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Abstract—We consider a mathematical model similar in a sense to competitive location problems.
There are two competing parties that sequentially open their facilities aiming to “capture” customers
and maximize profit. In our model, we assume that facilities’ capacities are bounded. The model
is formulated as a bilevel integer mathematical program, and we study the problem of obtaining
its optimal (cooperative) solution. It is shown that the problem can be reformulated as that of
maximization of a pseudo-Boolean function with the number of arguments equal to the number
of places available for facility opening. We propose an algorithm for calculating an upper bound for
values that the function takes on subsets which are specified by partial (0, 1)-vectors.
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INTRODUCTION

We study the competitive facilities location problem which differs from the similar problems in
[2, 3, 5, 6, 8, 11] by the presence of limited production capacities of the opened facilities. In the com-
petitive location models, unlike the simple facility location problem [1, 14], the two competing parties
are considered. These parties sequentially open their facilities to optimize their own objectives. The
objectives of parties, which are usually called the Leader and the Follower, consist in “capturing”
the customers and satisfying the customers’ demands. At that, the opportunity for one of the parties
to capture some customer depends on the customer preferences: these preferences allow to determine
which of the parties has opened the most suitable facility for him or her.

The goal of the Leader in this competition is to choose such a set of facilities to be opened which
maximizes profit, given the fact that part of the customers will be captured by the Follower. The goal
of the Follower is to open such a set of facilities to maximize profit taking into account the knowledge
about the facilities opened by the Leader. This interaction of parties in the sequential competitive facility
location can be considered as a Stackelberg game [15].

Formally the sequential competitive facility location problem can be represented as an integer bilevel
programming problem [7, 9, 10, 12] which includes the upper level (the Leader’s) problem and the lower
level (the Follower’s) problem. The form of these problems depends on the rules of how the parties choose
the facility to serve the captured customers and which additional constraints are imposed on the set of
opened facilities and on the ability to serve the customers.

The model under study contains the production capacity limitations for the facilities opened by both
the Leader and the Follower. This means that each opened facility can be used to serve only the set of
customers for which the total customer’s demand does not exceed the given production capacity of this
facility. With these constraints it is natural to assume that both parties use the rule of free choice of the
opened facility to serve the captured customer [3]. Under this assumption the party that has captured the
customer can use every open facility which is not worse according to this customer’s preferences than
each of the facilities opened by the other party to serve this customer.
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The important property of the model under study, as well as for the previously considered competitive
facility location models, is the need to define the concept of best solution. This is due to the possible
nonuniqueness of the optimal solution of the Follower’s problem, which creates the uncertainty in cal-
culation of the value of the Leader’s objective function.

For the competitive facility location models considered in [2, 3, 5, 6, 8, 11] the two problems were
set: the search for the optimal guaranteed (noncooperative) solution and optimal (cooperative) solution.
In this paper we study the problem of finding the optimal solution of the capacitated competitive
facility location problem under consideration. This choice is driven by aspiration to use the method for
algorithm construction which was developed in [2, 3, 5, 6, 8, 11]. The main idea of this method consists in
representation of the investigated problem as a problem of maximizing some pseudo-Boolean function
such that the number of variables is equal to the number of potential facility locations of the Leader.
In order to implement this representation it is required to show that, for the fixed facility location of the
Leader, the corresponding best solution can be obtained as the optimal solution of a certain “regular”
integer programming problem whose size is comparable to the size of the Leader’s and the Follower’s
problems.

We show that, in the case of search for the optimal solution, the required pseudo-Boolean function
can be constructed. In order to evaluate the values of this function and construct the corresponding
optimal solution we have to solve two integer linear programming problems. First of them is the
Follower’s problem, while the second is an auxiliary problem whose size is equal to the sum of sizes
of the Leader’s and the Follower’s problems.

Another important condition for the implementation of the above-mentioned method is the ability
to calculate efficiently the upper bound for the constructed pseudo-Boolean function on the subsets of
(0, 1)-vectors that are defined by the partial (0, 1)-vectors. In this paper, we provide a way to obtain such
an upper bound by using some modified system of estimating subsets [3, 5, 6, 11].

