

i ), (x
0
ij)) be an optimal solution of the

estimating problem.

Theorem 2. Let X0 be an optimal solution of the estimating problem. For each
pessimistic feasible solution of the problem (L,F) the following inequality holds:
L(X̄, Z̄) ≤ B(X0).

Proof. Let (X̄∗, Z̄∗) be a pessimistic optimal solution of the problem (L,F).
From the Corollary 1 we conclude that there exists a pessimistic feasible solution
(X∗, Z∗) satisfying (21) and such that L(X∗, Z∗) = L(X̄∗, Z̄∗). Since the value
B(X0) is an optimal value of the estimating problem, which is a relaxation of the
problem (L,F) with additional constraint (21), we have B(X0) ≥ L(X∗, Z∗).
The Theorem 2 is proved.

Thus computing the upper bound for the pseudo–Boolean function f(x) consists
in solving a single–level mixed–integer programming problem.

5 Conclusions and Future Research

In this paper, we have introduced a new model of competitive facility location,
which belongs to the class of Stackelberg games. Players called Leader and Fol-
lower maximizes their profit obtained from customers serving with deduction of
the fixed costs of facilities opening. The model of customers’ behavior assumes
that customer is captured by the side which opens the most preferable facility
for him or her. The novelty of the model consists in ability of Follower to close
Leader’s facility by paying some known price. It models the situation of unfair
competition where discrediting and other forms of dishonest activities can be
applied to Leader’s facilities in order to force them to close.

We propose the method to construct a pessimistic feasible solution corre-
sponding to Boolean vector, representing Leader’s facilities location. Conse-
quently, the Leader’s problem can be represented in a form of pseudo–Boolean
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function maximization. It allows to construct local search based methods and
apply a large pool of metaheuristic schemes [7,12] to obtain approximate solu-
tions of the problem in reasonable time.

The proposed upper bound can be utilized in estimation of the inexact meth-
ods effectiveness. Valid inequalities presented by the Corollary 1 strengthen the
formulation of the problem and can increase the convergence rate of bilevel
solvers to come. Due to proximity of the estimating problem and the Leader’s
problem, the optimal solution of the first one can be taken as a starting point
of the search.

The next step of our research is incorporation of the fixed values of Leader’s
location variables into the procedure of upper bound calculation. This modifica-
tion is necessary for the implicit enumeration scheme development but coupled
with difficulties caused by an uncertainty of the status of Leader’s facilities,
which are fixed to be open in branching procedure, but are able to be closed
by Follower. Another direction of research can be associated with protection
planning, where Leader is able to protect some of his facilities from closing.
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