The paper consists of the three sections: In Section 1, we provide the statement of the capacitated
competitive facility location problem as a bilevel integer programming problem. In Section 2, we
formulate the problem of finding the optimal solution of the model under consideration and provide
its reduction to the problem of maximizing the pseudo-Boolean function. In Section 3, we describe
a method to calculate an upper bound of the constructed pseudo-Boolean function on the sets of (0, 1)-
vectors defined by the partial (0, 1)-vectors.

1. STATEMENT OF THE PROBLEM

We introduce the following notions that are needed for the formal statement of the capacitated
competitive facility location problem:

As in the simple facility location problem, let I = {1, . . . ,m} be the set of facilities (or possible facility
location places), and J = {1, . . . , n}, the set of customers.

We assume that the facility i ∈ I can be opened both by the Leader and the Follower. Therefore, for
each i ∈ I, we assume that the values fi and gi are equal to the costs to open facility i by the Leader and
the Follower correspondingly. If the Leader or the Follower cannot open facility i for some reason, then
put fi = ∞ or gi = ∞.

Given i ∈ I and j ∈ J , let pij and qij denote the value of the revenue obtained when serving
customer j by facility i opened by the Leader and the Follower correspondingly.

We assume that the capture of customer j ∈ J by the Leader or the Follower is performed with respect
to the preferences of this customer. The preferences of customer j ∈ J are represented by the order
relation �j on I. For i, k ∈ I, i �j k means that customer j ∈ J would prefer facility i from the two open
facilities i and k. The relation i �j k means that either i �j k or i = k.

Let I0 ⊂ I. For each j ∈ J , let ij(I0) denote i0 ∈ I0 such that i0 �j i for every i ∈ I0. If I0 = {i ∈ I |
wi = 1}, where w = (wi), i ∈ I, is some (0, 1)-vector, then for ij(I0) we will also use the notation ij(w).

In order to determine which of the parties captures customer j ∈ J , we use the following rule: Let
the entries 1 of (0, 1)-vector x = (xi), i ∈ I, denote the facilities by the Leader and the entries 1 of
(0, 1)-vector z = (zi), i ∈ I, denote the facilities by the Follower. We assume that customer j ∈ J will
be captured by the Leader if ij(x) �j ij(z) and by the Follower if ij(z) �j ij(x).
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Let the Leader and the Follower use the rule of free choice while selecting the facility for the captured
customer j ∈ J . This means that if customer j is captured by the Leader then the Leader can choose
every open facility i ∈ I such that i �j ij(z) to serve this customer. Similarly, if customer j is captured
by the Follower then the Follower can use each of his/her open facilities i ∈ I such that i �j ij(x) to
serve this customer.

Unlike for the previously considered competitive facility location models, we assume that the ability
for both the Leader’s and the Follower’s facilities to serve the customers are limited. Let aij and bij

denote the production volume of facility i ∈ I opened by the Leader and the Follower correspondingly,
required to serve customer j ∈ J . Let Vi and Wi stand for the total capacity of facility i ∈ I by the Leader
and the Follower correspondingly.

The Leader’s and Follower’s goals are to maximize the total profit which is constituted of the profits of
all facilities opened by them, taking into account the production capacities of these facilities. We assume
that the profit of every open facility is equal to the sum of profits obtained from all customers served by
it, subtracting the fixed cost of opening this facility.

We introduce the following variables similar to those of the simple facility location problem:
xi = 1 if Leader opens facility i ∈ I and xi = 0 otherwise;
xij = 1 if facility i ∈ I by the Leader is chosen to serve customer j ∈ J and xij = 0 otherwise;
zi = 1 if Follower opens the facility i ∈ I and zi = 0 otherwise;
zij = 1 if facility i ∈ I opened by Follower is chosen to serve customer j ∈ J , and zij = 0 otherwise.

Using the above variables, we can formulate the mathematical model of the Leader and Follower
interaction in the capacitated sequential competitive facility location as the following bilevel integer
programming problem:

max
(xi),(xij)

{
−

∑
i∈I

fixi +
∑
j∈J

∑
i∈I

pijxij

}
, (1)

z̃i +
∑

k|i�jk

xkj � 1, i ∈ I, j ∈ J, (2)

xi � xij, i ∈ I, j ∈ J, (3)
∑
j∈J

aijxij ≤ Vi, i ∈ I, (4)

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J, (5)

(z̃i), (z̃ij) is the optimal solution of the problem, (6)

max
(zi),(zij)

{
−

∑
i∈I

gizi +
∑
j∈J

∑
i∈I

qijzij

}
, (7)

xi + zi ≤ 1, i ∈ I, (8)

xi +
∑

k|i�jk

zkj � 1, i ∈ I, j ∈ J, (9)

zi � zij , i ∈ I, j ∈ J, (10)
∑
j∈J

bijzij ≤ Wi, i ∈ I, (11)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J. (12)

The upper level problem (1)–(5) is called Problem L, while the lower level problem (7)–(12),
Problem F . Problem (1)–(12) as a whole is Problem (L,F), while the objective function (1) of
Problem L is assumed to be the objective function of Problem (L,F).

The objective function (1) of Problem L represents the profit by the Leader. Inequalities (2) forbid
to serve the customer by those Leader’s facilities that are less preferable for this customer than some

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 10 No. 1 2016



64 BERESNEV, MELNIKOV

of the facilities opened by the Follower. These inequalities also guarantee that each of the customers
can be served with at most one Leader’s facility. Constraint (3) ensures that the serving the customers
can be performed only by the open facility. Condition (4) guarantees that the total production demand
satisfied by each of the opened facilities does not exceed its production capacity. The objective function
and constraints of Problem F have similar meaning. Additional constraint (8) shows that the Follower
cannot open the facility in the location where the Leader had already opened a facility.

2. OPTIMAL SOLUTIONS OF PROBLEM (L,F)
Let us refer to a pair (X, Z̃) as a feasible solution of Problem (L,F) if X = ((xi), (xij)) is a feasible

solution of Problem L for a given vector (z̃i) and Z̃ = ((z̃i), (z̃ij)) is an optimal solution of Problem F
for a given vector (xi),

Let L(X, Z̃) denote the value of the objective function of Problem (L,F) at a feasible solution (X, Z̃),
and let F (Z) denote the value of the objective function of Problem F at a feasible solution Z.

A feasible solution (X∗, Z∗) is called an optimal solution of Problem (L,F) if L(X∗, Z∗) ≥ L(X, Z̃)
for every feasible solution (X, Z̃).

Then, we focus on the problem of finding an optimal solution for the (L,F) model. Since, given some
fixed feasible solution X of Problem L, an optimal solution Z̃ of Problem F is generally not unique, and,
for different solutions Z̃1 and Z̃2, the values L(X, Z̃1) and L(X, Z̃2) can differ; therefore, the current
problem is stated as follows:

Find

max
(xi),(xij)

max
(z̃i),(z̃ij)

{
−

∑
i∈I

fixi +
∑
i∈J

∑
i∈I

pijxij

}

satisfying (2)–(12). We denote this problem by (L,F) too.
Note that for the fixed (0, 1)-vector x = (xi), i ∈ I, the corresponding optimal solution (X∗, Z∗) of

Problem (L,F), where X∗ = ((xi), (x∗
ij)), can be obtained by the algorithm which consists of the two

stages:
At the first stage, for the fixed (0, 1)-vector x = (xi), i ∈ I, Problem F is solved and the optimal

value of its objective function F ∗ is determined.
At the second stage, the auxiliary problem is solved:

Find

max
(xij)

max
(zi),(zij)

{
−

∑
i∈I

fixi +
∑
i∈J

∑
i∈I

pijxij

}

satisfying

zi +
∑

k|i�jk

xkj ≤ 1, i ∈ I, j ∈ J,

xi ≥ xij, i ∈ I, j ∈ J,∑
j∈J

aijxij ≤ Vi, i ∈ I,

−
∑
i∈I

gizi +
∑
j∈J

∑
i∈I

qijzij ≥ F ∗,

xi + zi ≤ 1, i ∈ I,

xi +
∑

k|i�jk

zkj ≤ 1, i ∈ I, j ∈ J,

zi ≥ zij , i ∈ I, j ∈ J,∑
j∈J

bijzij ≤ Wi, i ∈ I,

xij , zi, zij ∈ {0, 1}, i ∈ I, j ∈ J.
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It is clear that if ((x∗
ij), (z

∗
i ), (z∗ij)) is an optimal solution for this problem then Z∗ = ((z∗i ), (z∗ij)) is

an optimal solution of Problem F , and the feasible solution (X∗, Z∗), X∗ = ((xi), (x∗
ij)), is an optimal

solution of Problem (L,F) for the fixed vector x = (xi), i ∈ I.
This implies that Problem (L,F) can be represented as that of maximizing some pseudo-Boolean

function f(x). The value of this function on the (0, 1)-vector x is the optimal value of the objective
function of the auxiliary problem under consideration. Hence, to calculate the value of f(x) at a vector
x, we have to solve Problem F , and then solve the described auxiliary problem. In result we find both the
value of f(x) at (0,1)-vector x, and the corresponding feasible solution of Problem (L,F).

3. AN UPPER BOUND

Let us address the problem of efficient calculation of an upper bound for the values of the pseudo-
Boolean function f(x) under consideration, x = (xi), i ∈ I, for the subsets of the set of (0, 1)-vectors.
These subsets can be conveniently given using partial (0, 1)-vectors. We call the vector y = (yi), i ∈ I,
whose entries take the values 0, 1, and the undefined value ∗, a partial (0, 1)-vector or a partial
solution. A partial solution splits the variables of f(x) into the variables with the value 0 or 1 and free
variables. Given the partial (0, 1)-vector y = (yi), we define I0 = {i ∈ I | yi = 0} and I1 = {i ∈ I | yi =
1}. The partial solution y = (yi) defines the set of (0, 1)-vectors x = (xi) such that xi = 0 for i ∈ I0 and
xi = 1 for i ∈ I1. Let this set of vectors be denoted by P (y).

The value of f(x) at a (0, 1)-vector x ∈ P (y) is the value of the objective function of Problem (L,F)
at an optimal solution (X∗, Z∗) corresponding to x. Let y = (yi), i ∈ I, be a partial (0, 1)-vector for
which I0(y) ∪ I1(y) 
= I.

The maximal value of f(x) on P (y) is the optimal value of the objective function of Problem (L,F)
with the additional constraint xi = yi for i ∈ I0(y) ∪ I1(y). This problem can be stated as follows:

Find

max
(xi),(xij)

max
(z̃i),(z̃ij)

{
−

∑
i∈I

fixi +
∑
j∈J

∑
i∈I

pijxij

}
, (13)

satisfying

z̃i +
∑

k|i�jk

xkj � 1, i ∈ I, j ∈ J, (14)

xi � xij, i ∈ I, j ∈ J, (15)
∑
j∈J

aijxij ≤ Vi, i ∈ I, (16)

xi = yi, i ∈ I0(y) ∪ I1(y), (17)

xi, xij ∈ {0, 1}, i ∈ I, j ∈ J, (18)

(z̃i), (z̃ij) is the optimal solution of (7)–(12). (19)

Problem (13)–(18) is denoted by Problem L(y), and the problem (13)–(19), (7)–(12) as a whole, by
Problem (L(y),F). The objective function of Problem (L(y),F) is denoted by L(X, Z̃).

Let us modify the method for constructing the system of estimating subsets {Ij(y)}, j ∈ J , from
[5, 6, 11] to apply it to Problem (L′(y),F). We construct the estimating problem such that the optimal
value of its objective function will provide an upper bound for the values of the objective function of
Problem (L′(y),F).

For a given partial (0, 1)-vector y = (yi), i ∈ I, and fixed j0 ∈ J we formulate the rules that allow us
to determine whether i ∈ Ij0(y) or i /∈ Ij0(y) for each i ∈ I.

If yi = 0 then i /∈ Ij0(y). Let yi 
= 0. Consider the set N(i) = {k ∈ I | k �j0 i}. If N(i) = ∅ then
i ∈ Ij0(y). Assume that N(i) 
= ∅. If N(i) ∩ I1(y) 
= ∅ then i /∈ Ij0(y).
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Let N(i) ∩ I1(y) = ∅. Consider

J(i) = {j ∈ J | if k �j ij(I1(y) ∪ {i}) then k ∈ N(i)}.
Note that J(i) 
= ∅ since j0 ∈ J(i). Given k ∈ N(i), we consider the set

J(k, i) = {j ∈ J(i) | k �j ij(I1(y) ∪ {i})}.
We assume that i /∈ Ij0(y) if for some k ∈ N(i) there exists S(k) ⊂ J(k, i) such that

gk <
∑

j∈S(k)

qkj, Wk ≥
∑

j∈S(k)

bkj.

If there is no k ∈ N(i) with the property then i ∈ Ij0(y).
The following provides the main property of the estimating subsets:

Lemma 1. Let (X, Z̃), where X = ((xi), (xij)) and Z̃ = ((z̃i), (z̃ij)), be a feasible solution of
Problem (L′(y),F), and let {Ij(y)}, j ∈ J , be a system of estimating subsets. Then, for each
j0 ∈ J , if ij0(x) /∈ Ij0(y), where x = (xi), i ∈ I, then

∑
i∈I xij0 = 0.

Proof. Consider the (0, 1)-vectors x = (xi), i ∈ I, and z̃ = (z̃ij), i ∈ I. Assume that i0 = ij0(x) and
ij = ij(I1(x) ∪ I1(z̃)), j ∈ J . Put N(i0) = {k ∈ I | k �j0 i0}. Since i0 /∈ Ij0(y), N(i0) is nonempty.
Note that xi = 0 for all i ∈ N(i0). Note also that if z̃i 
= 0 for some i ∈ N(i0) then

∑
i∈I xij0 = 0 due to

constraints (14) and (15).
Let z̃i = 0 for i ∈ N(i0). Consider J(i0) = {j ∈ J | if k �j ij(I1(y)∪ {i0}), then k ∈ N(i0)}. Since

xi = z̃i = 0 for i ∈ N(i0), we have ij = ij(I1(y) ∪ {i0}) for each j ∈ J(i0).
Since i0 /∈ Ij0(y), there exist k ∈ N(i0) and S(k) ⊂ {j ∈ J(i0) | k �j ij(I1(y) ∪ {i0})} such that

gk <
∑

j∈S(k)

qkj, Wk ≥
∑

j∈S(k)

bkj.

We construct a feasible solution Z = ((zi), (zij)) of Problem F which differs from the optimal solution
Z̃ only by zk = 1 and zkj = 1 for j ∈ S(k). For the solutions Z and Z̃ we have

F (Z) − F (Z̃) = −gk +
∑

j∈S(k)

qkj > 0.

This contradicts the fact that Z̃ is an optimal solution of Problem F .
The proof of Lemma 1 is complete.

In order to calculate an upper bound of the values of the objective function of Problem (L(y),F),
we construct the auxiliary problem by adding to Problem L(y) the dummy variables tij ∈ {0, 1}, i ∈ I,
j ∈ J , and additional constraints.

This auxiliary problem is stated as follows:
Find

max
(xi),(xij),(tij )

max
(z̃i),(z̃ij)

{
−

∑
i∈I

fixi +
∑
j∈J

∑
i∈I

pijxij

}
(20)

satisfying

z̃i +
∑

k|i�jk

xkj ≤ 1, i ∈ I, j ∈ J, (21)

xi ≥ xij, i ∈ I, j ∈ J, (22)∑
j∈J

aijxij ≤ Vi, i ∈ I, (23)

xi +
∑

k|i�jk

tkj ≤ 1, i ∈ I, j ∈ J, (24)
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xi ≥ tij , i ∈ I, j ∈ J, (25)∑
i∈I

tij = 1, j ∈ J, (26)

∑
i∈I

xij ≤
∑
i∈Ij

tij, j ∈ J, (27)

xi = yi, i ∈ I0(y) ∪ I1(y), (28)

xi, xij, tij ∈ {0, 1}, i ∈ I, j ∈ J, (29)

(z̃i), (z̃ij) is the optimal solution of Problem (7)−(12). (30)

Let problem (20)–(30) be called Problem L′(y); and let the whole problem (20)–(30), (7)–(12) be
called Problem (L′(y),F). Let L′(X,T, Z̃) be the value of (20) at a feasible solution (X,T, Z̃), where
X = ((xi), (xij)), T = (tij), and Z̃ = ((z̃i), (z̃ij)).

Note that if (X,T ), X = ((xi), (xij)) and T = (tij), is the feasible solution of Problem L′(y) then,
by (24)–(26), for all i ∈ I and j ∈ J , we have for x = (xi), i ∈ I,

tij =

{
1, if i = ij(x),
0, otherwise.

We will also consider the following problem called the estimating problem for Problem (L′(y),F);
it is obtained from Problem L′(y) by excluding the constraints that contain the optimal values of the
variables of Problem F :
Find

max
(xi),(xij),(tij)

{
−

∑
i∈I

fixi +
∑
j∈J

∑
i∈I

pijxij

}
,

xi ≥ xij, i ∈ I, j ∈ J,∑
j∈J

aijxij ≤ Vi, i ∈ I,

xi +
∑

k|i�jk

tkj ≤ 1, i ∈ I, j ∈ J,

xi ≥ tij , i ∈ I, j ∈ J,∑
i∈I

tij = 1, j ∈ J,

∑
i∈I

xij ≤
∑

i∈Ij(y)

tij, j ∈ J,

xi = yi, i ∈ I0(y) ∪ I1(y),
xi, xij, tij ∈ {0, 1}, i ∈ I, j ∈ J.

Let B(X,T ) be the value of the objective function of this problem at a feasible solution (X,T ),
where X = ((xi), (xij)) and T = (tij); and let (X0, T 0), X0 =

((
x0

i

)
,
(
x0

ij

))
and T 0 =

(
t0ij

)
, denote the

optimal solution of the estimating problem.

Theorem. If (X, Z̃) is a feasible solution of Problem (L′(y),F) then L(X, Z̃) ≤ B(X0, T 0).

Proof. Using the feasible solution (X, Z̃), where X = ((xi), (xij)) and Z̃ = ((z̃i), (z̃ij)), we construct
the solution (X,T, Z̃) of Problem (L′(y),F) by putting for x = (xi), i ∈ I,

tij =

{
1, if i = ij(x),
0, otherwise,

, i ∈ I, j ∈ J.
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Note that (X,T, Z̃) is a feasible solution of Problem (L′(y),F). Indeed, constraints (24)–(26) hold
by construction and (27) holds by Lemma 1. Note also that the values of the objective functions of the
above problems at the solution (X, Z̃) and the corresponding solution (X,T, Z̃) are equal.

Moreover, note that if (X,T, Z̃) is a feasible solution of Problem (L′(y),F) then (X,T ) is a feasible
solution of the estimating problem and the values of the objective functions of the problems are equal.

So L(X, Z̃) = L′(X,T, Z̃) = B(X,T ) ≤ B(X0, T 0), which completes the proof of the theorem.

Thus, the calculation of the upper bound of the values of constructed pseudo-Boolean function f(x)
on P (y), where y = (yi), i ∈ I, is a partial (0,1)-vector, for which I0(y) ∪ I1(y) 
= I, is reduced to
finding the optimal value of the objective function of the estimating problem.

Representation of the problem of finding an optimal solution in the capacitated competitive facility
location model as the problem of maximization of certain pseudo-Boolean function of the same variables,
as for other variants of competitive facility location problem [2, 3, 5, 6, 8, 11], allows us to use the
approved set of algorithms based on the local search approach [2, 5, 12, 13]. The demonstrated ability
to efficiently calculate the upper bounds of the values of the considered pseudo-Boolean function on
the solution subsets defined by the partial (0, 1)-vectors allows us to construct the branch-and-bound
algorithms for the problem under consideration which are similar to the algorithms for the problems
from [1, 6, 7].
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